Implementing New Non-Chromate Coatings Systems
February 9, 2011

Craig Matzdorf
Materials Engineering Division
NAVAIR
1. REPORT DATE
09 FEB 2011

2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Implementing New Non-Chromate Coatings Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Air Warfare Center, Materials Engineering Division, 22347 Cedar Point Road, Patuxent River, MD, 20670

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop, February 7 - 10, 2011, New Orleans, LA. Sponsored by SERDP/ESTCP.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 Unclassified
 b. ABSTRACT
 Unclassified
 c. THIS PAGE
 Unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON

*Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18*
NAVAIR Non-Chromate Coatings Goal

Identify, test, validate and implement non-chromate primers and surface preparations which are as broad in capabilities and performance as current chromated primers and surface preparations.

- Performance across multiple alloys/substrates, with and without topcoats per MIL-PRF-85285 and TT-P-2760; in combination with specialty coatings
- Across all exposure conditions for all the materials currently protected by Class C materials.
- Galvanic Corrosion Protection – faying surfaces, dissimilar materials interfaces, wet installation of fasteners and bushings, SCC, exfoliation, etc.
- Surface Prep/Primer Compatibility –
 - Type I and Type II conversion coatings per MIL-DTL-81706/MIL-DTL-5541
 - Type I, IC, II, or IIB anodized aluminum per MIL-A-8625
 - Sacrificial coatings (such as IVD-Al, Cd, Zn-Ni, etc.)
 - Fe alloys, other conversion coated or anodized light metals such as Ti and Mg and composite substrates
 - Adhesion, filiform, humidity, and fluid resistance properties
NAE Position on Cr6+ and Path Forward

• Cr6+ is used in 10 major metal finishing and corrosion protection processes, with many sub-processes
 – Cost impact is highest for compliance when removing Cr6+ containing coatings, especially sanding at FRCs
 – Application of most materials can be achieved while complying with regulations

• Alternatives can be implemented during design and production by OEMs and subcontractors and at Navy and contractor facilities which carry out O, I and D-level maintenance.

• Many uses include critical engineering applications including adhesive bonding, wear surfaces and corrosion protection on high-strength steels, and protection of critical structure

• Compliance with memos and expected DFARs contract language will increase cost of acquisition environmental and corrosion support

• Implementation of alternatives is not trivial and requires a risk reduction approach, especially for primers

• RDT&E needs to be prioritized and linked to Cr6+ goals
Cr6+ Waiver Process

• NAVAIR has established a waiver process

• Process in place to meet requirements of Cr6+ DFARs, once released

• Actions likely to originate with EPAT leads

- Determine cost effectiveness and evaluate technical feasibility of alternatives.
- Conduct ESOH risk evaluation (note: alternatives must have MRL >or=8).
- Establish material availability of Cr6+ versus alternatives over lifecycle.
- Determine corrosion performance differences of alternatives in coordination with Navy’s Corrosion Prevention and Control Executive.

Do viable alternatives exist?

YES

NO

- Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium.

Coordinate with Navy Corrosion Prevention and Control Executive prior to submitting to PEO.

PEO approves authorization request to use Cr6+.

- Ensure all contracts incorporate DFAR 223.73 language.
- Cr6+ identified on weapon system (W/S), subsystems, and components via OEM.
- Seek alternatives via contract with OEM. Government verify contract efforts.

Are alternatives proven, available, and meet MRL >or=8?

YES

NO

- Approval of alternatives by W/S PM and Corrosion SME designee.
- Change technical/maintenance manual or publications to direct alternative use.

- Update PESHE (at Milestones B.C, and FRP) with system specific Cr6+ risks and efforts to include cost/schedule risks, life cycle cost comparisons among alternatives (e.g., material handling and disposal, system overhaul cycle times/costs due to differences in corrosion protection).
- Address corrosion evaluations, alternatives, and tradeoffs in the Corrosion Prevention and Control Plan; required for ACAT I programs at Milestones B and C.
Implementation Points

- **Design- Implemented at OEMs/Suppliers**
 - New design: finish specifications
 - Easiest to implement, lowest cost, difficult to validate alternatives

- **Production- Implemented at OEM/Suppliers**
 - Engineering Change Proposal (ECP): drawings
 - Medium difficulty to implement, variable cost, validation on fielded assets possible

- **Fielded- Implemented at Gov’t and Contractor Facilities**
 - ECP and Local Process Specification modifications; Contract changes; 01-1A-509 and other General Series manual changes
 - Medium difficult to implement for immersion processes, easier for spray and touch up; validation on fielded assets typical
Implementation Progress

- Use of Chromates in Inorganic Coatings and Processes
 - Alternatives authorized for
 - Aluminum and magnesium anodizing
 - Hard Chrome Plating
 - Type II conversion coating on aluminum alloys under chromated primer
 - Type II conversion coating on Alumiplate under chromated primer
 - Sealing of Type IC, IIB, II and III anodize using Type II conversion coatings (TCP)
 - Alternatives pending authorization
 - Conversion coating magnesium and titanium
 - Sealing of phosphate coatings
 - Alternatives being assessed in demonstration and validation projects
 - Type II conversion coating on aluminum alloys with Class N primers
 - Post treatment of IVD aluminum
 - Post treatment of IZ-C17+ ZnNi
 - Type II conversion coatings on aluminum: Class 3 applications
Implementation Progress

• Use of Chromates in Organic Coatings and Processes
 – Alternatives authorized for
 • Priming of support equipment (MIL-DTL-53022)
 • Sealing- various specifications
 • Priming aircraft/components: scuff sand and overcoat applications
 – Alternatives pending authorization
 • None currently
 – Alternatives being assessed in demonstration and validation projects
 • Primer “direct to metal/conversion coating” in coating systems with chromated or non-chromated conversion coatings
 • Galvanic primers in total NC systems
 – Alternatives requiring additional research and development
 • Adhesive bond primers
 • Combination of NC primers with other NC finishing options in most applications
NAVAIR Primer Issues

• “Silver” Standard – MIL-DTL-5541 Type II/MIL-PRF-23377 Class N
 – Most applications covered – 95+% solution (Type I and Type II)
 – Next Gen Primers needed for Type I and II to meet/exceed chromated coating system performance: just about all Class N work is on Type I products
 – Robustness is Key – Most robust surface preparations + most robust organic coatings = Most robust coating systems
 – Misconception regarding resins – both primer specs are 340 g/L

• Resin Properties often overlooked –
 – Inhibitor is not the only functional component, adhesion and barrier properties controlled by resin system
 – Impacts pigment loading and inhibitor release function
 – 23377 High-solids “solvent-borne”: superior resin system for total protection
 – 85582 “water-borne”: better application characteristics
 – Effect more pronounced in Class N primers, but diminishing as Class N primers are improving
 • Rely more on surface preparation performance
NAVAIR Non-Cr6+ Efforts

• **Ongoing**
 - AERMIP- Dem/Val Class N primer/ZVOC topcoat; GSE focused on aluminum
 - ESTCP WP-201010- eCoat primer; aligned with new ESTCP NC Primer project
 - ESTCP WP-201011- self sealing fasteners (non-chromate sealers/primers)
 - ESTCP WP-200906- NC ZVOC coatings (ARL lead); GSE focused on steel
 - SERDP WP-1673- accelerated dynamic corrosion test method (SWRI lead)
 - SERDP WP-1620- scientific understanding of NC inhibitors (Ohio State lead)
 - ESTCP- CoP electroplating
 - DLA- Type II conversion coating touch up pens
 - NAVAIR/NISE- NC primer development and characterization

• **New**
 - NESDI NC Primer Dem/Val– Supports implementation of qualified Type I and Type II Class N primers at NAVAIR user sites. Includes Type I and II conversion coatings.
 - ESTCP WP-201037- Folds in efforts on e-Coat, Magnesium Rich Primer, Crosslink Primer, and others in development. Will streamline investment in NC primer maturation and dem/val.
 - OSD– Type II, Class 3 Conversion Coatings; electronics requirements
 - NESDI IZ- C17+ zinc-nickel, with non-chromate passivations
 - NAVAIR/NISE- Type II conversion coating dem/val of Surtec 650V
Advanced Anodizing using Process Control Technology
(slide courtesy of FRC-SE/R. Prado)

- NESDI N-0086-02: Low HAP Coatings, Solvents and Strippers.
 - Integration of Metalast Process Control technology for producing Type II, IIB & III coatings within one tank system for Depot-Level maintenance
 - Metalast Process Control Technology to include Interface Controller, Process Controller & Bath Additive
 - Evaluate TCP as a non Cr+6 post anodize sealer for all coating types.
 - ROI: 30.7 or Payback Period of 2.1 Yrs

Capabilities gained:
- Reduces Operator error and Supervision of Process
- Improved quality, accuracy and repeatability
- Reduces defects and rejects
- Accountability of Work Performed

Efficiencies achieved:
- Reduces cycle & throughput times
- At least 15% more efficient than conventional anodizing

Environmental benefits achieved:
- Extends life of bath chemistry/ Reduced Waste
- Energy savings due to use of aluminum cathodes
- Allows for consolidation of anodizing processes
- Elimination of Hexavalent Chromium

<table>
<thead>
<tr>
<th>Tank</th>
<th>Process</th>
<th>Volume (gals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Conv Coat</td>
<td>390</td>
</tr>
<tr>
<td>8</td>
<td>Conv Coat</td>
<td>600</td>
</tr>
<tr>
<td>9</td>
<td>Andz Sealer</td>
<td>1,885</td>
</tr>
<tr>
<td>12</td>
<td>Deox</td>
<td>1,885</td>
</tr>
<tr>
<td>30</td>
<td>Mag Treat</td>
<td>730</td>
</tr>
<tr>
<td>205</td>
<td>Deox</td>
<td>260</td>
</tr>
<tr>
<td>212</td>
<td>Andz Sealer</td>
<td>260</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6,010</td>
</tr>
</tbody>
</table>

FRC-SE (JAX) Fully Integrated
FRC-E (CP) Fully Integrated
FRC-SW (NI) Integration in Process
TCP shows better performance than Dichromate Sealing

TCP-HF (1:1)
Panels A2-B2C (1 – 5)
15 minute seal @ 203°F
7,272 Hrs NSF
Average Coating Weight: 2,880 mg/ft² (~1.27 µm)
Current Density used: 12 ASF for 40 min

TCP-HF (1:1)
Panels A2-B2T (1 – 5)
10 minute seal @ 80°F

Dichromate Seal (5% wt)
Panels A2-BS1C (1 – 5)
15 minute seal @ 203°F
2,033 Hrs NSF
Average Coating Weight: 450 mg/ft² (~2.6 µm)
Current Density used: 8 ASF for 13 min

Dichromate Seal (5% wt)
Panels A2-BS1T (1 – 5)
10 minute seal @ 80°F

Type IIB TCP sealed coupons went well beyond 3,000 hrs before significant pitting corrosion was visible
Conclusions & Path Forward

• Alternatives available for most applications- authorization and transition underway in many areas

• Implementation of qualified NC primers on low risk applications/aircraft underway

• Field testing of qualified NC primers/coating systems on higher risk applications and aircraft underway with more to come

• An Engineering Circular was recently completed which documents NAVAIR Materials Engineering Division policy for NC Coating Systems and contain information on:
 – State-of-the-art products & processes
 – Transition drivers
 – Testing requirements
 – Demonstration and validation requirements
 – Transition approach
 – Risk analysis
 – Implementation recommendations

(see talk on Thursday for more details on the NC engineering circular)