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Abstract 

Springs are a widely utilized component in the Microelectromechanical systems 

(MEMS) industry, especially in inertial devices.  Many of these devices rely on the 

restoring forces of springs to return the device, such as in an accelerometer, to 

equilibrium.  By adding external springs with negative spring constant behavior, the total 

spring constant can be modified.  Previous work at AFIT investigated the spring 

characteristics of a buckled MEMS Si/SiO2 membrane.  This research expanded on 

previous work and attempted to modify the spring in two ways.  First, a Ti/Au meander 

resistor was deposited atop the membrane in an effort to actuate the membrane and 

change the spring constant.  Secondly, a series of overhanging cantilevers were attached 

to the bulk substrate surrounding the membrane in an effort to restrict the membrane 

deflection to the negative stiffness region.  Membrane buckling was investigated through 

Finite Element analysis (FEA) and analytical equations.  Deflections were measured 

using an interferometric microscope (IFM) and force/deflection measurements were 

captured using a unique measurement scheme.  The results concluded that by introducing 

a thermal stress, the membrane could be actuated with a corresponding 300% increase in 

spring constant.  Additionally, the overhanging beams restricted the membrane deflection 

by up to 30%, but, because of a lack in beam stiffness, failed to restrict the membrane to 

the negative stiffness region.     
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SELECTIVELY TUNING A BUCKLED SI/SIO2 MEMBRANE MEMS THROUGH 
JOULE HEATING ACTUATION AND MECHANICAL RESTRICTION 

I.  Introduction 

Background 

Springs are a well-known device used to store mechanical energy.  From an early age 

children are introduced to the concept of a spring through walking their Slinky® down 

the stairs.  With applications ranging from early projectile weapon systems, most notably 

the bow and arrow, to vibration isolation in vehicles and precision equipment, springs are 

essential devices in today’s world.   Springs are a widely utilized component in the 

microelectronics industry, especially in inertial devices.  Springs and other methods of 

mechanical suspension have been forced to keep up with the size constraints imposed by 

advances in technology.  The continually evolving microelectronics industry has seen the 

geometry of electrical components decrease to the atomic level, and while enabling faster 

processors, forces engineers to develop advanced fabrication techniques and unique 

designs.   

Justification  

A separate but related field to microelectronics, microelectromechanical systems 

(MEMS) encompasses a wide array of sub-millimeter mechanical devices, and has 

evolved from the relatively simple silicon cantilever beam to complex micro motors [1].   

Today, the MEMS industry is experiencing incredible growth, driven mostly by cell 

phone and tablet demand of inertial sensors, which encompasses approximately 20% of 

the industry [2].  From 2011 to 2012, the MEMS industry experienced an annual growth 
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rate approximately 12.7% Compound Annual Growth Rate (CAGR) [3].  In the same 

period, the integrated circuit (IC) industry witnessed a decline of approximately 2% [4].  

In Figure 1, the yearly growth is partitioned to show the market share of the major 

components of the MEMS industry.   

 
Figure 1. Projected growth of the MEMS industry [4]. 

 

Analysts expect the growth to continue at 12-13% driven by increasing demand for 

smart phone sensors and microfluidics devices for biological applications [2].  

Researchers are continually finding new and exciting ways to use both new and existing 

MEMS technology to provide faster, smaller, and more efficient commercial products.  

The importance of cheap, small, and sensitive devices is a major goal for many MEMS 

researchers.   

Many of these devices rely on the restoring forces of springs to return the device to 

equilibrium, such as when an accelerometer is displaced by an external force.  
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Furthermore, device geometry defines the particular characteristics of the device, notably 

natural frequency and sensitivity.  Often times, it is difficult to tune the natural 

frequencies and enhance sensitivity of these devices for fear of potentially weakening the 

device.  A decrease in individual size elements could make the device prone to stiction 

(static friction), a common failure mechanism amongst MEMS devices.  Some devices 

might require an unreasonably small geometry to ensure device properties, such as the 

spring constant, which influences displacement sensitivity and resonant frequency are at 

required levels [5, 6].  By adding external springs with negative spring constant behavior, 

the total spring constant becomes the sum of the individual spring constants, in other 

words, a superposition spring.  The addition of a negative spring, many of these devices 

can behave as if they have little or no supporting structure, without the structural 

instability.  

Problem statement 

 Previous research at the Air Force Institute of Technology discovered a 

mechanical spring with linear regressive behavior in the form of a buckled Si/SiO2 

membrane [5].  While this behavior can be utilized for tuning the spring constant of 

MEMS devices, the ability to actuate the spring to change its behavior has yet to be 

discovered.  Furthermore, a key aspect of a linear regressive spring is its negative 

stiffness behavior.  If the spring movement could be isolated to this region, then the 

device would prove to be more useful.  Since the device is formed from a thin membrane 

the actuation behavior can be used to serve in both microfluidic and pressure sensor 

application.  Both are major areas of interest in the microelectronics industry.   
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Artificial negative stiffness, generated by electrostatics and used to modify 

material properties, has been demonstrated on MEMS accelerometers, but it requires 

additional power to function [7]. Additionally, methods of combining positive and 

negative stiffness for enhanced vibration isolation have been realized using large 

electromagnets on a macro scale [8].  The buckled membrane serves as a possible, low 

power, alternative which can decrease the overall spring constant of a system.  This fact 

leads to the primary question driving this research: how can we develop a method to 

actuate and tune the characteristics of a buckled Si/SiO2 membrane?  How does the 

spring constant change with varying amounts of deflection in a buckled Si/SiO2 

membrane?  Can we isolate the membrane deflection so it deflects only in the negative 

stiffness region? 

Buckled structures 

In order to investigate the question posed above, it is important to discuss buckled 

structures.  Buckling occurs when a relatively slender structure is compressively loaded 

leading to bowing of the structure.  MEMS researchers have investigated a buckled beam 

structure as a switching mechanism for several years [9]. This concept will be discussed 

comprehensively in this research.  On a macro scale a device exists which behaves in 

similarly to the device presented in this research.  The disk spring, or Belleville washer, is 

a device which displays an “s” shaped load-deflection curve [10].    

Another feature of a buckled beam is its bistable state of operation.  Bistability is best 

described using the playing card comparison.  Picture a playing card being pinched 

between the thumb and fore finger.  The card will initially bow in one direction, and once 
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a transverse force is applied, the card will snap through, and remain locked in the final 

position [9].  The buckled beam switch operates in a similar manner, and is useful in that 

it will hold one of two positions without any force being applied.  In the following 

research, the mechanics of a buckled plate, particularly the region prior to snap-through 

will be investigated.  The importance of this region stems from the fact that for an 

increased amount of deflection, the beam will provide an incrementally decreasing 

returning force [5].   

Scope  

The scope of this project includes, a thermal actuation method to tune the spring 

constant of the buckled Si/SiO2 membrane.  Additionally, this research seeks to restrict 

the outward buckled deflection of the membrane using overhanging cantilevers.    

Consequently, this experiment requires cleanroom equipment for fabrication to include 

photoresist spin stations, UV exposure tools, and chemical etching equipment.  Testing 

requires a white light interferometer to measure deflections of the structures and a micro-

Newton force sensor to record load deflection data.   

The bulk of this research focuses on the mechanics behind the buckled structure.  

MEMS technology and processes are important for device fabrication and 

characterization.  A series of investigative questions will guide this research towards 

success.  This research will address the following questions: 

1. What are the foundational mechanics of the buckled membrane?  Buckling is 

well understood, but involves nonlinear equations and an understanding of 

finite element analysis.     
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2. Is there a model (both computer simulated and analytical) that can be 

developed to predict the behavior of the Si/SiO2 membrane?  Models have 

been developed and are readily available from previous research, but require 

tailoring to meet the needs of this project.  

3. Is there a method that can be used to modify the spring constant of the 

buckled membrane?  This is the area that will require innovation on behalf of 

the research team.  There are several methods available to attempt to modify 

the behavior of the membrane.  Our proposed solution is to modify the 

membrane actuation, and thus the spring constant, using thermal expansion 

brought about by a deposited surface micromachined resistor.    

4. Is there a method to restrict the actuation of the membrane to the negative 

stiffness region?  The method researched in this thesis will utilize a series of 

SU-8 cantilevers to overhang and apply a returning force to the membrane.  

5. What is the most promising route for follow-on research?  Upon completion 

of this research guidance for future work will be provided. 

Assumptions 

 There are several assumptions which are necessary to simplify this 

research.  Dr. Saif of The University of Illinois utilized a series of assumptions for use 

with his work tuning a bistable buckled beam [11].  These assumptions are closely related 

to the work presented here, and are as follows.   

1. The compressive force generated by residual stress, stress between different 

materials, exceeds the critical load of the membrane.   
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2. The transverse deformation in the membrane is defined by the first buckling 

mode only. 

3. The buckled shape of the beam is modeled by a cosine shape (< 2% error) 

4. The materials used will behave elastically since strains are small. 

5. The slope at any point along the deflected membrane is small (<1).  

Summary 

A purely mechanical method of providing stiffness offset is needed as a method to 

alter the characteristics of a device without physically changing the geometry.  The 

following chapter will focus on analytical modeling of the device in addition to an 

overview of the current state of technology and related areas.  The third chapter will 

focus on the methodology used to successfully accomplish this research, with a focus on 

fabrication, testing and the data.  The fourth chapter will present the results of the 

research, the fifth chapter will provide analysis of the results and any unexpected 

behavior, and finally, the sixth chapter will summarize the findings and provide 

suggestions for following research.   
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II. Background 

Introduction 

The purpose of this chapter is to present pertinent background information of the 

subject.  Additionally, related work in the field will be discussed.  The chapter begins 

with an introduction into the physics of semiconductors, and a discussion of the common 

processing techniques used for microelectromechanical systems (MEMS).  Then follows 

is an introduction to buckling and how it can be exploited for the unique load-deflection 

properties.  These properties are a result of buckled structures being bistable in their 

nature.  With bistability comes unique spring behavior warranting a brief introduction 

into spring constants.  Finally, the heat transfer aspects that are sought to actuate the 

membrane are discussed.  

Semiconductors  

Semiconductors, as the name suggests, are solid substances whose electrical 

conductivity is between that of a conductor and that of an insulator, and are sometimes 

known as “poor insulators”[12].   Conceptually, the cause of this behavior is rooted in 

quantum mechanics, and is primarily attributed to electron energy states.  

Semiconductors are unique in that they have small bandgap energy (energy required to 

excite an electron to a higher energy state), unlike insulators which have large bandgaps 

and conductors which have either partially filled or overlapping bands [12].  

Semiconductor materials can be easily manipulated by doping with other elements to 

become more conductive [13].  Furthermore, they are at the foundation of modern 

microelectronics.   
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Semiconductors gained widespread interest with the discovery of the first 

transistor by Bardeen, Brattain, and Shockley in 1947, and further with the introduction 

of silicon processing [14].  With the shift from vacuum tube electronics towards 

fabricating electronic devices on silicon chips, personal consumer electronics became a 

possibility, leading to the rise of Silicon Valley.  During this time, researchers were also 

using similar fabrication processes to develop micron sized mechanical systems.  

Otherwise known as microelectromechanical systems or MEMS, these systems differ 

from integrated circuit devices in that they include movable components such as springs, 

gears, joints and hinges, and they can interface with electrical components.     

MEMS Overview 

MEMS are the integration of mechanical elements, sensors, actuators and 

electronics on a common silicon substrate using micro-fabrication technologies [15].  

MEMS can be described as two things, mechanical and electrical components formed by 

specialized fabrication techniques.  Similarly to integrated circuits, much of the 

advancement in the field can be attributed to the newly developed silicon processing.  

Kurt Peterson discusses in his article, “Silicon as a Mechanical Material,” four factors 

which helped drive the success of silicon [16]. 

1. Silicon is abundant, inexpensive, and can be produced with precision at high 

purity and perfection.   

2. The processing is based on thin films which easily scale.  

3. Device shapes are fabricated using photographic techniques, which also 

transition well to miniaturization.   
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4. Silicon electronics are easily batch fabricated, reducing costs.   

Lastly, silicon has the ability to create a high quality native oxide (SiO2) [13].   

Beginning with an electrostatically actuated cantilever in 1965, advancements in MEMS 

fabrication technologies through the early 1970s enabled smaller, cheaper, and more 

sensitive sensors and actuators [1, 17].  By the late 1980’s the advent of MEMS revolute 

joints and bushings enabled the fabrication of gear trains, spiral springs and other non-

stationary devices as fundamental components for use in micro robots [18, 19].  Figure 2 

shows SEM images for an example micro hinge and a micro electrostatic motor. 

 
Figure 2. Scanning electron microscope image (SEM) of a MEMS hinge (a) [20].  

Rotary electrostatic motor (b) [21].   
 

In the 1990’s researchers turned their attention to mechanical equivalents of 

electrical components, which benefit from high isolation, low power consumption and 

low cost [22].  One of the most popular components is the MEMS switch.  Numerous 

configurations exist, all of which serve a similar purpose, to create distinct on and off 

states.    Most can be electrostatically actuated between these on and off states similar to a 

transistor which is controlled through the “gate”.  Additionally, a mechanical logic 
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family, including AND, NAND, OR, NOR and NOT elements, was introduced in the 

early 1990’s [23].   

MEMS also encompass a variety of micro motors and micro actuators.  Smaller 

sizes introduce unique features, most notably low inertia and friction.  As a result, MEMS 

motors and actuators can quickly accelerate and decelerate to incredible speeds with little 

friction on the parts [24].  With the self-evident impracticality of a MEMS internal 

combustion engine, many unique actuation methods rely on external driving schemes 

(electrostatic [21, 25], magnetic [24], or electrothermal [26]) to displace an actuator, with 

the mechanical spring behavior of a structure is used to return it to equilibrium [27].  

Unfortunately, MEMS structures are not without problems such as reliability, packaging, 

and in some cases, high voltage requirements [22]. 

Over the last several centuries, numerous processes and technologies were 

developed, which together form the basis of MEMS fabrication.  These techniques can be 

separated into four distinct categories, which include: imprinting a design, deposition of 

layers, removal of layers, and the introduction of alien atoms into a material, and are 

otherwise known as photolithography, film deposition, etching, and diffusion/ion 

implantation, respectively [28]. 

MEMS Fabrication 

Many of these fabrication processes were designed to be used to make electronic 

devices.  However, fabrication equipment and processes are used by researchers in the 

MEMS field to create a diverse collection of sub-millimeter sized movable mechanical 

structures.  Devices are typically fabricated using one of two overarching techniques 
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involving either manipulating thin films deposited on the surface of a substrate or by 

machining the substrate itself, and are commonly known as surface micromachining and 

bulk micromachining, respectively [17] .  A third process, known as micromolding, builds 

a polymer mold with material deposition into the mold volume to form a structure [29].  

Of particular importance to this research are the first two methods, which will be 

discussed in more detail.   

Surface micromachining  

The term surface micromachining refers to additive processes which form 

structures on top of supporting wafer surfaces.  These structures can be formed using a 

combination of photolithography, film deposition, and etching.  Photolithography is used 

to imprint desired patterns to form the shapes of structures either through etching or 

deposition, shown in Figure 3 (a,b).  The Book “Fundamentals of Semiconductor 

Fabrication” defines photolithography as “the process of transferring patterns of 

geometric shapes on a mask to a thin layer of photosensitive material (called photoresist) 

covering the surface of a semiconductor wafer” [13].   

When a design is imprinted on a wafer, film deposition is a common method used 

to form a structure, shown in Figure 3 (c).  Both metals and non-metals can be deposited 

using one of two processes, physical vapor deposition (PVD) or chemical vapor 

deposition (CVD).  PVD is typically used for metal deposition, and is categorized by its 

approach of removing material from a solid target and transferring it to the wafer [13].  

Sputtering, which produces a conformal film, is a PVD process by which plasma ions 

bombard target material sending a shower of target material ions towards the substrate 

[28].  Conversely, evaporation produces unidirectional layers by heating metals to near 
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melting temperatures, raising the vapor pressure, and when combined with a high 

vacuum, ejects the material [28].  Of particular importance to this research is a method 

known as electron beam evaporation, which uses an electron beam bombardment to heat 

the metal.  CVD in contrast, is entirely a chemical process.  Gasses react and deposit 

products on the substrate with deposition rates determined by temperature with lower 

temperatures requiring plasma assistance for modest deposition rates.   

 
Figure 3. Surface micromachining process illustrating the formation of a cantilever 

beam.  (a) Photoresist spin coating.  (b) Photoresist exposure to desired mask 
pattern.  (c) Film deposition.  (d) Beam geometric shaping through another 

photolithographic process.  (e) Sacrificial layer etch. 
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Typically, once a layer is deposited, the supporting structure, known as a 

sacrificial layer, will be etched, freeing the structure apart from where it is connected to 

the substrate [30].  A typical surface micromachined device process is shown in Figure 3. 

Bulk Micromachining 

While etching is used to release or define the geometries of surface 

micromachined structures, it is traditionally associated with bulk micromachining.  The 

art of selectively removing precise amounts of silicon from a substrate has been 

thoroughly studied, and is used to fabricate membranes, trenches, holes, and undercut 

surface structures [31].  Liquid or “wet” etching (aqueous chemistries, typically acids in 

bases in which the bulk silicon is submerged) or dry (vapor and plasma) etching 

techniques are used to form either isotropic or anisotropic etch profiles illustrated in 

Figure 4 [31].   

 
Figure 4. (a) Isotropic etching of silicon.  (b) anisotropic etching of two different 

crystal oriented silicon substrates.  Modified from [31].   
 

Etch chemistries in both categories can be used to either etch equally in all directions 

(isotropic) or along crystal planes creating sharp features (anisotropic) [31].   
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In this research a dry etching method known as deep reactive ion etching (DRIE) 

is used to form the thin membranes.  DRIE is an iterative process which involves etching 

for a predetermined depth, coating the inside of the etch surface with passivation 

chemicals, and directionally bombarding the bottom surface to remove the passivation 

layer [32].  DRIE is a quick and primarily anisotropic process enabling high aspect ratio 

features to be formed.   

Hybrid Process for this Research 

This research utilized a hybrid process combining surface and bulk 

micromachining.  In order to fabricate the membrane used in this research, a bulk 

micromachining process using a DRIE creates a backside cavity and released the top two 

layers of a silicon on insulator (SOI) wafer.  Surface micromachining is employed to 

fabricate the topside resistors for thermal actuation and the cantilever beams used to 

restrict the buckled displacement of the membrane.  These processes involve 

photolithography processes, material deposition, and etching to form the desired 

structures. 

Residual Stress 

Stress is the primary element causing buckling, and it is a basic principle within 

the spectrum of strength of materials.  Robert Mott defines stress in his book Applied 

Strength of Materials as “the internal resistance offered by a unit area of the material 

from which a member is made to an externally applied load” [33].  In thin films, stress 

develops between layers for a variety of reasons.  Kaltsas et al. attribute the primary 

causes of the stress being a mismatch of lattice constants, coefficients of thermal 
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expansion and the growth procedure [34].  Silicon-on-insulator (SOI) wafers used in this 

research are made up of thin films and inherently contain residual stress.  In the case of 

this research, the primary cause of residual stresses is the difference between the 

coefficients of thermal expansion (α) of silicon (2.6x10^-6/K) and silicon dioxide 

(0.5x10^-6/K) [35].  Additionally, the resulting strain in a film can be calculated using 

Equation 1 [36].   

Equation 1 Strain introduced through thermal expansion coefficients. 

2 1( )T Tε α= −Δ −                                  (1)

Where ε is the strain, Δα is the difference in the coefficients of thermal expansion, 

and T1 and T2 are the deposition and cooled temperature respectively.  The actual 

deflection resulting from residual stresses behaves nonlinearly because the silicon layer is 

resisting strain in the SiO2 layer.  As a result, the residual stress is primarily observed in 

the SiO2 layer [37].  Furthermore, the silicon device layer will contain a negligible 

amount of residual stress because of its higher modulus of elasticity, crystalline structure, 

and doping [38] 

The temperature difference is introduced during the fabrication of SOI, and more 

specifically in the bonding and subsequent anneal steps [39].  Once the wafer is cooled, 

the differences in the coefficients of thermal expansion result in stress gradients which 

cause an internal bending moment. If the structure is longer than the critical length, it will 

buckle [40].  Silicon, having a larger coefficient of thermal expansion, will attempt to 

shrink more than the silicon dioxide upon cooling [41].  Initially, as a result of the handle 

wafer (substrate) being significantly thicker than the oxide and the device layer, the top 
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layers will remain undeflected.  Once the handle portion is etched away from the oxide 

and device layer, the resultant thin layer will no longer be physically constrained, and 

will transition to a lowest energy state corresponding to one of the bistable buckled states 

[36].   

Buckling 

The mechanism at the heart of this research is a phenomenon known as buckling.  

Buckling, or elastic instability, is a failure mechanism which, when subjected to a critical 

stress, causes a slender structural member to suddenly deflect drastically.  With additional 

force the device will collapse [33].  A basic buckling scenario, illustrated in many 

mechanical engineering texts, is a cylindrical column loaded in compression.  Shown in 

Figure 5 below, the column is compressively loaded and will deflect in the direction 

corresponding to the lowest inertia.   

 
Figure 5. A slender column showing buckling when exposed to an external axial 

load [42]. 
 

In standard macro sized structures, such as bridges, in which the slender member 

acts as a support, buckling is regarded as a failure mechanism and undesired [43].  

However, by displaying unique characteristics, buckling is sought out in this research.  
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As previously stated, compressive stress in the membrane is due to residual stress from 

fabrication.  While residual stress buckling is the most common form used in MEMS, 

other methods of creating a buckled beam have been used.  One such method is to apply a 

compressive force on the edges from an external actuator, and while this allows for a 

closer control of the compression, it requires bulky actuators and external power [11]. 

Others use a pre shaped buckled beam or membrane [44].     

Figure 6 illustrates the buckling concept as it applies to plates. The compressive 

stresses are indicated by arrows applied over the surface [45].  Figure 6 shows one of the 

multiple buckling modes possible for a structure with a load greater than the critical 

buckling load [46].  Each of these modes corresponds to a specific compressive load on 

the plate.   

 
Figure 6. (a) membrane with compressive buckling stress shown. (b) cross-section of 
the buckled membrane with upper and lower equilibrium states (superimposed on 

lower plate diagram) ©IEEE 1994 [45]. 
 

It is important to note that although the membrane is buckled, the membrane 

operates within the elastic region during initial buckling and throughout actuation [47].  

This is supported by the fact that silicon fractures at the upper end of the elastic region 

without undergoing plastic deformation, approximately 600 MPa [48].  Micro Raman 

Spectroscopy indicates a peak stress value of 240 MPa within the membrane during 



 

19 

buckling and transverse actuation [5].  In this case, the first mode accurately depicts the 

behavior of the membrane.   

In traditional linear mechanics, displacements are proportional to loads; however, 

buckled structures display nonlinearity in this sense [46].  This situation is best 

demonstrated in Figure 7 in which an increasing load results in linear deformation until 

the critical buckling load is reached [46].  It is at this location that buckling leads to three 

possible deflection positions, only one of which is linear.  The center line represents the 

unperturbed location where the membrane will come to rest, should no lateral force act 

on it or imperfections exist in the material.  This behavior is analogous to the ball resting 

on the top of the hill, shown in the following section.  In reality, the device will follow an 

alternate path prior to buckling.  Budiansky et al. explain how imperfections present in 

materials will cause structure to deviate from theoretical behavior [49].   

 
Figure 7. The equilibrium path of the center of the membrane under an increasing 

load.  Y-axis indicates center out-of-plane deflection.  Modified from [50].     
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By applying a compressive load, the membrane will begin lateral deflection prior to the 

indicated bifurcation point (δcr) with actual buckling occurring at a lesser load [49].  The 

modeling used in this research assumes idealized buckling behavior because it uses 

imperfection free material.  This approximation is close to the actual buckling behavior 

during post buckling, which is the location of interest to this research. 

When buckling occurs, formulas describing the shape of the deflected surface can 

be used to estimate the resultant buckled profile.  The deflection surface of the 

membrane, where stress in the x-direction (σx) is approximately equal to the stress in the 

y-direction (σy), can be represented by Equation 2 

Equation 2. Three dimensional membrane surface 
2 2

1 cos 1 cos
4

x y
z

a b

δ π π  = + +  
  

                                           (2) 

 
where x and y are the locations on the plate, a and b are the width and length of the plate, 

and z and δ are the vertical deflection and maximum center deflection, respectively.  

Using Matlab, the Equation 2 can be viewed as a three dimensional plot assuming a 

thirteen micron initial deflection shown in Figure 8.   

 
Figure 8. Computer generated three dimensional profile of a buckled membrane. 
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Occasionally, it is useful to determine the enclosed volume under the membrane.  

By actuating the membrane, a volume change will occur with a subsequent change in 

pressure.  In order to analytically determine volume change, a revolution integral is used, 

shown in Equation 3.   

Equation 3. Volume calculation for a function revolved around the y-axis [51]. 
2b

a
V x dwπ=              (3) 

 
The volume equation depends on x as a function of w.  Setting y equal to zero in 

Equation 2 creates a two dimensional profile [51].  We now have an equation to use in 

the volume calculation.  However, the equation must first be solved for x as a function of 

w.  Equation 4 shows that result.   

Equation 4. Membrane profile on the XZ plane. 

11000 2 cos
z

a
x

π

π

−
  −−  
   =                                           (4) 

 
Introducing Equation 4 into Equation 3 and solving the integral determines the volume 

encompassed by the membrane.    

The outward deflection of the membrane is found at the location of minimum 

strain energy.  Equations used to characterize a buckled plate combine the energy 

generated by both the strain energy of bending and the work done by the compressive 

forces during buckling [52].  Equation 5 and Equation 6 provide those two energy values, 

respectively. 
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Equation 5. Strain energy of bending. 
4 2

4 4 2 2

3 3 2

8
o

b

W D
U ab

a b a b

π  = + + 
 

 (5)

Equation 6. Strain energy generate by compressive stresses. 
2 2

2 2

0 0 0
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3

2 2 32

a b a byx
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dxdy h
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σσ σ σ ∂ ∂   = + += π δ     ∂ ∂     
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Where Wo is the center deflection, h is the thickness, a and b are the length and 

width, σx and σy are the compressive stresses, and D is the flexural rigidity represented by 

Equation 7 

Equation 7. Flexural rigidity 

( )
3

212 1

Eh
D =

− ν
                    (7) 

 
Where E is Young’s modulus, ν is Poisson’s ratio, and h is thickness.  Adding the two 

energy equations, solving the integrals, and simplifying the equations results in the total 

strain energy of the membrane which is represented by Equation 8 [45].  

Equation 8. Total Strain Energy. 

                                    
4 22 2

2 2
33 100 1o o

cr

W WDh Dh
U

a h a h

σ
σ

    = + −    
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                             (8) 

 
Thermal behavior is studied in this thesis, and Equation 8 can be modified to include 

thermal stresses.  By adding thermal stress (Equation 9) to the total stress (σ) in Equation 

8 will accommodate for the addition of heat to the buckled membrane.  

Equation 9. Thermal stress. 
( )therm eff effE T Tσ α ∞= − −                                   (9) 
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Where Eeff, αeff, T ∞ , and T are the effective biaxial Young’s modulus, effective 

coefficient of thermal expansion, the ambient temperature, and the current temperature of 

the sample.   

The derivative of Equation 8 represents the force/displacement characteristics of 

the plate, and will be used for monitoring the spring constant change as the plate 

increases in deflection.   

Equation 10. Force/deflection equation, derivative of the total strain energy 
32 2

2 2
132 200 1o o

cr

W WdU Dh Dh
dx h ha a

σ
σ

    
         

= + −                            (10) 

 
This derivative is also used to find the minimum, and through rearrangement, results in 

the critical buckling load for the membrane shown in Equation 11.  

Equation 11. Critical buckling load for plate buckling. 
2 2

2 4 4 2 2

24 3 3 2

3x y

cr

a Da
ab

b h a b a b

πσ + σ
   = + +   

  
                           (11) 

 
Additionally, for a square plate with uniform compressive loading, Equation 11 

reduces to Equation 12.  

Equation 12. Critical buckling load for a square plate. 
2

2
5.33cr

D

a h

πσ =                (12) 

 
Buckling is assumed to occur above this value.  When the total strain energy 

(Equation 8) is plotted, the estimated deflection of a buckled plate is shown, 

corresponding to the minimums of the curve.  Graphical representation of one, two, and 
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three multiples of the critical load with respect to the total strain energy (Equation 8)  is 

shown in Figure 9.     

 
Figure 9. Total strain energy with reference to the center deflection.  Multiple lines 
showing increased compressive loading illustrate how the distinct low energy states 

are formed ©IEEE 1994  [45].   
 

The x-axis identifies the out of plane deflection as a ratio to the height of the 

original structure.  When the membrane buckles it will deflect outwards until it reaches 

the lowest energy state.  As the load increases, the minimum energy values decrease and 

travel further outward on the x-axis.  This indicates that as the load increases, the 

deflection also increases.  At loads equal to or below the critical buckling load, the plot 

has only one minimum energy location, the zero deflection position.  Recall from Figure 

7 that this indicates the equations assume a defect free membrane following ideal 

buckling behavior.   

Because the membrane used in this research will be under compressive stress 

above the critical buckling load there are two minimum energy locations.  The membrane 

will be in equilibrium at either location, buckled in and buckled out, a characteristic 

known as bistability.  
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Bistability 

 A unique characteristic of buckling is the ability of a buckled structure to switch 

between two states of minimum energy.  Mechanically bistable systems demonstrate 

interesting phenomena surrounding the switching mechanism.  Jensen et al. best illustrate 

this mechanism through the “ball-on-the-hill” analogy demonstrated in Figure 10  [53].  

The ball comes to rest at either of the two “pits” or low energy equilibrium states. This 

concept dually applies to the buckled membrane with the exception that in the case of the 

membrane, the pits are of equal depth.  Upon reaching the critical load, the membrane 

will buckle in one of two directions as shown in Figure 6.  An interesting concept arises 

during actuation from one equilibrium state to another.  When a force is applied to the 

ball in an effort to transition between equilibrium states, the required force will rise in 

conjunction with the increasing slope of the hill. 

 
Figure 10. The ball-on-the-hill analogy demonstrating the concept of equilibrium 

states [53]. 
 

Once the slope of the hill begins to flatten, the load will reduce until point (b) is reached.  

Further displacement of the ball will require no force to transition it to the final 

equilibrium position.  This behavior is known as snap-through.  Qiu et al. used two 
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buckled beams connected at the center in a prefabricated buckled shape to test snap-

through behavior [9].  Their goal was to prevent an intermediate, unsymmetrical mode 

from occurring prior to snap-through by connecting the two buckled beams.  They 

provide a useful figure for illustrating the snap through phenomenon [9].  In Figure 11 

snap-through is shown in three sequential steps.  

     

Figure 11.  Three sequential cross-sectional diagrams which illustrate the snap 
through phenomenon in beams and membranes © IEEE 2004 [9].   

 

The first position is the initial equilibrium position, and with an applied transverse 

force, the membrane will pass through the second position and snap to the final, second 

equilibrium position.  The beginning and ending positions correspond to the low energy 

regions depicted in Figure 9.  The unique characteristics of this region can be seen in the 

spring constant behavior.   

Realized Applications of Bistability 

MEMS researchers exploit this concept for use in many devices.  The ability of 

the device to remain in one of the two equilibrium states without additional energy input 

make this mechanism desirable in low speed switching and memory applications [54].  
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Beat Hälg demonstrated a bilayer thin metal and SiO2 beam for use with nonvolatile 

memory.  Illustrated in Figure 12 the beam can represent digital 1 or 0 depending on the 

position of the beam.   

 
Figure 12. Schematic representation of the proposed nonvolatile memory cell.  

Features include, spacer (S), beam (B), substrate (SUB), and lateral electrodes (L) 
©IEEE 1990 [55]. 

 

Hälg’s research addresses several key questions regarding bistable mechanisms.  

First, electrostatic actuation of a buckled beam or membrane requires large voltages, 

unless the length to thickness ratio exceeds 1000 [55].  Additionally, the beam maintains 

its state under high acceleration, but is sensitive to fracture because of the necessary high 

length to thickness ratio.  Finally, the beam will witness stresses within the elastic region 

even at snap through assuming the thickness is less than what is given by Equation 13.  

Equation 13 Maximum thickness required for elastic strain in a buckled beam. 
2

lim 0 lim0.01( / )( / )t Eσ σ σ≤                                  (13) 

 

Where σlim and σ0 are the yield strength and the residual stress of the beam, 

respectively.  E is the Modulus of Elasticity and t is the relative thickness.  While 

Equation 13 indicates that a SiO2 beam is an order of magnitude smaller than required for 
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elastic deformation, a silicon beam approaches plastic deformation.  We know however, 

that Si fractures upon reaching the elastic limit, so the mere fact of fabricating an intact Si 

membrane suggests the silicon is within the elastic region [5].   

Hälg’s research was piggybacked by a group of researchers in Sweden who 

fabricated a buckled beam in plane with the substrate.  The buckled beam was fabricated 

using silicon on insulator (SOI) and provides further insight to the stresses present in the 

layers.  They also analyzed the effects of linking parallel buckled beams for added 

stability during snap through similar to Qiu.  Although they admit the snap through force 

is greater [56].      

Furthermore, a group of researchers have routed the high stresses of switching a 

buckled beam and created an alternative bistable switching design.  Matoba et al. devised 

a bistable switch which contains two layers of polysilicon with a sandwiched layer of 

silicon nitride shown in Figure 13  [57].   

Joule heating in either the bottom or top layers causes material expansion 

resulting in a state switch [57].  Initially, the design was fabricated in such a manner, so 

that upon sacrificial layer release, the residual stress in the nitride layer would apply 

significant compressive stress to the silicon cantilever beams inducing buckling.  The 

nitride beam was anchored directly to the substrate.  Figure 13 illustrates the finalized 

design, with the tension-band anchor heated to ease the switching process.  Conversely to 

Hälg’s design, this design uses thermal expansion forces to actuate.  Voltage on I1 causes 

the nitride anchor to expand, forgoing the intense stresses at snap through.  An additional 

voltage can be applied to I2 which expands the top layer of silicon and forces the switch 

to the down position. 
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Figure 13. Bistable snapping microactuator.  Bistability equilibrium position is 
caused by the tension band applying a compressive force to the beams, and the 

beams resisting the bending.  The low energy state created by this effect is similar to 
what occurs during buckling ©IEEE 1994[57]. 

 

  Goll et al. devised another temperature actuation scheme which contains an 

enclosed meander resistor beneath a buckled membrane illustrated in Figure 14.   

 
Figure 14. Bistable microvalve actuated by resistive heating [58].  The buckled 

membrane is used to physically close the inlet of the valve.  The resistive heater is 
used to actuate the membrane with heat pulses.  

 

By applying a signal to the resistor, joule heating generates a pressure wave that 

travels upward and switches the membrane, and closes the valve.  To open the valve, 
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current is passed through the resistor, heating the air in the chamber to temperature 

equilibrium with heat transferring primarily through the orifice in the bottom.  When 

current is removed, heat rapidly transfers out of the system creating a small vacuum 

inside the chamber opening the valve [58].  Another similar bistable valve has been 

developed, which utilizes electrostatic actuation.   

Wagner et al. devised a valve using an electrostatic method to actuate a 

membrane.  The device consists of two side by side buckled Si/SiO2 membranes 

pneumatically coupled illustrated in Figure 15 [59].   

 
Figure 15. Microvalve with pneumatically coupled membranes.  The membrane is 
used to close and open the fluid valve.  When one membrane is actuated downward 

the other will be pneumatically actuated to the upward buckled position ©IEEE 
1996  [59]. 

 

The resultant structure enables one membrane to buckle upwards, while the other 

will be buckled downwards.  When the upward buckled membrane is electrostatically 

shut, a decrease in cavity volume increases the pressure and forces the other membrane to 

snap to the other equilibrium position [59].  This concept was speculated for further use 

as an implantable drug delivery system [60].  The researchers discovered, however, that 

the electrostatic actuation schemes for a buckled membrane of 1-3mm size dimensions 

required potentials upwards of 200v [59].  Because the membrane used in this research is 
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of similar dimensions, this indicates that an electrostatic actuation scheme will also 

require high voltages and creative fabrication techniques to accommodate the mounted 

rigid electrodes.  

Transverse Actuation and Spring Constant  

The transition between two buckled states is of primary interest to this research.   

The spring constant describes the load/deflection behavior of the membrane.  It is a 

measure of the slope of the stress/strain curve [61].  In a linear spring, the spring constant 

will not change with deflection, therefore the spring constant can be calculated using 

Equation 14: 

Equation 14. Spring constant is the force required to deflect a spring a certain  
F

k
y

=        (14) 

 
where F is the applied force, and y is the deflection of the spring.  If the spring displays 

nonlinearity (as it does in this research) in the force/deflection curve, then the spring 

constant will change at every point along the spring.  As a result the spring constant is the 

first derivative of the equation of the line used to map the load/deflection behavior. 

Equation 15. Spring constant as a function of displacement.  

( ) dF
k y

dy
=               (15) 

 
Examples of various springs are shown in Figure 16 with their corresponding 

force/displacement plot below the schematic of the spring.   
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Figure 16. (a) A linear spring. (b) A nonlinear stiffening spring resulting from 

decreased length with increased deflection.  (c) A nonlinear softening spring [62].  
 

The situation illustrated by Figure 16 (a) is typical of a standard spring, and is an 

assumption used in many engineering applications.  The spring in Figure 16 (b) deviates 

from linear behavior and exhibits an increasing spring constant, a result of the beam 

length shortening when deflected.  The mechanism demonstrated in Figure 16 (c) exhibits 

similar behavior to the membrane used in this research and the disk spring. The spring 

will increase with a steadily decreasing spring rate until a maximum force is achieved at 

some point during deflection determined by the dimensions of the spring.  After which 

the spring constant will become negative, and will require lower force for further 

deflection.   

Linear Regressive Spring Characteristics 

As mentioned in chapter 1, this researcher is focused on two areas of the buckled 

membrane.  First, by mounting a resistor atop the membrane, we seek to actuate the 

membrane and change the spring characteristics.  Secondly, we will attach beams to the 

substrate surrounding the membrane.  These beams will overhang the membrane and 

apply a transverse force to prevent the beam from deflecting to equilibrium.  To 
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understand exactly what these effects will accomplish, we must discuss the 

force/deflection curve shown in Figure 17.   

 
Figure 17.  Spring characteristics of the membrane (a). Cross-section of membrane 

actuation and corresponding spring stiffness (b). 
 
 

Notice that as the spring is initially compressed, the returning force is positive.  At 

a certain location along deflection the spring returns a reducing force, corresponding to 

negative stiffness.  By actuating the membrane the curve will increase and the stiffness 

will change.  Additionally, by controlling the amount of outward deflection upon 

buckling, the membrane can be trapped to actuate in the region experiencing negative 

stiffness.  This behavior can be seen in a commercial device known as a Belleville washer 

or disk spring.  

 
Belleville Washer  

A device displaying similar characteristics to the buckled membrane is the 

Belleville washer.  Almen and Laszlo are the first researchers to derive equations and 

formulas for the Belleville washer [10].  They provide a comprehensive analysis of the 
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design and characteristics of the disk spring, and in particular, how the dimensions 

influence disk spring behavior.  In Figure 18, a standard load/deflection curve is shown 

with a schematic of the disk spring [10].   

 

 
Figure 18. Nominal load-deflection curve for a disk spring (Top).  Frontal and cross 

sectional views of the disk spring (Bottom) [10].   
 

In the load/deflection figure, the returning load follows a sine pattern by first 

increasing, flattening, and then decreasing to slightly above zero, similar to what was 

shown in the previous section.  At this location, the disk spring is snapped through but 

will return to the original position should the load be released.  Conversely, the dashed 

curve Figure 18 (B) crosses below the zero force line, indicative of   bistability, similar to 

what is seen with the membrane.  Furthermore, Almen and Laszlo described how the 

load/deflection characteristics change with increasing initial displacement (h in Figure 

18).  This is particularly important to this research effort because it provides clues as to 
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how the membrane spring behavior is expected to change during actuation.  The 

force/deflection plot is shown in Figure 19.  

 
Figure 19. Load deflection behavior for a series of disk springs with differing 

displacements. Modified from [10].  
 

As the initial height of the disk spring is increased, the maximum required load to deflect 

the spring is increased, along with the slope of the curve (stiffness).   

Numerous examples of the applications of such device exist; however, it is not 

practical to mention all of them.  Nevertheless, there are several which properly illustrate 

the usefulness of the device. One such example uses a stack of Bellville washers as a 

chain tightening mechanism.  The purpose of the washers is to provide unique load-

deflection characteristics, which can be altered depending on the chain tightening 

application [10].  Another use involves suspension dampening on vehicles.  Again, the 

unique load/deflection characteristics, particularly the nonlinear behavior, enable the 
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spring to absorb a forceful impact causing the disk springs to fully deflect and remain 

open.  The resulting device protects the damper from high impact forces, but still allows 

for low impact damping [63]  

 In an effort to understand the behavior of the proposed devices, many researchers 

turn to computer aided numerical modeling prior to fabrication and testing.  The 

following section briefly introduces the process of computer based finite element 

modeling. 

Finite Element Methods Background 

While analytical equations can determine the profile and the degree of deflection 

in the membrane, advanced modeling is necessary to understand transverse loading, heat 

transfer, and the snap-through process.  Through finite element modeling (FEM) 

techniques, stress, strain, temperature, fluid flow, deflection, electrical characteristics, 

and other analyses can be performed for unusually shaped or loaded objects.   Steven 

Lepi, author of Practical Guide to Finite Elements, presents a summary of this method, 

“The [Finite Element] Method partitions a structure into simply shaped portions called 

finite elements, generates an approximate solution for the variable of interest within each 

element, then combines the approximate solutions” [64].   

Partitioning a structure is similar to using the Riemann sums approach in calculus.  

A curve is split into numerous geometric sections, in which each of the “finite elements” 

can be calculated and subsequently added together.  Both the finite element and the 

Riemann sums approach approximate the solution to a given problem.  The accuracy of 

this solution is a function of the size of the individual finite elements in relation to the 
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overall device shape.  In a practical situation, these calculations are performed by a 

computer program to spare the user from lengthy arithmetic.  A program known as 

CoventorWare® is used in this research.  It is tailored to MEMS and has three procedural 

“steps” which a user must complete before performing analysis.   

CoventorWare® assists MEMS researchers by using familiar processes to create 

models for FE analysis.  Users specify material properties, create a design layout, and 

develop a process as if the device were to be fabricated.  The system compiles this 

information and provides the user with a three-dimensional rendition (solid model) of the 

device.  It is at this step where the user decides the type and style of the finite elements 

(mesh).  After generating a mesh, the user can select from a comprehensive suite of 

solvers, each focused on a specific area of MEMS [65].  Within these, boundary and 

loading conditions are specified to closely approximate actual behavior.   

Heat Transfer 

Heat transfer is the flow of energy as a result of a temperature difference between 

two media.  Heat energy is transferred using one of three primary methods, conduction, 

convection, and radiation [66].  Conduction is of primary interest to this research, but 

each method will be discussed in the following section. 

Heat Transfer Methods 

Conduction is the method by which heat is transferred through a substance 

without motion of the substance itself.  Conduction materials are normally solids, but 

liquids with zero velocity can transfer heat energy through conduction as well.  

Physically, conduction corresponds to motion of free electrons, lattice waves (phonons), 
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magnetic excitations, and electromagnetic radiation [66].   

Convection refers to heat transfer by means of fluid flow.  Fluid mechanics plays 

an important role since flow characteristics determine the convection heat transfer 

coefficient [66].  Furthermore, there are two forms of convective heat transfer, free and 

forced convection.  Free convection is the local heating of a fluid near the source, upon 

which the fluid will lose density and be displaced by a cooler, denser fluid.  Forced 

convection, is the process by which an already moving fluid flows over the heat source 

and receives heat energy, such as a fan or radiator in a vehicle [66]. 

 The third and final method of heat transfer, radiation, is the transfer of heat 

through electromagnetic radiation.  All substances emit heat in the form of radiation 

energy, but the net energy flow will be from high to low temperature [66].   Different 

materials have different properties corresponding to their ability to absorb, transmit, and 

emit radiation energy.   

Heat energy is transferred through a combination of all methods in a given 

situation.  However, the methods can be ranked, ordered by their heat transfer 

effectiveness: conduction, convection, and radiation.  Other researchers discovered that 

when using small devices such as our membrane, 98% of the heat energy transferred is 

through conduction [67].  As a result, a conduction based approach will be used to heat 

and subsequently actuate the membrane.  The proposed method uses joule heating of a 

deposited meander resistor.  With the smaller sized devices, the resistor is able to achieve 

localized, intense heating from both convection and radiation.   

Related Joule Heating Based Research 

 Thermal actuation is an actuation method used by many MEMS researchers.  The 
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classic example is the MEMS lateral thermal actuator.  Several research groups, however, 

have utilized joule heating for buckling [68].  Others have focused on the methods of 

fabricating a resistor on a device [67, 27].  The latter is used by Bouwstra et al. for 

detecting mass flow rates using a novel sensor design.  Their design measured flow rates 

of fluids by detecting the shift in natural frequency of a thermally actuated, unbuckled 

membrane [67].  Pictured in Figure 20, the membrane is illustrated with boundary 

conditions for the three methods of heat transfer.   

 

Figure 20. Membrane with heat generation (Q) and methods of heat transfer shown 
[67].   

 

To estimate the temperature across the membrane, they developed what they refer 

to as a “simple” model for conductive heat transfer in a membrane with a centrally 

located resistor.  Equation 16 models the temperature across the membrane 
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Equation 16. Temperature distribution across a membrane. 

4avg

H
T

tπλ
Δ =                (16) 

Where H is the heat generation per unit time, λ is the coefficient of heat 

conduction, and t is the thickness of the membrane [67].  To model the temperature 

across the membrane, the resistor power needs to be considered.  However, the resistance 

influences the power in the resistor and must first be considered.  Heat energy transfer is 

controlled by the material’s thermal resistance [69]. It is the ratio of the temperature 

gradient to the heat flow, and is equivalent to electrical resistance in Equation 17 [69].  

Equation 17. Electrical resistance.   
( / )R l Aρ=              (17) 

Where ρ is the electrical resistivity, l is the length, and A is the cross-sectional area of the 

resistor.  Two resistor types are used in this research.  One of which is a square, sharp 

cornered resistor.  The resistance is altered due to the increased current density at the 

corners [69].   

Equation 18. Corrected resistance value to include the current crowding effects. 
'( ( ))s cbR R N k N= +                       (18) 

Where R is the overall resistance, Rs is the sheet resistance, N is the number of 

blocks in straight regions, k is the corner block correction factor, and Ncb is the number of 

corner blocks [70]. The electrical power lost through the resistive element is converted to 

heat.  Equation 11 provides the generated power to be used in the heat generation 

equation. 

Equation 19. Power consumption 
2P I R=  (19) 

Where I is the current and R is the resistance.  
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Lin and Lin extended the analysis to include the deflection as a result of heating.  

They developed a thermal based vertical micro-actuator using a fixed end beam with an 

embedded doped resistor and a large plate attached to the side.  Figure 21 shows a top-

view schematic of the actuator. 

 
Figure 21. Vertical thermal plate actuator [27].   

 

With an applied voltage, the beam is stressed in compression until the critical buckling 

load is achieved.  At this point the actuator witnesses a large vertical deflection.  With 

increased voltage, the actuator will deflect upwards similar to what is expected to be seen 

in this research.  The authors used both analytical equations and computer simulation to 

model their device, but their analytical equations underestimated the actual deflection by 

nearly 75%.  Additionally, the authors tested the frequency response of the device and 

found that the device would follow input up to about 100 Hz.   

 Thermal buckling of fixed-ended beams has been implemented in many useful 

MEMS devices.  Chiao and Lin strictly focused on thermal buckling in low resistive 

beams with an applied voltage.  Their research further solidified the common theme that 

thermal actuation schemes tend to follow input frequencies up to the order of 100 Hz 
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[68].  Additionally, the behavior of joule heating resulting from current tended to increase 

exponentially, confirming what was predicted by simulations in this research (see chapter 

4).  Their deflection results illustrated another important concept.  Experimental results 

were situated between the estimates for mathematical modeling and FEM modeling.  

FEM overestimated the buckling deflection while analytical modeling underestimated the 

deflection.   

 While Chiao and Lin merely tested the actuation ability of a beam with an 

applied current, Hoffmann et al. employed thermal beam buckling to mechanically 

maneuver fiber-optic cables.  They combine a vertical actuator (thermal beam buckling), 

to move the support from under the fiber optic, with a lateral thermal actuator to switch 

the position of the actuator [71].  Their beams displacements follow a similar trend as 

many of the other thermally actuated devices, in that the rate of further deflection change 

decreases with increasing temperature.  

The mechanism supplying heat to the membrane in this research is a deposited 

gold meander resistor.  Optimal designs for such a device were considered by many 

researchers.  Some were concerned with hotplates and sensitive sensing elements [72]. 

Others were interested in MEMS heaters for IR applications.  Lee et al. focused on the 

latter, specifically a heater design for MEMS IR sensing.  They compared several 

features of a suspended heating resistor including, filament width, filament spacing, and 

total length of the resistor to the power consumption [73].   
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Table 1 Comparison between different characteristics of a suspended meander 
resistor [73]. 

 Design 1 Design 2 Design 3 Design 4 
Filament width (μm) 20 20 20 20 
Spacing (μm) 2 20 10 10 
Length (μm) 200 250 150 250 
Power consumption (mW) 239 372 520 446 
Peak Temperature (oC) 958 1211 1132 935 
 

Their results indicate that a modest design consisting of a reasonably long resistor and 

sufficient spacing between filaments will provide the best heating aspect.  Design 1 was 

the most efficient heater however, but for this research, the amount of heat is the focus.  

As a result, power consumption will not be considered.  

Thermal actuation mechanisms are a unique aspect of MEMS systems.  Although 

they are slow due in part to thermal relaxation times, they serve several unique purposes.  

They typically have large stroke lengths, for use where large displacements are required, 

low voltages, although power consumption may be high due to joule heating, and they 

can provide large forces.  CoventorWare® simulation was primarily utilized in this 

research for understanding the behavioral effects from thermal stimuli.  For experimental 

testing, infrared imaging enabled      closer viewing of the thermal characteristics of the 

membrane during actuation  

Summary 

 This chapter presented a theoretical perspective on the buckled membrane 

used in this research.  The chapter began with a brief introduction to microelectronics; in 

particular MEMS techniques and history were introduced.  Next, stress was introduced 

with a discussion about residual stresses and its importance of causing buckling.  
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Buckling was introduced with equations modeling the shape and critical buckling load of 

the membrane.   In this research, buckling is sought out because it provides useful 

behavior, particularly a region of negative spring constant.  The desired state of operation 

takes place between the two bistable positions of the buckled membrane which was 

described with reference to the ball-on-the-hill analogy.  The importance of spring 

constant was discussed, and equations for predicting and experimental methods of finding 

the spring constant were introduced.  Finally, the heat generation and transfer 

mechanisms acting in the membrane were discussed to generate an analytical equation in 

an effort to model resistive heating in the membrane. In the following chapter, the 

research methodology is discussed with an emphasis on fabrication and data collection 

methods. 
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III. Methodology 

Chapter Overview  

This chapter details the research methodology, which encompasses the design, 

fabrication, and testing procedures.  Recall, that this research explores two modifications 

to the buckled membrane, thermal actuation and mechanical restriction. The first section 

of this chapter focuses on design and fabrication techniques, including all cleanroom 

processes up to testing of the finalized structure.  MEMS processes, in particular surface 

micromachining and bulk micromachining, are primarily used in the fabrication of the 

device.  Conventional processes are used for device fabrication, including: wafer 

cleaning, photoresist spin-on, ultra violet (UV) light exposure, chemical etching and thin 

film deposition.  Once devices are fabricated, they are tested to compare what was 

predicted by modeling.  These methods are discussed in the latter portion of this chapter, 

which presents the testing and data collection methods as they are performed in this 

research.   

Design 

The two designs featured in this section are for testing two different aspects of the 

Si/SiO2 membrane.  Resistors are used to heat and subsequently actuate a post buckled 

membrane in an effort to change the spring behavior, similar to different heights in a disk 

spring, discussed in Chapter 2.  Two styles of resistors are investigated, a square resistor 

with sharp cornered filaments and a spiral resistor with rounded filaments.  The second 

design featured overhanging cantilevers to restrict the membrane’s deflection distance.  
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The cantilevers are used to restrict the membrane to the negative stiffness region of 

actuation.   

Resistor Design 

The initial resistor design consisted of straight edges and sharp corners.  The 

purpose of this resistor was to quickly get a design fabricated and tested, to provide a 

high heater surface area, and to reach a maximum temperature under 25V.  Additionally, 

the different filament spacing between the center five filaments and the outer two 

filaments was intentional.  This resistor was used as a baseline for other resistor types to 

test their effectiveness.  When designing the resistor mask for lithography, the outer 

portion for every model was used to enable a quick replacement of the inside filament 

style.  Each design contained different features.  The elements changed on the square 

resistor included, filament width, number of filaments, and filament spacing.  The resistor 

used for this research contained the best combination for low voltage and high heating 

capability.  The other resistor types are shown in Appendix B.  The second resistor style 

was designed in a spiral shape to reduce current concentration around corners, which was 

a concern with the first style of resistor [69].   

The rectangular resistor, Figure 22, was composed of a relatively thick wire.  

Cutbacks in the wire were situated close together, leaving low filament spacing. It was 

believed that this would help localize maximize the heating area while maintaining a 

localized heating profile.  Unfortunately, low spacing could contribute to a higher rate of 

shorting amongst samples. The total resistance from pad to pad is estimated to be 

1.07x10-5 Ω.   
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Figure 22. Square style resistor.  The partial box surrounding the resistor was 

originally used for alignment and does not influence resistor behavior.  
 

The spiral resistor included a thinner filament with increased filament spacing and 

a total resistance of 1.05x 10-4 Ω.  These two styles enabled us to determine if a 

difference in filament thickness or spacing could be a factor in performance.  As 

discussed in Chapter 2, other researchers  previously investigated the effects of resistor 

dimensions on performance.  They concluded that most geometric changes on a resistor 

will affect only the power requirement of a resistor of this type, while the heat generated 

will remain relatively the same [73].  Additionally, the goal of this research was to test 

the capabilities of joule heating on a buckled membrane, and minimizing power 

consumption for packaging and incorporating into MEMS devices will be left to future 

research.  
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Figure 23. Spiral resistor. 

 

Each resistor was formed into an array of 52 resistors per sample, each 

corresponding to a specific membrane.  Figure 58 (a,b) located in Appendix B shows the 

resistors in their respective masks.   

During the mask writing procedure, the red areas will be traced with a laser.  

Photoresist exposed to the laser will be developed away, leaving a primarily opaque mask 

with clear resistors and a clear border, used for alignment.   

Beam Design 

Prior to backside etching and membrane buckling, cantilever beams, formed from 

SU-8 photoresist, are fabricated atop the thin, joint layer of silicon and oxide.  Although 

SU-8 has a low biaxial modulus of elasticity (5 GPa), it was chosen as a structural 

material since it yields thick layers of material quickly and at low cost [74] [75]. A 

schematic of the proposed device is shown in Figure 24.  
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Figure 24. (a) Quad beam design. (b) Twin-beam design.  The backside etch cavity 
and the approximate membrane shape are also illustrated for clarity.  The length 

and width of the membrane are shown for reference.   
 

The design consists of several geometric configurations of the beam in an attempt 

to experimentally determine the appropriate design required to restrict the membrane. 

These configurations varied by the length and width of the beam. The beam widths range 

from 100-250μm and the lengths range from 600-750μm. All of the geometric 

configurations are used with both a twin-beam (Figure 24 b) and a quad-beam (Figure 24 

a) design.  

Recall that Equation 10 from Chapter 2 helps identify the location during 

actuation at which the membrane crosses into the negative stiffness region.  This is 

shown in Figure 25.   
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Figure 25. Analytically determined load/deflection characteristics for the Si/SiO2 

membrane.  At the initial buckling location, zero force is required since the 
membrane is at equilibrium.  At approximately 7μm deflection, the membrane is 

expected to transition to the negative stiffness region.  
 

This equation estimates the transition from positive to negative stiffness to occur 

at 7μm of deflection from the initial position.  By using the beams, we hope to restrict the 

membrane to this area.  Ideally, one of the many styles of beams will provide the 

necessary returning forces to restrict the membrane.     

Fabrication 

A two mask process is required for the fabrication of the resistors, whereas a three 

mask process is used for the movement restricting cantilevers.  The cantilever beams 

require an anchor and a beam mask in addition to the backside etch mask.  The complete 

process begins with a bare SOI wafer.  SOI is formed by first thermally growing an oxide 

on a standard silicon substrate followed by wafer bonding of a second wafer on top of the 

oxide.  The topside wafer is appropriately thinned through chemical mechanical polishing 
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(CMP).  This process uses a 5 µm top silicon wafer (device layer) and a 2 µm oxide layer 

for optimal mechanical properties.  The resistors and cantilevers on the topside are 

patterned and fabricated preceding the backside etching in an effort to reduce the chance 

for membrane damage.   

Resistor Fabrication 

The SOI wafer is diced into one inch squares in preparation for processing.  The 

specific size of the squares enables easier handling while preserving resources since each 

original SOI wafer yields several dozen one inch samples. In accordance with standard 

MEMS processes, the samples are initially cleaned using solvents, including acetone, 

methanol, and isopropyl alcohol with a final rinse using deionized water to remove 

organics and unwanted residue.  The lithographic processing begins with the application 

a single layer of SF11 photoresist followed by a single layer of 1818 photoresist, both of 

which act as sacrificial layers (Figure 26 a).  The SF11 undercuts the 1818 layer (Figure 

26 b) preventing connection of the sacrificial gold and resistor gold, and ensuring the 

success of the lift-off technique for excess gold removal.  Additionally, the purpose of the 

1818 photoresist is used to mask the SF11 layer below which requires a deep ultra violet 

(DUV) photoresist flood exposure system.   

1818 is exposed using an MJB3 mask aligner to define the resistor locations.  

Figure 58 in Appendix B shows the schematic of the resistor mask.  When fabricated, the 

areas with red are etched from the chrome mask, while the white areas remain opaque on 

the mask.  UV light passes through locations without chrome and will expose the 

photoresist below.  The box surrounding the mask areas is one inch on each side and is 

used for alignment with the backside DRIE etch holes in order to position the resistors on 
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top of the membrane.  Although this method allows for only approximate alignment, it 

succeeds so that the resistors are deposited on top of the membrane.   

 
Figure 26.  Resistive heating element deposition process.  (a) initial photoresist spin-

on, (b) ultraviolet (UV) light exposure and develop, (c) gold deposition through 
electron beam evaporation, (d) excess gold and photoresist removal.   

 

The masking material is a positive photoresist, indicating that ultra violet light 

chemically alters the photoresist so that it will dissolve in a developer solution.  As a 

result, the SF11 is uncovered and exposed using the aforementioned deep ultra violet 

light system (Figure 26 (b)).  Following a brief develop procedure, bare silicon is exposed 

in locations where the resistors will be deposited. To do this, gold is evaporated over the 

surface of the sample, depicted in Figure 26 (c).  The samples are now ready for the 

backside etching process.  

Beam Fabrication 

To fabricate the movement restricting cantilevers a similar fabrication process is 

used.  As with the resistors, the beams are fabricated atop the membrane prior to backside 

etching.  The purpose of this, similar to the resistors, is to preserve the membrane’s 

integrity.  Membrane fragility eliminates the possibility of post processing on the 
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membrane, which can cause failure.  Additionally, fabricating the beams atop the 

membrane after it is released does not allow the membrane to deflect upwards into the 

beams and become constrained.   

The SOI is briefly submerged in a weak HF solution followed by a normal cycle 

in an oxygen asher to remove native oxide and promote SU-8 adhesion.  A single layer of 

1818 photoresist is spin coated on the topside of the sample and heated to evaporate the 

solvents, Figure 27 (a).  It is subsequently exposed using the anchor mask, and acts as a 

sacrificial layer for the SU-8, Figure 27 (b).  SU-8 is spin coated atop the previous layer 

of photoresist and exposed according to the beam mask, Figure 27 (c,d).  Once again, the 

solvents are evaporated through heating.  SU-8 is a negative tone photoresist, indicating 

that appropriate ultraviolet (UV) exposure promotes crosslinking of SU-8 by activating 

the photoplastic material [76].  An additional baking period, appropriately dubbed the 

post-exposure bake, is required to crosslink and “set” the photoresist.  A temperature 

ramping method is used to prevent SU-8’s characteristically high stresses developed in 

the crosslinking phase.   

 
     Figure 27. Fabrication sequence for the SU-8 cantilever.  
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After the SU-8 exposure, the photoresist is developed leaving only the beam.  The 

sacrificial photoresist is also dissolved in this process because of its solubility in SU-8 

developer.  Topside fabrication is accomplished following the backside patterning but 

before backside etching. 

 
Backside Etch Process 

The thick side (handle) portion of the SOI is patterned using SU-8 to protect areas 

where etching is undesired.  This design consists of a series of one millimeter squares and 

circles patterned using standard photoresist deposition procedures, exposure and develop 

processes.  Following spin coating, the solvents are evaporated by sample heating.  

Again, temperature ramping is used to prevent SU-8’s characteristically high stresses 

developed in the crosslinking phase.  Although high stresses do not affect the mechanical 

properties of the device, it can cause the SU-8 to delaminate, affecting the DRIE process 

[76].   

After photoresist processing, the sample is etched using the deep reactive ion 

etching (DRIE) method previously discussed. Etching selectivity permitted using the 

oxide layer on the topside as a natural etch stop.  The resultant structure was composed a 

thin layer of both silicon and silicon dioxide (5 µm and 2 µm) which buckles out of 

plane.  The complete process is shown in Figure 28. 
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Figure 28. Backside etch process.  (a) intial sample, (b) SU-8 photoresist deposition 
and patterning, (c) DRIE process, (d) instantaneous membrane buckling upon etch 

completion.  
Upon etch completion, the masking layer for only the resistors on the topside 

needed to be removed leaving a silicon surface with thin resistors.  Traditionally, 

“Scotch® tape” is used to lift-off a majority of the excess gold and photoresist.  Again, 

the fragility of the membranes complicates post processing.  The adhesive forces from 

Scotch® tape fracture the membranes, so an acetone ultrasonic bath followed by a five 

minute soak in 1165 stripping agent was used to remove the photoresist and gold (Figure 

26 d).  As a result, only the gold deposited directly on the silicon remained.  The finished 

devices were now ready for testing.  Prior to testing, however, a simulated model needed 

to be developed as a basis for comparison.   

Finite Element Methods Process 

The basics of FEA modeling were briefly described in chapter two.  This section 

extends the description by detailing the methods by which the membrane was simulated 

using CoventorWare®.  Two primary processes are addressed in this section: mesh 

convergence study and solver methodology.  
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Generating an Appropriate Mesh (Mesh Convergence Study) 

In order to have confidence in a model, the mesh must be analyzed in what is 

known as a mesh convergence study.  If the dimensions of a finite element are too large, 

the program will provide unreliable results; however, if finite elements are smaller than 

necessary, computational time will be wasted on unnecessary precision.  The essence of 

mesh design is moderation, and in the famous words of Albert Einstein, “Everything 

should be made as simple as possible, but not simpler” [64].   

Beginning with a completed solid model of the membrane, harmonic analysis was 

subsequently conducted using a variety of mesh sizes.  In this study, CoventorWare’s 

“Harmonic Analysis” feature calculated the modal frequency of the plate.  The natural 

log of the harmonic results was graphed with respect to the inverse of the amount of 

elements.  Known as Richardson extrapolation method, and graphically shown in Figure 

29, the results were curve fit, and the y-intercept was interpreted as the location of 

infinite mesh refinement [65].   

 
Figure 29. Four separate sized mesh models and their respective modal frequency.   
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This value was presumed to be the actual modal frequency, and was compared to 

the modal frequency at a particular element size to estimate the accuracy provided by 

each element size.  The user decides on the amount of acceptable error in a project and 

select a mesh with the appropriate amount.  For the membrane used in this research, a 

linear Manhattan rectangular block mesh with element size of 30 µm, 30 µm, 1 µm 

(x,y,z) was calculated to have an approximate error of 0.63% while still maintaining a 

low computational time.  Table 1 lists element sizes and error estimations.     

Table 2. Mesh element size with the corresponding modal frequency and error 
measurement. 

Mesh Element Size 1st Modal Frequency 
(Hz) 

Corresponding Error 
percentage (%) 

Infinite Mesh size 80500.76 0 
100 µm 113502 40.9 
60 µm 86738.38 7.7 
40 µm 81743.05 1.5 
30 µm 81011.84 0.6 
15 µm 80572.59 0.089 

 

Simulating Buckling   

With the appropriate mesh selected, the design was prepared to simulate buckling 

behavior.  A 240 MPa compressive stress was applied to the oxide layer and a 5 MPa 

tensile stress to the device layer in the material properties editor [5].  The MemMech 

solver handles mechanical motion and loading, further, the solver was set to nonlinear 

physics.  In the advanced options tab, the initial increment is reduced from 1 to 0.01 to 

help the solver converge on a solution.  The edges of the plate are fixed, and 

CoventorWare® simulates the membrane as a defect-free, homogeneous material which 

results in an unperturbed buckled state shown in Figure 30.   
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Figure 30. Unpreturbed, non-equilibrium buckled state. 

 

In order to “nudge the table” a small transverse load is applied in order to 

transition to the first buckling mode [65].  Unfortunately the transverse load itself caused 

deflection in the membrane, and further simulation was performed using CoventorWare’s 

restart feature.  Using the initial result paired with a nearly zero applied load (<10-10 

MPa) enabled the membrane to “relax” into the real buckling position.  Figure 31 shows 

the change in membrane profile between the “transversely-loaded” and “relaxed” state.   

 
Figure 31. (Dashed) inititial buckling with applied load to “nudge the table”, (solid) 

relaxed buckled state.  
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From this result, different testing conditions were applied to study the impact on 

the membrane.  Initially, a series of temperatures were applied to the surface of the 

membrane to enable a first order estimation of the expected behavior.  Small changes 

were made to the simulation setup and simple models were initially used.  Simplifying 

not only ensures computational times are reasonable, but also it helps to identify errors.   

The electro-thermal characteristics of the resistor were also simulated to 

understand how the membrane heated with added electrical power.  Initially, voltages 

were applied to the probe pad surface, but they simulated excess current to flow through 

the resistor.  Experimental testing utilized an electrical probe to contact the pad, which 

reduces the contact with the pad and increases the resistance.  The probe tip is therefore 

introduced into the model as a 10µm x 10µm layer of gold on the pad where the voltage 

can be applied.  This reduced the overall temperature in the membrane to more 

reasonable levels. 

The primary goals of FEA simulations were to estimate buckling behavior, predict 

buckled deflection change with applied heat, and to predict the heat profile for different 

voltages.  Together, these results supplied the foundation with which to compare 

experimental data.  The next section discusses one method of collecting experimental 

data, the load/deflection test fixture.  This fixture was used as the cornerstone for the 

overhanging cantilever testing.   

Test Fixture for Load/Deflection Measurements 

The membrane was experimentally tested using a test fixture configured to record 

load and deflection data.  The test fixture itself includes a movable stage which positions 
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a micro Newton force sensor using micro manipulators.  Once in position, a voltage 

regulated piezo electric motor controls the small step movement of the force sensor 

during testing.  The entire system is housed within a Plexiglas container allowing for a 

nitrogen controlled environment.  The test fixture, pictured in Figure 32, allows a sample 

to be placed in the sample carrier on the right side, while the force sensor is manually 

moved close to begin testing [77].   

 
Figure 32. Test fixture with appropriate components listed.  Micromanipulators are 
used for coarse adjustment, while the piezo actuator controls small displacements 

[77]. 
 

The box was angled enabling close observation of the sample through a 

microscope.  Input voltage to the piezoelectric motor and the force data were controlled 

through Labview, a software program integrating several pieces of equipment and 

performing data collection.   
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When testing, the program allows us to specify the step size of the piezoelectric 

motor and the maximum sensor force which will trigger the program to end.  The force 

sensor is rated to a specified maximum force load, and should the force sensor undergo 

loads above this value, it will break.  The resultant data, force readings, are recorded at 

each step by the force sensor.   

Additional testing methods were required to test the thermal actuation method to 

modify the stiffness of the membrane.   

Expermental Methods  

Several testing methods were utilized to characterize the behavior of the thermal 

membrane actuators.  Experimental data can be compared with the model to understand 

similarities and differences.  While load/deflection data was used to verify spring 

behavior, the following experimental methods tested the resistive heating and actuation 

abilities of the membrane.   

Zygo® Optical Surface Profilometer 

Immediately following fabrication, device deflection was measured using a white 

light optical interferometer (Zygo® optical surface profilometer).  This device 

nondestructively reflects light from the surface of the sample and quantifies surface 

roughness, step heights, critical dimensions, and other topographical features [78].   

High fidelity, three dimensional computer generated images are produced with 

appropriate light intensity combined with proper table alignment.  Zygo® results are 

displayed as three dimensional depictions of the structure, cross-sectional plots of the 

surface, and data files of heights and lateral distances.  Additionally, the Zygo® is 
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equipped with micromanipulator probes enabling DC voltage to be applied while 

deflection measurements are taken.  

 

Figure 33 shows the (a) three dimensional rendition of the membrane deflection, 

and (b) the cross-sectional surface profile.   
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Figure 33.  Zygo® user interface screen.  User controls the measurement with the 
controls on the left.  The optical image is used for fringe alignment.  The profile 

data, 3D model, and surface profile are results from the machine.   
 

In the earlier stages of this research, Zygo® testing was used to verify the buckling 

characteristics of the membrane, while later testing was used to measure membrane 

deflection with resistive heating.  It was also used with the displacement reducing 

cantilevers to understand initial deflection distance and buckled equilibrium position 

(buckled in or buckled out). 

Thermal Probe Station 

A second type of testing sought to understand the thermal characteristics of the 

membrane’s resistive heating capabilities.  AFIT’s thermal probe station is equipped with 

a thermal infrared (IR) camera to capture infrared images of a device.  Additionally, an 
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optical camera is mounted beside the thermal camera to aid in probe placement.  A signal 

generator and a power supply enable thermal testing under both steady state and transient 

conditions.   

The camera can detect temperatures within the range of 0-140oC at the low range 

setting and 0-300oC at the high range setting.  Neither is large enough to capture the 

complete temperature range that is expected in the membrane, but each provides a visual 

confirmation of the temperature change associated with different voltages.  Pictured in 

Figure 34, the user interface is shown with major functions highlighted.   

 
Figure 34. Thermal stage user interface screen.   

 

The images aided in visual inspection of the temperature gradient across the 

membrane and help to understand the thermal properties of the membrane.  The camera 

was focused properly with the color scheme set to the appropriate temperature range.   
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Summary 

This chapter presented descriptions of the fabrication techniques and testing 

methods used in this research.  The fabrication process requires two masks with two 

independent procedures.  The topside of the sample is patterned in preparation for resistor 

deposition or cantilever fabrication.  This is immediately followed by the backside 

patterning and development of the etch windows.  A DRIE is used to bulk micromachine 

the handle of the wafer, thinning the sample to the top stacked silicon on silicon dioxide.  

Device geometries were observed through the use of an optical interferometer (Zygo®). 

Load/deflection testing was performed in the force test fixture and thermal testing was 

necessary to detect thermal gradients.  Subsequently, CoventorWare® simulations are 

used to predict experimental data and provide a basis of comparison once the testing is 

complete.  Testing results and discussion are presented in the following chapter.    
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IV. Results 

Chapter Overview 

The purpose of this chapter is to present a detailed analysis of the results as were 

performed according to the research methodology.  Analytical calculations and FEM 

simulations were extensively studied and used as a basis of comparison for the measured 

experimental data.  Equations were used to estimate the degree of buckled deflection and 

are further modified to consider thermal stimuli.  Additionally, these equations can be 

used to estimate the force required to induce snap-through in the membrane, as well as 

estimate the change in spring constant as it deflects further from thermal effects.  Next, 

simulations were performed with the express purpose of modeling initial membrane 

deflection, the heat profile across the membrane under a series of voltages, and the 

membrane deflection under localized heating.  After which, the experimental results are 

interpreted and discussed.   

The goal of experimentation was to develop a method for both actuating and 

restricting the deflected distance of a Si/SiO2 buckled membrane thereby modifying the 

spring constant.  The proposed solutions were a buckled membrane with a deposited gold 

meander resistor and overhanging cantilever beams, respectively.  Two resistor styles 

were used for actuating the membrane and were DC tested with voltages ranging from 1-

5V and 1-6V, respectively.  Voltages higher than this caused failure in the resistor.  Data 

was collected using an IFM to measure deflection and a thermal camera to measure the 

temperature profile.  Membranes with cantilever beams were also tested using an IFM to 

measure displacements, and a force/deflection test fixture to measure the spring behavior.   
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Analytic Modeling 

Chapter 2 discussed the equations used to predict the behavior of the membrane 

during buckling and with applied thermal loads.  Additionally, the force/deflection 

characteristics were estimated for the thermally actuated membrane and the membrane 

with movement restricting cantilevers.  By entering values for material properties, the 

equations were tailored to the specific scenario and provided a close prediction of the 

membrane’s physical behavior.  Determining accurate material properties of the structure 

for use in the equations can be difficult and can greatly influence the results.  In this 

research, Young’s moduli for crystalline silicon and glass, 170GPa and 85GPa 

respectively, are considered to lie within the “bulk” category of film thickness and are 

well understood.  Also, the dimensions of the membrane and thicknesses of the layers are 

assumed to be within 5% of the expected value because of accurate and well known 

deposition and foundary processes.  That leaves two factors which determine the 

accuracy of analytical modeling, the internal residual stress values and the bending effect 

caused by the resistor.  Recall from earlier that the residual stress values are expected to 

be 240 MPa, but values between 300 MPa and 400MPa have also been witnessed.  

Additionally, the effect from the deposited resistor has yet to be included and will be 

discussed in the next chapter.   

Shown in Figure 35, the relative strain energy resulting from residual stress is 

shown with reference to the amount of membrane deflection.  This plot is similar to what 

is shown in Chapter 2; however, the energy curves are unique to this particular buckling 

scenario.   
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Figure 35.  Strain energy of the membrane.  Energy minima correspond to locations 

of predicted deflection.  
 

The minimum y values correspond to a stable equilibrium point to which the membrane 

is expected to deflect.  Since the membrane is buckled, low energy states exist for both 

the buckled in and buckled out states.  The x-axis indicates the degree of out of plane 

displacement corresponding to these energy minima.  The displacement is in terms of out 

of plane deflection with respect to the thickness (7µm), so the model predicts an out of 

plane deflection of just under three times the thickness.  This corresponds to a buckled 

deflection of approximately 18 µm in either direction.   

 By introducing thermal stress into Equation 8, Figure 35 can be modified to 

include the effects of a temperature increase in the membrane.  Figure 36 shows this 

effect with each strain energy curve signifying a 100 K temperature increase.  With 

successive temperature increases the change in deflection is reduced, which is as 

expected by literature [68, 71]. 
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Figure 36  Strain energy curves for a successive, 100K temperature increase in the 

membrane.   
 

Since the low energy states mark the location of membrane deflection, the minimum of 

each strain energy curve can be extracted and graphed with respect to temperature, shown 

in Figure 37.   

 
Figure 37.  Analytically determined membrane deflection with increased 

temperature.  
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This result more accurately illustrates the progression of center membrane deflection with 

added temperature.  From the graph, it should be noted that the model predicts membrane 

deflection to range from just under 18 µm to just over 30 µm of deflection.  Later, this 

result will be compared to simulated and experimental data for agreement.  The results 

from the electro-thermal simulation will be applied to the analytical equations to establish 

a connection between voltage and temperature.  

Results of Simulation Scenarios 

 Computer aided simulation was used to model the behavior of the membrane and 

complement the analytic calculations.  To ease the computational load, three simulations 

schemes were utilized.  These include membrane buckling, thermal actuation, and resistor 

heat performance.  Additionally, a modal analysis was conducted on the membrane to 

understand the mode frequencies and shapes. These results are shown in Appendix C.  

Finally, the three independent simulations were combined into one model closely 

resembling the actual experimental condition.   

Simulated Membrane Buckling 

 To model the membrane behavior, several assumptions were employed to reduce 

complexity.  Although bulk material surrounding the membrane strains during buckling, 

only the area of the membrane was modeled and the edges were fixed, which effectively 

increases the stiffness.  The physical structure was considered homogeneous and free of 

defects, and was formed from exactly 5 µm of Si and 2 µm of SiO2 with an internal load 

of 240 MPa in the oxide layer.  The Manhattan linear mesh algorithm was used for 
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defining the mesh.  Since the geometry of the membrane is simple with no geometric 

disparities, extruded algorithm would yield the same result in this case. 

After the device was meshed in the preprocessor tab of CoventorWare®, it was 

simulated for buckling.  The initial simulation result with no thermal stimulus is depicted 

in Figure 38, which is color-coded to indicate variations in height.   

 
Figure 38  Initial membrane buckling determined by FEA. 

 

It is important to note that this result predicts an initial membrane buckling of 

approximately 12 µm.   

After assuring this analysis was performed correctly and yielded repeatable results 

without diverging, temperature effects were introduced to the model.  The temperature 

effect was modeled by applying a constant temperature to the surface of the membrane.  

The simulation began at the post buckled state, and converged to a new equilibrium state 

as a result of the thermal effects.  In Figure 39 the cross-sectional membrane profiles are 

displayed showing how the membrane deflection rises with increasing temperature.   
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Figure 39. Cross-section of the membrane with increasing temperature predicted by 

FEA. 
 

Each line corresponds to a 100 K temperature rise in the membrane with the 

maximum temperature at 1200 K.  The simulation indicates that the membrane will 

actuate between approximately 13 μm and 32 μm.  The trends predicted by the simulation 

agree with the results of the analytical equations, in that as the temperature is increased, 

the change in deflection is reduced.   

Electro-Thermal FEA 

It is important to explore how the thermal effects are influenced by an applied 

voltage on the resistor.  Analytical equations can easily estimate the resistance and 

electrical behavior, but are less meaningful for the thermal analysis because of a vast 

amount of assumptions, witnessed by previous research [27].  Additionally, 

experimentally determining the exact thermal temperatures is not reliable since the limit 

on the thermal probe stage is 300oC, it has not been calibrated recently, and silicon 
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emissivity is not constant.  As a result, Coventorware’s electro-thermal analysis was 

primarily used to understand these effects.   

Simulations of this nature are better understood and are less computationally 

sophisticated, which indicates the results are of high fidelity and accurately represent the 

situation at hand.  The maximum temperature results of the simulations are collected and 

plotted.  Illustrated in  

Figure 40, the temperature rise in the membrane is shown with respect to applied 

voltages to the resistor.  

 



 

74 

Figure 40. Modeled membrane temperature with respect to voltage applied to the 
resistor. 

 

The simulations predict a temperature rise to 1200K, which corresponds to an applied 

potential of 6V.  These results apply only to the first style of resistor used in this research.  

Other resistor types are likely to have different heating profiles depending on the amount 

of power dissipated through the wire.   

Visually, the thermal gradient on the membrane is shown in Figure 41.  During 

simulation, the edges of the membrane are set to room temperature to approximate the 

behavior of the surrounding bulk substrate.  The ideal scenario would be to model a 

section of the bulk substrate itself, but that would demand excessive computational effort 

and would likely yield a similar result.  During thermal imaging, it is expected that the 

membrane temperature gradient will be sharper and closer to the edges of the membrane 

to account for bulk substrate heating.   
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Figure 41. FEM simulation results show the thermal gradient with an applied 

voltage of 5V. 
 

 The final objective of the simulations was to establish a connection between joule 

heating and membrane displacement.  Pairing the data from Figure 40  with the 

corresponding deflection curve in Figure 39, a model was established for the applied 

voltage to the membrane.  The resultant data can be seen in Figure 42, in which each 

voltage is paired to a specific deflection from the relaxed position.  
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Figure 42. Simulated deflection under various applied voltages.  The temperature 
collected from the resistor simulations was used with the deflection simulations to 

estimate deflection at each voltage.   
 

The curve resembles that of Figure 40 as a result of the exponential heating behavior of 

joule heating.  However, upon closer inspection, the curve is slightly shallower owing 

largely to the response seen in Figure 37 and Figure 39 where incrementally increasing 

the temperature caused a smaller change in deflection.  The deflections associated with a 

specific voltage are listed in Table 3 for both the analytical equations and the simulations.  

Furthermore, the analytical equation values for temperature are determined from applying 

the temperatures associated with each voltage from CoventorWare®.  

Table 3. Deflection values for analytical equations and simulated analysis.  The 
values are in microns of deflection. 

 0V 1V 2V 3V 4V 5V 6V 
Analytics 17.77 18.2 19.5 21.4 23.9 26.6 29.8 
FEM 12.4 13.4 15.9 18.9 23.1 27.0 31.6 
% Dif 35.6 30.4 20.3 12.4 3.4 1.5 5.9 
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The end deflection predicted by both methods of simulation are similar, yet the starting 

deflection and the change in deflection are drastically different for each modeling 

method.  Experimentation will show the true behavior of the device and confirm the 

accuracy of either method.   

Thermal Actuation Experimental Results 

 After completing simulations and analytical calculations, experimental devices 

were fabricated for testing.  Prior to fabricating usable devices the photolithographic 

process, etch process, and measurement techniques were studied using expendable 

samples.  After the process was well understood and could be repeated, testable devices 

were constructed.  Actuation was measured under the interferometric microscope and 

thermal gradients were measured at the thermal probe station.   

Actuation Measurements 

The completed samples, shown optically in Figure 43 and Figure 44 were 

prepared for testing under the interferometric microscope to study the actuation behavior.  

Recall from Chapter 3 that two styles of deposited resistors were utilized for this test.  

The first, a square resistor consisted of a more basic design and required less time to 

create in the design software.  The simple design allowed for quick fabrication and early 

testing while more time could be dedicated to the spiral design.     
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Figure 43.  Optical image of the deposited gold resistor located on top of the 

membrane.   
 

  
Figure 44.  Optical image of the second resistor design.   
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The Zygo® IFM is equipped with movable probes which can be connected to a 

power supply in order to electrically test micro scale devices.  Here, they are connected to 

a 6V power supply and carefully lowered to the contact pads to supply power to the 

resistor.  However, the Zygo® table must first be positioned for optimal focus prior to 

making contact with the probe tips.  Measurements can now be taken by manually 

adjusting the applied voltage and measuring the deflection in the membrane.  The 

deflections were recorded for each voltage across numerous samples.  Figure 45 shows 

the results of 20 tests with the rectangular resistor style.   

 
Figure 45.  Deflection data for membrane actuation.  Vertical error bars indicate 

one standard deviation of the sample data.  
  

 The membrane actuated from an initial deflection of 13.3µm to 22.2µm.  The 

voltage across the resistor had an exponential effect on the temperature, and as a result, 

the deflection in the membrane.  Simulations modeled up to 6V of applied voltage to the 
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resistor; however, in reality, many rectangular-style resistor samples witnessed 

catastrophic resistor damage at 6V.   

Spiral-style resistors behaved similarly to the rectangular resistor style, in that the 

deflection increased exponentially with increasing voltage.  The spiral resistors, however, 

remained intact up to a higher voltage.  At 8V all devices failed after briefly withstanding 

the voltage, but they remained reliable up to and including 7 volts.  The deflection data 

for the spiral resistors is shown in Figure 46. 

 
Figure 46.  Deflection data for membrane actuation with a spiral resistor.  Vertical 

error bars indicate one standard deviation of the sample data. 
 

The initial deflection was measured to be 15.1µm and the actuated deflection was 

measured to be 23.5µm.   Additionally, the average current through each type of resistor 

at each voltage is listed in Table 4.  

Table 4. Current values through each style of resistor at a specific voltage.  
 1V 2V 3V 4V 5V 6V 7V 
Square (mA) 32 81 146 194 220 239 - 
Circular (mA) 14 33 58 85 104 126 144 
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Initial displacements of the spiral resistor sample set were slightly higher than the 

rectangular set.  This is likely attributed to the lower volume of gold deposited on top of 

the membrane.  A lower volume of gold supplied a lower returning force against the 

membrane deflection.  Additionally, the spiral resistor actuated to a greater deflection and 

was generally more robust.  The smooth curves of the spiral resistor prevented current 

crowding around sharp corners, and resulted in less “hot” spots where current could have 

caused excessive heating and failure.   

Samples of both resistor types required a “break in” period in which the current 

flow and actuation were exceptionally lower than average.  For example, a particular 

resistor might draw 17mA of current with 1V applied.  Increasing the voltage to 3V then 

reducing to 1V would cause the resistor to draw 32mA, the normal amount.  It is assumed 

that by resistor heating and actuation caused a more robust connection was established 

with the probe tip. 

Force/Deflection Estimation using Measure Deflection Data 

To reiterate, the purpose of actuating the membrane was to study the 

force/deflection behavior and how the membrane changes as a spring.  We began by 

attempting to experimentally test the device using the force/deflection testing chamber.  

The sample was wire bonded into a sample chip and actuated with an applied voltage 

during testing.  Unfortunately, contacting the membrane at the location of heating 

interfered with the force sensor’s capability to detect a capacitance change, and thereby a 

force.  The force sensor subsequently failed during testing, so testing an actuated 

membrane was discontinued.   
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Instead, analytical modeling provides sufficient insight into the membrane’s 

force/deflection characteristics.  Using the derivative of the energy equation from Chapter 

2 (Equation 10), the predicted force/deflection characteristics can be graphed.  Figure 47 

shows this plotted where individual curves correspond to the average temperature at each 

applied voltage found during experimentation.  The equation depends on the ratio of 

center deflection to the membrane thickness, but it does not use initial deflection as an 

input.  In order to input the initial deflection of the membrane found from 

experimentation, the stress value used in the equation was modified.  An initial stress 

estimate was used, and then the  membrane displacement predicted by the model was 

verified against the actual deflection values to ensure the curves correspond to the correct 

amount of deflection.   

 
Figure 47. Analytically determined force/deflection behavior.  The original 

membrane displacement is indicated on the x-axis, and the slope of the curves is 
directly correlated to the stiffness of the membrane. 

 

From Figure 47 we can find the estimated stiffness change between different 

degrees of membrane actuation.  Using Equation 14 from Chapter 2, the negative 
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stiffness between the non-actuated membrane and the thermally actuated membrane is 

expected to change from approximately -1.71 to -5.20 normalized force units/μm.  In 

other words, a threefold increase in stiffness is observed between the non-actuated 

membrane and the actuated membrane.  Furthermore, the total stroke length of complete 

snap-through actuation of the membrane is predicted to double between the heated and 

unheated states. 

Thermal Stage Testing 

The purpose of the thermal testing was to better understand the heating profile in 

the membrane.  The stage is equipped with electric probes, similar to those on the Zygo®
, 

for testing small electronic devices.  The probe tips could be lowered to the contact pads 

on the membrane, and with an applied voltage, the membrane can be imaged with an 

infrared camera.    

 
Figure 48.  Heating profile of the membrane with successive voltages applied to the 

resistor. (a)-(e) each represent 1-5V respectively.   
 

The membrane has a peak temperature at the center, with a steadily decreasing 

temperature until the bulk substrate.  The surrounding bulk substrate increases in 



 

84 

temperature a negligible amount.  Figure 48 supports the findings of the thermal FEM 

analysis of the membrane.  The two temperature profiles appear similar, but as predicted, 

the thermal images indicate that the membrane is retaining a higher temperature across a 

larger surface. 

Negative Stiffness Isolation Results 

The cantilevers were fabricated atop the membrane in an attempt to restrict the 

membrane to the negative stiffness region of the force/deflection curve.  This corresponds 

to restricting the membrane from fully buckling.  The cantilevers were fabricated prior to 

backside etching so the membrane buckled into the beams.  Initially, optical images were 

collected to verify the beams remained intact.  IFM images were collected to ensure the 

membrane buckling was reduced and the beams were buckled in the correct direction. 

Finally, force/deflection measurements were collected to determine if the membrane was 

constrained to operate within the negative stiffness region.  

Optical imaging 

Optical images were collected initially to ensure the beams survived the 

fabrication, and in particular, the etching process.  Additionally, scanning electron 

microscope (SEM) images were collected to observe the final released state of the beams 

more precisely than through the optical microscope.  Figure 49 and Figure 50 illustrate 

images of the finalized device taken using the aforementioned methods.   
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Figure 49. Optical depiction of the SU-8 cantilevers immediately following the 

backside etching process to release the membrane. 
 

 Figure 49 illustrates an item of interest. The background silicon appears to either 

be heavily damaged or contain large amounts of foreign substance on the surface. We 

believe this to be a result of the DRIE process, which may cause minor etching of the 

underside of the sample, as well as leaving a residue from the stabilization oil. To combat 

this effect, after the etching is finished the samples are carefully cleaned in an attempt to 

remove this substance.  The substance withstood intensive solvent cleaning, and further 

attempts at cleaning the sample were discontinued because lengthy soaking times in 

solvents will attack and weaken the bonds at the anchors of the beams. 

 While the optical images are quick and enable an initial check to ensure the 

integrity of the beams, SEM images provide a clearer image with the ability to view the 

sample from an angle.   
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Figure 50. SEM image of the fabricated device rotated to 45o.  The four cantilever 

beams surround the post-buckled membrane.  With a 1 mm edge length and a 
deflection close to 10 µm, the vertical deflection from buckling cannot be observed. 

 

Although the beams appear more structurally sound than the optical image 

suggests, the beams show signs of stress, most likely induced through the post exposure 

baking process.  The tips are curved down on nearly all of the beams, and some beams 

show signs of warping and deformities.     

Interferometric imaging force/deflection measurements 

Prior to force testing, the devices were measured under a white light 

interferometric microscope (IFM) to measure the deflection of the membrane.  Resulting 

images confirm that the beams restrict the deflection of the membrane. Typically, an 

unconstrained membrane will deflect 12-14 μm, and IFM measurements indicate the 

beams restrict the deflection to distances ranging from 7-12 µm. Figure 51 shows the 

cross-sectional deflection profile of a successfully released membrane as well as the three 

dimensional rendition of the membrane.   
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Figure 51. Interferometric image of the restricted membrane.  (a) The buckling of 

the membrane. (b) Surface profile of the membrane indicating the buckling 
deflection. 

 

The featured membrane in Figure 51 is restricted to less than 9 µm. The vertical 

direction is exaggerated for effect, and the cantilever beams reflect light poorly, so they 

appear imbedded in the silicon.  

Force/deflection measurements  

Further testing, used to confirm the force/deflection behavior of the membrane, 

was performed using a custom testing chamber.  The resultant force data are recorded at 

each step by the piezo controller, and compiled to generate a load/deflection plot.  In 

Figure 52 the force is plotted with respect to distance.   
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Figure 52. Experimentally determined force/deflection curve.  

 

The plot contains four separate tests conducted on a single membrane with four 

200x700 μm restricting cantilevers. The membrane’s deflection was reduced from 13 μm 

to 9 μm by the beams, which was the amount predicted by analytics required for the 

negative stiffness region; however, according to the results, an additional 6 μm of 

displacement was required to reach the location of maximum force.  Unfortunately, the 

cantilevers merely reduced the peak returning force in the membrane from roughly 1700 

μm to 700 μm.  Further observation concluded that the cantilevers reduced the force 

proportionally to their size, which influences beam stiffness. It is believed that a similar 

effect would be found from depositing a layer of material over the entire surface of the 

membrane, which would be stressed upon buckling and aid in reducing the force required 

to displace the membrane. 
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The offset of these curves is believed to be a result of the difference in starting 

locations between the separate tests.  Although it is possible the membrane experiences 

slight hysteresis during actuation along its deflection path.   

Summary 

This chapter presented the experimental data collected in this thesis research.  

Modeling and simulation were presented first to illustrate what behavior we expected to 

observe in the membrane.  The analytical modeling estimated the membrane to actuate 

from a deflected position of 21.7 to an actuated position of 32.56.  FEA modeling on the 

other hand predicted an initial deflection of 12.4 and an actuate deflection of 31.6.  

Experimental testing measured an initial buckling deflection of 15.1µm and the actuated 

deflection was measured to be 23.5µm for the square meandering resistor, and 13.3µm to 

22.2µm for the circular resistor.  The experimental results were used in analytically 

estimating the force/deflection characteristics of the membrane spring behavior.  By 

thermally actuating the membrane, the model predicts a threefold increase in stiffness in 

the membrane.  This demonstrates that tuning the stiffness of the membrane using 

thermal actuation is feasible, and can be useful in applications where a stiffness change 

during normal device behavior is required.  

Force/deflection measurements used to measure the ability of the overhanging 

cantilevers to restrict the deflection of the membrane were discussed.  The purpose was to 

identify if the reduced deflection in the membrane caused it to actuate in only the 

negative stiffness region.  IFM and SEM images verified that the membrane deflection 

was reduced by up to 30% and the beams were intact upon release and subsequent 
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membrane buckling.  The force/deflection measurements concluded however, that the 

membrane was not constrained within the negative stiffness region.  The beams simply 

reduced the membrane deflection by applying a returning force against it.  As a result, the 

membranes showed reduced maximum returning force and a lower stiffness through 

actuation.  In addition, their bistability was lost.   
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V.  Analysis 

Introduction 

The purpose of this chapter is to analyze several key issues in the data in more 

detail.  While Chapter 4 briefly discussed the results, it only summarizes the analysis for 

the behavior witnessed during this thesis research.  Three primary sections are included in 

this chapter, model and experimental data comparison, resistor failure during 

experimentation, and negative stiffness isolation analysis.    

Model and Experimental Data Comparison 

Membrane modeling was extensively investigated during this research effort.  

After experimentation, we wanted to understand how the accuracy of the models 

compared to the experimental data.  All three data sources (FEA, Analytical, and 

Experimental) are shown in Figure 53.  

 
Figure 53. Analytical modeling data, FEM data, and Experimental data. 
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The figure indicates that both the analytical equations and the FEA predictions are 

considerably unlike the experimental data.  However, FEA accurately predicts the initial 

deflection position of the membrane, while the analytical modeling accurately predicts 

membrane deflection trends.  FEA modeling underestimates the membrane buckling by 

nearly 6% at no thermal influence, and overestimates by up to 35% at maximum 

temperature.  We believe there are several reasons contributing to this behavior.  First, 

the initial buckling underestimates the actual deflection because the membrane’s edges 

were fixed during simulation.  In reality, the bulk substrate surrounding the membrane 

would strain and contribute to the overall deflection.   

Secondly, the maximum temperature was greatly overestimated because a 

potential of 6V was applied to the entire probe surface.  The actual membrane had a 

lower pad to pad voltage, in other words, a higher total resistance in the system.  

Additionally, a physical connection exists between both the voltage source to the probes 

and the probes to the pads.  Voltage is lost in each of these areas, from contact resistance.  

We attempted to correct this problem after experimental testing by modeling the probe 

tips on the pads as opposed to assuming a potential over the whole pad.  This was 

accomplished by modeling the probe tip as a 5µm x 5µm thin (<1µm) pad on the surface 

of the original pad.  The result is a lower temperature through the resistor and 

subsequently a lower membrane temperature shown in Table 5.   

Table 5. Comparison between original FEA and modified FEA to include modeling 
the probe pad.   

 1V 2V 3V 4V 5V 6V 
Original Design (K) 324 399 522 696 919 1191 
Modified Design (K) 300 381 484 627 812 1037 
Percent Difference (%) 7.69 4.61 7.55 10.43 12.63 13.82 
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Lower temperature translated to a lower predicted deflection in the membrane.  However, 

FEA modeling still overestimated membrane deflection at max temperatures.  While this 

change did not fix the overestimation from the model, it helped to partially correct the 

issue.  Other items need to be considered to create a more accurate model.   

Analytical modeling consistently overestimated membrane deflection by 30%.  

There are several reasons for this behavior.  Similar to FEA, analytical modeling assumes 

a fixed end membrane.  In reality, the bulk silicon surrounding the membrane would 

strain and allow membrane edges to displace.  Additionally, analytical equations did not 

model the resistor’s effect to membrane buckling.  The resistor was deposited prior to 

membrane buckling, so as a result, when the membrane buckles, the resistor will 

experience strain and provide a resistance to the deflection.   

This effect is perhaps best seen in Figure 54 where the deflection of each style of 

resistor is shown with respect to voltage.  Two important trends are shown in the figure.  

First, the initial deflection of the spiral resistor is 15.5µm and the initial deflection of the 

square meandering resistor is 13.3µm.  This discrepancy was a result of differences in the 

volume of gold deposited on top of the membrane.  The square meander resistor included 

a volume of 0.25mm3 and the spiral resistor included a volume of 0.057mm3.  This 

difference in volume contributed to a change in the resistance to deflection provided by 

the resistor material.   

A hybrid model was theorized to compensate for the weaknesses displayed in 

each model.  By first modeling the buckled deflection using FEA, this value would be 

used in an iterative process to modify the stress parameter in the analytical equations.  

Once the analytical equations showed an accurate initial deflection, the thermal behavior 
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could be modeled using the analytical equations.  This exploits the accuracy of FEA to 

model the initial deflection, and the accuracy of the analytical equations to model the 

stress introduced through joule heating.  In effect, analytical equation line from Figure 53 

will be translated to begin at the initial deflection location predicted by FEA, also shown 

in Figure 53.   

When comparing the two resistor types, the square meander resistor heated with a 

lower applied voltage.  This is caused by the lower resistance through the resistor.  A 

lower voltage corresponds to a higher current, and subsequently a more rapid temperature 

increase. 

 
Figure 54.  Thermal actuation behavior of each style of resistor.   

 

Resistor Failure During Experimentation  

This section discusses the resistor behavior during testing.  Primarily, we wanted 

to address how the resistor failed.    The rectangular style resistor failed with applied 
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voltages at or above 6V.  In Figure 55 a failed resistor is shown with the brown region 

indicating the location of failure.     

The failure is not likely caused by the high current and sharp corners around 

which the current crowds because the resistor did not fail at a corner.  Additionally, the 

circular resistor failed at a lower current value.  This indicates that the high temperatures 

were the reason for the failure.  It is well know that the melting point of bulk substrate 

gold is just over 1300K, which is higher than the maximum temperature witnessed in 

FEA simulation [79].   

 
Figure 55.  Failed resistive heater.  Debris shown scattered around sample is from 

testing and failure of samples.   
 

However, literature suggests that the melting temperature of gold is lowered as the 

feature dimensions are reduced.  This is a phenomenon known as melting-point 

depression [80].  Thermodynamic properties of thin films can change drastically with an 

increase in surface area to volume ratio.  This phenomenon is typically applied to 
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nanostructures, but in this case we believe it applies to our resistor behavior because the 

thickness of the gold resistor is 300nm.  As the samples reach peak temperature in the 

middle of the device, as witnessed by thermal measurements, the gold near the center is 

the first to melt.  During melting, the melted portion appears to crawl outward until the 

total area is encompassed.   

A similarly failed resistor is shown under the SEM in Figure 56.  The failure is 

caused by the gold seemingly melting, evaporating, and failing to provide an electrical 

contact between the probe pads.  There are also indications of a secondary connection 

created during this failure which could have accelerated the failure because of intense 

shorting.   

 
Figure 56.  SEM image illustrating the failed portion of a resistor.  The gold has 

been melted and fails to provide an electrical connection between the contact pads. 
This could be caused by excess heating and the formation of a secondary connection.   

 

It was also discovered that establishing an electrical contact between the probe and the 

contact pad could be difficult.  Adjusting the probe typically solved the issue.  This 
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further indicates that the contact between probe and pad was less than ideal and caused 

the resistance in the system to be higher than expected.   

Negative Stiffness Isolation Cantilever Analysis 

Successful fabrication of the device proved difficult at first.  Large changes in 

temperature during the post exposure baking step caused warping and stresses in the 

beams, reducing the uniformity across separate samples and the effectiveness of the 

beams. In earlier samples, it was discovered that most of the beams failed to adhere to the 

substrate following backside etching.  The post exposure baking procedure was slightly 

modified to combat this effect by promoting adhesion and reducing warping.  By 

increasing the temperature ramping time during this procedure using a single hot plate 

and ramping in intervals of 5oC from 65oC to 85oC, we were able to fabricate a successful 

sample.   

The backside etching process deposited undesired substance on the topside of the 

device, potentially affecting the performance.  Careful solvent soaking was used in a 

effort to remove the residue.  After several lengthy soaks, the residue remained, but the 

beam anchor interface began showing signs of wear.  For fear of destroying anchors, the 

solvent soaking effort was dismissed.  For future samples, a protective coating of 

photoresist will be applied prior to backside etching.  This could help reduce the residue 

buildup.    

Results of this experiment indicate that the membrane needed to be displaced 

further to be isolated in the negative stiffness region.  Additionally, the deflection 

restriction mechanism (SU-8 cantilever in this case) needs to be as stiff as possible to 
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prevent it from interfering with the force deflection characteristics. Whatever structure is 

used to restrict the membrane must only restrict its outward deflection and not add an 

external force to aid in spring deflection. Ideally this would be a structure with infinite 

stiffness, which is placed at exactly the correct distance above the membrane to constrain 

it to the beginning of the negative stiffness region (9µm).  In the test used for this 

research, the beams were seated approximately 1.8µm above the surface of the silicon.  

SU-8 has proven to be lacking in stiffness even with the benefit of thick layer heights, 

unachievable by many other materials.  However, multiple layers of sacrificial 

photoresist under the beam could raise the beam height to the required 9µm.  

Additionally, multiple layers of SU-8 could provide the necessary stiffness in the beams.   

In Figure 52 the force/deflection behavior changed with the addition of the 

cantilever beams.  Without the beams, the region immediately prior to snap through was 

short and steep.  With the addition of the beams, the total curve is lowered and the region 

prior to snap through is shallower.  Additionally, the membrane had lost snap through 

behavior.  It was observed that upon reaching the snap through region, the membrane still 

applied a returning force against the force sensor.  We believe the beams adhered to the 

membrane and caused this behavior.     

Summary 

This chapter discussed and analyzed several key aspects of experimental data.   

Three primary sections were included in this chapter, model and experimental data 

comparison, resistor failure during experimentation, and negative stiffness isolation 

analysis.   We proposed reasons for the model’s deviation from actual behavior.  
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Additionally, resistor failure was suggested to occur from excess heating in the 

membrane.  Finally, the cantilever’s fabrication and ability to restrict the membrane were 

analyzed and discussed.  If the beams were stiffer and situated higher above the 

membrane, the membranes could be restricted to the negative stiffness region.   

 

 

 

VI. Conclusions and Recommendations 

Chapter Overview 

Previously at AFIT, a linear regressive spring, in the form of a buckled Si/SiO2 

membrane was developed and tested.  This current research focused on developing an 

actuation scheme to modify the spring constant as well as restrict the spring to the region 

displaying negative stiffness.   The purpose of this chapter is to review the findings of 

this research and understand potential directions for future research in this area.   

Conclusions of Research 

The rapidly growing MEMS industry and increased demand for MEMS devices is 

forcing the industry to come up with unique and creative ways to develop new 

components.  Many inertial sensors could function more efficiently with lower overall 

stiffness in the restoring tethers.  Additionally, microfluidics, in particular microvalves, 

could benefit from a better valve actuation scheme.  This research investigated using a 

buckled plate formed from silicon and silicon dioxide as MEMS disk spring.   



 

100 

This research sought to address several questions posed in the introduction.  The 

following are the summarized research goals and brief explanation of how they were 

addressed in this research.  First, we wanted to address the foundational mechanics of the 

buckled membrane.   This thesis effort explored the basic mechanics in depth in Chapter 

2, along with applications used by other researchers.   Next we wanted to determine if 

there was a model (both computer simulated and analytical) that could be developed to 

predict the behavior of the Si/SiO2 membrane.  Two modeling avenues were explored for 

predicting device behavior.  Extensive CoventorWare® simulations and analytical 

modeling were conducted.   

A two pronged approach was used for this research.  The first element attempted 

to determine if the membrane could be actuated with a deposited resistor.  This was done 

to modify the spring constant of the device.  Experimental testing confirmed that 

thermally actuating the membrane changed the outward deflection.  When compared to 

the models, the analytical model overestimated the displacement in the membrane.  FEA 

predicts the initial deflection position accurately but overestimated the increased 

deflection from heating.  Although FEA is considered to be nearly as accurate as actual 

behavior, it relies heavily on the accuracy of the user input.  By assuming that the entire 

probe pad, or even just modeling a 5µm2 pad as the probe contact, we overestimated the 

amount of current drawn through the resistor.  Later, the force/deflection test fixture was 

used to test a thermally actuated membrane, but equipment failure resulted in unreliable 

data.  As a result, membrane deflection data were used in conjunction with analytical 

equations to estimate the spring behavior of the membrane when it was actuated.  These 

results estimated a threefold increase in membrane stiffness.   
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Secondary testing attempted to restrict the outward buckling deflection of the 

membranes by adding cantilevers attached to the surrounding bulk substrate to constrain 

the membrane.  These cantilevers reduced outward buckling deflection by up to 30% but 

failed to limit membrane deflection to the negative stiffness region.  Post experimental 

analysis suspected that the beams were not stiff enough to limit membrane deflection 

with beam deflection < 1µm.  This caused the beams to act as a spring on the membrane 

and simply reduced the force for transverse actuation.      

Significance of Research 

 This research led to the development of a novel membrane actuation scheme 

with the express purpose of modifying the membrane spring constant.  

Analytical equations predicted a 300% increase in stiffness of the membrane 

throughout the range of actuation.  

 Models of buckling behavior were developed and tested against experimental 

data.  Future research could use these models and make small changes 

according to what was presented here to yield more accurate results.    

 A modified Labview interface was developed for use with the force testing 

fixture to accommodate single-cycle MEMS regressive spring devices.   

 A detailed background in buckling theory and related work was provided to 

help future research in this area. 

 A SU-8 cantilever beam approach was developed to restrict membrane 

actuation to the negative stiffness region.  Realized devices held the 
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membrane at the desired distance, but did not contain the necessary stiffness 

to hold the membrane at that location without applying a returning force. 

Recommendations for Future Research 

Membrane geometry and actuation speed 

This research focused on a single sized membrane for actuation testing (1mm2), 

however, decreasing the size of the membrane could prove useful in practical 

applications.  Size requirements in industry demand small components and a more 

practical membrane actuator would inevitably be much smaller.  An array of devices with 

decreasing sizes should be a focus for future research.  However, as the size of the 

membrane decreases, the critical buckling thickness will shrink as well, so smaller 

diameter devices will need to be appropriately thinned to function as desired.   

Additionally, future research should investigate the actuation speed capabilities of 

the membrane.  While it is known that the thermal response of similar devices are slow 

(100Hz) when compared to electrical switching capabilities, the actual limits of the 

device presented in this research would be useful to understand prior to implementation 

into a system.   

Finally, although the devices performed consistently across a complete sample, 

adjusting the fabrication process could provide a more robust device.  Many devices 

required a “break in” actuation cycle before they performed consistently through many 

actuations.   
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Reliable Force Testing 

In order to understand the spring characteristics of the membrane, the force 

measurement fixture was used.  Testing the membrane while actuated was attempted, but 

current or heat interference from the resistor caused the system to generate unreliable 

readings.  By further investigating the force testing fixture, users will be able to reliably 

test the force capabilities at all actuation displacements and current values.   

Negative Stiffness Restriction 

Previous research suggested isolating the spring within the negative stiffness 

region of actuation.  This research presented a possible solution by restricting the 

membrane using overhanging cantilever beams.  Realized devices utilized a cantilever 

beam fabricated from SU-8 photoresist to apply an ideally infinite restoring force against 

the membrane at the location where it crosses into the negative stiffness region.  When 

tested, the beams merely reduced the outward deflection and the force from the 

membrane.   

By modifying this method and using a stiffer material, restricting the membrane 

to the negative stiffness region could be achieved.  Multiple layers of SU-8 or a thick 

layer of metal could be a potential solution.   

Summary 

This chapter presented the major findings of this research.  By actuating a MEMS 

buckled membrane using thermal stresses, the transverse spring actuation characteristics 

could be modified.  Modeling predicts that the membrane’s spring constant could be 

tripled through thermal actuation. Additionally, a method was developed to isolate the 
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membrane to actuating in the negative stiffness region.  Although, this restricted the 

membranes outward deflection, it failed to keep the membrane in the negative stiffness 

region.  This research opened several avenues for following research, including 

membrane actuation speed testing, geometry scaling, reliable force testing, and negative 

stiffness isolation.   
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Appendix A: Possible Applications 

The purpose of this appendix is to present possible applications of the research.  

There are three primary areas where this research seems to fit best, and each utilizing the 

membrane in a different manner.   

Vibration Isolation 

Vibration isolation seeks to, as the name suggest, reduce vibrations to a specific 

target area of a structure or device.  In MEMS and NEMS precision vibration isolation is 

critical to preserve structural integrity and reduce physical noise in devices.  While, 

pneumatic, air table, systems are widely used, smaller feature sizes require a more precise 

vibration isolation system.  Negative stiffness vibration isolation can provide this higher 

precision, and it is created by a vertical spring which supports the weight load combined 

with a negative stiffness mechanism [81].  This negative stiffness mechanism could be 

the membrane presented in this research particularly if it can be isolated within the 

negative stiffness region.   

Euler Spring 

In the realm of vibration isolation, research has suggested to use Euler springs for 

vertical vibration isolation.  An Euler spring is essentially a buckled beam where the 

compressive buckling force is applied by the suspended mass.  As a result vibrations 

cause compressive loading beyond buckling.  The static energy stored in a typical spring 

mass system is reduced to nearly zero in an Euler spring and only dynamic energy 

storage needs to contribute to the spring mass [82].  In a traditional mass spring system 

where much spring energy is stored as static energy, the spring mass must be large which 

supports low frequency resonant modes [82].  Euler spring systems contain lower masses 
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and help to reduce this low frequency resonant mode.  In Figure 57, a schematic of a 

Euler spring system is shown with the mass suspended by the tops of the Euler springs.   

 
Figure 57. Euler Spring for vibration isolation [82].   

 

The buckled membrane used in this research could be used in this manner for creating a 

self contained MEMS vibration isolation system.  Additionally, the resistor actuation 

scheme could be used to externally displace the Euler springs and change resonant 

modes.   

Switches and Valves  

Valves and switches were discussed in this research as areas where other 

researchers have used buckled structures.  Hälg fabricated a memory device using a 

buckled beam and switching between states through electrostatic actuation.  This 

membrane could use a similar device, but instead of switching states with electrostatic 

actuation, thermal actuation could be used.  Arya et al. discovered a way to thermally 

switch a buckled membrane through a deposited metal on the backside.  With heating, the 

backside metal will expand faster than the silicon and apply a transverse bending force to 

the membrane [83].  This will result in a state switch.  Switching the membrane back to 

the original state will result from removing the electrical power and subsequent cooling.   
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Equilibrium switching is not the only way this membrane could be useful.  By 

thermally actuating the membrane as is done in this research, a small deflection switch 

could be fabricated.  An overhanging electrode could be fabricated with an air gap above 

the membrane.  Upon thermal actuation, the membrane could make contact with the 

switch.  Small actuation would be necessary because of the slow actuation speeds 

characteristic to heating.   

Buckled structures for valves could prove particularly useful because of 

equilibrium positions.  Typically, valves will remain open or closed for extended periods 

of time, and reducing the force required to hold the valve in that position could prove 

useful.  Again, using the membrane with the backside deposited metal could be a method 

of constructing a novel microfluidics valve.   
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Appendix B: Mask Design 

The purpose of this appendix it to show the mask designs that were used in this 

research effort.  The following mask is used with the resistors.   

 
Figure 58. Resistor mask, (a) original resistor design, and (b) revised design. 

 

The next mask is for the anchor holes for the beams.  The anchor holes expose the 

underlying S1818 photoresist to allow the subsequent SU-8 photoresist to make contact 

with the silicon substrate.  This contact serves as an anchor for the cantilever beams.  The 

anchor holes are round to reduce stress in the beam anchors and promote SU-8 adhesion.   
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Figure 59. Anchor mask for SU-8 beams.  The red areas will be etched in the mask 

maker, leaving chrome in the red regions. 
 

The next mask shown is the beam mask.  This mask is used for exposing the SU-8 

beams used for membrane deflection restriction.   

 
Figure 60. Beam mask for SU-8 cantilevers. 
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The next mask is for exposing the membrane etch cavity in the SU-8.  SU-8 is a 

negative photoresist, so UV light promotes cross-linking of the photoplastic material in 

the resist.  Because of this, the mask is an inverted design compared to the other masks.  

The red region will be etched away leaving a mostly clear window, with small chrome 

squares and circles.   

 

Figure 61. Membrane etch mask (a).  Magnified view of the two separate membrane 
etch holes and alignment marks (b). 

 

Finally, each mask is combined to fit on a single encompassing mask to conserve 

resources.  The masks are exactly 1 inch square, used to align the front side to the 

backside of the sample pieces.   
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Figure 62. Complete mask. 
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Appendix C: Modal Analysis  

This section contains further information concerning simulations.  A modal 

analysis was simulated using the buckled membrane to understand the spring’s resonant 

frequencies.  Although research suggests that thermally actuating the membrane is slow 

(100Hz) compared to electrical switching speeds, future research efforts should consider 

the membrane’s mode frequencies and mode shapes.  The frequencies for the first four 

mode shapes are shown in Figure 63.  The first mode occurs over 140 kHz, well over the 

predicted thermal switching speeds.  The peaks displacement depends heavily on 

damping of the surrounding fluid.  In this case, the pressure is assumed to be 

atmospheric, resulting in smoother peaks.   

 
Figure 63. Membrane modal frequencies for the first four modes.  Modes two and 
three are at the same frequency and represent the inverse of each other although 

their modal displacement is different.   
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Each of these modal frequencies corresponds to specific mode shapes which are shown 

next in Figure 64.   Each mode corresponds to the modal frequencies listed in Figure 63.  

The blue line represents the first mode, the green and red lines indicate the second and 

third modes, and the black line indicates the last mode. Notice that the second two modes 

are mirrored images of each other and corresponds to the membrane having two 

simultaneous modes at a single frequency.  Additionally, the displacements in the images 

are exaggerated to show the direction of modal displacement.    

 
Figure 64. Mode shapes for the first four modes found using CoventorWare®. 
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Appendix D: Visual Bibliography 

A visual bibliography is a useful tool for establishing a connection between 

references used in a research paper.  Visual bibliographies can be organized by topic area, 

research groups, funding sources, or other relevant relationships. In this particular visual 

bibliography, we establish a connection between primary MEMS buckling authors.  This 

allows us to see who is pursuing the most research in the area, and how other authors 

view his/her work.   

 
Figure 65. Visual bibliography.  Articles are encircled with arrows indicating which 

authors cited each other.   
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Appendix E: Process Followers 

This appendix contains the three process followers for the fabrication of the 

membrane, the resistors, and the cantilevers.  The first process outlines the resistor 

fabrication.   

Init. Process Step Notes Date
Time 

 INSPECT SAMPLE: 
ο Note any defects 

Start Date 
 
 

Start Time 
 SETUP: 

ο Start MJB3 to step 4 wait till suss power shows 275W 
ο Start DUV system, needs 10 min to warm up. 

 

 SOLVENT CLEAN: 
ο 20 sec acetone rinse 
ο 20 sec methanol rinse 
ο 20 sec isopropyl rinse 
ο Dry with nitrogen at 500 rpm 
ο Dry wafer with nitrogen on clean texwipes  
ο 1 min 65°C hot plate bake 
ο 1 min 95°C hot plate bake 

 

 APPLY SF11 
ο Dropper SF11 over sample  
ο Ensure sample is completely covered to the edges 
o 4 sec 500 rpm 
ο 30 sec 4000 rpm  
ο 3 min 110°C hot plate bake 

 

 APPLY 1818 
ο Dropper 1818 over sample  
ο Ensure sample is completely covered to the edges 
o 4 sec 500 rpm 
ο 30 sec 4000 rpm  
ο 3 min 110°C hot plate bake 

 

 EXPOSE 1818 
ο Finish setting up MJB3  
ο Clean Mask (ensure cap is on the spinner) 
o Put mask on the holder  
ο Carefully raise stage to see height, adjust appropriately 
ο Center sample within one inch window for alignment. Use the resistor 

mask. 
ο 8 sec expose, may need longer depends on thickness.  SU-8 manual lists 

the amount of energy necessary to fully expose.

 

 DEVELOP 
ο 45 sec spin at 500 rpm, spray with 351 (5/1 351/DI) developer.  
ο 30 sec spin at 500 rpm and spray DI H2O.  
ο Rinse sample and dry with nitrogen.  

 

 EXPOSE SF11 
ο 200 sec flood expose, may need longer depends on thickness.   
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 DEVELOP 
ο Partially fill small container with SAL 101 developer. (enough to cover 

sample). 
ο Submerge sample in developer for 1 minute.  Slight agitation.  
ο Rinse sample and dry with nitrogen. 

 

 EVAPORATE TI/AU 
ο Need 500A of Ti and 3000A of Au deposited on top side of sample. 
ο Follow backside etch process after evaporation and before release. 

 

 RELEASE 
ο Fill beaker with ¼ inch of 1165 stripping agent. 
ο 120oC heat on hot plate until liquid reaches 90oC, cover with foil. 
ο 20 min sample soak in acetone. Slight agitation ok. NO ULTRASONIC, 

samples will break 
ο Submerge sample in developer for 10 minutes.  Slight agitation.  
ο Rinse sample and dry with nitrogen. 

 

 Inspect resistors turned out as expected.
 

Finish Date 

Finish Time 

 
The next process follower is used to create the SU-8 beams. 
 
Init

. 
Process Step Notes Date

Time 
 INSPECT SAMPLE: 

ο Note any defects 
 

Start Date 
 
 

Start Time 
 SETUP: 

ο Start MJB3 to step 4 wait till suss power shows 275W 
 

 SAMPLE PREPARATION: 
ο 10 sec buffered oxide etch (BOE) use plastic dish and wear appropriate 

gloves 
ο 3 min oxygen asher, remember to correct the RF reflectance. 

 

 SOLVENT CLEAN: 
ο 20 sec acetone rinse 
ο 20 sec methanol rinse 
ο 20 sec isopropyl rinse 
ο Dry with nitrogen at 500 rpm 
ο Dry wafer with nitrogen on clean texwipes  
ο 1 min 65°C hot plate bake 
ο 1 min 95°C hot plate bake 

 

 APPLY 1818 
ο Dropper 1818 over sample  
ο Ensure sample is completely covered to the edges 
o 4 sec 500 rpm 
ο 30 sec 4000 rpm  
ο 3 min 110°C hot plate bake 
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 EXPOSE 
ο Finish setting up MJB3  
ο Clean Mask (ensure cap is on the spinner) 
o Put mask on the holder  
ο Carefully raise stage to see height, adjust appropriately 
ο Center sample within one inch window for alignment. Use the anchor mask. 
ο 8 sec expose, may need longer depends on thickness.  SU-8 manual lists 

the amount of energy necessary to fully expose. 

 

 DEVELOP 
ο 45 sec spin at 500 rpm, spray with 351 (5/1 351/DI) developer.  
ο 30 sec spin at 500 rpm and spray DI H2O.  
ο Rinse sample and dry with nitrogen. 

 

 APPLY SU8 
ο Dropper SU8 over sample (do not let dropper touch edge of bottle) 
ο Ensure sample is completely covered to the edges 
o 4 sec 500 rpm 
ο 30 sec 2800 rpm gives 17microns approx (2000 rpm as backup) 
ο Clean back of sample with acetone on a swab after sample finishes 

spinning 
ο 3 min 65°C hot plate bake 
ο 7 min 65°C hot plate bake 
ο Inspect 

 

 EXPOSE 
ο Align to marks below in 1818.  They are difficult to see, but the center 

“landing strip” alignment marks help to get a good initial alignment.  
ο 23 sec expose, may need longer depends on thickness.  SU-8 manual lists 

the amount of energy necessary to fully expose. 
ο 1 min 65°C hot plate bake 
ο 3 min 95°C hot plate bake 

 

 DEVELOP 
ο Partially fill small container with SU-8 developer. (enough to cover sample). 
ο Submerge sample in developer for 4 minutes.  Slight agitation.  
ο Rinse sample and dry with nitrogen. 

 

 HARD BAKE 
ο 3 min 65°C hot plate bake 
ο 30 min 110°C hot plate bake 

 

 Inspect beams to ensure release from sacrificial photoresist.
May need time in an acetone bath to finish releasing.   
Ensure beams are not warped and they are adhered to the surface of 

SOI. 

Finish Date 

Finish Time 

 
The final process follower illustrates the process for fabricating the membrane. 
 
Init

. 
Process Step Notes Date

Time 
 INSPECT SAMPLE: 

ο Note any defects 
 

Start Date 
 
 

Start Time 
 SETUP: 

ο Start MJB3 to step 4 wait till suss power shows 275W 
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 SOLVENT CLEAN: 
ο 20 sec acetone rinse 
ο 20 sec methanol rinse 
ο 20 sec isopropyl rinse 
ο Dry with nitrogen at 500 rpm 
ο Dry wafer with nitrogen on clean texwipes  
ο 1 min 65°C hot plate bake 
ο 1 min 95°C hot plate bake 

 

 Apply SU8 
ο Dropper SU8 over sample (do not let dropper touch edge of bottle) 
ο Ensure sample is completely covered to the edges 
o 4 sec 500 rpm 
ο 30 sec 2800 rpm gives 17microns approx (2000 rpm as backup) 
ο Clean back of sample with acetone on a swab after sample finishes 

spinning 
ο 3 min 65°C hot plate bake 
ο 7 min 65°C hot plate bake 
ο Inspect 

 

 Expose 
ο Finish setting up MJB3  
ο Clean Mask (ensure cap is on the spinner) 
o Put mask on the holder  
ο Carefully raise stage to see height, adjust appropriately 
ο 23 sec expose, may need longer depends on thickness.  SU-8 manual lists 

the amount of energy necessary to fully expose. 
ο 1 min 65°C hot plate bake 
ο 3 min 95°C hot plate bake 

 

 Develop 
ο Partially fill small container with SU-8 developer. (enough to cover sample). 
ο Submerge sample in developer for 4 minutes.  Slight agitation.  
ο Rinse sample and dry with nitrogen. 

 

 Develop 
ο 3 min 65°C hot plate bake 
ο 30 min 110°C hot plate bake 

 

 Inspect finished etch holes under optical microscope. Finish Date 

Finish Time 
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