Award Number: W81XWH-11-1-0541

TITLE: Pro-lipogenic action of lysophosphatidic acid in ovarian cancer

PRINCIPAL INVESTIGATOR: Xianjun Fang

CONTRACTING ORGANIZATION: Virginia Commonwealth University
Richmond, VA 23219-1441

REPORT DATE: April 2014

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The objective of the project was to determine the role of endogenous lysophosphatidic acid (LPA) in lipogenesis and metabolic abnormalities of ovarian cancer cells. We found that LPA upregulated de novo lipogenesis in ovarian cancer cells. We showed this effect of LPA is physiologically relevant by demonstrating the pro-lipogenic activity of endogenous levels of LPA. Suppression of the LPA-producing enzyme iPLA2β strongly inhibited proliferation of ovarian cancer cells, an effect not reversed by the presence of LPA. Our results indicate the importance of fatty acid catabolism through β oxidation in promotion of ovarian cancer cell growth and survival. Since we have shown that LPA-driven lipogenesis is required for proliferation of ovarian cancer cells, our results together establish a dual role for lipid metabolism (anabolism and catabolism) in maintenance of the malignant phenotype of ovarian cancer cells. The results from this pilot study have led to one publication in JBC and another manuscript in preparation. Built on the results of the study, we are also preparing an R01 grant application for submission to NIH/NCI in February of 2014.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Appendices</td>
<td>11-30</td>
</tr>
</tbody>
</table>
Introduction
Ovarian cancer and other human malignancies show aberrant lipid metabolism. The current ovarian cancer pilot research project titled “Pro-lipogenic action of lysophosphatidic acid in ovarian cancer” was to determine the role of endogenous lysophosphatidic acid (LPA) in lipogenesis and metabolic abnormalities of ovarian cancer cells. We proposed to study the role of endogenous LPA in regulation of lipogenesis in ovarian cancer cells (Aim 1), and the contribution of LPA-driven lipogenesis to metabolic abnormalities of ovarian cancer cells (Aim 2). The details of the progresses are provided below.
Specific Aims:

Aim 1. To define the role of endogenous LPA in regulation of lipogenesis in ovarian cancer cells

1.1 Examination of whether LPA in serum and LPA-inducing agents are sufficient to induce lipogenesis in ovarian cancer cells

We examined whether serum stimulates de novo lipid synthesis in ovarian cancer cells (1). Serum strongly induced lipogenesis in OVCA-432 and Caov-3 cells. We have identified the LPA2 receptor as the primary receptor responsible for the lipogenic action of LPA as detailed in Fig. 5 of Appendix I. LPA stimulated endogenous lipogenesis via its receptor subtype 2 (LPA2). LPA2 was linked to Gq and G12/13 to activate the AMPK-ACC and SREBP-FAS pathway, respectively (Fig. 6 of Appendix I). The selective role of LPA2 in LPA-mediated activation of lipogenesis enabled us to determine whether biological fluids such as serum at physiological concentrations could promote lipogenesis via its constituent LPA. Knockdown of LPA2 expression not only inhibited LPA-induced lipogenesis (Fig. 5 of Appendix I) but also significantly attenuated serum-driven lipogenesis (Fig. 1), suggesting that LPA is a major constituent of serum to promote lipogenesis in ovarian cancer cells.

1.2 Assessment of the effects of manipulating LPA-producing enzyme autotaxin on activation of lipogenic pathways and de novo lipid synthesis in ovarian cancer cells.

Autotaxin is one of the LPA-generating enzymes (2, 3). We have produced recombinant autotaxin protein from HEK293 cells. The recombinant protein is enzymatically and biologically active as we reported previously (3). Incubation of ovarian cancer cell lines with recombinant autotaxin and its enzymatic substrate lysophosphatidylcholine (LPC, 5 µM) increased de novo lipogenesis as shown in Fig. 2. However, siRNA downregulation of autotaxin did not significantly attenuate lipogenic activity, suggesting that endogenously expressed autotaxin is not a critical mediator of LPA production and lipid synthesis in ovarian cancer cells (Fig. 2). Due to this negative impact of autotaxin, we have placed our focus on the alternative LPA-producing enzyme iPLA2, which has led to novel and interesting findings (see Task 1.3, and Task 2.2).

1.3 Assessment of the effects on lipogenic enzymes and lipogenesis of pharmacological and molecular inhibition of iPLA2, another enzyme involved in LPA production in ovarian cancer cells.

Because several groups have recently reported that PLA2 enzymes mediate LPA production and cell growth in various cancer cells including ovarian cancer (4-6), we investigated the molecular mechanism underlying the effect of iPLA2 in ovarian cancer cells. The results of this line are summarized together with Task 2.2 which addresses the importance of the supply of fatty acids, another metabolite of iPLA2β activity (see Task 2.2).

Aim 2. To determine the contribution of LPA-driven lipogenesis to metabolic abnormalities of ovarian cancer cells:

2.1 Analysis of the effects of LPA and LPA production on mitochondrial respiration in ovarian cancer cells

Intracellular ATP levels were analyzed as function of mitochondrial respiration. Increased ATP production would decrease AMP/ATP ratio, which could provide explanation of how LPA inactivates AMPK (see Fig. 3 of Appendix I). We initially tried the luciferin/luciferase method to measure ATP. Although straightforward and reportedly to be quantitative (7), we found that the approach was largely qualitative with significant variations from experiment to experiment. We then switched to an HPLC-based assay which was more accurate and reproducible. Treatment of ovarian cancer cell lines with
LPA increased ATP levels and decreased AMP/ATP ratio (Fig. 3).

2.2 Elucidation of the role of LPA and LPA production in regulation of lipid catabolic enzymes including monoacylglycerol lipase (MAGL) and fatty acid β oxidation

LPA could be produced by activity of iPLA2β. However, these enzymes such as iPLA2β could also lead to release and accumulation of fatty acids, byproduct of LPA biosynthesis. Exogenous fatty acids enhanced proliferative responses of ovarian cancer cells to growth factors, suggesting that fatty acid availability promotes β oxidation and cell proliferation (Fig. 4). This hypothesized role of fatty acids from phospholipases is consistent with our previous observation that exogenously supplemented LPA did not fully reverse the effect of the iPLA2β inhibitor BEL on cell cycling (8), suggesting involvement of additional bioactive mediator of iPLA2β.

Regulation of fatty acid availability may represent a critical but previously unrecognized function of iPLA2β. To test this, we used shRNA knockdown or pharmacological inhibition of several enzymes involved in lipolysis and fatty acid β-oxidation. Inhibition of iPLA2β with a dominant-negative form was found to inhibit growth of ovarian cancer cell lines (Fig. 5). Furthermore, inhibition of carnitine palmitoyl transferase 1A (CPT1A) with a specific inhibitor etomoxir (9) or shRNA suppressed cell growth in most ovarian cancer cell lines (Fig. 6A, 6B). CPT1 is the rate-limiting enzyme of β oxidation responsible for shuttling long-chain fatty acids into the mitochondrial matrix (10). Etomoxir or shRNA knockdown of CPT1A had limited effect on cell viability (Fig. 7A, 7B). However, combination of etomoxir with ABT263, a BH3 mimetic inhibitor of the Bcl2 family members (11) resulted in synergistic induction of apoptosis (Fig. 7A, 7B & Fig. 8), suggesting that CPT1A is also involved in cytoprotection of ovarian cancer cells from anti-cancer drugs. Importantly, CPT1A was overexpressed in ovarian cancer cell lines (Fig. 8, upper). The sensitivity of ovarian cancer cell lines to apoptosis induced by the combined treatment with etomoxir and ABT263 correlated with the CPT1A expression levels in these cells (Fig. 8, lower). Taken together, these results indicate that iPLA2β contribute to ovarian oncogenesis via not only generation of LPA but also enhancement of fatty acid oxidation.

2.3 Determination of the effects of LPA signaling on cholesterol synthesis and structures and functions of lipid rafts

LPA stimulated expression of the cholesterol synthesis rate-limiting enzyme HMG-CoA reductase via activation of SREBP (Fig. 2 of Appendix I). Consistent with HMG-CoA upregulation, we found that LPA increased cellular cholesterol levels (Fig. 9). The result indicates that LPA could signal to regulate functions of lipid rafts by modulating the biosynthesis of cholesterol, a principal structural component of lipid rafts (12).

2.4 Metabolic profiling of alterations in membrane and cellular lipids modulated by LPA using mass spectrometry

The total and major classes of lipids (neutral, phospholipids and cholesterol) were elevated in LPA-treated ovarian cancer cells (Fig. 4 of Appendix I & Fig. 9). During the second year of the grant support, my graduate student Abir Mukherjee received training with mass spectrometry (MS). After his graduation, the remaining fund of grant was limited and not adequate for me to hire him as a post-doc fellow to continue the study. During the no-cost extension period, I assigned another graduate student Fang Yuan to work part-time on the task. Unfortunately, for a student without prior research experience in lipid biology and MS, the development of the technique took longer than I originally thought. We will continue the effort by seeking alternative funding support in the future.
Key Research Accomplishments

- LPA is an endogenous factor to promote lipogenesis in ovarian cancer cells (Task 1.1);
- Autotaxin does not play a major role in LPA production and lipogenesis in ovarian cancer cells as we originally hypothesized (Task 1.2);
- iPLA2β is a critical mediator of LPA production, fatty acid catabolism and proliferation of ovarian cancer cells (Task 1.3);
- LPA upregulates ATP production, a potential mechanism to inactivate AMPK (Task 2.1);
- Regulation of fatty acid availability and β oxidation represents a critical but previously unrecognized functional aspect of the LPA-producing enzyme iPLA2β (Task 2.2);
- CPT1A, a rate-limiting enzyme in fatty acids oxidation, is overexpressed in ovarian cancer cell lines and regulates cellular proliferation and survival (Task 2.2);
- LPA stimulates HMG-CoA reductase expression and cholesterol synthesis in ovarian cancer cells (Task 2.3);
Reportable Outcomes

Manuscript published:

Abstracts and meeting presentation:

Manuscript in preparation:
Conclusions
In this pilot study, we found that LPA upregulated *de novo* lipogenesis in ovarian cancer cells. We showed this effect of LPA is physiologically relevant by demonstrating the pro-lipogenic activity of endogenous levels of LPA. Suppression of the LPA-producing enzyme iPLA2β strongly inhibited proliferation of ovarian cancer cells, an effect not reversed by the presence of LPA. Our results indicate the importance of fatty acid oxidation in promotion of ovarian cancer cell growth and survival. Since we have shown that LPA-driven lipogenesis is required for proliferation of ovarian cancer cells, our results together establish a dual role for lipid metabolism (anabolism and catabolism) in maintenance of the malignant phenotype of ovarian cancer cells. The results from this pilot study have led to one publication in JBC and another manuscript in preparation. Built on the results of the study, we are also preparing an R01 grant application for submission to NIH/NCI in February of 2014.
References Cited

Fig. 1. Knockdown of the LPA2 receptor prevents lipogenesis of ovarian cancer cells cultured in complete medium containing 10% FBS. LPA2 in OVCA-432 cells was stably knocked down by lentivirally transduced shRNA (LPA2sh). The de novo lipogenesis was quantified as described in Appendix I and the lipogenic activity was compared with the cells transduced with control shRNA (Csh).

Fig. 2. Knockdown of endogenous autotaxin does not inhibit lipogenesis in OVCA-432 cells. In left, Caov-3 cells were incubated in serum-free medium supplemented with LPC (1-oleoyl, 5 μM, substrate of autotaxin) or LPC+autotaxin (recombinant protein, 100 ng/ml) for 48 hours before analysis of de novo lipogenesis as detailed in Appendix I. In right, lipogenesis in autotaxin siRNA knockdown cells was determined and compared with that in control siRNA-treated cells. The data of both panels were presented as fold change relative to the values of control cells which were defined as 1 arbitrary unit.
Fig. 3. Treatment of ovarian cancer cell lines with LPA increased ATP production and decreased AMP/ATP ratio. Caov3 cells were serum starved overnight prior to LPA (10 mM) treatment for 12 hours. Nucleotides were extracted and analyzed with HPLC.

Fig. 4. Palmitate potentiates LPA-induced growth of ovarian cancer cells. Caov-3 cells were incubated with or without LPA in serum-free medium supplemented with the indicated Concentrations of palmitate. The cell numbers were determined with coulter counter after 48 hours.
Fig. 5. Inhibition of iPLA2 activity and cell growth by stable expression of the dominant negative iPLA2b (M10iPLA2b) in SKOV-3 cells. Western blot analysis confirmed expression of the mutant in two clones (#clone #7 and #10) (*upper left*). The cellular activity was inhibited by the mutant in both clones (*lower left*). The growth curves of the control and clone #10 in serum-free conditions were determined by crystal violet staining (*right*).
Fig. 6A. CPT1A is required for growth of ovarian cancer cell lines. CPT1A in SKOV-3 and OVCA-432 cells was down-regulated by two independent shRNAs. One (sh-CPT1A-2) completely eliminated CPT1A expression while the other (sh-CPT1A-1) partially inhibited CPT1A (lower panel). The growth curves showed a dose-dependent inhibition of SKOV-3 and OVCA-432 cell growth by shRNA knockdown of CPT1A.
Fig. 6B. CPT1A is required for growth of ovarian cancer cell lines. SKOV-3 and OVCA-432 cells were culture with etomoxir (0.3 mM) or vehicle (ctrl) for the indicated periods of time (Days). The number of cells were determined daily with a Coulter counter.
Fig. 7A. Co-treatment with etomoxir and ABT263 induced synergistic apoptosis in SKOV-3 and OVCA-432. The cells were treated with ABT263, etomoxir or their combination (Comb) for 24 hours. The percentages of apoptotic cells (presented in each panel) were determined by flow cytometry quantification of Annexin V-positive, apoptotic cells.
Fig. 7B. Co-treatment with etomoxir and ABT263 induced synergistic apoptosis in SKOV-3 and OVCA-432 cells. Shown was immunoblotting analysis of apoptosis-associated cleavage of caspase 3 in cells treated with ABT263, etomoxir or their combination (Comb) for 24 hours at the indicated concentrations.
Fig. 8. CPT1A, but not CPT1C, is overexpressed in ovarian cancer cell lines (upper), which correlates with the sensitivity of the cells to apoptosis induced by combination (Comb) of etomoxir (0.3 mM) and ABT-263 (1 μM) (lower).
Fig. 9. LPA and EGF increases cholesterol levels in Caov-3 cells. The cells were treated with LPA (10 μM) or EGF (20 ng/ml) for 24 hours before quantification of cellular cholesterol contents with a kit from Cell Biolabs, Inc. The data were presented as fold increase relative the cholesterol level in the un-stimulated control cells (BSA).
Lysophosphatidic Acid Activates Lipogenic Pathways and de Novo Lipid Synthesis in Ovarian Cancer Cells*

Abir Mukherjee, Jinhua Wu, Suzanne Barbour, and Xianjun Fang†

From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298

Received for publication, January 9, 2012, and in revised form, May 31, 2012 Published, JBC Papers in Press, June 3, 2012, DOI 10.1074/jbc.M112.340083

One of the most common molecular changes in cancer is the increased endogenous lipid synthesis, mediated primarily by overexpression and/or hyperactivity of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). The changes in these key lipogenic enzymes are critical for the development and maintenance of the malignant phenotype. Previous efforts to control oncogenic lipogenesis have been focused on pharmacological inhibitors of FAS and ACC. Although they show anti-tumor effects in culture and in mouse models, these inhibitors are non-selective blockers of lipid synthesis in both normal and cancer cells. To target lipid anabolism in tumor cells specifically, it is important to identify the mechanism governing hyperactive lipogenesis in malignant cells. In this study, we demonstrate that lysophosphatidic acid (LPA), a growth factor-like mediator present at high levels in ascites of ovarian cancer patients, regulates the sterol regulatory element binding protein-FAS and AMP-activated protein kinase-ACC pathways in ovarian cancer cells but not in normal or immortalized ovarian epithelial cells. Activation of these lipogenic pathways is linked to increased de novo lipid synthesis. The pro-lipogenic action of LPA is mediated through LPA₂, an LPA receptor subtype overexpressed in ovarian cancer and other malignancies. Downstream of LPA₂, the G₁₂/₁₃ and G₈ signaling cascades mediate LPA-dependent sterol regulatory element-binding protein activation and AMP-activated protein kinase inhibition, respectively. Moreover, inhibition of de novo lipid synthesis dramatically attenuated LPA-induced cell proliferation. These results demonstrate that LPA signaling is causally linked to the hyperactive lipogenesis in ovarian cancer cells, which can be exploited for development of new anti-cancer therapies.

One of the most common molecular changes in tumor cells is the heightened rate of de novo lipid synthesis compared with their normal counterparts. The aberrant lipogenesis in cancer cells is mediated by increased expression and activity of key lipogenic enzymes, primarily fatty acid synthase (FAS)² and acetyl-CoA carboxylase (ACC). Interestingly, the alterations in these key lipogenic enzymes are critical for the development and maintenance of the malignant phenotype (1). It occurs at early stages of tumorigenesis and becomes more pronounced in advanced cancers (1, 2). Overexpression of FAS correlates with poor prognosis in several types of human malignancies, including ovarian cancer (3, 4). Furthermore, tumor cells depend heavily on or are “addicted” to de novo lipid synthesis to meet their energetic and biosynthetic needs, irrespective of the nutritional supplies in the circulation (1). Consistent with this, pharmaceutical inhibitors of FAS suppress tumor cell proliferation and survival and enhance cytotoxic killing by therapeutic agents (5-10). However, one barrier to cancer patient applications of these inhibitors is their nonselective suppression of fatty acid synthesis in both normal and malignant tissues, which could deteriorate weight loss, anorexia, fatigue, and other cancer-associated complications. To target lipid anabolism in tumors specifically, it is important to identify the mechanism for the hyperactive lipogenesis in cancer cells, which is, however, poorly understood.

Lysophosphatidic acid (LPA), the simplest phospholipid, has long been known as a mediator of oncogenesis (11). LPA is present at high levels in ascites of ovarian cancer patients and other malignant effusions (11-13). LPA is a ligand of at least six G protein-coupled receptors (14). The LPA₁/Edg2, LPA₂/Edg4, and LPA₅/Edg7 receptors are members of the endothelial differentiation gene (Edg) family, sharing 46–50% amino acid sequence identity (14). GPR23/P2Y9/LPA₄ of the purinergic receptor family, and the related GPR92/LPA₅ and P2Y5/LPA₆ have been identified as additional LPA receptors, which are structurally distant from the LPA₁-₅ receptors (14, 15). The Edg LPA receptors, in particular LPA₂, is overexpressed in many types of human malignancies, including ovarian cancer (11, 16). Strong evidence implicates LPA₂ in the pathogenesis of ovar-

* This work was supported, in whole or in part, by National Institutes of Health Grants 2R01CA102196 and R21CA161478 from NCI (to X. F.). This work was also supported by Department of Defense Ovarian Cancer Research Program Grant W81XWH-11-1-0541 (to X. F.) and The Jeffress Memorial Fund award (to X. F.).

† To whom correspondence should be addressed. Tel.: 804-8280787; Fax: 804-828-1473; E-mail: xfang@vcu.edu.

2 The abbreviations used are: FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase; LPA, lysophosphatidic acid; AMPK, AMP-activated kinase; SREBP, sterol regulatory element-binding protein; qPCR, quantitative PCR; TAG, triacylglycerol.
LPA Activates Lipogenesis in Ovarian Cancer Cells

Reagents—LPA (1-oleolyl, 18:1) was obtained from Avanti Polar Lipids, Inc. (Alabaster, AL). Prior to use, LPA was dissolved in PBS containing 0.5% fatty acid-free bovine serum albumin (BSA) purchased from Roche Applied Science. Acetic acid (1-14C) was obtained from Moravek Biochemicals (Brea, CA). Plasmid DNA was purified using the endo-free purification kit from Qiagen (Valencia, CA). The transfection reagent Dharmafect 1 was obtained from Dharmacon, Inc. (Lafayette, CO), and TransIT-TKO was obtained from Mirus Bio (Madison, WI). Luciferase assay reagents were obtained from Promega (Madison, WI). Anti-SREBP-1 and anti-SREBP-2 antibodies were obtained from BD Biosciences. Anti-phospho-AMPKα (Thr-172), anti-AMPKα, anti-phospho-ACC (Ser-79), anti-ACC, and anti-FAS antibodies were obtained from Cell Signaling (Danvers, MA). Anti-tubulin antibody was obtained from Amersham Biosciences. The expression vector pcDNA3 expressing the G12/13-Rho signaling cascade is critical for LPA activation of the SREBP, whereas G_{s-PLC} is involved in LPA-mediated dephosphorylation and inhibition of AMPK. These findings reveal a novel mode of the cancer cell-specific regulation of lipogenesis by an intercellular factor present in the circulation and tumor microenvironments.

EXPERIMENTAL PROCEDURES

Cell Culture—The sources of ovarian cancer cell lines used in the study were described previously (20). These cells were cultured in RPMI medium supplemented with 10% FBS, 100 units/ml penicillin, and 100 μg/ml streptomycin. IOSE-29 was originally obtained from Dr. N. Auersperg (University of British Columbia, Canada) and cultured as described previously (21).

siRNA, Plasmids, and Transfection—The siRNA oligos for LPA1, LPA2, LPA3, and FAS were obtained from Applied Biosystems. These siRNAs were transfected into cells using Dharmafect 1 following the manufacturer’s protocol. In brief, cells were plated in 6-well plates to reach 50–60% confluence before transfection. Cells were then transfected with target-specific siRNA or nontargeting control siRNA (150 pm) with Dharmafect 1 (4 μl) for 12–16 h. Approximately 48 h post-transfection, the cells were serum-starved overnight before LPA treatment. Lentiviruses carrying short hairpin RNA (shRNA) for LPA_{1-3} receptors were kind gifts from Dr. S. Huang (Medical College of Georgia) (22). The expression vector pcDNA3 expressing the dominant negative form of G_{s} was provided by Dr. P. Hylemon (Virginia Commonwealth University) (23, 24). The G_{q} and G_{12} cDNAs were provided by Dr. R. D. Ye (University of Illinois at Chicago). The dominant negative mutants of G_{q} (G208A) and G_{12} (G228A) (25–27) in pcDNA3 were made using the QuickChange XL site-directed mutagenesis kit (Strategene, Santa Clara, CA). The plasmids and the vectors expressing N19Rho and botulinum toxin C3 were described previously (28, 29). These plasmids were transfected into ovarian cancer cell lines using Lipofectamine LTX Plus (Invitrogen) following the manufacturer’s instruction.

Luciferase Assays—The SREBP-responsive luciferase reporter vector (pGL2–3×SREBP-TK-Luc) was generated by cloning three repeats of the SREBP consensus sequence (AAAATCACCCCCACTGCAACCTCCTCCCCCTGC) (30, 31) into the Nehel and HindIII sites in front of the herpes simplex virus thymidine kinase gene promoter (−35 to +50) in the pGL2-TK-Luc vector (32). Ovarian cancer cell lines were transfected with the luciferase vector using TransIT-TKO according to the manufacturer’s protocol. About 48 h after transfection, the cells were serum-starved overnight and treated with LPA or vehicle (BSA) for 12 h. Cell extracts were prepared and assayed for luciferase activity using the luciferase assay kits from Promega.

Western Blotting—Cells were lysed as described previously (33). Total cellular proteins were resolved by SDS-PAGE, transferred to immunoblot membrane (polyvinylidene difluoride) (Bio-Rad), and immunoblotted with antibodies following the protocols of the manufacturers. Immunocomplexes were visualized with an enhanced chemiluminescence detection kit from Amersham Biosciences.

Quantitative PCR (qPCR)—Total cellular RNA was isolated from cultured cells using TRIzol (Invitrogen). Complementary DNA (cDNA) was synthesized using the High-Capacity cDNA reverse transcription kit (Applied Biosystems). The relative levels of LPA_{1}, LPA_{2}, LPA_{3}, HMG-CoA reductase, and GAPDH were determined by qPCR using gene-specific probes, the TaqMan Universal PCR master mix, and the Applied Biosystems 7900HT real time PCR system.

Measurement of de Novo Lipid Synthesis—Cells were grown in 6-well plates and serum-starved prior to treatment with LPA or vehicle for 24 h. The cells were labeled with [1^{14}C]acetic acid (5 μCi/ml) for the last 6 h of incubation. The cells were then washed twice with PBS and lysed with lysis buffer (25 mM HEPES, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 0.2 mM EDTA, 0.5% sodium deoxycholate, 20 mM glycercophosphate, 1 mM sodium vanadate, 1 mM PMSF, 10 μg/ml leupeptin, and 10 μg/ml aprotinin). Lipids were extracted using a chloroform/methanol solution (2:1). Phase separation was achieved by centrifugation at 3200 × g for 10 min. The organic phase was extracted and dried with a speed vacuum. Lipids were dissolved...
LPA Activates Lipogenesis in Ovarian Cancer Cells

in Ultima Gold Mixture (PerkinElmer Life Sciences) and counted using Beckman LS 6500 scintillation counter. Each measurement was performed in triplicate and normalized to cell numbers.

Lipid Staining—Cells were grown and serum-starved prior to treatment with LPA or vehicle for 24 h. Cells were then stained with BODIPY 493/503 at a final concentration of 0.5 μg/ml in PBS at 37 °C for 30 min, followed by counter-staining with Hoechst (10 μg/ml) for 15 min. Cells were then fixed with 2% paraformaldehyde and visualized with fluorescence microscopy.

Quantification of Triacylglycerols (TAG) and Phospholipids—TAG and phospholipids were extracted and quantified with the EnzyChrom triglyceride assay kit and the EnzyChrom phospholipid assay kit (BioAssay Systems, Hayward, CA), respectively, according to the manufacturer.

Statistics—All numerical data were presented as means ± S.D. The statistical significance of differences was analyzed using Student’s t test, where p < 0.05 was considered statistically significant. In all figures, the statistical significances were indicated with an asterisk if p < 0.05 or two asterisks if p < 0.01.

RESULTS

LPA Induces Proteolytic Cleavage and Activation of SREBP in a Cholesterol-sensitive Manner—The hyperactive lipogenesis is a hallmark of tumor cells (1, 34). To identify pathophysiological mechanisms driving the lipogenic program in cancer cells, we examined the potential role of LPA, an endogenous regulator of many cellular functions in ovarian cancer and other human malignancies. We first assessed whether LPA was capable of activating the SREBP transcription factors that play crucial roles in regulating expression of lipogenic enzymes. Treatment of Caov-3, OVCA-432, and other ovarian cancer cell lines, including OVCAR-3, with LPA induced cleavage of the precursor forms of SREBP-1 and SREBP-2 in a time-dependent manner (Fig. 1A). The cleaved mature forms of SREBP-1 and SREBP-2 were detectable at 4 h and peaked at 12 h post-LPA treatment. In contrast to the ovarian cancer cell lines, LPA failed to activate SREBP-1 or SREBP-2 in the immortalized ovarian surface epithelial cell line IOSE-29 (Fig. 1A) or normal ovarian epithelial cells (data not shown), suggesting a cancer cell-specific mechanism for SREBP activation by LPA in ovarian cancer cells.

In physiological conditions, SREBP-1 and SREBP-2 are regulated by the intracellular sterol content. In their precursor forms, SREBPs are attached to the endoplasmic reticulum. Specific signaling cues such as reduced cholesterol levels trigger SREBP cleavage-activating protein (SCAP)-mediated transport of SREBP from endoplasmic reticulum to Golgi, where they are cleaved by proteases S1P and S2P to release the mature/active form (35). At high sterol concentrations, the SREBP-SCAP complex is retained in the endoplasmic reticulum due to increased binding to INSIG proteins (36). To determine whether LPA activation of SREBP could bypass cholesterol regulation, we preloaded Caov-3 and OVCA-432 cells with cholesterol (10 μg/ml) complexed with 0.1% fraction V fatty acid-free BSA in PBS, and then assessed activation of SREBP-1 in response to LPA. As shown in Fig. 1B, cholesterol treatment reduced both basal and LPA-induced active SREBP-1 levels, indicating that activation of SREBP by LPA remains sensitive to the cholesterol availability.

To determine whether LPA-induced SREBP cleavage is sufficient to activate SREBP transcriptional activity, Caov-3 and OVCA-432 cells were transfected with the SREBP-responsive reporter pGL2–3×SREBP-TK-Luc. As shown in Fig. 1C, treatment of transfected cells with LPA significantly enhanced luciferase activity in these cells. Similar to the SREBP cleavage, SREBP-dependent luciferase activity was also sensitive to cholesterol treatment (Fig. 1C).
LPA Promotes de Novo Lipid Synthesis—Few studies have examined the role of exogenous factors in regulation of lipogenesis in cancer cells (5, 39). We examined whether LPA-induced activation of lipogenic enzymes is functionally sufficient to stimulate de novo lipid synthesis. The ovarian cancer cell lines Caov-3, OVCA-432 and the immortalized IOSE-29 cells were treated with LPA or BSA as vehicle control and pulse-labeled with [14C]acetic acid to monitor the amount of new lipid synthesis. As demonstrated in Fig. 4A (left panel), LPA treatment led to a significant increase in 14C incorporation into the cellular lipid fractions, reflecting an increase in newly synthesized lipids in response to LPA. The lipogenic effect of LPA was specifically detected in multiple ovarian cancer cell lines but not in the nontransformed IOSE-29 cells, wherein LPA failed to induce SREBP activation or AMPK dephosphorylation. Because these cells were treated with LPA in serum-free medium lacking extracellular fatty acids, we wanted to determine whether the increase in lipogenesis in response to LPA is influenced by availability of extracellular lipids. As shown in Fig. 4A (right panel), exogenously supplemented palmitate slightly reduced LPA-driven lipogenesis. The reduction was, however, statistically insignificant, indicating that the lipogenic role of LPA is largely independent of availability of extracellular fatty acids. Consistent with the pro-lipogenic action of LPA, staining with the lipophilic dye BODIPY 493/503 revealed that LPA induced moderate increases in the intracellular contents of neutral lipids in Caov-3 and OVCA-432 cells but not in IOSE-29 cells (Fig. 4B). These results were further supported by the increases in both cellular TAG and phospholipids following LPA treatment (Fig. 4, C and D).

LPA Stimulates ACC Dephosphorylation—LPA is known to enhance ACC enzymatic activity. The effects of LPA on dephosphorylation of AMPKα and ACC were not detected in IOSE-29 cells (data not shown). These results establish that LPA signaling is coupled to activation of ACC via inhibition of AMPK.

LPA Induces Expression of SREBP Target Genes FAS, ACC, and HMG-CoA Reductase—Few studies have examined the role of exogenous factors in regulation of lipogenesis in cancer cells (5, 39). We examined whether LPA-induced activation of lipogenic enzymes is functionally sufficient to stimulate de novo lipid synthesis. The ovarian cancer cell lines Caov-3, OVCA-432 and the immortalized IOSE-29 cells were treated with LPA or BSA as vehicle control and pulse-labeled with [14C]acetic acid to monitor the amount of new lipid synthesis. As demonstrated in Fig. 4A (left panel), LPA treatment led to a significant increase in 14C incorporation into the cellular lipid fractions, reflecting an increase in newly synthesized lipids in response to LPA. The lipogenic effect of LPA was specifically detected in multiple ovarian cancer cell lines but not in the nontransformed IOSE-29 cells, wherein LPA failed to induce SREBP activation or AMPK dephosphorylation. Because these cells were treated with LPA in serum-free medium lacking extracellular fatty acids, we wanted to determine whether the increase in lipogenesis in response to LPA is influenced by availability of extracellular lipids. As shown in Fig. 4A (right panel), exogenously supplemented palmitate slightly reduced LPA-driven lipogenesis. The reduction was, however, statistically insignificant, indicating that the lipogenic role of LPA is largely independent of availability of extracellular fatty acids. Consistent with the pro-lipogenic action of LPA, staining with the lipophilic dye BODIPY 493/503 revealed that LPA induced moderate increases in the intracellular contents of neutral lipids in Caov-3 and OVCA-432 cells but not in IOSE-29 cells (Fig. 4B). These results were further supported by the increases in both cellular TAG and phospholipids following LPA treatment (Fig. 4, C and D).

LPA Stimulates ACC Dephosphorylation—LPA is known to enhance ACC enzymatic activity. The effects of LPA on dephosphorylation of AMPKα and ACC were not detected in IOSE-29 cells (data not shown). These results establish that LPA signaling is coupled to activation of ACC via inhibition of AMPK.

LPA Induces Expression of SREBP Target Genes FAS, ACC, and HMG-CoA Reductase—To substantiate the biological significance of SREBP activation by LPA, we monitored expression levels of FAS, ACC, and HMG-CoA reductase. These are well known targets of SREBP-1 and SREBP-2 involved in biosynthesis of fatty acid and cholesterol. Treatment of Caov-3, OVCA-432, and OVCAR-3 cells with LPA increased expression levels of FAS and ACC proteins as shown in Fig. 2A. The mRNA levels of these key enzymes for fatty acid synthesis (data not shown) and the rate-limiting enzyme for cholesterol synthesis HMG-CoA reductase were also significantly increased by treatment of ovarian cancer cell lines with LPA (Fig. 2B), providing evidence that activation of SREBP-1 and SREBP-2 by LPA is sufficient to increase expression of key endogenous lipogenic enzymes in ovarian cancer cells.

LPA Activates Lipogenesis in Ovarian Cancer Cells
either absent or expressed inconsistently in ovarian cancer cells (40, 41). Thus, we focused on the potential role of LPA1–3 in the regulation of lipogenesis. We used siRNA to knock down expression of LPA1, LPA2, and LPA3 in Caov-3 cells and examined SREBP activation and AMPK/β1 dephosphorylation in response to LPA treatment. Interestingly, only knockdown of LPA2 remarkably attenuated LPA-induced cleavage of SREBP-1, dephosphorylation of AMPK/β1 at Thr-172 (Fig. 5B), as well as expression of FAS and ACC (Fig. 5C). There were little inhibitory effects on SREBP-1 activation, AMPK/β1 dephosphorylation, and expression of FAS and ACC in conjunction with LPA1 or LPA3 knockdown. We encountered a technical difficulty in achieving efficient knockdown of LPA receptors with transient siRNA in OVCA-432 cells. However, similar results were obtained from OVCA-432 cells when LPA receptors were stably knocked down by lentivirus-transduced shRNA (Fig. 5, B and C). These results support a primary role of the LPA2 receptor in LPA-dependent activation of SREBP-1 and inhibition of AMPK/β1. However, overexpression of LPA2 in IOSE-29 cells was not sufficient to activate LPA-dependent induction of FAS and ACC (data not shown), suggesting that additional signaling player(s) present specifically in malignant cells is involved.

To verify this receptor subtype-specific regulation of lipogenesis, we examined the effect of LPA2 knockdown on LPA-driven lipogenesis. The de novo lipid synthesis in LPA receptor knockdown and control cells was assessed as described earlier. The endogenous lipid synthesis induced by LPA was strongly attenuated by siRNA- or shRNA-mediated down-regulation of LPA2 (Fig. 5D). In contrast, knockdown of LPA3 (Fig. 5D) or LPA1 (data not shown) did not inhibit LPA-induced lipid synthesis.

LPA2 Signaling Bifurcates to Regulate SREBP-1 and AMPK/β1—We next examined the signaling effectors downstream of LPA2 responsible for cleavage of SREBP-1 and dephosphorylation of AMPK/β1. The LPA1–3 receptors couple to G1 and Gq, whereas only LPA1 and LPA2 couple to G12/13 (42). We transfected dominant negative forms of these G proteins into highly transfectable Caov-3 cells in an effort to screen for G proteins critical for LPA-dependent SREBP-1 cleavage and AMPK/β1 dephosphorylation.
As shown in Fig. 6A, expression of the dominant negative G_{12} attenuated LPA-induced SREBP-1 cleavage but not LPA-induced dephosphorylation of AMPK. In contrast, expression of dominant negative G_q inhibited AMPK dephosphorylation but not SREBP-1 cleavage induced by LPA. Thus, different G protein cascades are implicated in the regulation of SREBP and AMPK by LPA. Because a prominent effector of G_{12/13} is the Rho GTPase, we examined whether Rho is required for LPA activation of SREBP. As expected, expression of dominant negative Rho (N19Rho) or the botulinum toxin C3,

FIGURE 5. LPA_{2} mediates the lipogenic effect of LPA. Expression of mRNAs of LPA_{1–3} receptors in IOSE-29, Caov-3, and OVCA-432 cells was determined by qPCR analysis as detailed under “Experimental Procedures” (A). The results were presented as fold difference relative to the mRNA levels of LPA receptors in IOSE-29 cells (defined as 1). Caov-3 cells were transfected with siRNA for each LPA receptor (LPA_{1si}, LPA_{2si}, and LPA_{3si}) or with nontargeting control siRNA (Csi). Expression of each LPA receptor in OVCA-432 cells was down-regulated by lentivirus-transduced shRNA. The knockdown efficiencies for each LPA receptor in both cell lines range from 60 to 80% as determined by qPCR analysis (data not shown). The cells were stimulated with LPA (10 μM) for 12 h before immunoblotting analysis of SREBP-1 and phospho-AMPKα (B). p, precursor; m, active/mature. C, effects of LPA2 knockdown on FAS and ACC induction in Caov-3 and OVCA-432 cells were examined by immunoblotting analysis. D, effects on lipid synthesis of siRNA or shRNA knockdown of LPA_{1}, LPA_{2}, or LPA_{3} receptor in Caov-3 and OVCA-432 cells were measured as described in Fig. 4A.
a specific inhibitor of Rho GTPase, suppressed LPA-induced cleavage of SREBP-1 (Fig. 6B) as compared with vector-transfected cells. The results demonstrate that LPA₂ promotes SREBP activation in a Rho-dependent pathway.

To elucidate the regulatory network leading to AMPK dephosphorylation, we used pharmacological inhibitors of signaling molecules downstream of Gq. As shown in Fig. 6C, the PLC inhibitor U73122 but not its inactive analog U73433 blocked AMPKα dephosphorylation induced by LPA. The data support a Gq-PLC-dependent mechanism to control phosphorylation and activity of AMPKα in LPA-treated cells.

FIGURE 6. LPA regulates SREBP and AMPK through different G protein cascades. Caov-3 cells were transfected to express dominant negative forms of Gq, Gα₁₅, and G₁₂ or the control vector. The transfected cells were treated with LPA (10 μM) for 12 h before immunoblotting analysis of SREBP-1 cleavage and AMPKα dephosphorylation (A). p, precursor; m, active/mature. B, dominant negative Rho (N19Rho) or C3 toxin expression vector was transfected into Caov-3 and OVCA-432 cells. The effects of N19Rho and C3 toxin on LPA-induced SREBP-1 cleavage were analyzed by immunoblotting. C, Caov-3 and OVCA-432 cells were treated with LPA in the presence of the PLC inhibitor U73122 or its inactive analog U73433 (10 μM). LPA-induced AMPKα dephosphorylation was analyzed by immunoblotting.

DISCUSSION

The majority of the adult tissues depends on dietary fat to meet their nutritional needs. In contrast, cancer cells depend on *de novo* lipid synthesis for generation of fatty acids, irrespective of the available extracellular supplies. Malignant cells typically show a high rate of *de novo* fatty acid synthesis (49, 50). Intracellular fatty acids in rapidly dividing cancer cells not only supply energy through β-oxidation but more importantly serve as precursors for biosynthesis of membrane phospholipids, signaling lipids, and secondary messengers (51). The lipogenic phenotype of cancer cells has been primarily attributed to...
increased expression or aberrant activity of the major lipogenic enzymes FAS and ACC. In particular, FAS, originally recognized as a tumor-specific antigen present in serum of cancer patients (34), is overexpressed in a variety of human malignancies. However, the cellular mechanisms by which lipogenic enzymes are up-regulated in cancer cells remain poorly understood except for a few studies suggesting that steroid hormones and Her family ligands could increase FAS expression via the PI3K or MAPK pathways (52–55).

In this study, we describe a novel LPA-mediated mechanism activating de novo lipogenesis in ovarian cancer cells. We demonstrated that treatment of ovarian cancer cell lines with LPA activates the SREBP-FAS and AMPK-ACC lipogenic cascades, culminating in increased de novo lipid synthesis. The lipogenic effect of LPA was specifically observed in cancer cells as LPA failed to induce de novo lipogenesis in nontransformed IOSE-29 cells. LPA has been long known as a mediator of ovarian cancer. It is present at high concentrations in tumor microenvironments such as ascites of ovarian cancer patients and other malignant effusions (12, 13). This study highlights the possibility that LPA is an etiological factor in tumor microenvironments to promote lipogenesis in ovarian cancer cells, although the effect of LPA in other cancer cells remains to be determined.

A significant finding of this study is the selective role of the LPA₂ receptor in LPA activation of the lipogenic pathways and LPA-driven lipogenesis. We and others have previously shown that LPA₂ and LPA₃ are overexpressed in significant fractions of ovarian cancer cells. This selective receptor expression is likely to be a key factor in the specific activation of de novo lipogenesis by LPA in ovarian cancer cells.

FIGURE 7. LPA₂ and associated lipogenic activity are required for LPA-induced cell proliferation. Caov-3 and OVCA-432 cells in 6-well plates were incubated for 48 h in serum-free medium supplemented with 10 μM LPA in the presence of indicated concentrations of the FAS inhibitor C75 (A). B, Caov-3 and OVCA-432 cells were incubated with LPA (10 μM) and C75 in the presence of the indicated concentrations of palmitate. BSA was kept at a final concentration of 0.01% for all treatments. C and D, expression of FAS (C) or LPA₂ (D) was down-regulated by siRNA knockdown in Caov-3 and OVCA-432 cells to examine LPA-induced cell proliferation after 48 h of incubation with 10 μM LPA. In all panels, cell numbers were quantitated with Coulter counter and presented as mean ± S.D. of triplicate assays, representative of three independent experiments.
of ovarian cancer and in most ovarian cancer cell lines (16, 46). LPA1, which is expressed by both normal and malignant ovarian epithelial cells, is dispensable for the pro-lipogenic activity of LPA in ovarian cancer cells. It is somewhat surprising that in both Caov-3 and OVCA-432 cells, knockdown of LPA3 slightly potentiated the lipogenic effect of LPA (Fig. 5D). The results imply that the crosstalk among co-expressed LPA receptors is important in the control of biological outcomes of LPA. The specific role of LPA2 in the promotion of lipogenesis in tumor cells is consistent with the increased expression of this receptor in various malignancies (16, 56–58). Although LPA1 and LPA3 have also been reported to be up- or down-regulated in some cancers, overexpression of LPA2 is most commonly seen in almost all cancer types examined (16, 56–58). There is also strong evidence from xenograft mouse models and transgenic mice that LPA2 is more oncogenic compared with LPA1 and LPA3 (17, 59). The compelling evidence for the implication of LPA2 as an oncogene stems from recent studies by Yun and co-workers (18, 60) who showed that LPA2-deficient mice were more resistant to intestinal tumorigenesis induced by colitis or ApcMin mutation. However, the molecular mechanisms for the oncogenic activity of LPA2 are not well understood. Most previous studies have been focused on the ability of LPA2 to stimulate expression of oncogenic protein factors, including IL-6, VEGF, HIF1α, c-Myc, cyclin D1, Krüppel-like factor 5, and Cox-2 (18, 32, 60–63). LPA2 seems to be more potent than other LPA receptors in driving the transcriptional effects of LPA on these LPA target genes. This study links LPA2 to the lipogenic phenotype of ovarian tumor cells. The role of LPA2 in lipid metabolism provides a new avenue to explore the oncogenic role of LPA.

Different G proteins downstream of the LPA2 receptor are involved in regulation of the SREBP-FAS and AMPK-ACC pathways in LPA-treated cells. Our results showed that SREBP cleavage/activation lies downstream of the Gq/11,12-Rho pathway, and AMPK dephosphorylation/inhibition is mediated by the Gq-PLC cascade. LPA stimulated cleavage of the precursor SREBP into mature and active forms in a time-dependent manner, which was accompanied by increases in SREBP-dependent transcriptional activity and up-regulation of endogenous SREBP target genes. In addition, the effect of LPA on SREBP cleavage and activation remains sensitive to cholesterol-mediated regulation, indicating the sterol-sensing machinery involved in SREBP cleavage is not disrupted by LPA. The proteolytic cleavage of SREBP is controlled by the combined action of SCAP and INSIG proteins (64). An increase in SCAP or a decrease in INSIG proteins could lead to activation of SREBP. Because androgens and insulin have been shown to regulate expression or stability of SCAP or INSIG (65, 66), it will be of interest to determine whether LPA modulates these proteins or their ratios to activate SREBP. This possibility is consistent with the observation that SREBP cleavage occurs hours after exposure of ovarian cancer cells to LPA.

It has yet to be determined how the Gq-PLC pathway is linked to dephosphorylation and inhibition of AMPKα. Obviously, our observation does not agree with Kim et al. (67), who recently reported that LPA stimulated transient phosphorylation of AMPKα at Thr-172 within the first 10 min of LPA treatment in the SKOV-3 ovarian cancer cell line. In our experiments involving multiple ovarian cancer cell lines, there was little change in AMPKα phosphorylation status at the early time points. Instead, we observed a time-dependent decrease in phospho-AMPKα levels, which maximized after 12 h of incubation with LPA. The serine-threonine kinase LKB1, encoded by the Peutz-Jeghers syndrome tumor suppressor gene, is believed to be primary AMPK kinase as suggested by LKB1 knock-out studies (68–70). LKB1 possesses a nuclear localization domain and is located predominantly in the nucleus. Upon phosphorylation, LKB1 translocates to the cytoplasm where it forms an active complex with Ste20-related adaptor (STRAD) and mouse protein 25 (MO25) (71). LPA may down-regulate LKB1 activity via modulation of its phosphorylation, nuclear-cytoplasmic translocation, or association with STRAD-MO25 in the cytosol. In addition, AMPK phosphorylation could be down-regulated by inhibition of other candidate AMPK kinases such as calmodulin-dependent protein kinase kinase-β (71) or by activation of unknown AMPK phosphatase(s). A potential decrease in AMP/ATP ratio could also change the conformation of AMPK to prevent the active site (Thr-172) on the α-subunit from being exposed and phosphorylated by AMPK kinases.

References

LPA Activates Lipogenesis in Ovarian Cancer Cells

Goldsmith, Z. G., Ha, J. H., Jayaraman, M., and Dhanasekaran, D. N. (2011) Lysophosphatic acid stimulates the proliferation of ovarian cancer cells via the GEP Proto-oncogene G.

Goldsmith, Z. G., Ha, J. H., Jayaraman, M., and Dhanasekaran, D. N. (2011) Lysophosphatic acid stimulates the proliferation of ovarian cancer cells via the GEP Proto-oncogene G.

Goldsmith, Z. G., Ha, J. H., Jayaraman, M., and Dhanasekaran, D. N. (2011) Lysophosphatic acid stimulates the proliferation of ovarian cancer cells via the GEP Proto-oncogene G.

LPA Activates Lipogenesis in Ovarian Cancer Cells

Physiol. 247, R146–R153

