
Scalable Machine Learning Framework for
Behavior-Based Access Control

Jeffrey Cleveland
Raytheon BBN Technologies

Cambridge, MA
jcleveland@bbn.com

Michael Jay Mayhew
US Air Force Research Laboratory

Rome, NY
Michael.mayhew@rl.af.mil

Aaron Adler
Raytheon BBN Technologies

 Cambridge, MA
aadler@bbn.com

Michael Atighetchi
Raytheon BBN Technologies

 Cambridge, MA
 matighet@bbn.com

Abstract — Today’s activities in cyber space are more connected
than ever before, driven by the ability to dynamically interact
and share information with a changing set of partners over a
wide variety of networks. The success of approaches aimed at
securing the infrastructure has changed the threat profile to
point where the biggest threat to the US cyber infrastructure is
posed by targeted cyber attacks. The Behavior-Based Access
Control (BBAC) effort has been investigating means to increase
resilience against these attacks. Using statistical machine
learning, BBAC (a) analyzes behaviors of insiders pursuing
targeted attacks and (b) assesses trustworthiness of information
to support real-time decision making about information sharing.
The scope of this paper is to describe the challenge of processing
disparate cyber security information at scale, together with an
architecture and work-in-progress prototype implementation for
a cloud framework supporting a strategic combination of stream
and batch processing.

Keywords: security reasoning, machine learning, trust
management, access control, cloud computing

I. INTRODUCTION
In current enterprise environments, information is becoming

more readily accessible across a wide range of interconnected
systems. However, observable behaviors of actors are not
explicitly measured after passing initiation authentication, and
trustworthiness of documents is only controlled through
coarse-grained authorization policies. As a result, mission
participants frequently operate unaware of how the latest
security events may have impacted the trustworthiness of the
information itself and partners participating in exchanges.

While cyber security monitoring systems have significantly
evolved over the last decade, these systems still face a number
of limitations. First, currently deployed monitoring solutions
tend to be signature-based and narrowly focused on specific
parts of the overall systems. Examples include the Bro [1]
network intrusion detection system and the Host Based
Intrusion Detection System (HBSS) [2]. This leaves more
sophisticated attacks unhandled, such as 0-day attacks for
which signatures are unknown, or insider attacks for which
detection requires correlation across systems and layers.

Second, current access control is based on static policies
that tie crypto credentials to attributes that are used by access

control rules. Dynamic events, such as subversion of
credentials (e.g., theft of a Smart Card [3] such as the
Common Access Card [4]) or changes in actor behaviors (e.g.,
insiders performing illegitimate actions within their privilege
realm), are not addressed at all, leaving systems vulnerable for
a considerable period.

BBAC works in conjunction with existing underlying
defenses to implement a defense-in-depth posture, as shown
in Figure 1, and specifically focuses on detecting and
mitigating targeted attacks initiated by adversaries with access
within privilege realms.

BBAC also enables the concept of compensating controls,
as visualized in Figure 2, whereby fine-grained controls can
avoid the need for coarse-grained deny all policies at lower
layers. A lower-layer policy that requires filtering of all traffic
to certain networks (e.g., via proxy filters enforcing a static
policy as shown in Figure 2a) can be turned into an overall
policy whereby the static policy allows interactions if they
pass finer-grained checks, e.g., implemented by BBAC (show
in Figure 2b).

The sophisticated analysis performed by BBAC at higher
layers avoids the need for draconian deny rules at lower
layers. By introducing compensating controls, the system
becomes more resilient to attacks by restricting access to
information only to the services that were involved in the
initial compromise vector and successive spread while
allowing unaffected systems to continue to participate in
information sharing activities and maintain information
availability.

Figure 1. BBAC enables a Layered Defense-in-Depth

Figure 2. BBAC enables Compensating Controls

Distribution A. Approved for public release; distribution unlimited
(Case Number 88ABW-2013-1556).

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Scalable Machine Learning Framework for Behavior-Based Access
Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,10 Moulton Street,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
1st IEEE International Symposium on Resilient Cyber Systems (ISRCS) 2013, August 13-15, 2013, San
Francisco, CA.

14. ABSTRACT
Today?s activities in cyber space are more connected than ever before, driven by the ability to dynamically
interact and share information with a changing set of partners over a wide variety of networks. The success
of approaches aimed at securing the infrastructure has changed the threat profile to point where the
biggest threat to the US cyber infrastructure is posed by targeted cyber attacks. The Behavior-Based
Access Control (BBAC) effort has been investigating means to increase resilience against these attacks.
Using statistical machine learning, BBAC (a) analyzes behaviors of insiders pursuing targeted attacks and
(b) assesses trustworthiness of information to support real-time decision making about information
sharing. The scope of this paper is to describe the challenge of processing disparate cyber security
information at scale, together with an architecture and work-in-progress prototype implementation for a
cloud framework supporting a strategic combination of stream and batch processing.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To achieve its functionality, BBAC needs to processes vast
amounts of data collected by sensors across enterprise
environments, including:
• Network flow information, e.g., TCP, and UDP;
• Higher-level transport protocols, e.g., HTTP, XMPP,

and SMTP;
• Audit records, e.g., produced by web, OCSP, and DNS

servers; and
• Application-level content, e.g., email and chat

messages, PDF documents, and wiki pages.
This data is typically collected current enterprise networks

but persisted for offline forensics, leading to a situation where
“later is too late.” BBACs faces the following two main
challenges associated with performing real-time processing on
the large quantity of data.

Challenge 1: Scalable Training. BBAC uses a strategic
combination of supervised and unsupervised machine learning
techniques in the form of Support Vector Machines [7]
(SVMs), Decision Trees [6], and K-Means clustering [7] (by
focusing on these commonly used techniques the scalable
processing framework described here has uses beyond the
domain of cyber-security). All three of these techniques rely
on training data to build up models, and all three techniques
have a number of parameters to tweak. This results in a large
number of experiments to run to maximize the performance,
including varying kernels used for SVMs, parameters to those
kernels, and performing n-fold cross validation to determine
the resulting accuracy of the various models. In addition,
BBAC needs to support dynamic environments in which re-
training happens on a daily basis across tens of thousands of
observed actors.

Challenge 2: Scalable Classification. BBAC ingests a
diverse set of data streams for the purpose of performing real-
time behavior classification. This requires a low-latency and
highly scalable stream processing framework that can provide
elasticity by virtue of load balancing streams over a set of
processing nodes. The framework also needs to make it easy
to generate higher-level features derived from low-level
observables and combine multiple streams with potentially
different rates at well-defined junction points.

II. RELATED WORK
There are a number of machine learning frameworks that

relate to the BBAC scalable processing framework.
One specific commercial solution is the Pentaho [8] Big

Data Analytics Platform. Like BBAC, Pentaho contains the
ability to run Weka [9] as part of the overall platform. While
Pentaho focuses on interactive data analytics through
graphical visualization and reporting, BBAC focuses on the
specific purpose of high-throughput classification of cyber
security behaviors.

Apache Mahout [10] is an open-source project for scalable
machine learning. It provide ready implementations for
K-Means clustering following a MapReduce paradigm, but
does not provide MapReduce implementations for SVMs,
which are the most expensive models to train in BBAC.

Massive Online Analysis (MOA) [11], developed by the
same group as Weka, aims to provide machine learning
capabilities to data stream. MOA supports multiple tree
learning algorithms, but does not provide support for SVMs
for classification.

III. SCALABLE MACHINE LEARNING FRAMEWORK
Our scalable machine learning framework (illustrated in

Figure 3) consists of a distributed batch processing approach
to clustering of and training on archived data as well as a
distributed stream processing based classifier capable of
receiving input from a multitude of data sources. These two
views of our system will be elaborated on in Section IIIA and
IIIB respectively. In addition to scalability, the framework also
provides a large degree of flexibility needed to support drastic
changes to the prototype throughout the development cycle
and customization between target deployments.

In order to achieve the goals of scalability, flexibility, and
reliability, BBAC implements its processing framework using
Trident [12], a higher level abstraction on top of the Storm [1]
stream processing framework. Storm allows specification of
logical topologies of operations on data streams and can
transparently distribute stream computation across a large
number of compute nodes. Storm also provides reliability
through fully fault-tolerant exactly-once messaging semantics,
transparently resending information in the case of node
failures. Trident adds a higher level of abstraction on top of
Storm by providing primitives such as state, query, partitions,
and micro-batches.

BBAC strategically combines clustering for segmenting the
data into groups that have similar behavior with Support
Vector Machines for building a classifier per cluster for the
purpose of detecting behavior changes. Clustering serves
several purposes in our framework, most importantly faster
training times and more accurate and focused classifiers.
These advantages all arise because each classifier is trained for
a smaller and more similar group of hosts. In addition to
boosting accuracy, clustering also allows us to distribute the
training and classification to different cluster nodes. BBAC

Figure 3. High-level Cloud Architecture

uses K-Means to form the initial clusters and a prototype
implementation of an additional step that uses decision trees.

A. Parallelizing Training Proccesses
Training classifiers within BBAC is a batch process that

first involves clustering users/computer behaviors using a
large set of data samples, and then training a SVM for each
cluster of samples. Figure 4 shows the training architecture.

Training starts with a user sending an experiment request to
a Distributed Remote Procedure Call (DRPC) server; the
experiment request contains the previously mentioned
parameters of the experiment including the location of the
desired data set. First, the desired training data is read from a
disk or database location and passed to data modifying
functions. Currently these functions are limited to reducing the
data set (to decrease training time during testing and
debugging), but other options such as feature enrichment and
data aggregation are planned for future versions of the
prototype.

Next, the data is passed to a function that splits the input
data into multiple combinations of training and testing data for
cross validation. The number of data folds is specified by the
user in the experiment request. Note that in order to train a
classifier for deployment BBAC skips the cross validation step
essentially setting the number of data folds to one. After all
data folds are created, the training workflow proceeds to
perform clustering on each fold. Next, the workflow trains a
classifier for each cluster and then aggregates the resulting
classifiers together creating a meta-classifier for each data
fold. The corresponding test data is passed to each meta-
classifier resulting in a set of statistics describing the
performance of each meta-classifier. The meta-classifiers are
(optionally) saved to a persistent store, test results are
aggregated, and performance metrics are returned to the user.

The current parallelization strategy for the training process
is based on distributing the:

1. building of classifiers per cluster (tens of clusters),
2. changing SVM parameter settings (hundreds of

settings), and
3. performing n-fold cross validation experiments for each

setting and cluster (with n=10 by default).
Overall, this approach should allow us to train tens of

thousands of classifiers in parallel, leading to a significant
speedup over sequential training, even with treating the
training of a specific classifier instance as an atomic operation.

Initial results from experiments conducted on BBN’s Storm
cluster seem promising. The recently finished prototype of the
processing framework displayed in Figure 4 has moved
beyond functional integration issues at this point and can
successfully train a set of classifiers on the Storm cluster.
However, the first round experiments have not produced the
performance gains that were expected, most likely due to
unexpected bottlenecks and additional configuration issues
that need to be worked out.

B. Parallelizing Classification Proccesses
In order effectively analyze behaviors in DoD enterprise

networks, BBAC’s classification engine must be able to scale
with increasing levels of throughput while also maintaining
minimal latency. Figure 5 illustrates a target application where
an HTTP proxy passes HTTP requests to BBAC for
classification and blocks any request tagged suspicious. For
this scenario to be realized BBAC must have latency on the
order of tens of milliseconds, a target achieved by the current
framework implementation.

The first step in this topology is to parse the input data and
extract relevant features. For HTTP requests this involves
extracting details such as target URL, time of day, and
requester host ID. Other input sources of interest are illustrated
in Figure 3 and include Bro data, XMPP traffic, and
provenance logs.

The next step takes these features and enriches them using
external context. Currently, BBAC issues queries against a
cached WhoIS database and identifies the country that
corresponds to a provided IP address. Future examples include
integration with DNS queries and host subnet information.

Figure 4. Scalable Training

Figure 5. Classification of HTTP Requests

The next step involves aggregating samples over a time
interval, summarizing certain features per time interval. This
step is not currently used for classifying single HTTP requests,
as it would likely introduce a level of latency that would make
the concept of BBAC working in line with a HTTP proxy
infeasible. For other data types, such as TCP connection
headers, this aggregation step allows us to analyze how many
connections a computer opened over a period of time.
Consider the example of a server which normally makes only
a few connections to the outside world per hour and is
suddenly making thousands of connections per hour. Looking
at any one connection request may not reveal suspicious
activity, however aggregating connection requests over a
given time period may reveal the suspicious behavior. While
only hourly summary information is generated for TCP
connections currently, it is quite easy in Trident to calculate
data summaries over multiple time periods, which time
periods are appropriate for the detection of varying attacks is
an ongoing area of investigation within the project.

This modular approach to feature extraction, enrichment,
and aggregation enables flexibility to experiment with a wide
range and types of features during prototype development.
Ongoing work includes investigating a wide range of
enrichment strategies for more accurate classification.

After the feature enrichment operations are performed, each
request/sample is assigned to the correct cluster based on the
machine/user ID of the host and passed on to the classifier
corresponding to that cluster. Currently these classifiers are
Weka-based SVMs. The output of the classification process is
passed to at least one of several actuators. The current set of
implemented actuators include logging results and updating a
system administrator interface; within the context of the HTTP
Proxy example this entails returning whether or not the request
should be released.

IV. NEXT STEPS
While the authors have developed an initial prototype of the

scalable processing framework described in this paper, there
are a number of immediate next steps that need to be
completed to show the gains in flexibility and scalability that
result from it.

Finish Algorithmic Integration: The logic for computing
highly summarized features as input to the clustering process
needs to be integrated into the Trident framework. Part of this
task also involves developing representations of the
aggregation logic in a way that allows operators to easily
change specifics about the set of features used during
aggregation and the time window used.

New Features and Input Streams: Integration of
additional features may improve both the clustering and
classification results. Examples of new features include
WhoIS and DNS information, country information for
connection endpoints, and additional information for hosts,
such as subnet information. Furthermore, streaming of large
volumes of logs into our system will be a focus going forward.
The plan is to extend BBAC beyond our current setup of
emulating sensor behavior by streaming in static logs collected

from such sensors, to developing ingestors that will integrate
directly with these network sensors.

Cross Correlating SVMs: Another area of future work is to
correlate multiple data sources and classifiers. For example,
BBAC currently treats TCP and HTTP logs and analysis
separately. The plan is to use Trident’s native capability of
combining multiple streams for the purpose of combining
input steams and/or results in order to correlate activity
observed at different levels.

Classifier Resiliency: The parallel classification scheme
described by this paper was motivated by the need for scalable
processing; it could also provide redundant classification of
input data. Such redundancy is often used to enable voting and
in doing so would provide resiliency in the face of individual
classifiers and/or servers being compromised.

V. CONCLUSIONS
Successful defense of cyber infrastructure hinges on the

ability to accurately and quickly spot suspicious behaviors
across enterprise actors and the information they exchange to
identify targeted attacks. BBAC has shown promising
accuracy in detecting suspicious activities in TCP connections,
HTTP requests, Wikipedia edits, and email exchanges. This
paper describes ongoing work focused on scaling BBAC to
enterprise environments through a strategic combination of
parallelized batch processing for model training and stream
processing for classification. Scalability evaluations of the
BBAC prototype are currently ongoing and expected to drive
further development. The path forward includes finishing
algorithmic integration and formulation of new features
together with the ability to ingest raw observable from life
data stream.

ACKNOWLEDGMENT
The authors would like to acknowledge the support and

collaboration of the US Air Force Research Laboratory
(AFRL) Information Directorate.

REFERENCES
[1] V. Paxson, “Bro: A System for Detecting Network Intruders in

Real-Time Computer Networks”, 31(23-24), pp. 2435-2463, 1999.
[2] DISA, 2013, Host Based Security System (HBSS),

http://www.disa.mil/Services/Information-Assurance/HBS/HBSS
[3] W. Rankl and W. Effing, Smart card handbook. Wiley, 2010.
[4] DoD ID Card Reference Center, 2013, http://www.cac.mil/
[5] Hearst, Marti A., et al. "Support vector machines." Intelligent

Systems and their Applications, IEEE 13.4, 18-28,1998.
[6] J. Quinlan, “Induction of Decision Trees”, Machine Learning 1:

81-106, Kluwer Academic Publishers, 1986.
[7] J. MacQueen, "Some Methods for classification and Analysis of

Multivariate Observations", Proceedings of 5th Berkeley
Symposium on Mathematical Statistics and Probability. University
of California Press. pp. 281–297, 1967.

[8] Pantaho Big Data Platform, 2013, http://www.pentaho.com/
[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.

H. Witten, The WEKA Data Mining Software: An Update;
SIGKDD Explorations, Volume 11, Issue 1, 2009.

[10] Apache Mahout, 2013, http://mahout.apache.org/
[11] MOA, 2013, http://moa.cms.waikato.ac.nz/
[12] Trident, 2013, https://github.com/nathanmarz/storm/wiki/Trident-

tutorial
[13] Storm, 2013, http://storm-project.net/

	I. Introduction
	II. Related Work
	III. Scalable Machine Learning Framework
	A. Parallelizing Training Proccesses
	B. Parallelizing Classification Proccesses

	IV. Next Steps
	V. Conclusions
	Acknowledgment
	References

