Engineered Applications of Electro-Spark Deposition (ESD) for Component Repair

AC9163-5

HCAT TWG Meeting
Toronto, Ontario
September 24th, 2002

Mike Dent - PEWG
Program Manager

Clayton Lindsay - ASAP
Mechanical Engineer
Engineered Applications of Electro-Spark Deposition (ESD) for Component Repair

Project Objective

- To determine feasibility of utilizing the ESD process for cost effective repair of components
 - No known method of repair
 - Existing repairs utilize HAZMATS
 - Repair of HAZMAT coatings
 - Current repairs impractical
 - No replacement parts available
Participants

- PEWG
- ESTCP/HCAT
- GEAE
- PW
- Oklahoma City ALC
- NADEP Jacksonville
- NADEP Cherry Point
- NADEP North Island
- Anniston Army Depot
- Corpus Christi Army Depot
- ARL
- AFRL
- NRL
- PNNL
- EWI
- NSWC Carderock
- US Army IEC
- Boeing St. Louis
- Rowan Technology Group
- Dynamics Research Corp.
Project Scope

- ESD repair of Electrolytic Hard Chrome (EHC) coatings
- ESD repair of component substrate materials
Project Methodology - GTE

- Select candidate materials and electrodes
- Optimize ESD parameters for selected substrate/electrode combinations
- Perform materials evaluation and mechanical testing
- Create candidate part screening criteria based on test results
- Develop repair procedures for candidate parts
- Test candidate parts as required
- Implement technology
Repair of EHC - Status

- Work Completed
 - Materials Identified
 - Some materials obtained
 - Some specification identified
 - Some candidate parts identified
 - Most information based upon HVOF JTP
Repair of EHC - Materials

- **Base Materials**
 - IN718, AMS 5663
 - 4340, AMS 6415
 - 17-4PH, AMS 5355

- **Possible Electrodes**
 - Chromium
 - Ni-Chrome
 - Carbides

- **EHC**
 - MIL-STD-1501
 - Supported by QQ-C-320
 - .003” - .015” thickness
Substrate Repair - Status

- Candidate materials selected
- Most material received
- Gathering materials and mechanical testing information
- Beginning process optimization
- Drafting process specifications based upon optimization results
<table>
<thead>
<tr>
<th>Substrate</th>
<th>Specification</th>
<th>Electrode Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN 718</td>
<td>AMS 5663</td>
<td>AMS 5832</td>
</tr>
<tr>
<td>IN 625</td>
<td>AMS 5666</td>
<td>AMS 5837</td>
</tr>
<tr>
<td>Hastelloy X</td>
<td>AMS 5754</td>
<td>AMS 5798</td>
</tr>
<tr>
<td>Haynes 188</td>
<td>AMS 5772</td>
<td>AMS 5801</td>
</tr>
<tr>
<td>410 Stainless</td>
<td>AMS 5504</td>
<td>AMS 5823</td>
</tr>
<tr>
<td>17-4PH</td>
<td>AMS 5604</td>
<td>AMS 5825</td>
</tr>
</tbody>
</table>
Substrate Repair - Optimization

- Using DOE approach to optimize ESD parameters
 - Varying Capacitance, Voltage and Current
 - Measuring Deposition Rate, Inclusion %, Bond and HAZ
- Repairs currently underway
 - 50% complete on Hastelloy X
 - 40% complete on IN625
Materials and Mechanical Testing

- **Materials Testing**
 - Completed prior to mechanical testing
 - Iterative process to assist in ESD optimization
 - Metallurgical evaluations
 - Cracking, Porosity, Inclusions, etc.
 - Bond evaluations
 - Bond buttons, bend testing
 - HAZ
 - Micro-hardness gradients
 - Others ?? (residual stress, element mapping)
Materials and Mechanical Testing

- Mechanical Testing
 - Completed after ESD optimization, materials testing
 - Possible testing includes
 - Low Cycle Fatigue, High Cycle Fatigue (RT & Elevated) Tensile, Fatigue Crack Growth, Creep/Stress Rupture, Long Term Stability
 - DOE/Specifics needed
 - Definition of defect needed for each instance
ESD Specification & ESD Procedure

- **ESD Specification - Based upon AWS D17**
 - Definition of weld type (repair vs. coatings)
 - Qualification of welder
 - Acceptance Criteria
 - Initially based upon AWS D17, Class A, B & C ?
 - ESD specific criteria created during development ?

- **ESD Procedure – Based upon AWS B2.1 ?**
 - ESD equipment parameters
 - Technique description
 - Substrate/electrode/geometry specific
Questions -