Issues associated with insertion and implementation of new surface engineering technologies

HCAT Program Review
Greensboro, NC
March 2005
1. REPORT DATE
MAR 2005

2. REPORT TYPE

3. DATES COVERED
00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Issues associated with insertion and implementation of new surface engineering technologies

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Rowan Technology Group, 1590 S. Milwaukee Ave., Suite 205, Libertyville, IL, 60048

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
25th Replacement of Hard Chrome and Cadmium Plating Program Review Meeting, March 15-17, 2005, Greensboro, NC. Sponsored by SERDP/ESTCP.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
9

19a. NAME OF RESPONSIBLE PERSON
Documents we have on HVOF (landing gear)

And that’s just landing gear!
What are we seeing in new programs?

- A lot of issues we never thought about when doing the validation
 - Using the wrong coating so they get severe counterface wear
 - Spraying into snap ring grooves
 - Having to worry about adhesion on IVD on plasma spray Mo
 - Design engineers unsure of runout

- For F-35 we are developing Guidelines documents
 - “How I Did It” by Baron von Frankestein, that includes all the details not in the specs
 - Could we do something better?
 - Interactive web-based training?
Where do we have the most trouble?

1. Technology match to need
2. Degree of development
3. Engineering data
4. Producibility
5. Cost-benefit
6. Equipment installation
7. Approval
8. Specs
9. Training

- Performance shortcoming
- Often get stuck here
- Ridiculous length of time often needed
- Sometimes fall short here
- Some critical missing capability
- Often get stuck here
- Ridiculous length of time often needed
Minimizing engineering risk

- How can we best make sure we do not have an important shortcoming in performance or producibility?
 - Finding a problem too late locks us in to a specific set of coating parameters, leaves no money to fix it
 - With new technologies, need to get data up-front at the extremes before launching full JTP
 - How best do that?
Approval

- Approval is relatively straightforward when the people doing the work are also the decision-makers (Air Force, OEMs)
 - They know all the details of the technology, its capabilities and limitations
- How can we smooth the approval process for Navy and Army?
Specifications

- Specs usually have to be internal
 - Takes years and thousands of gray hairs to get industry specs
 - Is there a better way of doing this?
Training

- Some organizations find themselves in a bind with training
 - HCAT trained OO-ALC through Jerry Schell
 - PEWG supplied training at OC-ALC through Engelhard
 - Training on nCo-P at HAX will be done by close collaboration with Integran and installation of equipment at JAX
 - Same thing presumably for Al-Mn at NADEP NI
 - That all works for the first folks – what about the rest (e.g. WR-ALC)?
Other information and assistance

- What else is needed? Do we need
 - Guidelines?
 - Formal or informal training?
 - Better way of anticipating technical problems?
 - Better ways of finding the $$ for implementation?