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EXECUTIVE SUMMARY

The quasi-static antenna design algorithm is a scientific approach to designing electrically small
antennas. Electrically small antennas are small compared to wavelength. The radiation resistance is
computed from the electrostatic dipole potential. The capacitance is computed from the electrostatic
potential on the enclosed sphere. The Q is calculated from the radiation resistance and capacitance.
The general thick-disk-cap monopole, enclosed by a sphere, is modeled with electrostatic multipole
basis functions on the disk. A sequence of solutions converges in shape and Q.

Computer Simulation Technology (CST) Microwave Studio is used to compute the impedance of
the thick-disk-cap monopole. The impedance is numerically fit to the dipole and octupole eigenmode
equivalent circuit. The antenna eigenmodes are analogous to radio frequency (RF) cavity
eigenmodes. The radiation resistance is computed from the dipole eigenmode. The DC capacitance is
accurately computed. The current sharing between the dipole and octupole eigenmodes slightly
decreases the radiation resistance and slightly increases the antenna Q. The quasi-static antenna
design algorithm is a good approximation of the exact solution.

The figure of merit is the Q-factor ratio, the ratio of the Q to Qcpy, L. J. Chu’s [1] theoretical limit
for an antenna enclosed by a sphere. The thick-disk-cap monopole has the absolute minimum Q-
factor ratio of 1.825. The spherical-cap monopole has a slightly lower Q-factor ratio of 1.75. At the
resonance, the thick-disk-cap monopole’s Q is 22.5. This is much smaller than the spherical-cap
monopole’s Q of 46.1. Above the resonant frequency, the thick-disk-cap monopole is a superior
design.
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1. INTRODUCTION

Electrically small antennas are common to portable electronics devices, personal digital assistants
(PDASs), cell phones, etc. These antennas are small compared to wavelength, i.e., electrically small
antennas. Designing electrically small antennas is an art; they normally have a low radiation
resistance, a large reactance, and a narrow bandwidth. Electrically small antennas are used when
reducing the antenna size is a critical design goal. Additional matching components are required to
eliminate the reactance and increase the resistance. The objective is to develop a scientific method
for designing electrically small antennas. The radiation resistance and capacitance are optimized to
give the minimum Q antenna.

L.J. Chu [1] derived a lower limit for the Q of electrically small antennas. Chu's O calculation is

based on the radiated energy and the stored energy outside a sphere enclosing the antenna; the energy
inside the sphere is assumed to be zero. H. L. Thal [2] refined this limit by assuming the antenna
current is limited to the surface of the enclosing surface. The folded spherical helix design by S. R.
Best [3] meets Thal's limit. M. Gustafsson, C. Sohl, and G. Kristensson [4] derived a Q limit based

on the optical theorem. A. D. Yaghjian and H. R. Stuart [5] derived a more restrictive limit on Q.

The energy inside the sphere limits the antenna performance. The thin-disk-cap monopole is a
leaky capacitor with a large amount of stored energy inside the sphere. The electric field under the
disk is larger than the field above the disk. The quasi-static antenna design algorithm [6, 7]
analytically computed a thick-disk-cap monopole. The thick-disk cap reduces the stored energy and
O by filling some of the spherical volume with conductor. The electric field under the top load is

still larger than the field above the top load. This paper shows how to reduce the electric field under
the top load and increase the radiation resistance of the antenna [8]. The antenna shape shifts to
eliminate the gap (and the energy) between the top of the antenna and the enclosing sphere. The
stored energy inside the enclosing sphere is limited to the region between the antenna and the ground.

Electrically small antennas have electric fields much larger than the magnetic fields below the
antenna resonance. The Asymptotic Conical Dipole (ACD) [9, 10, and 11] was the first antenna
designed with quasi-static methods. In electrostatics, a perfect conductor is the same as an
equipotential surface. A line of constant charge on the z-axis, with an image, will generate the ACD
antenna design. Each ACD antenna has a different height. The quasi-static antenna design algorithm
[7] fixes the antenna height to a constant a and the length of the line charge xa is varied; the
antenna fits within an enclosing sphere with a radius a. The parameter x is a dimensionless. The QO

1s calculated from

Q: > (h

where Rpqq is radiation resistance, C is capacitance, and @ is angular frequency. The quantities
R;.. and C are functions of x . The radiation resistance is calculated from the effective height. The

capacitance is calculated from the charge on the antenna arm and the maximum potential on the
spherical enclosing surface.



The above equation for Q is valid below resonance and it gives only the first term in Chu's
equation:

1 1
°7 ) i ®

where k =27/ and @ is the radius of the enclosing sphere. The ACD design is extended by
adding a disk-shaped charge distribution as a load on the line charge [7]. A conducting disk in free
space is used as the charge distribution. This disk charge distribution is symmetric. The electric fields
between the disks and image will be larger than the electric fields above the disk. There is no
requirement for the disk charge distribution to be symmetric. Adding a dipole moment moves the
charge from the bottom of the disk to the top of the disk. This reduces the electric field between the
disks. A series of multipole charge distributions can be added to the disk to model the general charge
distribution on the disk.

Sections 2 and 3 are not needed to understand the results given in Sections 4 and 5. Section 2
shows how the potential and top load capacitance is computed from electrostatic solutions in oblate
spheroidal coordinates. Each solution represents a unique multipole moment with an unique
potential. Only the rotationally symmetric top-load multipole modes will be used in this model. The

n multipole moment falls off as ﬁ in the far field. The potential for the dipole multipole term and

higher odd multipole moments add in the far field. The monopole and higher even multipole
moments cancel in the far fields. All of the multipoles make a unique and diminishing contribution to
the near fields. In section 3, the effective height is calculated. The effective height calculation with
dipole moment top load is non-trivial. The effective height cannot be calculated with the
conventional formula [8]. The effective height is calculated indirectly from the potential on the
enclosing sphere. The perfect conductor boundary condition, g -0, requires the charge distribution to

be enclosed by the antenna surface. Only a subset of the charge distributions satisfies this boundary
condition. The multipole moments have negative potentials, which can cause the equipotential
surface to terminate on the disk or feed wire. This requires an addition step in the solution process;
the equipotential surface is sampled to verify that the charge is enclosed by the equipotential surface.
The final solution must be verified with a detailed calculation of the antenna shape. In Section 4, a
sequence of multipole basis functions is used to design minimum Q antennas. The antenna designs
appear to converge in both shape and Q. The final antenna design fills the top of the sphere; the area
under the antenna is the only region with electric fields that contributes to stored energy inside the
enclosing sphere. The electric field on the surface of the antenna is plotted. The electric field under
the antenna is reduced by adding the dipole moment. The final antenna has an almost horizontal
lower surface.

In Section 5, Computer Simulation Technology (CST) Microwave Studio is used to calculate the
impedance and Q for a 1-m high antenna with a 1-cm-diameter feed line. The impedance is
calculated with a sequence of energy-based adaptive iterations. L. J. Chu [1], H. D. Foltz, J. S.
McLean, and L. Bodner [12], and H. Stuart [13] used a series, L, C, with a resistor, R, parallel to

the inductor to model both the reactance and » > dependence radiation resistance. The model
represents the dipole eigenmode. The least squares fit to the CST impedance is a good fit to the
reactance. For the resistance, the two curves cross at only on point; at other points the percentage
error is large. The radiation resistance has an »* and »* frequency-dependent terms; the
coefficients are calculated with a least square fit. The @ contribution gives the same effective
height as the quasi-static antenna design algorithm. The »* frequency-dependent term is the source



of the error in the circuit model.

The next eigenmode, the octopole, is a circuit connected in parallel with the dipole eigenmode
model [13]. The octopole (and higher) equivalent circuits reduce to a capacitor at low frequencies.
The radiation resistance for the octopole eigenmode is not included in the simple equivalent circuit.
This capacitance combined with dipole eigenmode circuit gives an antiresonance. The dipole and
octopole eigenmode currents interfere with each other to create a high impedance at antiresonance. A
least square iteration method was used to calculate the circuit elements. The improved fit to the
radiation resistance data is attributed to a @ * frequency-dependent term introduced by the parallel
capacitance. An analysis of the circuit impedance shows that current sharing between the eigenmodes
introduces a small error in the quasi-static antenna design algorithm. The Qand resistance are

modified by current sharing factor. The DC capacitance is accurate. The extra capacitance introduced
by the feed line is estimated.

In Section 6, CST is also used to calculate the impedance of the spherical-cap monopole. The same
feed wire was used for the 1-m spherical-cap monopole. The data is fit to the same dipole eigenmode
with a capacitor approximation of higher eigenmodes. The capacitance of the top-load is larger than
the above design. The effective height is smaller. The Q-factor ratio is about the same as the result
obtained by A. R. Lopez [14]. Electrostatic data is not available to compare to the circuit results.

Section 7 is the conclusion. The quasi-static antenna design algorithm gives a solution very close
to the spherical-cap monopole (the top-loaded monopole design with the lowest Q). The algorithm
does not model all possible antenna shapes. The algorithm only considers antenna shapes that enclose
the source charge on the disk. A thick-spherical-cap monopole could have a lower Q. The quasi-
static antenna design algorithm produces a very good antenna design with modest effort. Other

designs can be computed with a significantly higher radiation resistance and a slightly larger Q. The
algorithm can be adapted to other enclosing surfaces.






2. CAPACITANCE FOR THE OBLATE SPHEROIDAL ANTENNA

The detailed discussion of the algorithm is given in Reference 7. This discussion is the general
case. The capacitance of the general thick-disk cap is calculated from the potential on enclosing
surface (q =C V). The potential is calculated from an analytic solution to the electrostatic equations.

The top of the feed line has a height xa and (1-7)q charge; the potential [15, 16] is

#5058 (000

drepa |\ (1-5,)(1+6,) )

m

3)

Ka

=%t is for the image monopole, &, = (z—xa) + p*

where 6, = %% is for the monopole, §; =

the distance from p, z to the top of the monopole, R, =,/z* + p* is the distance from p,z to the

feed point, and R, =/(z+ ) +p* 1s the distance from p,z to the bottom of the image monopole. The
parameter 7 is the fraction of the total charge ¢ on the antenna top load. The superscript indicates

an ACD stem. The parameter x is dimensionless, 0 < k¥ < 1. The stem radius is not constant; it
tapers to a zero as the feed point is approached

The disk also has the height xa , a disk radius of aa, and a net charge 7y where the parameter o
is dimensionless and has the range of values 0 < a < J1-x? . G. Arfken [17, pp. 599-601 and 596]
gives the general solution to potential on the disk, V2®(u,v, ¢) = 0. The potential on the disk is a
linear combination of multipole moments, K" (u)P)" (cos v)e’mj , where v and u are defined by the
oblate spheroidal coordinate system:

z = aasinh(u) cos(v), 4
x = aa cosh(u)sin(v) cos(¢), %)
vy = aacosh(u)sin(v)sin(g), 6)

where aa is the disk radius. The antenna’s design with coordinate system is called an oblate
spheroidal antenna (OSA). The antenna problem will be simplified by assuming rotational symmetry
where p = aacoshu)cos(v):

o0 m=n

u v ¢ Zz = K" (u)P" cosv) g, (7)

nOmO



The rotational symmetry in ¢ requires b, =0 for m >0 and the associated Legendre Polynomials

reduce to Legendre Polynomials, P’ (cos v) =P (cos v). The 1/a" is added for numerical
convenience. The K, (u) functions are as follows:

K, (u)=arccot(sinh ), (8)
K, (1) =1 —sinh(u) arccot(sinh(u)), )
K, () =|(3sinh? (u).+ 1) arccot(sinh(u)) — 3 sinh(u) |/ 2, (10)
and
K,(u)= —(%sinh3 (u) + %sinh(u)j arccot(sinh(u)) + g(%sinhz (u) + %] —é. (11)
The general case is

K, (&)=(-i"")o,G&), (12)

where
0,16~ (R (EJarceor) -2 p (122 3p -y

The function K at large distance is calculated by expanding a cot(snh(u)) = a tan(l / sinh(u)) ina

power series of . After simplifying, the leading term is

sinh(u)

Ky == nh(w) for u = 2, (14)
2 1
K ~=——— for u>>2, 15
' 3 sinh’(u (13)
K 2 ] 2 16
o B — for w3 2,
© 15 zinh®(u) (16)
and
Kom oo 2 (17)
g R — for w3
: J sinh"‘[t;_ ‘



. : . 2 .
since aasinh(u) = z, the above equations reduce to -, %(%) , %(ﬂ)3, and %(%)4. This is the

expected multipole expansion of the field on the z-axis. Figure 1 plots x as a function of sinh(«); the

plot shows the ﬁ dependence. The factor aln is included in Equation (7) to eliminate the o"

dependence in the far field. The value of b,, = —— is calculated from the solution of the charged

4rega

conducting disk in free space ¥ (u)=—"—arccot(sishu), Where 7g is the net charge on the disk. The

4reyaa

only restriction placed on the values of 5 is the charge distribution must be enclosed within an
equipotential surface.

Radial Dependence of the Oblate
Spheroidal Basis Functions
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Figure 1. First four top-load radial multipole basis functions.

The combined potential is

cD(Z,p):q)ACD(p, Z)_I_q)TapDisk(u v )+(DBotDisk(ub,vh ), (18)

127t

where the variables U:, V¢, and Up, Vp are defined from

z—xu = aasinh(u,) cos(v,), (19)
p = aacosh(u,)sin(v,), (20)
z+ Kka = aasinh(u, ) cos(v, ), 1)
p = aacosh(u, )sin(v, ). (22)



The capacitance is calculated from the maximum value of ®(z, p) on the sphere z = acos @ and
p=asing:

®,,,. =max(®(acos@,asinf)) where0< 6 < z/2 (23)
and

q
C=——. 24
(DMax ( )
In the above coordinate systems, v, =0 and v, =0 are defined in the + z direction. The charge

distribution that generates the term ®**”** (u bo vb) is the mirror image of the charge distribution for
cDTopDisk (u v ) .
t>7t) "

@ TorPisk (ut’vt): ZZ’; K, (u)P, (cosvt) (25)
n=0
and
tDis, 3 ! b
P k(ub,vb)z—z(— 1) ann Kn(ub)Pn(COSVb)' (26)

n=0

The sign on %Kﬂ (u,)P, (cos vb) follows from P, (COS v, ) , being even or odd relative to v=7/2.
The dipole term is the simplest example to understand: K| (u,)E(cos vt) has positive charge on the

top of the disk and K, (u,)R, (Cos vb) has positive charge on the top of the image disk (top is +z

direction for both disks). Both terms have a negative charge on the bottom of the disk and image
disk. The combined terms

K, (u,)FR, (COS Vz)"' K, (u,)R (COSVb) (27)

are odd about z = 0. For the case, b, > 0, the dipole moment of the antenna is increased and the

electric field under the disk is decreased (with the other parameters unchanged). In the general case,
when n is odd, the terms

K, (u,)P,(cosv, )+ K, (u,)P,(cosv, ) for odd n (28)

increases the n"” multipole moment. When 7 is even, the terms

K, (u,)P,(cosv,)- K, (u,)P.(cosv,) forevenn (29)

subtract in the far field the first contributing far-field moment is the (n + l)th multipole moment. Each
term has a unique contribution to the electric field under the antenna.

The next step is to compute the radiation resistance.



3. GENERAL CALCULATION OF RADIATION RESISTANCE

The effective height for a rotationally symmetric charge distribution is

zq(p, z)27pdpdz. (30)

h 1 z=a jp:\/ a*-z*
B Iy 70 200

From a previous paper [6, 7], this simplifies to

hyy :%(l—r)+/caz'. (31)

The application of the above effective height calculation to the dipole term K, (u)PA, (cos v) is not
obvious. The K, (u)P, (cos v) term is discontinuous at u = 0. The function is odd about v=7/2 or
K, (0)R (cos v) =-K,(0)R (cos(;r - v)) . The dipole term would give zero for a thin disk with no net
charge.

To derive the general case, the dipole moment used as the starting point is
z=a pep=\ a*-z*
p.=[ [, za(p.2)2mndpdz. (2)

The potential outside (and on) the sphere can be represented as a sum of spherical harmonics:

(D(r, 6’) = iﬂno(gjn R,(cos 0) forr=a, (33)
r

n=1

where 7 =,/z”> + p*> with all of the charge enclosed in a sphere of radius a . The dipole moment is
computed from the potentials,

p. = %az ::()”CD(a,@)P1 (cos@)sin Adé. (34)

The two equations yield p. = ,,a’. The effective height is

1
Dy Y Ip. | (35)

Net






4. GENERAL OBLATE SPHEROIDAL ANTENNA

In the calculation for the thin-disk-cap monopole, the feed line is neglected. The capacitance
calculation assumes all of the charge is on the top load disk. The MATLAB® calculation of the oblate

spheroidal antenna assumes that 9970 of the charge is on the top load and a token 170 of the charge

is on the feed line: 7= 0.9 and (1=7)=0.01 Tpe 1% charge on the feed line makes a 2% change on
the radiation resistance and about a 1% change in the capacitance. The feed line radius tapers to zero
at the feed point. As shown in Figure 2, the antenna designs with four and five multipoles are almost
identical and Q-factor ratios have a 0.03% difference. The antenna design appears to converge in
shape and Q-factor ratio.

Antenna Cross Section for Different Moments with - = 0.99
1

049 .
0.8 .
07 .
06 .
=
.% ns i
T —  Monopole QIQCHU:ZO?B .
04r ... Plus Dipole Term — Q/Q,, =19480 LT
03k —..  Plus Quadrapole Term Qf@ohu:'l 8754 |
- Plus Octopale Term QIQChu:1 8283 -
02F —..  Four Multipoles QQ,, =18256 4]
o1k Five Multipoles QIQChU:’I 8251 :
----- Enclosing Sphere
O L L L L
0 0.z 04 0.5 0.8 1

Radial Distance

Figure 2. A sequence of antenna designs with one to five load multipoles.

Figure 3 shows a detailed plot of the antenna surface near the sphere. Spherical coordinates
r=4z"+p> are used for the vertical axis and ¢ = arcsin(p/r) 18 used for the horizontal axis. As basis
functions are added to the antenna design, the shape approaches the surface of the enclosing sphere.
Figure 3 shows that adding extra multipole moments has a diminishing impact on the Q-factor ratio.
The multipole moments fall off as 1/7""'; they have diminishing impact on the electric field outside
the sphere and under the antenna.

The electric field is calculated from the potential and is plotted in Figure 4. The vertical scale is
electric field magnitude plotted as a function of distance along the surface measured from the top of
the antenna, z =1 and p =0. The electric field under the antenna is reduced by the dipole moment

11



term. The spike in the electric field is at the transition from almost spherical surface to the antenna
underside. For the solution with five multipoles, this transition is very sharp. Figure 4 shows that the
position of the spike moves to the right as multipoles are added. The added multipoles are increasing
the surface area of the top of the antenna and the total charge on the top of the antenna.

Antenna Cross Section Near Enclosing Sphere with ~ = 0.99
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o
g J
©
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2 093km P Chu ; -
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091}F == -Four Multipoles @/Q,, 518256 f : .

o Five Multipoles QIQChU:1 8251 L
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Angle Measure from Z Axis

Figure 3. The antenna shape near the enclosing surface.

Electric Field as a Function of Distance = = 0.99
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Figure 4. Electric field calculated as a function of distance from the antenna top.
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5. SECTION CST MODEL OF OBLATE MONOPOLE ANTENNA

Computer Simulation Technology (CST) Microwave Studio T-solver was used to model the
antenna; Figure 5 is a plot of the antenna surface with a 45° slice removed to highlight the edge. The
tapered feed line in the antenna cannot be modeled with Microwave Studio. To simplify the CST
model, the tapered feed line is replaced with a 1-cm-diameter hollow feed line. The hollow feed line
was used to reduce the capacitance at the feed point. The small capacitance introduced by the feed
line is estimated in this section.

An accurate model for the energy is critical for Q calculations; CST includes an energy-based

adaptive meshing that increases the mesh resolution in areas of high-energy density. A sequence of
adaptive meshing models was run to refine the starting mesh for the next model'. A 1-cm diameter,
4.3-ohm cylindrical edge port was used at the feed point. The current flows on the cylindrical edge
port surface. A line source would have a much larger inductance.

The excitation frequency range was from 15 to 25 MHz; this reduces the energy reflected at the
input to the antenna®. The hollow feed line was modeled independently to determine the required
meshing. The CST calculation used the exact antenna geometry. The convergence in the solutions is
evaluated by looking at the largest difference between previous and current reflection coefficient S .

In the final run, this difference in S;; is 3.4e-4. This process was time consuming, but it eliminated
the risk of using too fine a mesh and introducing numerical errors in the solution.

The antenna capacitance, inductance, Q, and effective height can be extracted from the CST
impedance data with a MATLAB program. The data with a reflection coefficient, | o |< 0.9 ,is
used in the analysis of the impedance. The MATLAB program calculated the least square best fit to
Stuart's eigenmode impedance circuit model, Figure 6 and Table 1. The series C and L with a
parallel resistance Ro represents the dipole eigenmode of the antenna. The fit to the reactance was

very good but the radiation resistance has a large error. An additional octopole eigenmode can be

modeled at low frequencies as a parallel capacitor €, , where the subscript indicates octopole plus

higher order eigenmodes (the inductors short the other circuit elements at low frequencies). This
approximation is very accurate; the octopole eigenmode® is resonant at 242.22 MHz with only 3.17 Q

radiation resistance. The addition of the Cgp. eliminates the error in the numerical fit to the radiation
resistance. The impact of CJ>! on the reactance is not significant. The superscript indicates the
antenna type as an OSA (oblate spheroidal antenna). The circuit parameters are computed with an
iteration process.

A two-step iteration process is used to minimize the error in the radiation resistance. The dipole
eigenmode L% and C?* values are a good approximation to the reactance; they are used as fixed
inputs to a least square fit for R** and ¢25*. The new R§** and 93 values are used as fixed inputs to

a least square fit for improved £ and % values. This iteration process was repeated until a
self-consistent numerical solution was obtained. Figure 7 shows the CST impedance and the two

'Shrikrishna Hegde at Sonnent Software provided insight into energy adaptation and meshing.

2James Whillhite at Sonnent Software suggested matching the source resistance to the antenna resistance and
using a narrow frequency range to maximize the energy delivered to the antenna.

*The antenna was excited by a short voltage pulse. After the initial excitation, ' = 0 at the feed point, the
antenna is shorted to the ground.
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eigenmode circuit approximation of the impedance. The difference is so small it is plotted in Figure
8. The errors introduced by the CST numerical computation and the eigenmode circuit model

approximation are independent. The small difference between the two models indicates that both are
accurate.

Height

Figure 6. The equivalent circuit for the first and second eigenmode approximation.

The DC capacitance is

Cot ey =CP +CH =95.87. (36)

The impact of the 1-cm-diameter hollow feed line can be estimated. The current on the feed line is
almost constant; almost all of the charge flows onto the top load. A reasonable approximation for the
charge distribution on the feed line is a triangular distribution. The net charge on the feed line is one-
half the monopole charge distribution (constant charge distribution for electrically small monopole).
The capacitance of the 0.587-m high monopole is 6.2 pF. The feed-line capacitance is about 3.1 pF.
The quasi-static antenna design algorithm assumes 1% of the total charge is on the tapered OSA feed
line; the capacitance is 0.9 pF (= 0.01%90.364 pF). This difference is C*" =2.2 pF.

14



The difference between the two calculations is about 3.3 pF or about 3.6%:

Cpeps = Cos +C" =92.56., (37)
Table 1. Least square best fit to Stuart's eigenmode impedance circuit model.
Parameters Eigenmode 1 Eigenmode 1 & 2 QSADA
Coc 95.87 90.364 pF
COsA 90.15 pF 90.292385 pF N/A
LOSA 0.67295 uH 0.67164778 uH N/A
R(?SA 1941.8 KQ 1942.7468 KQ N/A
fOSA 20.39706 MHz 20.458733 MHz N/A
0
h . N/A 0.7063 0.7108
Eff
o4 N/A 5.5793389 pF N/A
OP+
Q-factor ratio at resonance N/A 1.772 1.82
Q-factor ratio a = 1/40 N/A 1.82

The impedance of the circuit is rewritten to give insight into the Figure 6 current flow. The quasi-
static antenna design algorithm calculates the DC capacitance. The fraction of current flowing into

the dipole eigenmode is a¢®* = C?/ (COSA +C2%)=0.94. In addition to current sharing, there is a
circulating current flowing between the two eigenmodes. The o’a®L'CSs! increased the radiation

resistance and inductance. The value o’ L°'CS55" is 0.058 near the resonance and 1 at the anti-

resonance. The term @l / R?*' = 0.044 is also small near resonance. In the iteration process,

: 0S4 . . . . .
changes in the value of X" and ¢¢5 make an insignificant contribution to the reactance:

o _ 1 L ja)(OCOSA )ZLOSA (1 _ a)zaLOSACOO}qf) 1
Total a)(COSA 4 Coogf) [(1 — @’ [0 )2 N (a)LOSA / R )2 J )
R0 _ ( o 054 054 )2 RO 1

Total — l( R 0OSA )2 (1 —o*al?®'C ggf )2 + (COLOSA )2 J ‘

The term @ > 1 L9 C 00;{ makes a larger contribution to the resistance near resonance, 12%.

The resistance depends on the ratio (LOSA )2 /RO and Cor"; the values of L™ and €*** can be fixed
without restricting the accuracy of the least squares fit to the resistance.

In the limit as » — 0, the radiation resistance and Q reduces to

OSA4 7yOSA4
RO _!a)a L ’

Total ~— 0SA H
RO

15



where

0S4 _ 1
Total — OSA 0SA 0S4 °
a)(C + Cops )RTotal

The above term can be simplified by introducing the Q9>

Dipole EM °
indicates the dipole eigenmode gost ﬁ,
ipole A A
oC RDipuIeEM

where the subscript DipoleEM

where

o5 ( L0 )2

Dipole EM 0S4
RO
The Qp ., of the dipole eigenmode is increased by 1/, the same result cited by H. R. Stuart
[18]:
0S4 0S4 0S4
Total — QDipole EM /a .

The radiation resistance, Figure 9, has two components ®* and @' terms,
Rosy = bl(a)/a)r)2 +b2(C‘)/a)r)4’

where @, is the angular resonant frequency, b, = 3.6465 and b, = 0.4575. The effective height in

Table 1 is calculated from the @” term in the radiation resistance. The quasi-static antenna design
algorithm is close to the value in Table 1; but, it does not include the current sharing factor ¢’ in the

radiation resistance. The current sharing factor increases the 9>, . by 1/a=1.13. The octopole

eigenmode increases the radiation resistance at higher frequencies.

The Q, shown in Figure 10 is numerically calculated from the fit data using the A. D. Yaghijian

and S. R. Best [19] result:
2 2
2R \\dw o do

Figure 11 shows the Q(ka)3 “Q-factor ratio” for the antenna that was calculated for an extended
frequency range. The minimum Q-factor ratio is 1.77. The Q at resonance is 22.47.
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Figure 7. CST data and two-eigenmode equivalent circuit model.
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Error in the Two Eigenmode Fit to the CST Impedance
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Figure 8. Difference between the CST data and the two-eigenmode model for |p| < 0.9.
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The Dipole and Octopole Contribution to Resistance
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Figure 9. The @’ and »* contribution to resistance.
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6. CST MODEL OF A SPHERICAL-CAP MONOPOLE

The same method was used to model a spherical-cap monopole. The edge of the spherical-cap
monopole requires a higher resolution CST model. If the edge thickness was set too small, CST will
not accurately model the conductor and the electric field. An accurate model of the electric field is
critical to the calculation of the Q. The shell thickness is 0.83 c¢m; the horizontal edge is 1 cm and the
height of the edge is 0.556 m. A. R. Lopez [14] published a Q-factor ratio of Q(ka)’ =1.75, where

a=0.0251.

The same MATLAB program was used to numerically fit the data to a two-eigenmode model,
Table 2 and Figure 12. The superscript SP is for spherical-cap monopole. Figure 13 shows the
magnitude of the resistance and reactance error is < 0.001Q and < 0.0022.Q2, respectively. The
spherical-cap monopole has a larger surface area and a smaller charge density larger than the above
antenna. The potential on the spherical-cap monopole will be smaller and the DC capacitance is 8%
larger than the above antenna. The effective height is 5% smaller than the above antenna. The
inductance of the spherical-cap monopole is 52% larger than the oblate spheroidal antenna. A thinner
spherical shell will have less charge on the edge and a higher charge density on the sphere. The
higher charge density increases the potential on the sphere, which decreases the capacitance. Moving
the edge charge to a higher position increases the effective height. H. R. Stuart and A. D. Yaghjian
[20] pointed out that a thicker shell has a higher Q-factor ratio. The feed-line analysis is the same as
above. A 1-m monopole has 9.54-pF capacitance. The feed line would have a capacitance around 5
pF. The CST model is reasonably accurate. The higher inductance reduces the resonance to 15.88
MHz. The Q at resonance is 46.1, much higher than the oblate spheroidal antenna.

The radiation resistance, shown in Figure 14, has two components, »* and o*:

Ry =s,(0/o,) +s5,(0/o,), (40)

where @, is the angular resonant frequency, s, =1.9427 and s, = 0.2768. The Q is plotted in
Figure 15 and the Q-factor ratio is plotted in Figure 16.

Table 2. Spherical-cap monopole impedance fit to a two-eigenmode model.

Parameters Eigenmode 1 Eigenmode 1 & 2
s 97.854775 pF 97.925944 pF
L5F 1.0263675 pH 1.0254508 pH
ROSP 4719.2571Q) 4718.4470 Q
foSP 15.90688 MHz 15.88625 MHz
N/A 0.6619
hegy
sp N/A .11851 F
cs. / 6.1185130 p
Q—Factor N/A 1.70
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7. CONCLUSION

The quasi-static antenna design algorithm modeled a thick-disk cap as a sum of multipole
moments. The algorithm appears to converge in Q and shape. In the case of a spherical enclosure, the
Q is only slightly larger than the minimum Q spherical-cap monopole. Above the resonant frequency
of the oblate spheroidal antenna, the Q is one-half of the spherical-cap monopole. This is caused by
the reduced inductance of the feed line. This increases the resonant frequency and greatly reduces the

Q.

This algorithm only included solutions with the (charge distribution) disk enclosed inside the
antenna surface. The allowed solutions are limited to the thick-disk-cap dipole. A thick-spherical-cap
monopole could be thick at the center and taper to a thin edge. The thick center could reduce the
stored energy under the spherical cap. The dipole moment and radiation resistance would be reduced.
The thick-spherical cap could reduce Q-factor ratio.

The electromagnetic properties of an antenna can be described as a linear combination of
eigenmodes. The quasi-static antenna design algorithm is a method for calculating the radiation
resistance of the dipole eigenmode (the ®” term) and the DC capacitance of the antenna. The three-
element circuit model of the dipole eigenmode impedance does not accurately explain the impedance
and Q. An accurate model for the impedance requires a contribution from the octopole and higher
eigenmodes. The octopole and higher eigenmode can be approximated with a parallel capacitor. The
interaction of the dipole and octopole eigenmode introduces the ®* term required in the radiation
resistance.

The quasi-static antenna design algorithm ignores the octopole and higher order eigenmodes of the
antenna. The current sharing between the dipole eigenmode and higher eigenmodes is also ignored.
This introduces a small error in the Q and dipole eigenmode radiation resistance. The circulating
current in the circuit model increases both the effective radiation resistance and the effective
inductance.

The quasi-static antenna design algorithm is an excellent approximation of electrically small
antennas. In most cases, the error caused by the current sharing factor ratio should be insignificant.
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