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Abstract 

We consider the use of feedback loops in the realiza- 
tion of multiple-valued combinational circuits. We show 
that the number of purely combinational configurations 
in an r-valued system is llr of the total number. Thus, 
as the radix increases, the fraction of combinational 
configurations decreases. We also show that, for every 
radix value r ,  there is a circuit with feedback realizing 
a combinational logic function that has fewer gates than 
any feedback-free circuit. 

1: Introduction 

Traditionally, researchers consider only combina- 
tional circuits without feedback loops. Indeed, acyclic 
combinational circuits have been so thoroughly studied 
compared to cyclic combinational circuits, that the term 
"acyclic" is, in many people's minds, a synonym of 
"combinational". We know of only four papers [4, 5, 6, 
and 81 that consider feedback in combinational logic 
circuits. To our knowledge, there have been no studies 
of multiple-valued combinational circuits with feedback. 

Huffman [4] shows that any binary combinational 
logic function can be realized with just one inverter if 
feedback is allowed. He shows further that oscillation 
is needed, that is, it is necessary that some logic line 
toggle back and forth between 0 and 1. This is shown 
to be necessary only for the one inverter case. If one 
allows two inverters, then oscillation is not necessary. 

Aoki Fig. 7, 11 shows a set-valued implementation 
of a 4-bit ripple-carry adder that has feedback Here, 
four binary full adders are multiplexed into one 16- 
valued adder. A feedback loop results because the carry 
output of a lower order full adder drives the carry input 
of the next higher order full adder. 
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2: Examples of Feedback in Binary Combi- 
national Circuits 

The significance of feedback in combinational logic 
circuits can be seen by the 1's complement adder circuit 
shown in Fig. 1. In the 1's complement system, negat- 
ing a number A = a,-lan-2 e e a .  consists of replac- 
ing each ai by the "complement", a; .  The carry-out/ 

- 

Figure 1. 1's complement adder circuit 

carry-in path throughout the circuit represents the feed- 
back path of this circuit. If the feedback path is broken 
at X, then the output A can depend on input a in one of 
four ways; A = a , A  = a ' , A  = 0 ,  orA = 1. It can be 
seen that all ways are possible except A = a'. A = a 
occurs only when all pairs (ai, b i )  have the property 
ai = 6. For this case, all full adders have the property 
that the carry out is identical to the carry in. In this 
case, the carries are all 0 or all 1, and simultaneously, 
the sum bits are all 0 or all 1, respectively. Although 
the sum takes on two values for this special case only, 
both values represent the same result, a 0 sum. Thus, 
although the circuit is sequential, our interpretation of 
O O - - . O  and 11 . . . 1  as 0, makes it reasonable to 
think of it as "combinational". 

Indeed, if one wants a true combinational circuit, 
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then it is possible to add logic that has as inputs the 
sum S shown in Fig. 1, and produces, at its output S’ 
the sum of the circuit of Fig. 1 except when S is all 
l’s, in which case, S’ will be all 0’s. The resulting 
circuit has feedback, but it is combinational. The addi- 
tional circuit simply masks the sequential behavior of 
the underlying circuit. It is worth noting, however, that 
the additional circuit is unnecessary; our interpretation 
of all 0’s as being equivalent to all 1’s makes it so. 
Our second example illustrates a circuit with feed- 

back that does not produce sequential behavior for any 
input combination. Shown in Fig. 2a below is a 
sequence detector for a circular queue of a single binary 
string. That is, the input is viewed as a circular 

1 1 0 0 0 1 0 0  

d l  

Q 

Figure 2. Circular sequence detector 

sequence of bits and the output is viewed in a similar 
way. A 1 on the output signifies the existence of some 
four bit sequence. Fig. 2a shows a circuit that recog- 
nizes the sequence OOO1; that is, a 1 exists on an output 
if and only if the sequence OOO1 precedes it. 

Fig. 2b shows the function of the individual units. 
The pair of lines dldo  interconnecting the units denotes 
how many of the preceding bits are correct, with 00 
indicating no bits correct, 01 one correct bit (0). 10 two 
correct bits (OO), and 11 three correct bits (OOO). 

The analysis of this circuit is straightforward. To 
determine the outputs, simply start at a unit that has a 1 
as input. For this unit, the output d l d o  = 00, and this 
determines the output for all of the following units. If 
all inputs are 0, then assume any value for dldo  of 
some arbitrary unit, and proceed in the Same way. All 

d l d o  evaluate to 10. 
In this case, the feedback path is such that if it is 

broken at any point, the output will not depend on the 
input. It will be 0 or 1 depending on the inputs applied. 

3: The Feedback Path for Multiple-Valued 
Circuits 

Before analyzing the multiple-valued case, we con- 
sider a binary example. Fig. 3 below shows a binary 
circuit with a single feedback loop. 

q 

x1 x2 

Figure 3. Example of a binary circuit with feedback 

Depending on xl and x2, the feedback loop will have 
one of four configurations, as shown in Fig. 4. 
Specifically, if x l x 2  = 00, the feedback loop circu- 
lates the Same logic value and the present value of q is 
its former value. If xl x 2  = 0 1, q oscillates between 0 
and 1. If x l x z  = 10 or 11, q is a constant 0 or 1, 
respectively, regardless of its previous value. For the 
first two assignments, the circuit is sequential and, for 
the last two, it is Combinational. We say a configuration 
is combinational if its output is eventually a constant 
logic value, regardless of its initial logic value. Other- 
wise, it is sequential. Note that this definition applies 
to circuits with more than two logic values. 

The directed graphs in Fig. 4 show a compact 
representation of circuit behavior. Here, each logic 
value is represented by a node from which a single 
directed arc emanates. The arc represents the next logic 
value (head), given the present logic value (tail). For 
example, the feedback loop configuration corresponding 
to a constant 1 has each a~ head directed to the logic 
1. Thus, if q’ should ever (momentarily) be 0, it will 
be 1 shortly t h e e r ,  and if it is 1, it shall remain 1. 
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XI$ - 00 01 10 11 

Figure 4. The four possible configurations for 
a feedback loop in a binary circuit 

The case for multiple-valued circuits is more compli- 
cated. The four feedback loop configurations in Fig. 4 
correspond to four functions on one or zero variables. 
Consider the circuit in Fig 5(a) having a single 

combinational 1' 
circuit 

Figure 5. A feedback loop in a multiple-valued circuit 

feedback loop. Far each assignment of the inputs, xl,  
x2, .... x,,, the circuit is reduced to Fig. 5(b), where h 
denotes a single input r-valued function. This is a 
multiple-valued extension of Fig. 4, in which the 
number of configuration grows with r'. For r = 3 and 
r =4,  the number of feedback configuration is 27 and 
256, respectively. Fig. 6 shows the directed graph 
representations of all configurations for r = 3. Any 
graph that contains a cycle with two or more nodes 
corresponds to oscillation. Since every node has an edge 
that exits it, there is at least one cycle in any directed 
graph corresponding to a cycle configuration. We have 
the following. 

Lemma 1: Let G be the ditected graph of a circuit 
associated with some assignment of values to vari- 
ables. If G has at most one cycle and it contains 
one node, the configuration is combinational for 
that assignment. 

The fact that the cycle has only one node guarantees 
there will be no cycling of logic values. Because there 

0 1 2  0 1 2  

n 

e&- * 
* Q Q  
W 

. .a* U 
0 1 2  

Figure 6. Directed graph representations of the cycle 
configuration for r = 3 

is no more than one such cycle, there can be no storage 
of values. In Fig. 6, the combinational configurations 
are shown with asterisks. 

Note that the directed graphs described in Lemma 1 
have a unique node q, the one involved in the one-node 
cycle, while all other nodes are connected to q by a 
simple path. On the contrary, if there is no path from 
some node B to q, then a path from is in a cycle or 
ends on a cycle not containing q, implying the 
existence of at least two cycles. This latter observation 
allows us to count the number of directed graphs that 
correspond to combinational configurations. 

A graph that satisfies Lemma 1 has a single node at 
the root, (i.e., nl = l), n2 nodes with arcs to the root 
node, n 3  nodes with arcs to nodes with arcs to the root 
node, etc.. There are n ! / ( n l ! n 2 !  . n m ! )  ways to distri- 
bute labels to the groups of nodes. Note that, between 
the ith and i+lth level, there are ni arcs that can be 
chosen from n,ni+' possible arcs. Therefore, for each dis- 
tribution of labels, there are n;2 n;3 n';4 . * n,-1 
ways for arcs to occur between all levels. Thus, the 
total number N(r) of combinational configurations is 

"m 

where the sum ranges over all ordered partitions 
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(nl, n2, . * n,) of r ,  such that nl  = 1. The number of 
ordered partitions can be counted as follows. Align the 
nodes associated with logic values in a row. Between 
the nodes are r - 1  spaces, of which one is already 
determined (that associated with nl = 1). Of the r - 2 
remaining spaces, place m - 2 dividing lines, which 
are in ad& 'on to the one associated with n = 1. There 
are k--$ ways to do this. Thus, for some specified 

m, there are kzg ways to form 
n1 + n2 + . + n, = r subject to nl = 1. The value 
of m ranges from 2 to r .  

While this interpretation is readily understood, a 
more complex one leads to a simpler form for (1). We 
illustrate by an example. Consider the configuration 
shown in Fig. 7. We seek a representation for this that 
is a list of arcs. There will be r arcs, one for each of 
the r nodes from which one arc emanates. Order all 
leaf nodes in ascending order and write (in the same 
order) the nodes to which the arc from each leaf node 
goes. For the example in Fig. 6, we get 18 0 8, which 
corresponds to the arcs leaving leaf nodes 3467. 
Remove the leaf nodes from the tree and repeat the pro- 
cess. In this case, we get 05, corresponding to arcs 
leaving 1 8. Repeat the process again. In this case, we 
get 2 corresponding to the arc leaving 0. Repeat again. 
In this case, we get 5 corresponding to the arc leaving 
2. Listing this all out gives 5 5205 1808, where the 
initial 5 is in the cycle of the mot node. Note that this 
representation is unique; a different tree will yield a 
different ordered tuple. 

which they provide arcs. This is unique; a different 
ordered tuple will yield a different tree. 

It follows then that the number of configurations is 
simply the number of tuples. That is, with r-valued 
systems, there are rr-' ways to choose r-tuples, since 
each element in the r-tuple can be chosen without res- 
triction, except the Erst, which must be chosen the same 
as the second. Thus, 

The significance of this result is that, as the radix r 
increases, the fraction of configurations that are combi- 
national decreases. Specifically, 

Lemma 2 The fraction of configurations in r-valued 
logic circuits that are combinational is 

1 - . r 
while the remaining are sequential. 

If there are n r-valued inputs, there are r" assign- 
ments of values. If we assume all configurations are 
equally liely, with only l/r-th of the configurations 
combinational, the chance that one of the r" assign- 
ments produces a noncombinational configuration is 
close to 1 for all practical values of r and n .  Indeed, 
this probability is 

1 - [q. 
L J  

Figure 7. An example configuration 

The converse operation, that of producing the tree 
from ordered tuple, is straightforward. Consider the 
example above, 5 5 20 5 1 8 0 8. The leaf nodes are 
uniquely those nodes with no incoming arcs; i.e. those 
nodes not in the above list. These nodes are 3467. 
With the nodes listed in ascending order, we can con- 
clude that an arc goes from 3 to 1, from 4 to 8, from 6 
to 0, and from 7 to 8. With these last four nodes 
removed from the tree, we can repeat the process to 
obtain the resulting leaf nodes, etc. and the nodes for 

4: The Necessity of Feedback in Minimal 
Multiple-valued Circuits 

The main result of this section is an extension of a 
result by Rivest [8] for binary circuits. Specifically, it 
shows that feedback paths are necessary for the realiza- 
tion of minimal combinational multiple-valued circuits, 
where a minimal circuit is one requiring the fewest 
gates. 

Theorem 1: For any radix r 2 2, there exists a combi- 
national logic circuit with feedback that requires 
fewer gates than any circuit realizing the same 
function without feedback. 

Proof: It is sufficient to consider one set of sufficient 
operators. In particular, consider an r-valued 
Allen-Givone algebra [2] consisting of three opera- 
tors, max of two r-valued variables, min of two 

345 



r-valued variables, and the window literal of one 
r-valued variable. Consider the circuit Ccyeac 
shown in Fig. 8, which is made up of the first two 
operators, where + represents max and (or noth- 
ing) represents min. The circuit has three inputs, 

Figure 8. A circuit whose minimal f a "  
quires feedback 

XI, ~ 2 ,  and ~ g .  It also has six outputs, Whose 
expressions are given in the figure. We show the 
validity of function f 3 ;  the others are similar. 
Consider an assignment 01 = a1 ac, 013 of values to 
the variables x l x 2  x3. There are three cases. If 
a31 012, then f 3 =  a3. If a32 0 1 ~  2 ac,, then 
f3=011. If 01320122011, then f 3 = ~ .  This 
includes all assignments of values and corresponds 
tof3 = X3(x l+  xz). 

This circuit uses six gates. Consider a circuit 
Cvlic without feedback that realizes the same 
function. CqCk requires at least six gates, one for 
each output. Since Cvk is feedback-free, it has 
at least one output f i  whose circuit does not have, 
as input, an output f j .  With three inputs, the cir- 
cuit producing f i  requires at least one other gate 
besides the output gate. Thus, Ccleyclk requires at 
least seven gates. 

Q.E.D. 

The reduction in the number of gates has been achieved 
by a sharing of gates among outputs. That is, among the 
six functions, there are twelve operations, six min and 
six max. With six gates in the circuit, each gate is, in 
effect, used twice. 

Note that there is no assignment of variables for 
which there is a sequential configuration. This follows 
h m  the fact that any output is always equal to one of 
the input values. For an example, see the description of 
f in the proof. 

Rivest [8] poses the question of whether there are 
single output circuits that require feedback for their 

minimal realization. This is further discussed in 
Muroga's [7] text. As far as is known, this question 
has not been settled. Our next result shows, however, 
that for a certain single output function, there exists a 
realization with feedback that has the same number of 
gates as a minimal realization without feedback, 

Consider the use of two-input NAND gates in the 
realization of binary functions. It is known that all 
binary functions can be realized exclusively with two- 
input NAND gates. Shown in Fig. 9a is the minimal 
realization of the two-input exclusive NOR function 
consmcted from five two-input NAND gates. From 

x2- 

x1 x2 -0.J 
x's x2 

Figure 9. Minimal NAND gate realizations of 
the exclusive-NOR function 

Hellerman [7], we can conclude that this is minimal. 
Shown in Fig. 9b is a circuit with feedback realizing the 
same function also using five two-input NAND gates. 

5: Concluding Remarks 

The use of feedback in multiple-valued circuits has 
some interesting differences over binary circuits. First, 
we showed that, while two of the four configurations for 
feedback in binary are Combinational, the fraction of 
combinational configurations is l lr ,  and, so, as the 
radix, r ,  increases, we find that a smaller tiaction are 
combinational. 
Our second result shows that, for any radix, there are 

circuits with feedback, whose minimal realization 
requires fewer gates than any realization without feed- 
back. 

Finally, we showed that for single output circuits, 
there exists a circuit with fedback that has the same 
number of gates as any feedback-free realization of that 
circuit. This represents a partial answer to Rivest's [8] 
question as to whether feedback is necessary in minimal 
single output functions. 
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