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1. Objective 

The DRI research objective is to develop highly efficient, rare-earth, free magnetocaloric 

materials (REF-MCMs) for self-powered personal and mobile magnetic cooling systems for the 

Future Warfighter and Future Force. 

2. Approach 

Self-powered personal and mobile magnetic cooling systems require ultra high performance 

magnetocaloric materials (MCMs) with a very large magnetocaloric effect (MCE) that can 

operate under low applied magnetic field change at a near ambient temperature. Single crystal 

MCMs exhibit such properties, but they are extremely difficult to grow and are cost-prohibitive. 

The DRI research approach is to use innovative processing techniques to manipulate 

crystallographic alignment in polycrystalline Ni2+xMn1–xGa rare-earth free alloys to achieve very 

large MCE near room temperature, thereby circumventing the need for single crystal alloys. 

3. Results 

During the DRI research, we have demonstrated that a novel thermomechanical processing 

technique can be used to enhance MCE—i.e., maximum isothermal magnetic entropy change per 

unit mass ((ΔSM)max) of rare earth free polycrystalline Ni2+xMn1–xGa alloys.  This was evidenced 

by as high as a 79% increase of (ΔSM)max for a MCM alloy with nominal composition 

Ni2.16Mn0.86Ga. Notably, ΔSM is the most common figure of merit (1) to characterize MCE of 

MCMs. Texture measurements confirm that crystallographic alignment was likely responsible 

for the enhanced MCE response. 

Ni2+x Mn1–xGa alloys with starting composition x = 0.08, 0.10., 0.12, 0.14, 0.16, 0.19, 0.22, and 

0.24 were produced under the identical processing condition of inert gas triple arc melting, 

followed by ultra high vacuum homogenization at 1273 K for 72 h at 10
–6

 torr. Two samples 

with x = 0.14 and 0.16 were chosen for thorough structural, thermal, magnetic, and 

magnetocaloric properties characterization to correlate magnetostructural properties and 

magnetocaloric effect with composition and processing. Of specific importance was the 

influence of processing on crystallographic alignment, and the latter’s effect on magnetocaloric 

response.  
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The thermal behavior of the samples was studied by Differential Scanning Calorimetry (DSC;  

10 K/min) measurements. Figure 1 shows a typical DSC thermogram of sample with x =0.14, 

where an endothermic peak is observed, indicating martensite to austenite structural phase 

transformation during heating. Austenite start and finish temperatures, As and Af, are 313 K and 

318 K, respectively. A reverse transition, austenite to martensite, is characterized by an 

exothermic peak during the cooling cycle. The martensite start (Ms) and finish (Mf) temperatures 

are 313 K and 308 K, respectively. Similar transformations were observed for other samples, and 

the inset in figure 1 shows the heating cycle portion of the DSC thermograms of samples with 

other compositions for comparison. The mean martensite transformation temperature was found 

to increase with Ni concentration.  

 

Figure 1. DSC thermogram of Sample with x = 0.14 and all other samples  

(inset; heating cycle). 

Figures 2a and b show the neutron diffraction patterns for samples with x = 0.14 and x = 0.16, 

respectively. For sample with x= 0.14, the GSAS-based Rietveld refinement indicated a 7M 

modulated monoclinic structure (I12/m1) with the lattice parameters: a = 0.428 nm, b =  

0.553 nm, c = 0.419 nm, =  = 90°,  = 91.9°. In the case of x = 0.16 sample, the material was 

found to possess a non-modulated (NM) body-centered tetragonal (bct) structure (I4/mmm), with 

a = b = 0.387 nm, c = 0.648 nm. Often this structure is referred to with a face-centered tetragonal 

(fct) lattice that is in near coincidence with the parent austenite phase (fcc, mFm3 ), except that c 

is extended and a is contracted from the prior austenite Heuslar L21 structure.  



 

3 

 

Figure 2. Neutron diffraction patterns for samples with (a) x = 0.14 and (b) x = 0.16. 

Crystal structure analyses using high resolution transmission electron microscopy (HRTEM) are 

consistent with the results from neutron diffraction experiments. The HRTEM image of figure 3a 

for x = 0.14 shows extensive twinning at multiple length scales in this 7M superstructure, with 

the minor twins only a few nanometers wide. This type of twinning is characteristic of adaptive 

martensite, needed to maintain compatibility with the parent face-centered cubic mFm3  

structure. Fast Fourier transform (FFT) of the minor twins within a major twin in sample x=0.14 

shows the six superstructure spots characteristic of 7M modulation. The nanoscale twinning is 

also present for the NM alloy for x = 0.16, as shown in figure 3b. The diffraction spots from FFT 

of twinned location confirms the (101) twinning plane of fct martensite that is in near 

coincidence with that of {110} austenite. 

a) 

b) 

d spacing (Å) 

 

d spacing (Å) 
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(a) 

 
(b) 

Figure 3. (a) HRTEM image of sample with x = 0.14, illustrating the six superlattice spots between major 

reflections (7 spots in total) characteristic of 7M modulated structure. (b) HRTEM image of sample 

with x=0.16 showing a non-modulated structure. The zone axis is [111] and the twinning plane is 

(202) fct martensite. 

Figure 4 shows the magnetization versus temperature curves for two samples measured under an 

applied field of 0.01 T (open symbols). The upward jump at 310 K for sample with x = 0.14 

(open triangle) indicates transformation from martensite to austenite phase. Thereafter, a sudden 

decrease indicates ferromagnetic to paramagnetic phase transformation at 335 K. For sample B 

with x = 0.16 (open circle), the structural transition appears to occur at or very close to the Curie 

temperature of 340 K.  ΔSM, which is a measure of MCE, has been calculated from the 

isothermal magnetization curves, and is presented in figure 6 (open symbols). Sample x = 0.14 

(open triangle) has a maximum ΔSM or MCE of 16 Jkg
–1

K
–1 

at 315 K, for an applied field change 

of 7 T. For the sample with x = 0.16 (open circle), with slightly higher Ni content, the MCE 

increased to 24 Jkg
–1

K
–1

 at 336 K, again for an applied field change of 7 T. The increase in 
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(ΔSM)max for sample x = 0.16  could be ascribed to the simultaneous occurrence of structural and 

magnetic phase transition at 336 K. 

 

Figure 4. Magnetization vs. temperature plots under an applied magnetic field of 0.01 T. 

In order to manipulate crystallographic alignment, constant stress thermal cycling was performed 

on the samples using an apparatus shown in figure 5. Cubic samples (~5 mm
3
) were thermally 

cycled 10 times between 298 K and 363 K under a compressive stress of 20 MPa.  Figure 4 

shows the plots of magnetization versus temperature for the samples after thermomechanical 

cycling, where the magnetic field was applied along the compressive loading directions.  The 

cycling resulted in enhancements of 56% and 79% of (ΔSM)max for samples with x = 0.14 and x = 

0.16, respectively, as shown in figure 6 (filled symbols).  

 

Figure 5. Schematic of the apparatus employed for isobaric thermal  

cycling to manipulate crystallographic alignment. 
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Figure 6. Plot of ΔSM versus temperature for samples with (x = 0.14  

and (x = 0.16) for 7 T magnetic field change before and after  

crystallographic alignment. 

In order to establish the reason for large MCE enhancement as a result of constant stress thermal 

cycling, texture measurements were carried out using neutron diffraction in the HIPPO apparatus 

at the Los Alamos National Laboratories (LANL). Neutron diffraction permitted data to be 

collected from our entire 5 mm cube samples, rather than being limited to surface layers as 

would occur if X-ray diffraction were used. Here we focus attention on sample X5-D that was 

martensite at room temperature, and had identical phase transformation temperatures and non-

modulated crystal structure as sample, with x = 0.16 that was earlier discussed. 

Figure 7 shows the pole figures for sample X5-D before and after thermal cycling under constant 

stress of 20 MPa. The laboratory axes are explained in the figure caption and represent the 

preferred orientation of bct martensite phase with respect to this laboratory geometric frame of 

the samples. Figure 7a shows that before the constant stress thermal cycling, the (110) plane 

normals (poles) of bct martensite are aligned somewhat along the columnar direction of the 

austenite grains. The (002) poles (i.e., the longer c-direction of the tetragonal cell) also show 

some intensity along the columnar direction and a weaker intensity perpendicular to the 

columnar axis (equatorial zone). The intensities are multiples of random intensity, and the 

maximum value is 7.18 in this pole figure set. Figure 7b shows that following constant stress 

thermal cycling along the columnar growth direction of austenite grains, the intensity of the 

martensite (110) pole has increased to 15.7 along the loading axis (near 12:00 direction). 

Correspondingly, the intensity of the (200) poles has decreased at the north pole, while it has 

intensified along the equatorial belt, i.e., perpendicular to the columnar growth direction. The 

rest of the pole figures in figure 7 are consistent with this description of preferred orientation of 

martensite variants.      
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Figure 7. Pole figures illustrating preferred orientation of plane normals (poles) with respect to the laboratory 

axes. The near north pole (RD) refers to the columnar growth direction of austenite grains, while the 

center (ND) and near 3 o'clock/6 o'clock positions (TD) refer to the equivalent directions 

perpendicular to the austenite grain growth axis. The mechanical loading (during thermal cycling) 

and the magnetization axis were both along the columnar growth direction of the prior austenite 

grains. (a) Prior to thermal cycling showing maximum MRD of 7.17 and (b) after thermal cycling 

under 20 MPa stress, where now the (110) pole intensity has increased to 15.7 along the loading 

direction. 

Figure 7 confirms that thermal cycling under compressive load, indeed, leads to crystallographic 

alignment of the short [100] fct martensite lattice along the loading direction. The twin 

mechanism is illustrated using the sketches shown in figure 8, where it is shown how a [002] axis 

under compressive load is transformed to a [100] fct direction, which is also the easy 

magnetization axis for this tetragonal structure. This crystallographic alignment, thus, explains 

the significant enhancement of MCE of the sample with x = 0.16. A similar texture analysis of 

the 7M modulated structure is anticipated to show a similar behavior, since it has been observed 

in single crystal magnetic shape memory alloys (MSMA) of Ni2MnGa composition. Such 

experiments on polycrystals need to be conducted in the future. Finally, it may be noted that 

repeated cycling may also influence twin mobility, as has been observed in single crystal MSMA 

materials in terms of reduction of twinning stress. The specific heat data in this work provide 

some insight on this behavior, although additional experiments are needed to shed insight on the 

role of twin mobility on MCE effect. 

a) 

b) 



 

8 

 
Figure 8. (a) Tetragonal lattice of bct martensite showing the location of Ni, Mn and Ga atoms. ABC is the (112) 

twin plane while AD is the [11-1] twin direction. The alternate fct representation is the skeleton shown 

by green lines, where it may be noted that the equivalent twin system is (101)[10-1]. The c/a ratio of 

the fct cell, that is in near orientation coincidence with the austenite lattice, is 1.18. The easy 

magnetization axis is [110] direction in the bct representation or [100] direction in fct description; note 

the location of Mn atoms that span the easy magnetization axis. (b) Sketch illustrating twin related 

transformation of the fct martensite unit cell under compressive load. The figure illustrates how a prior 

[001] direction rotates approximately by 90 degrees under compressive load, such that the easy 

magnetization [100] direction now aligns along the loading axis. The pole figures of figure 7 confirm 

this rotation. 

4. Conclusions 

It has been demonstrated that thermal cycling under compressive stress significantly enhances 

the MCE of polycrystalline Ni2+xMn1–xGa alloys. Texture measurements using neutron 

diffraction have shown that thermal cycling leads to crystallographic alignment of the easy 

magnetization axis along the loading direction, and this then explains the MCE enhancement by 

up to 79%. Overall, a methodology for enhancing solid state magnetocaloric cooling has been 

established. This methodology will further facilitate Future Warfighter and Future Force 

application developments in self-powered personal and mobile magnetic cooling systems to 

enhance the Future Warfighter and Future Force capability. 

 

 

  

a) b) 
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