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Abstract — Today’s activities in cyber space are more connected 
than ever before, driven by the ability to dynamically interact 
and share information with a changing set of partners over a 
wide variety of networks. The success of approaches aimed at 
securing the infrastructure has changed the threat profile to 
point where the biggest threat to the US cyber infrastructure is 
posed by targeted cyber attacks. The Behavior-Based Access 
Control (BBAC) effort has been investigating means to increase 
resilience against these attacks. Using statistical machine 
learning, BBAC (a) analyzes behaviors of insiders pursuing 
targeted attacks and (b) assesses trustworthiness of information 
to support real-time decision making about information sharing. 
The scope of this paper is to describe the challenge of processing 
disparate cyber security information at scale, together with an 
architecture and work-in-progress prototype implementation for 
a cloud framework supporting a strategic combination of stream 
and batch processing. 
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I. INTRODUCTION 
In current enterprise environments, information is becoming 

more readily accessible across a wide range of interconnected 
systems. However, observable behaviors of actors are not 
explicitly measured after passing initiation authentication, and 
trustworthiness of documents is only controlled through 
coarse-grained authorization policies. As a result, mission 
participants frequently operate unaware of how the latest 
security events may have impacted the trustworthiness of the 
information itself and partners participating in exchanges. 

While cyber security monitoring systems have significantly 
evolved over the last decade, these systems still face a number 
of limitations. First, currently deployed monitoring solutions 
tend to be signature-based and narrowly focused on specific 
parts of the overall systems. Examples include the Bro [1] 
network intrusion detection system and the Host Based 
Intrusion Detection System (HBSS) [2]. This leaves more 
sophisticated attacks unhandled, such as 0-day attacks for 
which signatures are unknown, or insider attacks for which 
detection requires correlation across systems and layers.  

Second, current access control is based on static policies 
that tie crypto credentials to attributes that are used by access 

control rules. Dynamic events, such as subversion of 
credentials (e.g., theft of a Smart Card [3] such as the 
Common Access Card [4]) or changes in actor behaviors (e.g., 
insiders performing illegitimate actions within their privilege 
realm), are not addressed at all, leaving systems vulnerable for 
a considerable period.  

BBAC works in conjunction with existing underlying 
defenses to implement a defense-in-depth posture, as shown 
in Figure 1, and specifically focuses on detecting and 
mitigating targeted attacks initiated by adversaries with access 
within privilege realms.  

BBAC also enables the concept of compensating controls, 
as visualized in Figure 2, whereby fine-grained controls can 
avoid the need for coarse-grained deny all policies at lower 
layers. A lower-layer policy that requires filtering of all traffic 
to certain networks (e.g., via proxy filters enforcing a static 
policy as shown in Figure 2a) can be turned into an overall 
policy whereby the static policy allows interactions if they 
pass finer-grained checks, e.g., implemented by BBAC (show 
in Figure 2b). 

The sophisticated analysis performed by BBAC at higher 
layers avoids the need for draconian deny rules at lower 
layers. By introducing compensating controls, the system 
becomes more resilient to attacks by restricting access to 
information only to the services that were involved in the 
initial compromise vector and successive spread while 
allowing unaffected systems to continue to participate in 
information sharing activities and maintain information 
availability. 

 
Figure 1. BBAC enables a Layered Defense-in-Depth 

 
Figure 2. BBAC enables Compensating Controls 
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To achieve its functionality, BBAC needs to processes vast 
amounts of data collected by sensors across enterprise 
environments, including: 
• Network flow information, e.g., TCP, and UDP; 
• Higher-level transport protocols, e.g., HTTP, XMPP, 

and SMTP; 
• Audit records, e.g., produced by web, OCSP, and DNS 

servers; and 
• Application-level content, e.g., email and chat 

messages, PDF documents, and wiki pages. 
This data is typically collected current enterprise networks 

but persisted for offline forensics, leading to a situation where 
“later is too late.” BBACs faces the following two main 
challenges associated with performing real-time processing on 
the large quantity of data. 

Challenge 1: Scalable Training. BBAC uses a strategic 
combination of supervised and unsupervised machine learning 
techniques in the form of Support Vector Machines [7] 
(SVMs), Decision Trees [6], and K-Means clustering [7] (by 
focusing on these commonly used techniques the scalable 
processing framework described here has uses beyond the 
domain of cyber-security). All three of these techniques rely 
on training data to build up models, and all three techniques 
have a number of parameters to tweak. This results in a large 
number of experiments to run to maximize the performance, 
including varying kernels used for SVMs, parameters to those 
kernels, and performing n-fold cross validation to determine 
the resulting accuracy of the various models. In addition, 
BBAC needs to support dynamic environments in which re-
training happens on a daily basis across tens of thousands of 
observed actors.  

Challenge 2: Scalable Classification. BBAC ingests a 
diverse set of data streams for the purpose of performing real-
time behavior classification. This requires a low-latency and 
highly scalable stream processing framework that can provide 
elasticity by virtue of load balancing streams over a set of 
processing nodes. The framework also needs to make it easy 
to generate higher-level features derived from low-level 
observables and combine multiple streams with potentially 
different rates at well-defined junction points.  

II. RELATED WORK 
There are a number of machine learning frameworks that 

relate to the BBAC scalable processing framework. 
One specific commercial solution is the Pentaho [8] Big 

Data Analytics Platform. Like BBAC, Pentaho contains the 
ability to run Weka [9] as part of the overall platform. While 
Pentaho focuses on interactive data analytics through 
graphical visualization and reporting, BBAC focuses on the 
specific purpose of high-throughput classification of cyber 
security behaviors. 

Apache Mahout [10] is an open-source project for scalable 
machine learning. It provide ready implementations for 
K-Means clustering following a MapReduce paradigm, but 
does not provide MapReduce implementations for SVMs, 
which are the most expensive models to train in BBAC.  

Massive Online Analysis (MOA) [11], developed by the 
same group as Weka, aims to provide machine learning 
capabilities to data stream. MOA supports multiple tree 
learning algorithms, but does not provide support for SVMs 
for classification.  

III. SCALABLE MACHINE LEARNING FRAMEWORK 
Our scalable machine learning framework (illustrated in 

Figure 3) consists of a distributed batch processing approach 
to clustering of and training on archived data as well as a 
distributed stream processing based classifier capable of 
receiving input from a multitude of data sources. These two 
views of our system will be elaborated on in Section IIIA and 
IIIB respectively. In addition to scalability, the framework also 
provides a large degree of flexibility needed to support drastic 
changes to the prototype throughout the development cycle 
and customization between target deployments.  

In order to achieve the goals of scalability, flexibility, and 
reliability, BBAC implements its processing framework using 
Trident [12], a higher level abstraction on top of the Storm [1] 
stream processing framework. Storm allows specification of 
logical topologies of operations on data streams and can 
transparently distribute stream computation across a large 
number of compute nodes. Storm also provides reliability 
through fully fault-tolerant exactly-once messaging semantics, 
transparently resending information in the case of node 
failures. Trident adds a higher level of abstraction on top of 
Storm by providing primitives such as state, query, partitions, 
and micro-batches. 

BBAC strategically combines clustering for segmenting the 
data into groups that have similar behavior with Support 
Vector Machines for building a classifier per cluster for the 
purpose of detecting behavior changes. Clustering serves 
several purposes in our framework, most importantly faster 
training times and more accurate and focused classifiers. 
These advantages all arise because each classifier is trained for 
a smaller and more similar group of hosts. In addition to 
boosting accuracy, clustering also allows us to distribute the 
training and classification to different cluster nodes. BBAC 

 
Figure 3. High-level Cloud Architecture 



uses K-Means to form the initial clusters and a prototype 
implementation of an additional step that uses decision trees. 

A. Parallelizing Training Proccesses 
Training classifiers within BBAC is a batch process that 

first involves clustering users/computer behaviors using a 
large set of data samples, and then training a SVM for each 
cluster of samples. Figure 4 shows the training architecture. 

Training starts with a user sending an experiment request to 
a Distributed Remote Procedure Call (DRPC) server; the 
experiment request contains the previously mentioned 
parameters of the experiment including the location of the 
desired data set. First, the desired training data is read from a 
disk or database location and passed to data modifying 
functions. Currently these functions are limited to reducing the 
data set (to decrease training time during testing and 
debugging), but other options such as feature enrichment and 
data aggregation are planned for future versions of the 
prototype. 

Next, the data is passed to a function that splits the input 
data into multiple combinations of training and testing data for 
cross validation. The number of data folds is specified by the 
user in the experiment request. Note that in order to train a 
classifier for deployment BBAC skips the cross validation step 
essentially setting the number of data folds to one. After all 
data folds are created, the training workflow proceeds to 
perform clustering on each fold. Next, the workflow trains a 
classifier for each cluster and then aggregates the resulting 
classifiers together creating a meta-classifier for each data 
fold. The corresponding test data is passed to each meta-
classifier resulting in a set of statistics describing the 
performance of each meta-classifier. The meta-classifiers are 
(optionally) saved to a persistent store, test results are 
aggregated, and performance metrics are returned to the user. 

The current parallelization strategy for the training process 
is based on distributing the: 

1. building of classifiers per cluster (tens of clusters), 
2. changing SVM parameter settings (hundreds of 

settings), and  
3. performing n-fold cross validation experiments for each 

setting and cluster (with n=10 by default). 
Overall, this approach should allow us to train tens of 

thousands of classifiers in parallel, leading to a significant 
speedup over sequential training, even with treating the 
training of a specific classifier instance as an atomic operation.  

Initial results from experiments conducted on BBN’s Storm 
cluster seem promising. The recently finished prototype of the 
processing framework displayed in Figure 4 has moved 
beyond functional integration issues at this point and can 
successfully train a set of classifiers on the Storm cluster. 
However, the first round experiments have not produced the 
performance gains that were expected, most likely due to 
unexpected bottlenecks and additional configuration issues 
that need to be worked out.  

B. Parallelizing Classification Proccesses 
In order effectively analyze behaviors in DoD enterprise 

networks, BBAC’s classification engine must be able to scale 
with increasing levels of throughput while also maintaining 
minimal latency. Figure 5 illustrates a target application where 
an HTTP proxy passes HTTP requests to BBAC for 
classification and blocks any request tagged suspicious. For 
this scenario to be realized BBAC must have latency on the 
order of tens of milliseconds, a target achieved by the current 
framework implementation. 

The first step in this topology is to parse the input data and 
extract relevant features. For HTTP requests this involves 
extracting details such as target URL, time of day, and 
requester host ID. Other input sources of interest are illustrated 
in Figure 3 and include Bro data, XMPP traffic, and 
provenance logs. 

The next step takes these features and enriches them using 
external context. Currently, BBAC issues queries against a 
cached WhoIS database and identifies the country that 
corresponds to a provided IP address. Future examples include 
integration with DNS queries and host subnet information.  

 
Figure 4. Scalable Training 

 
Figure 5. Classification of HTTP Requests 



The next step involves aggregating samples over a time 
interval, summarizing certain features per time interval. This 
step is not currently used for classifying single HTTP requests, 
as it would likely introduce a level of latency that would make 
the concept of BBAC working in line with a HTTP proxy 
infeasible. For other data types, such as TCP connection 
headers, this aggregation step allows us to analyze how many 
connections a computer opened over a period of time. 
Consider the example of a server which normally makes only 
a few connections to the outside world per hour and is 
suddenly making thousands of connections per hour. Looking 
at any one connection request may not reveal suspicious 
activity, however aggregating connection requests over a 
given time period may reveal the suspicious behavior. While 
only hourly summary information is generated for TCP 
connections currently, it is quite easy in Trident to calculate 
data summaries over multiple time periods, which time 
periods are appropriate for the detection of varying attacks is 
an ongoing area of investigation within the project. 

This modular approach to feature extraction, enrichment, 
and aggregation enables flexibility to experiment with a wide 
range and types of features during prototype development. 
Ongoing work includes investigating a wide range of 
enrichment strategies for more accurate classification.  

After the feature enrichment operations are performed, each 
request/sample is assigned to the correct cluster based on the 
machine/user ID of the host and passed on to the classifier 
corresponding to that cluster. Currently these classifiers are 
Weka-based SVMs. The output of the classification process is 
passed to at least one of several actuators. The current set of 
implemented actuators include logging results and updating a 
system administrator interface; within the context of the HTTP 
Proxy example this entails returning whether or not the request 
should be released. 

IV. NEXT STEPS 
While the authors have developed an initial prototype of the 

scalable processing framework described in this paper, there 
are a number of immediate next steps that need to be 
completed to show the gains in flexibility and scalability that 
result from it. 

Finish Algorithmic Integration: The logic for computing 
highly summarized features as input to the clustering process 
needs to be integrated into the Trident framework. Part of this 
task also involves developing representations of the 
aggregation logic in a way that allows operators to easily 
change specifics about the set of features used during 
aggregation and the time window used. 

New Features and Input Streams: Integration of 
additional features may improve both the clustering and 
classification results. Examples of new features include 
WhoIS and DNS information, country information for 
connection endpoints, and additional information for hosts, 
such as subnet information. Furthermore, streaming of large 
volumes of logs into our system will be a focus going forward. 
The plan is to extend BBAC beyond our current setup of 
emulating sensor behavior by streaming in static logs collected 

from such sensors, to developing ingestors that will integrate 
directly with these network sensors. 

Cross Correlating SVMs: Another area of future work is to 
correlate multiple data sources and classifiers. For example, 
BBAC currently treats TCP and HTTP logs and analysis 
separately. The plan is to use Trident’s native capability of 
combining multiple streams for the purpose of combining 
input steams and/or results in order to correlate activity 
observed at different levels. 

Classifier Resiliency: The parallel classification scheme 
described by this paper was motivated by the need for scalable 
processing; it could also provide redundant classification of 
input data. Such redundancy is often used to enable voting and 
in doing so would provide resiliency in the face of individual 
classifiers and/or servers being compromised. 

V. CONCLUSIONS 
Successful defense of cyber infrastructure hinges on the 

ability to accurately and quickly spot suspicious behaviors 
across enterprise actors and the information they exchange to 
identify targeted attacks. BBAC has shown promising 
accuracy in detecting suspicious activities in TCP connections, 
HTTP requests, Wikipedia edits, and email exchanges. This 
paper describes ongoing work focused on scaling BBAC to 
enterprise environments through a strategic combination of 
parallelized batch processing for model training and stream 
processing for classification. Scalability evaluations of the 
BBAC prototype are currently ongoing and expected to drive 
further development. The path forward includes finishing 
algorithmic integration and formulation of new features 
together with the ability to ingest raw observable from life 
data stream.  
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