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Abstract

The study of the flight kinematics of Unmanned Aircraft Systems (UASs) continues to be
an important field of research for understanding and developing state-of-the-art nano/micro
air vehicles. Analyzing various flapping-wing UASs using photogrammetry shows potential
given the ability to use images for constructing a three-dimensional (3D) representation of a
given object. Development of a photogrammetry/metrology system using Computer Vision
(CV) tracking and 3D point extraction would provide an avenue for collecting free-flight
data crucial in understanding the aerodynamic and aeroelastic behavior of flapping wing
UASs; thus far not achieved. Free-flight data would provide a link between empirical and
theoretical development thereby increasing knowledge of various flight profiles of flapping-
wing UASs. The focus of this work is to develop a scalable system capable of real-time
tracking, zooming, and 3D position estimation of a UAS using multiple cameras.

Real-time, state-of-the-art photogrammetry systems use retro-reflective markers to
obtain object poses and/or positions over time. Computer Vision (CV) methods capable of
performing photogrammetry tasks provide the potential for non-contact measurements that
avoid altering the test subject. Related work includes using Pan/Tilt/Zoom (PTZ) cameras
in combination with or without static cameras; however, little has been done in the area of
metrology and multiple PTZ cameras. Contributions include the development of a real-time
CV-tracking algorithm for PTZ cameras, using optical flow and known camera motion, in
order to capture a moving object. The developed implementation is versatile, allowing the
ability to test other CV methods with a PTZ system and known camera motion. Further,
digital zoom is applied to each camera to simulate PTZ cameras for tracking purposes.
Utilizing known camera poses, the UAS’s 3D position is estimated and focal lengths are
calculated for filling the image to a desired amount. This system is tested against truth
data obtained using a commercial photogrammetry system. Automatically capturing high-
resolution, high frame-rate images of small, free-flight flappers is obtainable using the system
developed in this work.
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Real-Time, Multiple Pan/Tilt/Zoom Computer Vision Tracking and 3D

Positioning System for Unmanned Aerial System Research

I. Introduction

1.1 Nano/Micro Unmanned Aircraft Systems

Flying robotic systems known as Unmanned Aircraft Systems (UASs), micro air ve-

hicles, or drones take to the skies and perform complex activities previously performed by

humans such as takeoff, loitering, target acquisition and landing. Developing a system ca-

pable of capturing and measuring these and other complex activities of Small Unmanned

Aircraft Systems (SUASs) is the focus of this research.

The Air Force Special Operations Command (AFSOC) is designated as the SUAS

lead, and they, in turn, have designated four major subclasses that better define SUAS [3].

These subclasses are:

1. Nano/Micro

2. Man-portable

3. Multi-mission

4. Air-launched

The focus of this research deals with the tracking and measuring of Nano/Micro UAS in

free-flight, specifically, for flapping-wing kinematics that are difficult to test in a laboratory.

Nano/Micro UAS characteristics are listed in Table 1.1. For the remainder of this research,

SUAS and UAS are used interchangeably.

Table 1.1: Nano/Micro Specifications [3].
Weight 0-20 lbs

Operating Altitude <1200 ft (Above Ground Level)
Speed 100 kts
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The Unmanned Aircraft System (UAS) flight plan describes Nano/Micro UAS as

“aircraft capable of conducting a variety of indoor and outdoor reconnaissance sensing

missions” [3]. Developing aircraft capable of these activities, hovering, dropping turns,

backward flight, wing billowing, etc., requires an in-depth understanding of biological coun-

terparts. This development requires a system capable of capturing high-resolution measure-

ments during free-flight testing which is the purpose of this work.

Smaller, flapping-wing UASs, often referred to as micro air vehicles, are typically

150 mm or less in dimension and weigh no more than 90 g [7]. Due to the small-scale

and speed involved with these vehicles, novel systems are needed to measure forces and

motion without disrupting flight. Understanding how flapping-wing UASs fly and being

able to optimize their performance are challenges for the metrology community. Evaluating

flight characteristics seen in everyday life from bugs and birds would enhance our ability in

developing UASs.

The Air Force Institute of Technology and the Air Force Research Laboratory have

worked on advancing flapping-wing mechanisms through flight control research, wing de-

sign and analysis of dynamics [6, 37, 40, 62, 77]. There are many other facilities devoted to

developing and understanding the mechanics of flapping-wing flight, including: the Har-

vard Microrobotics Lab [104], the Korean Advanced Institute of Science and Technology

(KAIST) Smart Systems and Structures Lab [75], and Georgia Institute of Technology’s

Intelligent Control Systems Laboratory [99].

1.2 Non-Contact Measurement Systems

The purpose of non-contact measurement systems is to observe the normal behavior of

an object without affecting the object’s performance. Contact measurement methods pose

many challenges when working with UASs. These methods consist of, but are not limited

to, using strain gages, paint, retro-reflective markers, etc. which typically alter vehicle

performance either by weight or other restrictions to lightweight devices (i.e., 90 g or less).

Non-contact measurement systems provide the means of gaining a truer understand-

ing of the aeroelastics of billowing membranes (coupled with fluid-structures interaction)

of biological or UAS counterparts. Non-contact displacement measurement methods in-
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clude laser vibrometry, Lidar/laser range finders, capacitance measurement, interferometry

and photo/videogrammetry. Laser vibrometry is the preferred method for measuring non-

contact vibrations [85]. However, only a single point is measured at a time, and alignment

must be maintained through the test only measuring very small deflections (i.e., no flap-

ping). Videogrammetry uses multiple, synchronized images or stereo pairs and typically

retro-reflective markers or projected targets for determining surface shapes capturing shape

and motion from a single test [62]. Projected targets are not practical for use with free-flying

test articles, and adding retro-reflective markers negates non-contact measurement.

Using a camera allows for more freedom of movement. However, the subject must

stay in the fields of view with little to no occlusion. Incorporating a pan/tilt camera with

real-time tracking will allow for the camera to move so that the subject remains in its Field

of View (FOV). Adding this capability expands the effective capture volume, without a

sacrifice in resolution of the subject, for better flight data over a larger set of flight profiles.

The ideal system would have a fast response (high frame-rate and low-latency for faster

vehicles), high resolution (for better discrimination of the vehicle) and work with general

dynamic objects (not require selection or training).

1.2.1 Photogrammetry and Videogrammetry. “Photogrammetry is the process

of deriving the three-dimensional (3D) coordinates of object points based on their two-

dimensional location in a set of photographic images” [85]. Videogrammetry is an extension

of photogrammetry by applying the same principles to a set of images in time.

Obtaining sets of two-dimensional points from an image uses various techniques such

as target-based and texture-based point extraction. Software systems are able to readily

identify locations in a given set of images with discrete man-made targets (fiducials) through

the use of Computer Vision (CV) techniques for point correspondences. Texture-based

photogrammetry uses randomly varying intensities of a small set of pixels as a target for

determining correspondences between images. Recent work with biomimetics analysis uses

texture-based photogrammetry for non-rigid surface measurement of flexible structures [62].

The work analyzes flapping-wings of a statically-mounted UAS and specifically determines

that texture-based photogrammetry is a significant improvement over the state-of-the-art
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due to the high density of points generated, giving accurate measurements of billow and

other large deformations.

1.2.2 Computer Vision. Many modern technologies incorporate CV techniques

for identifying objects to tracking in real-time [116]. A literature search reveals hundreds

of methods for resolving the tracking and recognition problems. Various forms of CV tech-

niques include point detectors, segmentation, background modeling and classification as

given by the survey conducted by Yilmaz [133]. An example of each given technique can

be found in [35, 80, 93, 139]. Computational libraries, such as in [26], provide hundreds of

CV algorithms while conferences continue to see authors with faster and more robust algo-

rithms for various tracking scenarios. Each method has its advantages and disadvantages

towards recognizing and tracking various objects in different environments. Determining

which algorithm is best-suited to specific scenarios is the challenge.

Image registration techniques are improving and provide ways of determining complex,

non-rigid motion [52]. Photogrammetry continues to evolve by using updated or improved

CV algorithms for finding point correspondences. This work combines the work of multiple

systems for the purpose of tracking, capturing and performing videogrammetry operations

on UASs.

1.3 Motivation for Developing a Pan-Tilt Computer Vision System

Photogrammetry and Videogrammetry Analysis

Security systems typically use CV techniques associated with Pan/Tilt/Zoom (PTZ)

systems to track faces, people and vehicles such as described in [27, 48, 86]. This work

constitutes a new use for CV PTZ systems in the area of 3D point estimation of flapping-

wing UASs. The benefits of designing and developing such a system is instrumental in

researching various small, free-flying flapping-wing mechanisms and organisms. Tracking

and measuring these mechanisms or organisms (e.g., moths) under operational conditions is

key in analyzing and understanding their free-flight kinematics, in turn, providing designers

the tools necessary in developing UASs for indoor and outdoor reconnaissance missions (see

Fig. 1.3).
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Figure 1.1: Examples of flapping-wing UASs and biological counterparts. Images col-
lected using an image search on micro air vehicles, 8/7/2013, from the
following websites: sciencedaily.com, mlpc.com, glue.umd.edu, what-is-
this.com, af.mil, wpafb.af.mil, deskeng.com, avinc.com, 3me.tudelft.nl, mi-
cro.seas.harvard.edu, and robobees.seas.harvard.edu.

Another motivation for such a system deals with reduced cost and complexity. Current

non-contact measurement systems require large investments for lasers, multiple infrared

cameras, separate PTZ cameras, software/hardware interfaces, lighting, etc. Developing a

comprehensive CV-based system for tracking and measuring would eliminate much of the

overhead of commercial hardware/software packages.

1.4 Research Focus

This research details the development of a PTZ CV system for tracking and mea-

suring a moving object of interest. The first part of this work tests various types of

CV algorithms (i.e., Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Fea-

tures (SURF), Mean Shift (MS), Pyramidal Lucas-Kanade (PyrLK) optical flow, covari-

ance, and Gaussian Mixture Model (GMM)) against a static and dynamic background for

narrowing and identifying appropriate algorithms for the Pan/Tilt Unit (PTU) CV system.
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The focus then shifts towards experimental testing of the CV algorithm and comparing it

to existing methods for the purpose of tracking a moving object against a moving back-

ground using a single camera. Lastly, two PTZ cameras are used to track a moving object,

determine its 3D position, and command a desired focal length based on the size of the

test subject. The results are compared to data obtained using a turn-key, photogrammetry

system.

Demonstration of these techniques paves the way for analyzing various, single UASs

in a controlled environment. Capturing a UAS using multiple cameras and obtaining high-

resolution, high frame-rate images would enable state measurements of not only the vehicle

as a whole, but other visible points of interest as well.

This research provides a real-time, multiple PTZ camera system capable of capturing

high frame-rate, high-resolution images of free-flight, flapping-wing UASs. High frame-rate

is quantified as greater than 280 frames per second (fps). Resolution is quantified by setting

a desired outcome and maintaining a zoom within an upper and lower zoom threshold of

the UAS within the camera’s FOV. The design is a field-portable CV PTZ tracking system

expandable to a multi-camera setup. Additional cameras make the system suitable for

indoor and outdoor photogrammetry purposes.

1.5 Document Layout

Chapter II provides an extensive literary review of object detection, tracking, stereo-

vision and 3D extraction methods used in CV. It also reviews related research in PTU and

PTZ CV systems laying the foundation for Chapter’s IV-VI. The basic assumptions, the

objectives, and the exit criteria are provided in Chapter III. In Chapter IV, selected CV

algorithms are reviewed for tracking in a static and dynamic environment. Comparisons

are made based upon accuracy, speed and memory. Based on the work in Chapter IV,

an algorithm is developed for tracking a moving object against a dynamic background and

performance aspects of the algorithm are tested in Chapter V. Furthermore, Chapter V

explores the developed algorithm by tracking a moving object, analyzing the results, and

comparing its performance against existing methods. Chapter VI represents the culmina-

tion of the work performed by adding another camera to the system, employing parallel
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implemenation of CV-tracking, performing digital zoom, and estimating the 3D position of

the moving object. In addition, several experiments are recorded and compared to truth

data obtained using a turn-key, photogrammetry system. Lastly, Chapter VII provides a

discussion of why the techniques and the CV PTZ camera system developed are relevant,

the conclusions, future work, and the summary.
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II. Background

2.1 Overview

Measuring free-flight, flapping-wing Unmanned Aircraft Systems (UASs) typically re-

quires altering the vehicle so that the measurement system is able to track and measure the

vehicle. These measurement systems often use lasers or retro-reflective markers for measur-

ing the test subject. This work seeks to enable a measurement system with the capability to

“see” or track the free-flight, flapping-wing UAS using Computer Vision (CV) techniques.

This chapter details the definitions and various methods used in CV. Computer vision

is the capability of a computer to perceive objects [102]. Perception is defined as “the ability

to see, hear, or become aware of something through the senses” [87]. Computer vision is

about describing the world that humans see “in one or more images and to reconstruct its

properties, such as shape, illumination, and color distributions” [116]. Therefore, CV is the

implementation of “seeing” through an imaging sensor, and “becoming aware” through the

ability to reconstruct world properties.

Figure 2.1 provides a rough time-line of the development of the CV techniques and

applicable technologies used in this work [9, 23, 116]. Advances in image interpretation,

control techniques and learning also make CV a popular area of research as demonstrated

by the increasing number of technical papers on the subject.

1970s 
1980s 
1990s 
2000s 
2005- 
2013 

Digital Image Processing 
Stereo Correspondences 
Optical Flow 
Kalman Filters 
3D Range Data Processing 
Pan/Tilt/Zoom 
Feature-Based Recognition 
Multicore Parallel-
Programming 
General-Purpose Graphics 
Processing Unit 

Figure 2.1: A time-line of the technology and techniques used in this work.
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2.2 Computer Vision Object Detection

Detection is defined as “the action or process of identifying the presence of something

concealed” (i.e., identifying an object in an image), and the term ‘object’ refers to “a

material thing that can be seen and touched” [87]. Putting these two definitions together

gives the following definition:

Object Detection - the action or process of identifying the presence of a material
thing that can be seen and touched

Object detection can be broken down into components such as representation, features,

shape, appearance, classification, etc. This section presents a hierarchy of object detection

as a way to frame the plethora of techniques available. However, this is not all inclusive as

the field varies widely with methods used. The focus of this section is to compartmentalize

most object detection techniques into broad, mutually exclusive or overlapping subcategories

and to form the basis for how objects are represented and what features are used.

2.2.1 Detection, Classification and Learning/Recognition. Detection starts with

identifying that something or someone exists. The outlined methods of point detectors, seg-

mentation, background modeling and supervised/unsupervised classifiers are those methods

that determine existence. The term object recognition is often confused with object detec-

tion as it uses many of the object detection methods specified to “recognize” objects in

an image. To complicate matters further, each of the four categories described use sim-

ilar feature-based and dynamic-based components for detection. Some of these include

frame-differencing where two or more frames are used to derive interest points, segments,

background from foreground, etc.

2.2.1.1 Detection. We previously defined object detection as the action or

process of identifying the presence of a material thing that can be seen and touched. Visu-

alizing objects using a computer does not allow the ability to touch the object. Therefore,

aligning the definition with the use of image sensors gives: the extraction of information

from an image (or a sequence of) frames, processing of the information, and determining

whether the information contains a particular object and its exact location in the image [74].
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2.2.1.2 Classification. Classification is defined as the action or process of

classifying something according to shared qualities or characteristics [87]. For example,

examining an output y, say an animal, and arranging y into a particular class, say a dog,

performs one level of classification. Another example would be identifying an object through

a series of successive states until a given name is reached such as:

Object � Animate � Animal �Mammal � Dog � Labrador �
Chocolate(Brown) �Male � Name = “Palmer”.

The classification problem can be extremely long and computationally intensive in specifying

every minute detail of a particular object of interest. The problem resorts to determining

what level of classification is required and whether particular details of interest are needed

even after an object is classified (e.g., color, eye color, type, sex, size, etc.). Therefore,

feature generation, also referred to as feature extraction, must be used wisely to select

the minimum amount of features required in order to best represent that which is needed

thereby reducing computational costs and storage.

2.2.1.3 Learning/Recognition. Classification plays an important role in the

learning process which results in being able to recognize. Recognition is the action or

process of recognizing, in particular the identification of a thing or person from previous

encounters or knowledge [87]. For example, the dog, Palmer, was classified from previously

being introduced or by other means of identification. Distinctions have been made both

visually and by other information such as knowing that Palmer lives next door (i.e., if a dog

next door is a Labrador, then it is likely “Palmer”). Now the level of classification can be

extended from:

Object � . . . � Palmer

and Palmer would be considered recognized. Making these distinctions is important in

order to tackle the object detection and learning problems presented in CV. Levels of detail

associated with particular problems result in determining what algorithms are effective for

a given object and environment. Therefore, care must be taken in selecting object detection

methods; specifically, how the object is represented and what features should be used to

obtain the selected representation.
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2.2.2 Representation, Features and Detection Categories.

2.2.2.1 Representation. Yilmaz, et al. [133] provided a foundation for de-

scribing the various representations through shapes and appearances. These representation

and definitions are given in Figure 2.2.

Object Representation 

Shape 

• Point – represented by a centroid or by 
a set of points 

• Primitive Geometry – represented by a 
rectangle, ellipse, etc. 

• Silhouette & Contour – represented by 
the boundary of an object; region inside 
is the silhouette 

• Articulated Models – represented by 
body parts that are held together with 
joints 

Appearance 

• Probability Densities – represented by 
parametric (Gaussian) or non-
parametric (Parzen windows and 
histograms) densities 

• Templates – represented by simple 
geometric shapes or silhouettes 

• Active Models – represented by 
simultaneously modeling shape and 
appearance 

• Multiview Models – represented by 
encoding different views of an object 

Figure 2.2: Object representations [133].

Depending on the problem, selecting an appropriate representation provides the means for

detecting and tracking an object in an image.

2.2.2.2 Features. Features are used to represent an object in an image. For

example, in order to represent an object using points or a set of points in an image, a feature

is required for determining the location of that point or set of points.
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The features and definitions are as follows [133]:

• Color - apparent color of an object is influenced by two physical factors: 1) spectral

power distribution of the illuminant; 2) the surface reflectance properties of the object

• Edges - strong changes in image intensities defining object boundaries; less sensitive

to illumination changes

• Optical Flow - dense field of displacement vectors defining the translation of each

pixel; computed using the brightness constancy of corresponding pixels in consecutive

frames [Horn and Schunk, 1981]

• Texture - measure of the intensity variation of a surface which quantifies the properties

such as smoothness and regularity; less sensitive to illumination changes

The most popular feature for representing an object is color; however, many applications

use a combination of features [133].

2.2.2.3 Detection Categories. There are combinations of various subcate-

gories of both detection and tracking techniques. For example, a combination of background

subtraction and shape for object detection could be used while using a variant of the Kalman

Filter (KF) for tracking. Therefore, generalizations are made for components of object detec-

tion into one of the following subcategories: point-based, segmentation-based, motion-based

(background modeling), or learning-based (supervised classifiers)(see Fig. 2.3). Yilmaz, et

al. [133] specifically describe these four categories as point detectors, segmentation, back-

ground modeling, and supervised classifiers. Common object detection methods use infor-

mation in a single frame such as the point-based and segmentation-based methods. The

motion-based and learning-based detectors make use of temporal information computed

from a sequence of frames [133]. This literature review provides recent research in the four

subcategories (see Fig. 2.3).

Point Detectors: Recent Work and Applicability

Point detectors often take into account multiple attributes of their surroundings through

local patches, magnitudes and gradients, intensities, color, etc [116]. The information

about a point is contained in a descriptive vector, also called a descriptor, which is com-

monly high-dimensional (i.e., typically greater than or equal to 64 dimensions for some
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Object Detection 

Point-Based 
Detectors 

Segmentation-
Based 

Motion-Based 
(Background 

Modeling) 

Learning-Based 
(Supervised 
Classifiers) 

Figure 2.3: General object detection hierarchy.

of the more robust feature detectors). Examples of point detectors are Moravec’s interest

point detector [Moravec 1979], Harris interest point detector [Harris and Stephens 1988],

Kanade-Lucas-Tomasi (KLT) detector [Shi & Tomasi 1994], and Scale-Invariant Feature

Transform (SIFT) detector [80, 133]. More recent point detectors include the Histogram of

Oriented Gradients (HOG) [93], Gradient Location Orientation Histogram (GLOH) [88],

contrast-normalized patches [Brown, Szeliski, and Winder 2005], covariance patches or re-

gions [121], DAISY [118], and the Speeded-Up Robust Features (SURF) detector [15, 116].

Edges are found by observing “boundaries between regions” with different attributes [116].

Edge detectors are composed of filters or gradient operations that bring out the edges.

Canny and Sobel are two types of edge detectors. These detectors are not only suitable for

point detecting, but they are “well-suited to describing object boundaries and man-made

objects” for segmentation as well [116]. Given a single point location in an image, its local

surroundings are used to represent information towards detecting similar points in successive

or unrelated frames.

Many approaches for point detection use a combination of methods and/or image

processing developments. The CV community continues to expand and elaborate on one

another’s ideas to develop improved algorithms. This section explains some of the latest

developments.

Viola and Jones [124] made use of the integral image, similar to the summed area table,

to speed up processing. Others have developed new algorithms using this technique [15,121].
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The integral image eliminates the need to compute a multi-scale image pyramid reducing

initial image processing significantly.

Another method for reducing computational time includes a procedure commonly

used in Artificial Intelligence (AI) known as Principal Component Analysis (PCA). Using

an entire dataset for detection is time consuming and thus PCA is used to extract the most

effective components, the eigen components through Singular Value Decomposition (SVD),

thereby reducing the dimensionality of the data. Of course, careful selection of how many

principal components to keep is based upon user-selection or other adaptive parameters. Ke

and Sukthankar [70] applied PCA to SIFT and produced results that were more accurate

and significantly faster than the standard SIFT local descriptor.

Dalal and Triggs [93] introduced the HOG algorithm for human detection. This paved

the way for others to foster point detector development by applying various learning tech-

niques. Wijnhoven, et al. [128] developed a stochastic gradient descent method for training

datasets for object detection using HOG descriptors in order to take advantage of its sim-

plicity and good performance. Tuzel, et al. [120] use HOG descriptors for learning on Lie

Groups and detecting objects in various poses.

Developed in 2010, DAISY was inspired by SIFT [80] and GLOH [88] by using an

Expectation-Maximization (EM) algorithm “to compute dense depth and occlusion maps

from wide baseline image pairs”. DAISY’s local descriptor is developed by performing

sums of Gaussian convolutions and is more efficient computationally for dense-matching

purposes [118].

Matching several points on a flapping wing from one frame to the next can be extremely

difficult. Being able to distinguish these points, especially in the presence of blur due to high

flapping frequencies and ability to capture focused images, poses many challenges. Using

point matching techniques as described here for determining wingtip location is critical

towards the success of a Pan/Tilt Unit (PTU)/Pan/Tilt/Zoom (PTZ) CV system. SIFT

[80], SURF [15] and covariance [121] are the point detecting methods tested in Chapter IV

for the post-processing activities of determining wingtip location for a given image.

2-7



Segmentation, Recent Work and Applicability

Image segmentation aims to partition, or segment, objects or regions from the back-

ground. Szeliski [116] defines image segmentation as the task of finding groups of pixels that

“go together”. Some popular segmentation methods include: active contours, level sets,

graph-based merging, Mean Shift (MS), texture and intervening contour-based normalized

cuts, and binary Markov Random Field (MRF) solved using graph cuts [116]. Thresholding

is another simpler way of segmenting images. Thresholding segments objects in an image by

using features such as color and intensity; however, the challenge is in selecting an optimum

threshold in order to obtain objects of interest [107].

Two problems are typically addressed when developing segmentation algorithms [Shi

and Malik 2000] [133]:

1. Criteria for a good partition - measuring the goodness of an image partition

2. Method for achieving efficient partitioning - reducing computational complexity of a

good partition

The MS clustering approach uses a joint spatial and color-space approach [x, y, l, u, v]

where [x, y] is pixel coordinate and [l, u, v] is the color representation. The graph-cut ap-

proach takes the pixel of an image and partitions pixels into regions based on weighted

edges. The total weight between edges is called a cut and are typically calculated us-

ing color, brightness or texture similarity. The goal is to find partitions that minimize a

cut [133]. One form of an active contour is called snakes by its inventors (Kass, Witkin and

Terzopoulos, 1988). It is an “energy-minimizing, two-dimensional spline curve that evolves

(moves) towards image features such as strong edges” [116]. Rather than observing objects

in regions, the snakes separate regions by lines or edges. For example, the outline of a

coffee mug captured by an edge detector followed by a snake active contour would change

according to the pose of the coffee mug.

Fukunaga and Hostetler [49] proposed the MS procedure in 1975, and it re-emerged in

1995 with Cheng’s work, “Mean Shift, Mode Seeking and Clustering” [34]. Comaniciu, et

al. [34] provide a method for detecting a large variety of objects with different color/texture

patterns with the use of a metric derived from the Bhattacharyya coefficient. This is further
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developed by using an isotropic kernel for target representation and localization. Ma, et

al. [83] seek to improve upon the color-based MS tracking algorithm by integrating color and

motion cues. An adaptive approach attempts to account for large variations in pose, appear-

ance, and background color similarity. Motion cues are determined through histogramming

successive frame differences and experiments show robustness of the integration algorithm

over the traditional MS tracker. Zivkovic, et al. [140] use an ellipse and its appearance

by histogram features for object detection. Yilmaz [132] introduces the use of asymmetric

kernels to the mean shift tracking framework “to reduce the estimation bias due to a better

representation of the underlying density.”

A region merging technique of segmentation combines adjacent regions of pixels based

on average color differences and specific thresholds. This process segments the image into

pieces called superpixels and is useful for pre-processing images for faster and more robust

stereo matching, optic flow and recognition [116]. Fulkerson, et al. “identify and localize

object classes in images” using this pixel-level categorization and exceed previously pub-

lished state of the art. A method called quick shift is used for superpixel extraction, and

classification is performed using a bag-of-features approach using SIFT descriptors on re-

gions defined by superpixels [50]. Arbelaez, et al. [8] state that their contour detection and

image segmentation surpass state-of-the-art algorithms using their techniques. An exten-

sive evaluation shows that their algorithm, the globalized Probability of boundary-Oriented

Watershed Transform-Ultrametric Contour Map (gPb-OWT-UCM), outperforms the region

merging, MS, multi-scale normalized cuts and segmentation by weighted aggregation algo-

rithms.

Segmentation techniques often take more time when operating with the whole image.

However, providing a search region with these techniques locates and segments fast mov-

ing objects for tracking in real-time. The MS algorithm is one of the real-time tracking

techniques tested in Chapter IV.

Background Modeling and Optical Flow: Recent Work and Applicability

Background modeling seeks to establish a means for separating foreground pixels from

background pixels. A temporal sequence of frames is typically used to establish background

from foreground pixels and to provide some robust processes for interpreting the background.
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In a dynamic background, the attempt to establish a model is difficult, and therefore,

background modeling is most commonly used with static cameras. One might assume

that any movement in the image would be readily identifiable; however, various image

characteristics prevent the task of background subtraction (BS) and background modeling

this simple approach. Piccardi [96] provides an examination of background modeling with

the following list (from simple to complex) along with a brief summary of each:

• Running Gaussian average - based on ideally fitting a Gaussian Probability Density

Function (PDF) on the last n pixel’s values and updating using a cumulative average

with each new frame. Speed and low memory requirement are advantages of this

approach.

• Temporal median filter - use of the median value of the last n frames as the background

model. It has been argued that sub-sampling with respect to the original frame by a

factor of ten will still provide for an adequate background model. The main disad-

vantage of a median-based approach is that is computation requires a buffer with the

recent pixel values. It also does not account for a rigorous statistical description and

does not provide a deviation measure for adapting the subtraction threshold.

• Gaussian Mixture Model (GMM) - multi-valued background model able to cope with

multiple background objects; an image model providing a description of both fore-

ground and background values.

• Kernel density estimation (KDE) - an approximation of the background PDF provided

by the histogram of the most recent values classified as background values. The

histogram, as a step function, may provide poor modeling of the true, unknown PDF

so the KDE guarantees smoothness and continuity of the histogram.

• Sequential KD approximation - the mean shift (MS) vector is an effective gradient-

ascent technique able to detect main modes of the true PDF directly from the sample

data with a minimum set of assumptions. The sequential KD approximation looks to

make use of this by finding a low mean integrated squared error.

• Co-occurrence of image variations - exploitation of spatial co-occurrence of image

variations. Neighboring blocks of pixels belonging to the background should experience

2-10



similar variations over time (however, false detections occur with borders of distinct

background objects). Instead of working with pixel resolution, blocks of N x N pixels

are treated as an N2-component vector trading off resolution with better speed and

stability. The advantage is that the model is based on variations making the model

more robust to illumination changes.

• Eigenbackgrounds - based on an eigenvalue decomposition, but applied to the whole

image instead of blocks. Avoids the tiling effect of block partitioning. It can be subject

to variations improving its efficiency; however, there is uncertainty in what should be

part of the initial images and model updating over time.

In addition, Piccardi [96] provides methods and performance analysis in Table 2.1.

The speed and memory column variables of Table 2.1 are described as follows: ns is the

number of samples (ns is sub-sampled from the full sample set, n), m is the number of

Gaussian distributions used; m + 1 is the number of modes of the approximated PDF,

(8n/N2) is where n accounts for searching the nearest neighbors amongst the n variations

and N2 spreads the cost over the pixels in a block; (nK/N2) is where n is the number of

variations in the training model and K their dimension, and M is the number of the best

eigenvectors.

Table 2.1: BS methods and performance analysis [96].

Method Speed Memory Accuracy

Running Gaussian average O(1) O(1) Low/Medium

Temporal median filter O(ns) O(ns) Low/Medium

Mixture of Gaussians O(m) O(m) High

Kernel density estimation (KDE) O(n) O(n) High

Sequential KD approximation O(m+ 1) O(m) Medium/High

Co-occurrence of image variations O(8n/N2) O(nK/N2) Medium

Eigenbackgrounds O(M) O(n) Medium

Optical flow is “the distribution of apparent velocities of movement of brightness

patterns in an image”. Pixel velocity is represented by two components and are determined

by pixel content change. The rate of change of image brightness and smoothness are used

as constraints [60]. This method performs motion analysis per pixel [116].
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Zivkovic [139] uses a pixel-level approach of BS along with an efficient adaptive algo-

rithm using Gaussian mixture probability density. GMM parameters and number of com-

ponents of the mixture are constantly updated for each pixel. Camplani and Salgado [28]

use GMM BS for object detection in a multi-camera scheme. Adaptation strategies linked

to processing requirements, scene activity, and available resources are used and process-

ing requirements are dynamically tuned to achieve desired results. Vijverberg, et al. [123]

propose the use of motion vectors to develop a consistent motion mask (CMM) combined

with a background segmentation technique. They also develop a Block-Target Association

(BTA) algorithm to assign blocks of pixels to targets for tracking occluded areas. State-

of-the-art target detection is not achieved, but reduced resource constraints and acceptable

performance is attained. “Motion vectors provide good features for target detection and

tracking with limited additional costs” [123]. Bhaskar, et al. [18] propose using a GMM to

cope with multi-modal background distributions. Cluster GMM gives better performance

than the pixel-level GMM and so the authors pursue cluster GMM-based symmetric alpha

stable (Cluster BS-SαS) distributions. “Cluster BS reduces clutter while SαS distributions

help with handling the dynamic illumination changes in a scene which models moving back-

grounds better due to a heavy tail” [18]. Experiments show that Cluster BS-SαS maximizes

the proportion of correctly classified pixels and minimizes misclassification compared to the

pixel-based GMM. Another BS scheme uses a combination of the output of all sensors to

obtain a more accurate and more robust estimate of moving and stationary pixels. Entropy

of separation helps determine thresholding parameters. Bondzulic, et al. [24] report that,

like other BS algorithms, their algorithm is susceptible to: 1) poor performance when noisy

or low-contrast imagery is available from both sensor streams; 2) excessive sensitivity to

platform motion or general background motion; and 3) low sensitivity to small targets in

the video frame.

Bouget [25] uses the Lucas-Kanade optical flow equation with an image pyramid rep-

resentation to find a pixel’s location via a pixel displacement vector. Large pixel motions

are achieved while keeping the integration window “relatively small”. Bauer, et al. [14] use

the local Lucas-Kanade method with the global Horn-Schunk technique to produce a dense

and robust optical flow field. Baker, et al. [12, 13] propose a new set of “benchmarks and

evaluation methods for the next generation optical flow algorithms” by contributing data to

2-12



test different aspects of optical flow algorithms. These include (1) sequences with non-rigid

motion where the ground-truth flow id determined by tracking hidden fluorescent texture,

(2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error,

and (4) modified stereo sequences of static scenes. Sun, et al. [115] use the this data to dis-

cover that “classical” flow formulations perform well with modern optimization techniques

such as median filtering. They find that applying a median filter to intermediate flow values

during incremental estimation and warping produces the most significant improvements, the

heuristic improves the accuracy while increasing the energy of the objective function, and

information about image structure and flow boundaries can be incorporated into a weighted

version of the non-local term to prevent over-smoothing across boundaries. Liu [78] presents

Human-Assisted Motion Annotation to obtain more accurate motion estimates than auto-

mated methods, Motion Magnification useful for “visualizing and measuring small, subtle

deformation of objects of interest”, Analysis of Contour Motions allowing for completion of

contours, and SIFT flow to establish correspondence between scenes. Jin-Jie, et al. [63] pro-

pose using color images in optical flow, specifically the hue, saturation, and intensity (HSI)

or hue, saturation, and value (HSV) color space, along with a weighted matrix to obtain a

vector field. It is asserted that their proposed method is superior to the traditional optical

flow methods supported via experimental results.

Background modeling and optical flow methods are quite popular. The GMM pro-

posed by Zivkovic [139] provides a useful tool for determining motion within a static scene.

This method is used to perform real-time, automatic object detection when a UAS moves

through the center of the image. The Pyramidal Lucas-Kanade (PyrLK) optical flow tech-

nique is tested in Chapter IV and then is used for real-time tracking in Chapters V-VI of

this research.

Supervised Classifiers, Recent Work and Applicability

More recent developments in feature tracking use learning algorithms with classifiers

that recognize objects in an image [116]. Supervised classifiers refer to using learning algo-

rithms that have the presence of an outcome variable to guide the learning process to train

classifiers [58]. Recent work is described below.
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• Neural Networks

El-Bakry, et al. [42] use feature-based classification and object detection using efficient

neural networks. The purpose is to reduce computational steps required during the

search process. Focus is primarily on face detection and recognition. First, a face must

be detected in an image, and then it can be recognized. Weight normalization versus

sub-image normalization requires fewer computational steps and is done off-line before

the search process with neural networks. Their work also goes to the length of stating

that incorrect equations have been used in a previous work regarding the multilayer

peceptron (MLP) algorithm for fast face detection specifically for cross-correlation

between the input image and the weights of the neural networks. Faster face detection

is reported by applying cross-correlation in the frequency domain between the probe

image and the normalized input weights of the neural networks.

• Artificial Neural Network (ANN), Support Vector Machines (SVM), and Naive Bayes

Classifier (NBC)

ANNs, SVMs, and Bayesian statistics and Dempster-Shafer theory of evidence are

referred to as different kinds of classification and inference methods. Classification

rates for all of the methods vary given different datasets and tuning of each algorithm.

Starzacher and Rinner [111] demonstrate effective feature fusion using ANNs, SVMs,

and NBCs for select scenarios and tuning on an embedded test platform. Given ap-

propriate parameters and addition of heterogeneous features and decisions, increased

classification rates are possible.

• AdaBoost Learning

The AdaBoost-based algorithm is considered one of the most efficient algorithms in

object detection where boosting is the most widely used ensemble method [74] [102].

The AdaBoost algorithm generates hypotheses by successively re-weighting the train-

ing examples [102]. AdaBoost utilizes a small number of weak-classifiers, which are

then used to construct cascades of strong classifiers. The combination of the strong

classifiers in a cascade results in high accuracy rates and computational efficiency. The

weak classifiers most commonly used with AdaBoost are Haar-like features; fixed-size

images which contain a small number of black and white rectangles. Kyrkou and

Theocharides [74] incorporate the AdaBoost-based algorithm along with Haar-like
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features on a Field Programmable Gate Array (FPGA) to detect objects in large im-

ages (up to 1024x768 pixels) with frame-rates that can vary between 64− 139 frames

per second (fps) for various applications.

• Stochastic Gradient Descent Learning

Wijnhoven, et al. [128] use the appearance and spatial information of the HOG clas-

sifier for detection. The sliding window classifier presented in [93] is considered here

due to its simplicity and good performance with respect to pedestrian detection. In

each image, positions are classified as either object or background. It is shown in this

work that there are speedups of two to three orders of magnitude in computation time

in using the proposed Stochastic Gradient Descent (SGD) learning method.

• Learning Lie Groups

Tuzel, et al. [120] present a model that can accurately detect objects in various poses

through learning the motion model on the Lie Algebra. The appearance of the object

is described by several orientation histograms. A binary tree model is used against a

training set for describing motion vectors on the Lie Algebra. The motion group is

learned and reduces estimation errors with several experiments demonstrating superior

performance.

• P-N Learning

Kalal, et al. [67] present a novel algorithm using P-N learning which refers to a learning

process guided by positive (P) and negative (N) constraints which restrict the labeling

of the un-labeled set. It is demonstrated that “an accurate object detector can be

learned from a single example and an un-labeled video sequence.” The learning runs

on-line and has been compared with relevant tracking algorithms for which they state

that their algorithm achieves state of the art.

2.3 CV Object Tracking

2.3.1 Tracking. Object tracking is easily confused with object detection because

of its reliance upon the other. Detection is required in order to track something. The term

track means “to follow the course or trail of (someone or something), typically in order to

find them or note their location at various points” [87]. The following definition is used:
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Object Tracking - to follow the course or trail of a material thing that can be
seen and touched, typically in order to find its location at various points

Tracking is often associated with radar and sonar in military applications. CV-related

applications are becoming ubiquitous with the ability to detect and classify objects in im-

ages with increased accuracy. After detection of an object (i.e., the information obtained

using the representations and features described previously), measurements are taken and

predictions are made based upon tracking algorithms. These object tracking algorithms

are broken down into three major categories: point tracking, kernel tracking and silhouette

tracking (see Fig. 2.4) [133]. Definitions for the three sub-categorizations of object tracking

are presented in Table 2.2.

Object 
Tracking 

Point 
Tracking 

Deterministic 

Probabilistic 
(statistical) 

Kernel 
Tracking 

Multi-view 
Based 

View 
Subspace 

Classifier 
Template 

Based 

Silhouette 
Tracking 

Contour 
Evolution 

State Space 
Methods 

Direct 
Minimization 

Variational 
Approach 

Heuristic 
Approach 

Shape 
Matching 

Figure 2.4: General object tracking hierarchy.

Object tracking algorithms are typically used to filter, predict or smooth the location

of the object. Applying the KF is a prime example of filtering the object location based on

measured and predicted locations.
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Table 2.2: Object Tracking Category Definitions
Point Tracking Objects detected in consecutive frames are represented by

points - requires detection of object in every frame
Kernel Tracking Refers to the object shape and appearance - usually in the

form of parametric transformation such as translation, rota-
tion, and affine

Silhouette Tracking Performed by estimating the object region in each frame -
uses information encoded inside the object region

2.4 Computer Vision (CV) Using Multiple Cameras

2.4.1 Target/Sensor Cases. The sensors in a CV system deal specifically with

imaging sensors, however, other sensors, such as laser, radar, and sonar, may be considered

when concerned with an object detection and tracking problem. Similarly, motion and

object identification are required in order to gain structural characteristics with a PTU

system. Below is a list of cases to consider when determining object detection and tracking

for a given problem [36]:

• Single target, single sensor

• Single target, multiple sensors

• Multiple targets, multiple sensors

The methods covered in this background deal with two of the above cases. In devel-

oping a PTU or PTZ CV system for measuring structural characteristics of an UAS, two

cases apply: single target, single sensor or single target, multiple sensors. Sensors in a CV

system are imaging sensors. Multiple cameras are dealt with in this section and specif-

ically, combining image sensors to better interpret or acquire an object’s position is the

focus. Combining data from many sensors deals with the area of data fusion and techniques

described in the following section.

2.4.2 Data Fusion Core Techniques. Though data fusion is a broad, complex

topic, in essence it is “combining data to refine state estimates and predictions” [113]. Ac-

curate measurements are required to obtain useful data for processing and understanding

and data fusion provides methods for reducing noise and error in sensing devices. Appendix

A contains a thorough background on fusion and fusion models. Many of the methods used
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for CV object tracking also employ similar methods such as the KF. Fusion methods are ex-

plored here to refine estimates based on multiple sensor detection and tracking, specifically,

to gain better correspondence estimates between images during post-processing activities.

The core techniques used in object tracking vary from using linear-quadratic estima-

tion to probabilistic methods. These are as follows [36]:

• Kalman Filter

• Probabilistic Data Association

• Joint Probabilisitic Data Association

• Multiple Hypothesis Testing

There are generally four types of tracking scenarios for motion and error measurement

of the model:

1. Linear, Gaussian

2. Nonlinear, Gaussian

3. Linear, non-Gaussian

4. Nonlinear, non-Gaussian

The KF assumes a linear dynamical system with Gaussian distributions for error and

measurement terms. The KF is often referred to as a linear-quadratic estimation problem.

Multiple variants of the KF include its nonlinear counterparts such as the Extended Kalman

Filter (EKF) which uses a Taylor series expansion for linearization, and the Unscented

Kalman Filter (UKF) which uses a deterministic sampling approach to improve upon the

means and covariances of the underlying system. The Particle Filter (PF) generalizes the KF

by providing the optimal Bayesian estimate through the use of particles. These particles

are randomly placed to provide a distribution of the space. Probabilistic Data Associa-

tion (PDA) is used in multi-sensor, single target tracking and Joint Probabilistic Data As-

sociation (JPDA) and Multiple Hypothesis Testing (MHT) are used in multi-sensor, multi-

target tracking. These methods use probabilistic approaches of combining or fusing data.

Similar methods are actually used to interpret the data before fusion as well.
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Single sensors have their weaknesses and one of them is the lack of redundancy in case

of failure. Combining two or more heterogeneous sensors can be advantageous for multiple

reasons. One of them already mentioned is redundancy and another reason includes using

each sensor’s accuracy to give a more accurate, more complete result [44,71].

See Appendix A for more information on data fusion and data fusion models.

2.4.3 Core Techniques Explored through Recent Work. The KF and its variants

were discussed in the previous section. This section provides more details of filters, some of

their applications, and other methods relating to the KF and PF.

Kirchmaier, et al. [71] use Particle Swarm Optimization (PSO) to fuse audio data with

Continuously Adaptive Mean Shift (CAMShift) for directional information and position

in performing three-dimensional (3D) object tracking. The PSO tracking system has the

advantage that a movement prediction can be considered, and the tracking will not fail

with abrupt movements, as the particles not belonging to this subset provide other possible

locations.

Gadsden, et al. [51] propose using the Smooth Variable Structure Filter (SVSF)

[Habibi, 2007] for fusion and object tracking. An Interacting Multiple Model Filter (IMMF)

combined with the SVSF estimation strategy is presented as an effective method for non-

linear target tracking.

The algorithm developed in [105] adaptively selects an appropriate filtering technique

such as the KF and different types of nonlinear filters such as the EKF, the UKF, and the

PF. It does so based upon a sliding window of the Normalized Innovation Squared (NIS).

A measure of filter performance is shown to be sufficient to adaptively switch between

algorithms based upon the current state of the system. Adaptively selecting appropriate

filtering methods reduces computational costs and root mean square error [105].

Bae, et al. [11] introduce a tracking algorithm based on the morphological opera-

tion and dynamic filtering called the Highest Probability Data Association Filter. High

computational costs are often associated with PDA, JPDA, and MHT approaches due to

their consideration of all possible events. This method is used for real-time, cluttered en-

vironments. An advantage is the ability to retrieve temporarily hidden targets using their
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track-termination and re-detect method. One limitation of their method is that a long-term

period of a hidden target cannot be retrieved.

The KF can be applied to all of the above cases, however, significant degradation in

performance occurs for those cases that are nonlinear, non-Gaussian. The PF has the ability

to model non-Gaussian, nonlinear distributions more effectively than the KF [94, 95, 101].

But the PF is most notably burdened with re-sampling of particles as well as particle

degeneracy.

Nelson and Roufarshbaf [94] use a PF-like approach by approximating the Bayesian

inference solution using a tree-search approach for target tracking. All possible sequences

of target states are mapped to a path in a search tree and each path represents a possible

sequence of target states. The objective is to avoid the problems of degeneracy, resampling

and elmination of possible likely paths as experienced with a PF.

Rincon, et al. [101] propose a double-tracking strategy using PF and UKF techniques

for reliability, position and velocity measurements. The JPDA method estimates target

player positions on a football field, and makes final decisions based upon all of the informa-

tion [101]. Joint Probabilistic Data Association (JPDA) uses color and motion probabilities

to generate a Color Probability Image (CPI). A GMM generates each object’s distribution

and the importance function acts as a mask by extracting the main colors of the object

and detecting them in the full image or in the zone surrounding the estimated position.

The multi-camera situation uses the UKF solves for a difficult situation, such as occlusions

and noise. The UKF is used against the plan in which all of the measurements from each

camera are mapped. The plan is a map of the football field, and a homographic matrix

for each camera is used to transform points from an image to the coordinate system of the

plan. A height estimator is also used with respect to the number of pixels that represent

the average height of a person at a location in the image. The main contributions include

the computation complexity reduction through the use of an integral image and the CPI

mask, the extension of the UKF to multi-camera applications, and the feedback procedure,

which increases the robustness and accuracy of both tracking systems.

Lampinen, et al. [110] introduce the Rao-Blackwellized PF for multi-target tracking.

They first assume that “finite sets of motion models can adequately address target tracking
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issues” and select the IMMF due to its performance. Variable rate techniques allow for

changes in motion models. The kinematic state remains fixed for a period, but not neces-

sarily the measurement period, and different types of motion are allowed. Adaptive segment

lengths are determined via the measurements along with their durations.

Pei, et al. [95] use color information and PCA features to detect an object or objects.

Tracking performance is unstable only using color information and using multiple features

increases tracking efficiency [95]. Specifically, the PF is tuned to the multiple features with

a likelihood measurement. Experimental results show the efficiency of the algorithm which

reduces the effects of illumination and effects of color properties between foreground and

background [95].

Mohammadi, et al. [90] present the problem of tracking moving objects in an environ-

ment observed by multiple, un-calibrated cameras with overlapping Field of Views (FOVs).

Adequate coverage is addressed, in addition to observing critical areas, to provide robust-

ness against occlusion. Understanding an object’s history of actions in an environment is

necessary to establish correspondences between different views. Technical problems in mul-

tiple cameras include [90]: installation, calibration, object matching, switching, data fusion,

and occlusion handling.

2.4.4 PTU/PTZ Applications. Contributions using PTZ cameras continue to

increase as real-time object detection and tracking algorithms improve. Several works dis-

cuss efficiently tracking and maintaining an object of interest in real-time assuming camera

motion. Camera motion can either be undesired, requiring image stabilization [109], or

desired, such as for tracking or building a background mosaic [17]. The principle involved is

the same: finding the transform from an image to a reference [33]. Transforms are typically

found between frames by fitting or matching point correspondences [29], phase correla-

tion [10] or block matching [69]. An alternate technique is to use a projective texture as

a reference [33]. The use of the known camera motion is surprisingly not used more often.

Though the exact model is developed [68], often simplified models are used, such as the

small angle approximation [92]. Algorithms that do not require known camera motion have

the advantage that they can be used with hand-controlled cameras or other moving mounts.

However, estimating motion comes at the cost of increased error, increased processing time,
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the object appearing smaller in the image (because the background must be viewed) and

requiring texture, or the lack of texture, on the background and foreground.

An alternative to compensating for tracking the camera’s motion is to use one or

more static cameras to direct the moving camera. This has the advantage that moving

objects are simpler to detect with a static camera. Applications include controlling a remote

vehicle [32, 84] or following sporting events [53]. The cost of adding a static camera or

cameras is that the FOV must cover the range of the moving camera for this alternative to

be effective increasing setup time and calibration. However, stationary, smart cameras can

be used to self-calibrate with fast setup and reasonable accuracy [108]. The work presented

here uses a single pan/tilt camera to track a moving object.

As processing power has developed, new and existing tools have been applied in real-

time, and have been used for both tracking an object within a static camera’s view or

tracking an object with a moving camera.

Heuristics can be used to design detectors for increased accuracy or speed. General-

purpose feature descriptors can be used with training data, tuning or selection for a wide

variety of objects. Some specific applications using a pan/tilt camera include tracking the

color on a ball [5, 54], human positioning/tracking [59, 72, 131], faces [4, 5, 72], and moving

vehicles/ships [4, 29, 76, 138]. Various methods are used in these applications for detecting

objects such as MS and its variant CAMShift [54, 59, 72, 76, 138], background modeling

using a GMM [59,76], skin color segmentation [5], training/learning an object’s appearance

using PCA and sum of squared difference (SSD) [4], and template-based detection using

SURF [29]. The general-purpose methods often require selection, a pre-defined capture area

(i.e., alert zone), training, and/or tuning. The cost of using application specific algorithms

include decreased system versatility, increased setup/calibration time, and limitations on

feature changes such as illumination, object pose, shape, size, etc.

Features can also be non-specific, such as motion-based features, which are useful

in general-purpose applications. General-purpose (motion-based) tracking allows for more

flexibility in handling multi-purpose problems and allows tracking of an object of any size

or shape [92]. This is well-suited for a metrology system capable of tracking a multitude

of objects without having the concern of training, or changes in illumination or appear-
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ance associated with application specific methods. Short duration/sudden events are easily

accommodated. Operator delay is removed since object selection and re-selection are not

required.

A single PTZ camera, multiple PTZ cameras, and a combination of static camera(s)

with PTZ camera(s) have been broadly categorized into three areas of research: 1) calibra-

tion, 2) tracking, and 3) 3D localization. These categories are shown with various techniques

in Table 2.3. Note that each are dependent upon each other, 3D localization requires track-

ing and tracking assumes a calibrated PTZ system. Table 2.3 provides a sampling of the

variety of techniques in the area of CV PTZ cameras.

Table 2.3: Pan/tilt/zoom camera applications.
PTZ Camera Multiple

PTZ Cam-
eras

Static
Camera(s)
& PTZ
Camera(s)

Calibration
instrinsics as a function of zoom [129]
extrinsics as a function of rotation center [31]
using SURF features to create a mosaic image [134]
using SIFT features with displacement constraint [61]
using SIFT features to create a mosaic image [136]
using Givens rotations and an image pair [65]
using geometric restrictions (motion re-calibration) [117]
intrinsics and extrinsics using corners and Nelder-
Mead simplex optimization

[30]

using bundle adjustment [64]
using statistically optimal error function [65]

Tracking
using CAMShift with background/foreground proper-
ties

[76]

using CAMShift with a Kalman Filter [54] [138] [5] [98]
using CAMShift and window differencing technique [135]
using region covariance feature matching [137]
using background compensation and 1-D feature
matching/outlier rejection

[114]

using background subtraction (classify post-
processing)

[59]

using background subtraction with mosaic [10] [69] [136]
using upper body and face detector [72]
using complementary features with particle filtering [4] [39]
using Multiple Hypothesis Testing [27]
using planar structure from motion [119]

3D Localization
localize using reactive zoom*; perspective and affine [119]
localize using LUT for rectification transformations [73]
localize using a mosaic [130] [125] [134]

It is sought to compare related work using standard system characteristics such as

image resolution and frame-rate. In addition, many CV algorithms require training and
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design for occlusion handling. Therefore, Table 2.4 provides a comparison of related work

by resolution, frame-rate, training and occlusion handling of related PTZ systems.

Table 2.4: Related work summary of pan/tilt system resolution and operating frame-rate.

Ref. Resolution frame-rate Training Occlusion
(width x height) (pan/tilt delay) Handling

[17] 320x240 11 fps (unknown) No No

[33] Not available 22 fps (25 ms) Yes No

[29] 600 x 800 ∼30 fps (unknown) Yes Partial

[10] Not available 8 fps (unknown) No No

[69] 320 x 240 5 fps (unknown) Yes No

[92] Not available unknown (unknown) No Partial

[98] 320 x 240 Not available No Partial

[131] 640 x 480 30 fps (unknown) No No

[4] 1024 x 768 20-25 fps (∼65 msa) Yes Full

[138] 320 x 240 25 fps (unknown) No Partial

[76] 768 x 576 25 fps (unknown) No Partial

[54] 320 x 240 10 fps (unknown) No Partial

[72] 352 x 255 20-25 fps (100 ms) No Partial

[5] Not available unknown (unknown) No Partial

aAkhloufi [4] performed parallelized CV-tracking; delay based on the same pan/tilt model used in this
research

2.5 Summary

This background provided an overview of object detection, object tracking, CV with

multiple cameras, and PTU/PTZ applications . A basis is formed for understanding these

activities, what methods are presently available, and what challenges may be encountered.

The PTZ applications, tracking and multiple cameras reviewed in this background

form a basis for further work in developing a PTZ CV system for performing state mea-

surements of an in-flight, flapping UAS. This research furthers Magree’s work [85] by

incorporating CV techniques to automatically track a UAS, determine its 3D position, and

to command a desired focal length for obtaining high-resolution, high frame-rate images.

The common CV object detection techniques include MS, optical flow, SIFT, SURF,

and various forms of background subtraction. The data fusion technique commonly used is

the KF. Therefore, these CV object detection techniques are explored in Chapter IV, and

the KF is implemented as part of the work described in Chapters V and VI.
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III. Design Considerations

This chapter presents the design considerations of the Computer Vision (CV)

Pan/Tilt/Zoom (PTZ) system. First, a description is provided of the equipment and soft-

ware used for this work. This is followed by the assumptions made for this work. Lastly,

the objectives and exit criteria are provided as a foundation for the remaining chapters.

3.1 Research Platform, Devices, and Software

This section details the software and devices used to develop the CV tracking and

measurement system.

3.1.1 Hardware. A single computer, Dell M6600 Precision (see Fig. 3.1) is used

to control the Pan/Tilt Units (PTUs) and cameras. Table 3.1 provides the computer spec-

ifications.

Table 3.1: Computer Specifications

Manufacturer: Dell c©

Model: M6600 Precision

Processor: Intel R©CoreTM

i7-2820QM
@ 2.30 GHz

Installed memory (RAM): 16.0 GB

Graphics Card: NVIDIA
Quadro 4000M

Dedicated Graphics Mem-
ory:

2.0 GB RAM

Processor Cores: 4

System type: Windows 7, 64-bit
Operating System

Figure 3.1: Dell M6600 Precision
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The PTU specifications are listed in Table 3.2. Figure 3.2 shows an image of the PTU.

Table 3.2: PTU Specifications
Units: 2

Manufacturer: FLIR R© Systems, Inc. c©

Model: PTU-D46-17

Max Payload Weight (nominal): 6 lbs

Weight: 3 lbs (not including 8oz controller)

Position Resolution (◦)a: 0.05143 (1/2 step), 0.0123 (1/8 step)

Max/Min Pan Speed (◦/sec): 300 / 0.0123

Max/Min Tilt Speed (◦/sec): 300 / 0.0123

Pan Range (◦): ±180

Tilt Range (◦): +31/-80

Height (in) 5.2

Operating Voltage (VDC): 9-30

Operating Temperature (◦C): -20 to +60

aPan-tilts support 1/2, 1/4, and 1/8 microstep modes as well as autostep mode, all software configurable.
Quoted resolutions are for 1/8 step mode. Firmware default is 1/2 step. Torque and speeds are somewhat
reduced at 1/4 and 1/8 step modes.

Figure 3.2: PTU-D46-17

The specifications for the camera are listed in Table 3.3. Figure 3.3 shows an image of the

cameras used for the PTU CV system.
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Table 3.3: Camera Specifications
Units: 2

Manufacturer: PointGrey Research, Inc. c©

Product Name: Flea R©3 USB 3.0

Model Number: FL3-U3-13S2C/M-CSa

Imaging Sensor: Sony IMX035 CMOS, 1/3”, Mono/Color Rolling Shutter

Max Resolution: 1328x1048 (1.3 Megapixels)

Max frame-rate: 120 frames per second (fps)

Pixel Size: 3.63µm

Transfer Rate: 5 Gbit/sec

Digital Interface: USB 3.0

a“C/M” indicates both color and monochrome sensor options are available for this model number.

Figure 3.3: Flea 3 USB 3.0 Camera

Attached to the cameras are lenses specified in Table 3.4 and shown in Fig. 3.4.
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Table 3.4: Lens Specifications

Units: 2

Manufacturer: Fujinon - FU-
JIFILM Hold-
ings America
Corporation c©

Model: LENS-30F2-
V80CS

Focal Length: 2.8 ∼ 8mm

Angle of View (H×V ) :
WIDE

100◦00′ × 73◦45′

Angle of View (H×V ) :
TELE

35◦03′ × 26◦18′

Operation: Manual zoom, fo-
cus and iris

Iris Range: F1.2 ∼ Close

Figure 3.4: Fujinon 2.8 ∼ 8mm vari-
focal lens.

3.1.2 Lighting. Two sets of lighting were used. The laboratory, where the com-

mercial photogrammetry system was used, consisted of a 3 x 3 pattern of fluorescent lights

and 6 bays of high performance lights arraigned in a 2, 1, 1, 2, configuration. These high

performance lights have a luminance of ∼ 28, 000 lumens for ±90◦ (see Fig. 3.5).

Figure 3.5: High performance lights.

For the portable setup outside the laboratory, the lighting used consisted of two Bescor

Video Accessories Ltd. LED-500, dimmable studio lights (see Fig. 3.6).

3.1.3 Software. The C++ compiler and program development environment used

is Microsoft Visual Studio 2010. The CV Application Programming Interface (API) is an

open BSD-licensed Software Development Kit (SDK) called OpenCV. Point Grey Research,
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Figure 3.6: Bescor LED-500 dimmable studio light kit.

Inc. uses their own API called FlyCapture 2.0. An SDK is also provided by NVIDIA R©TM

in order to take advantage of parallel computing and the Graphics Processing Unit (GPU).

This takes form in the Compute Unified Device Architecture (CUDA) toolkit. The PTU is

controlled by another API provided by FLIR Systems, Inc. Software components are listed

in Table 3.5.

Table 3.5: PTU CV Software Components

Windows edition: Windows 7 Professional

Compiler: Microsoft Visual Studio 2010

CV API: OpenCV (opencv.willowgarage.com)

Camera API: FlyCapture2 (www.ptgrey.com)

NVIDIA GPU API: CUDA Toolkit 4.2 (www.nvidia.com)

PTU API: cpi-v1.09.23 (www.flir.com)
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3.2 Assumptions

There are many aspects involved in developing a portable, application-based system

utilizing CV PTZ cameras. Several assumptions are made concerning the test subject and

the environment, and several given and assumptions are made concerning the design of the

PTZ camera system. Many of the given for the PTZ camera system are made based upon

the research platform, devices, and software used for this research (see Sec. 3.1).

First, here are some assumptions made about the test subject:

• test subject size ranges between 75-475 mm

• test subject exterior is non-reflective and has texture or patterns that can be used

with CV algorithms

• test subject has known geometry or model points that can be used for pose analysis

• test subject is unknown to the CV PTZ system

• test subject is capable of moving with 6 Degrees of Freedom (DOF)

• test subject flight dynamics are capable of being modeled (i.e., able to use Kalman

filtering or other filtering methods for improved tracking)

• test subject is capable of being fitted with retro-reflective markers for tracking using

a commercial photogrammetry system

• test subject may be flown in the area necessary for obtaining focused, high-resolution

images

Next, here are some assumptions made about the environment:

• environment is a 7.6 m x 7.6 m x 2.4 m room

• environment has sufficient lighting for high frame-rate cameras to acquire images for

feature-based matching

• environment contains a system for recording truth data of a test subject capable of 6

DOF movement

• environment is static during testing (i.e., no large movements besides the test subject)

Lastly, here are some assumptions made about the PTZ camera system:
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• PTZ camera system has two cameras for tracking the test subject

• PTZ camera system uses digital zoom versus mechanical zoom

• PTZ camera system during digital zoom operation does not go below each camera’s

focal length or beyond six times the camera’s focal length

• PTZ camera system allows each camera to zoom independently according to the test

subject position to a desired zoom setting

• PTZ camera system tracks a fully visible test subject (i.e., the CV algorithm does not

require occlusion handling development)

• PTZ camera system is capable of capturing the test subject upon entrance into each

camera’s Field of View (FOV)

• PTZ camera system should be able to process images in less computational time than

that required by the PTU

• PTZ camera system allows for easy setup in a variety of locations (not during test)

3.3 Objectives/Exit Criteria

The desire is to have a system capable of performing state-of-the-art videogramme-

try of an Unmanned Aircraft System (UAS). Keeping this in mind along with given and

assumptions, the system should be capable of fulfilling a given test scenario using a test

subject. Visually tracking the test subject for ≥ 10 seconds and comparing it to truth data

is considered fulfillment of a given test scenario. The operations of the test scenario, their

designed objectives, and exit criteria are listed in Table 3.6.

The test scenario in Table 3.6 was designed to show fulfillment of PTZ operations

with each camera while tracking a test subject. Specifics for fulfillment of the exit criteria

are provided in more detail based on the given and assumptions and the desire to design

a system capable of capturing images suitable for photogrammetry. For each test subject

operation, the CV PTZ camera system results must be compared to truth data to meet the

exit criteria.
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Table 3.6: Tracking system test scenario objectives.
test subject Operation Objective Exit Criteria a

Flying towards cameras tests digital
zooming out

Each camera zooms out and falls within
specified thresholds

Flying away from cameras tests digital
zooming in

Each camera zooms in and falls within
specified thresholds

Flying horizontally from left
to right or right to left

tests move-
ment of pan

Each camera pans and continues to
track the test subject

Flying vertically from ground
towards the ceiling or vice
versa

tests move-
ment of tilt

Each camera tilts and continues to
track the test subject

Combining three of the above
listed movementsb

tests a combi-
nation of PTZ

Each camera pans, tilts, and zooms and
continues to track the test subject

aComparing the CV PTZ camera system to truth data is required for accomplishment of exit criteria.
bThe test scenario could be fulfilled by moving the test subject in a circular pattern such that the pan,

tilt, and zoom operations are required for each camera.

3.3.1 Each camera zooms in/out and falls within specified thresholds. The camera’s

focal length, f , is considered THE minimum focal length. Therefore, digital zoom operations

do not go below this value and should not be taken into consideration when evaluating exit

criteria. The rate at which the camera zooms must be sufficient to maintain a lower and

upper threshold of ±20% over an interval ≥ 10 seconds.

3.3.2 Each camera pans and continues to track the test subject. Measuring pan

movement > ±10◦ while visually tracking a test subject over an interval ≥ 10 seconds is

sufficient to meet the objective and exit criteria.

3.3.3 Each camera tilts and continues to track the test subject. Measuring tilt

movement > ±5◦ while visually tracking a test subject over an interval ≥ 10 seconds is

sufficient to meet the objective and exit criteria.

3.3.4 Each camera pans/tilts/zooms and continues to track the test subject. Ful-

filling the previous four objectives over an interval of ≥ 10 seconds while visually tracking

the test subject fulfills the objective and exit criteria.

3.3.5 Considered Objectives (not as part of the exit criteria). Other objectives

considered during this research include:
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• Processing the CV algorithm should be greater than 30 fps in order to provide the

PTU ample time for processing and executing commands,

• Digital zoom should be based on the distance of the test subject from the camera,

• Incorporation of parallel-processing and GPU-based algorithms,

• Development of a state-of-the-art PTZ camera system capable of tracking any UAS

or moving object faster than any other general-purpose, CV PTZ system,

• Development of a versatile, parallel implementation platform, capable of examining

the performance of other CV algorithms, and

• Design of an easy setup, only requiring a calibration board, enabling a versatile,

portable CV PTZ system.

The United States Air Force (USAF) Flight Plan [3] states that Small Unmanned

Aircraft Systems (SUASs) are less than 20 lbs. The design considerations are suitable for

vehicles less than 20 lbs, but are not suitable for vehicles unable to fly within the given

environment. This allows for the smaller, flapping-wing UASs that are typically 150 mm

or less in dimension and weigh no more than 90 g [7]. In addition, closed-loop control and

wings are being developed for these UASs [37,77]; however, larger, flapping-wing UASs will

likely be required for initial implementation to accommodate the electronics and actuating

devices. The assumptions laid out in this chapter are suitable for these smaller, flapping-

wing UAS specifications, in addition to accommodating larger, flapping-wing UASs capable

of flying within the specified environment.
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IV. Selection of a Computer Vision Tracking Technique

4.1 Overview

This chapter compares algorithms to determine object detection and tracking algo-

rithms that best track a moving object using a Pan/Tilt Unit (PTU) camera in a static

and dynamic background. The selected Computer Vision (CV) algorithms compared in this

chapter are the trained Scale-Invariant Feature Transform (SIFT) [80], Speeded-Up Robust

Features (SURF) [15], and covariance methods, a Kernel object tracker based on the Mean

Shift (MS) algorithm [35], the Gaussian Mixture Model (GMM) [139] and the Pyramidal

Lucas-Kanade (PyrLK) optical flow method [25]. The matching algorithm used in this work

for the trained feature generation algorithms, SIFT and SURF, is the Fast Library for Ap-

proximate Nearest Neighbors (FLANN) [91]. Initial testing is performed on a sequence of

images using a stationary camera. Further testing is performed on a sequence of images

such that the PTU camera is moving in order to capture the moving object. Comparisons

are made based upon accuracy, speed and memory.

Many algorithms exist for detecting and tracking objects, and the field continues to

grow and increase in both complexity and speed. These algorithms were chosen based on

availability, programmability and popularity. Advantages and disadvantages are sought by

analyzing moving objects in both static and dynamic backgrounds for determining struc-

tural characteristics of biological organisms or small, lightweight Unmanned Aircraft Sys-

tem (UAS). Real-world videos with user-provided locations provide comparison data for

experimentation and testing of the hypothesized metrics and methods. The goal of this

chapter is to compare the effectiveness of six image/video processing techniques on real

videos in the following two categories: Stationary camera, moving single object and PTU

camera, moving single object.

For the first category, the experiment consists of following a clipboard with a static

camera. The experiment in the second category consists of following the clipboard using a

PTU camera. Organization of this chapter consists of a brief description of the algorithms

used along with added matching techniques, the experiments conducted and summary and

conclusions.
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4.2 Images

This section defines the parameters used throughout the remainder of this chapter.

Define I as a two-dimensional image or frame and images in a video sequence with the

subscript i to indicate the specific frame examined (i.e., Ii). The two-dimensional points

that make up the pixel coordinates in an image are the pair of values:

x = (x, y) ∈ R2 (4.1)

The following represents the contents of an image i at location x:

Ii(x) = Ii(x, y) (4.2)

The upper left corner pixel coordinate indicates the origin (0, 0); where x increases

positively to the right and y increases positively downwards. Therefore, the lower right pixel

coordinate is (columns − 1, rows − 1) where columns and rows represent the width and

height of the image in pixels, respectively. Real-world images were captured in 1280× 1024

frames as 8-bit, gray-scale images and resized to a 640×512 frame using bilinear interpolation

to speed up processing. A grayscale image has one component and has values ranging from

0− 255 where 0 represents black and 255 represents white.

4.3 Feature Detection and Matching

Let d be a feature vector referred to as a descriptor of m dimensions. Furthermore,

let dij represent the jth descriptor of an ith image. Define T as the training set such that

Ii ⊂ T where Ii is an image in the training set for i = 1 . . . n, where n is the number of

images in the training set. Each image, Ii, contains a set of descriptors, Di = ∪lij=1dij ,

where li is the number of descriptors in Ii. Let D contain the union of descriptors for all

training images, D = ∪ni=1Di. Therefore, D represents the training dataset of descriptors

of n images. Similarly, define the query image as Q, and its descriptors as dj for j = 1 . . . o;

where o is the number of descriptors in image Q.

Let M contain the set of matches between the union of descriptors, D, and the descrip-

tors in Q. Therefore, M contains the matches between specific training image descriptors
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and query image descriptors. These matches are performed based on the FLANN matching

algorithm discussed in Sec. 4.3.3.

4.3.1 Scale-Invariant Feature Transform (SIFT). There are many benefits to us-

ing SIFT in tracking. It detects features that are invariant to image scale and rotation, and

are shown to provide robust matching across a substantial range of affine distortion, change

in three-dimensional (3D) viewpoint, addition of noise, and change in illumination [80]. The

major stages of computation for feature generation include: scale-space extrema detection,

keypoint localization, orientation assignment and computing the keypoint descriptor. Thou-

sands of keypoints may be generated in an image. Default parameters from Lowe’s paper

are used in this investigation in obtaining the keypoints and descriptors for matching. The

next step is to collect the information needed to identify our object of interest. This is

done per training image through a process of visualizing all of the keypoints detected by

SIFT, manually excluding those keypoints not on the object of interest, computing their

descriptors and storing them in Di ⊆ D.

4.3.2 Speeded-Up Robust Features (SURF). Bay, et al. [15] claim SURF is less

sensitive to noise than SIFT in addition to requiring less computational time which makes

SURF an attractive feature detection algorithm. Some structural characteristics considered

in SURF are a Hessian threshold, the number of octaves and octave layers, and whether

it is upright. The developers of the SURF algorithm used the approach of a very basic

Hessian-matrix approximation based on good performance in accuracy [15]. The Hessian

threshold provides a minimum value for the determinant of the Hessian matrix. Thus, by

setting a larger Hessian threshold, fewer keypoints are obtained. A real-world experimental

parameter of 400 was set for the Hessian threshold in order to obtain more discriminate

keypoints since a larger selection of keypoints is available with highly textured images. A

notable difference in SURF vs. SIFT is that an integral image is used to speed up processing

and instead of down-sampling, up-scaling images is achieved at constant cost. As for whether

it is upright, this parameter declares whether or not rotation-invariance of the keypoint is

important. It is assumed in our experiments that rotation-invariance is important.
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In SIFT, the gradient distribution was used for defining descriptors, and in SURF, the

distribution of a first-order Haar wavelet response in the x and y direction is used. Another

interesting difference between the two feature detection algorithms is that SIFT records 128

dimensions whereas SURF records 64 reducing time for detecting and matching features.

The descriptor is formulated to provide regions of 4 × 4 wavelet response in the x and y

direction along with providing intensity changes. Each 4×4 region is normalized to provide

invariance to a bias in illumination and invariance to contrast [15]. Similar to SIFT, training

is done per training image through a process of visualizing all of the keypoints detected by

SURF, manually excluding those keypoints not on the object of interest, computing their

descriptors and storing them in Di ⊆ D.

4.3.3 Fast Library for Approximate Nearest Neighbors (FLANN) . The matching

algorithm used with SIFT and SURF is called FLANN [91]. This is a library of nearest

neighbor algorithms from which FLANN automatically determines the best algorithm and

parameter settings given a dataset. A variety of settings can be made using FLANN. One

of the first parameters to select from is the type of search to perform. There is a linear,

brute-force search, a kd-tree search, a k-means search, a composite search which uses both

kd-tree and k-means, and an auto-tuned search which selects one of the previously mentioned

searches and tunes the parameters. Auto-tuning of the parameters for algorithm selection

was used in this work. Using Muja and Lowe’s paper as a basis for performing algorithm

selection, it can be presumed that using k-means would be appropriate for datasets no

greater in the range of 100,000 points. It is also noted that performance improves for

Muja and Lowe’s dataset using up to 20 random trees. However, this is at the expense of

memory overhead. Real-time processing is preferred, and in the auto-tuning parameters

more importance is given to time. The collection D is added and trained based on the

auto-tuning parameters in matching descriptors to the query descriptors in Q. After going

through this process, the matches are stored in M for confirmation.

4.3.4 Homography, Random Sample Consensus (RANSAC), and other Matching

Phenomenon. To increase the probability of a correct match, the collection of matches,

M , goes through a process known as RANSAC for determining a homographic transforma-

tion, known as a homography, that best maps points in the training image to points in the
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query image [26]. A random set of four points, each associated with a descriptor, dij , is

contained in Ii ⊆ T . Then the matches in M describe four point matches in image Q from

which to determine a homography. The transformation determines whether points in the

selected training image fall within a specified pixel distance, ε, of the points in the query

image. This pixel distance is set to 2 for our experiments. The transformation providing

the most matches determines the homography used to project points from one image to the

next. In our case, image Iselected is the training image selected based upon having the most

matches within the training set. Image Q is a query image for determining whether our

object of interest is present.

Other methods included in this work to add robustness to the matching process consist

of: contour intersection checks, improper contour lengths and reduced search spaces. The

first of these determines whether or not the contour of the object crosses any other contour

lines during transformation. Failure to meet this criterion excludes the transformation

and the next transformation is tested until the criterion is met. It is assumed that the

unobstructed, full object is present in the image at all times. Thus, if all transformations

are exhausted, then our algorithm uses the four closest matching points in M . The next

method checks to see if contour lengths double in length or half the length from the training

image thereby eliminating poor matches. The last assistive method reduces the search

window saving computational time. If positive matches exceed a specified threshold, then

the search window is reduced using previously matched contour points for a search area

that is 2 ·width× 2 · height; where width and height are calculated using a minimum area

rectangle about the contour points.

The tracking point, tp, is determined through an established tracking point from a

training image in T with the calculated homography, H, for mapping the tracking point in

the image selected, tpIselected , into the query image, Q. This is shown in Eq. 4.3.

tpQ = H · tpIselected (4.3)

4.3.5 Covariance Tracking. Covariance tracking uses features described by d ×

d covariance matrices. The features consist of pixel coordinates, intensity and gradients
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formed from a M×N rectangular region made up of k feature vectors describing each pixel.

Feature vectors, fk, are described as follows:

fk = [x y I(x, y) Ix(x, y) Iy(x, y) . . . ].

Covariance matrices are used to find a minimum covariance distance between the model and

the estimated location. The covariance matrix is setup using spatial and image features as

described above. Equation 4.4 shows the covariance matrix, CR, with respect to the feature

vectors, fk, and its mean, µR.

CR =
1

MN

MN∑
k=1

(fk − µR)(fk − µR)T (4.4)

The minimum distance is found using Eq. 4.5.

ρ(Ci,Cj) =

√√√√ d∑
k=1

ln2 λk(Ci,Cj) (4.5)

where {λk(Ci,Cj)} are the generalized eigenvalues of Ci and Cj computed from

λkCixk −Cjxk = 0 k = 1...d (4.6)

The image is searched to find the best matching region which determines the location of the

object in the current frame [121].

4.3.5.1 Model Update. Tuzel, et al. [120] add a model update strategy to

covariance tracking using a Lie Algebra. Using different poses of an object, an intrinsic

mean is calculated and used as the model for determining an estimated object location.

The calculated covariance matrices are considered Lie Groups requiring a mapping to the

Lie Algebra. A Lie Algebra, ct, is formed by the mapping of Lie Group covariance matrices,

C and Ct by

ct = log(C−1Ct) (4.7)
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where {Ct}t=1. . . t is a collection of Lie Group covariance matrices. Alternatively, the map-

ping of the Lie Algebra, c, back to the Lie Group, C, is presented in Eq. 4.8.

C = exp(c) (4.8)

A select number, t, of varying poses and resulting covariance matrices are averaged to

produce the true (intrinsic) mean for searching an image for the minimum distance. For

more details in implementing the algorithm see [120].

4.3.5.2 Local Search. A local search is implemented to reduce the compu-

tational time. Two times the rectangular region, M × N , is used as a search area for the

object [122]. The local search prevents a detected object from moving or being detected

outside this specified distance. The disadvantage to local search is that if the object is lost,

then the tracker requires the user to manually select the correct region.

Tyagi, et al. [122] also provide results using the covariance tracker with a steepest

descent procedure speeding up computational time. This method showed promise, but the

results obtained in this work did not track the test subject beyond selection.

4.4 Motion Detection and Tracking

4.4.1 Gaussian Mixture Model (GMM). GMM is associated with background

subtraction such that an incoming frame Ii is subtracted from I(i+1) to highlight pixels that

are not considered background. A probability density function is then typically used for

each pixel in determining whether a pixel from the incoming image, I(i+1), is part of the

background or foreground. The next advancement introduced variances of pixel intensity

levels which is considered a single Gaussian model [139]. Motion detection was advanced

further by using a GMM with a fixed number of components. Zivkovic [139] presents an

improved algorithm for constantly adapting the parameters and number of components for
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each pixel using an on-line procedure. The GMM with M components is represented in Eq.

4.9.

p̂(~x|XT , BG+ FG) =
M∑
m=1

π̂mN (~x; ~̂µm, σ̂m
2I) (4.9)

where ~̂µ1,. . . , ~̂µm are the estimates of the means and µ̂1,. . . ,µ̂m are the estimates of the

variances that describe the Gaussian components. The background model is approximated

using the first B clusters in Eq. 4.10.

p̂(~x|XT , BG) ∼
B∑

m=1

π̂mN (~x; ~̂µm, σ
2
mI) (4.10)

Then B is determined by a threshold, cf specified in Eq. 4.11 and is used as a measure of

the maximum portion of the data that can belong to foreground objects without influencing

the background model.

B = argmin
b

(
b∑

m=1

π̂m > (1− cf )

)
(4.11)

Update equations and further explanation can be found in [139]. Some of the basic

parameters that can be set for the selected algorithm include shadow detection, the length

of the history used, and the threshold that describes whether a pixel is well described by

the background. The more detailed parameters consist of the number of mixtures, the

background ratio, the variance of newly generated components, a complexity reduction

parameter, a shadow detection value and a shadow threshold value. Shadow detection was

turned off since moving objects were often seen as shadows and, in turn, pixels were then

turned gray. Turning off the shadow detection helped to fine tune what was seen as moving

in a given scene. Shadows are considered as a foreground pixel if given a specified pixel

value.

For the cases explored in this work, intuitively, it can be assumed that the static

background (static cameras) would provide excellent results using GMM whereas a dynamic

background (moving cameras) would cause this algorithm to capture everything.

4-8



4.4.2 Optical Flow. The pyramidal implementation of the Lucas-Kanade algo-

rithm PyrLK [25] compares two images, the first image, Ii(x), and the second image, Ii+1(x),

to determine a pixel’s velocity at a given time step. This velocity is then used to determine

the location of the pixel in Ii+1(x). Smaller motions are less demanding in terms of an in-

tegration window versus larger motions requiring larger integration windows. For example,

the sample point under observation is u = [ux, uy]
T in Ii(x). If the velocity, d = [dx, dy]

T ,

pushes the sample point outside the integration window of v = u + d in Ii+1(x), then the

tracked point will no longer be tracked. There are two ways to completely lose points. One

is for the point to go outside the image, and the second occurs when the pixels surrounding

the tracked point varies beyond a set threshold between images Ii and Ii+1 [25]. We seek

to minimize a residual function, ε, shown in Eq. 4.12. The image velocity, d, is the vector

that minimizes this function in the image neighborhood of size (2wx + 1)× (2wy + 1) (i.e.,

the integration window).

ε(d) = ε(dx, dy) =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy−wy

(I(x, y)− Ii+1(x+ dx, y + dy))
2 (4.12)

A point or set of points must be provided for the algorithm to track. Incidentally, using

keypoints as detected by SIFT or SURF would provide good points to track. However, for

this work, a window is selected about the test subject and equally spaced points are placed

within this window for tracking. The integration window we use for this experiment is a 15

pixel x 15 pixel window. The maximum pyramid level setting has been set to three based

on default values given in the OpenCV library [26]. The convergence parameter contains

two values, a residual pixel value as a minimum threshold and the maximum number of

iterations for finding a sample pixel. The minimum threshold has been set to 0.03 pixel as

recommended in [25]. It takes on average five iterations to reach convergence and 20 as the

maximum.

4.4.3 Point Selection. Optical flow requires that point selection be made for

tracking. First, a region about the desired tracking point, tp, is selected establishing points

to observe through a sequence of frames. Let these observation points be called flowpoints.

Optical flow estimates pixel location of the flowpoints from Ii to I(i+1), so the point(s) must
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always be within the confines of the image space of Ii+1. This is to say that once the points

go outside the bounds of the image, the points no longer exist (i.e., any occlusion of the

object of interest requires a means of re-selecting and/or establishing flowpoints). Therefore,

flowpoints must be selected again for observation.

4.4.4 Point Averaging. Calculation of the tracking point used for error analysis is

determined by summing up the foreground (FG) point locations for GMM and flowpoints

for optical flow in I(i+1) and dividing them by the total number of FG points or flowpoints.

These are expressed in the following equations:

tp =
1

nFG

nFG∑
i=1

xFGi (4.13)

tp =
1

nf

nf∑
i=1

xfi (4.14)

where xFG is the pixel coordinate of a FG pixel, and nFG is the number of FG pixels and

xf is the pixel coordinate of a flowpoint, and nf is the number of flowpoints. The tracking

point is used to compare with truth data.

4.5 Segmentation and Tracking

4.5.1 MS. Mean shift is a segmentation algorithm based on region distribution.

Comaniciu, et al. [35] refine the MS process down to using a kernel such as the Epanechnikov

kernel as part of calculating the color distributions about a region. Note that color space is

used as the feature space for analysis in this work. The Epanechnikov kernel is

k(x) =

 1
2c
−1
d (d+ 2)(1− x) if x ≤ 1

0 otherwise
(4.15)

where cd is the volume of the unit d-dimensional sphere.

4-10



The target model and candidate distributions are shown in Eq.’s 4.16 and 4.18 with

corresponding normalization constants (see Eq. 4.17 and 4.19). These normalization con-

stants ensure that each distribution sums up to one.

q̂u = C
n∑
i=1

k
(
‖x∗i ‖2

)
δ[b(x∗i )− u] (4.16)

where u = 1 . . .m and contains the number of histogram bins, m, representing the color

space, and δ is the Kronecker delta function for determining whether the histogram bin at

the pixel location xi is equal to u and the normalization constant is

C =
1∑n

i=1 k (‖x∗i ‖2)
. (4.17)

p̂u(y) = Cc

nh∑
i=1

k

(∥∥∥∥y − xi
h

∥∥∥∥2
)
δ[b(xi)− u] (4.18)

where

Cc =
1∑nh

i=1 k (‖x∗i ‖2)
(4.19)

and y is the pixel location of the target center.

The Bhattacharyya coefficient was originally used in the MS tracker; however, it was

determined in [35] that its implementation was not necessary and only provided for minimal

improvement. Instead, the kernel is primarily used in seeking out the maximum mode of

the candidate distribution with respect to the target distribution.

Further details and algorithm implementation can be found in [35]. A 33 pixel x 33

pixel window is used for the static case and a 80 pixel x 80 pixel window is used for the

dynamic case in the following experiments. The larger window was chosen for the dynamic

case to help capture large movements of the camera. The stopping criterion threshold value

is set to 0.01 with a maximum iteration value of 100. Comaniciu, et al. [35] state that no

more than 20 iterations is required unless sub-pixel accuracy is desired. The experiments

used a stopping criterion threshold value of 0.01 and an increased iteration value of 100 to

improve accuracy.
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Meanshift Process Diagram 

Initialization Tracking 

Figure 4.1: The MS process.

A point or region must be selected for providing the MS algorithm with a target distri-

bution as with optical flow. If there is partial or full occlusion of the detected object, then it

is very likely that the target distribution has to be re-selected in order to continue tracking.

The process is shown in Fig. 4.1. Re-selection requires performing the initialization step

again and setting i = 1 (see Fig. 4.1).

4.6 Experiments

4.6.1 Training. A set of training frames with feature points comprised the input

used for FLANN matching as described earlier. Additional parameters were stored per im-

age to include the contour points of the object and the tracking point for SIFT and SURF.

Our object of interest is a clipboard with a texture attached to it and an identified tracking

point (see Fig. 4.2 as an example of one pose with a selected tracking point). The training

frames were composed of a clipboard against a white background at various poses. Figure

4.3 shows an example of the parameters stored: retained features (i.e., the multi-colored

circles), contour points (i.e., the intersection of the green lines), and a tracking point). The
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retained features make up the descriptors used for matching. Contour points provide the

means for determining whether a proper transformation was made, and the tracking point

provides us with a means of calculating the Root Mean Square (RMS) pixel error.

Figure 4.2: Clipboard with attached

texture and selected track-

ing point (blue).

Figure 4.3: Clipboard with retained

keypoints (multi-colored

circles), contour points

(corners of the green

lines), and selected track-

ing point (solid green

circle).

Training for the covariance tracker consisted of using 40 images from each dataset for

determining the intrinsic mean of the covariance matrix used as the target model. In each

training image, the tracking point, tp, is selected, a covariance matrix is calculated for a

given patch about the tp, and the Lie Algebra model update is performed.

4.6.2 Data Sets. The selected algorithms were compared using two different data

sets. The data sets each consist of one thousand images. The first data set contained the

clipboard from Figure 4.2 being moved around by a person against a static background. The

second data set contained a clipboard from Figure 4.3 being moved around by a person in a

dynamic background. A Pan/Tilt/Zoom (PTZ) camera is used; however, movement of this

camera is controlled by another commercial system. Each algorithm uses the same sets of

images providing focus on how the algorithms handle both static and dynamic backgrounds.

Tracking, algorithm speed, and memory are the performance characteristics for determining
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effectiveness. We also look at occlusion handling and user input. Truth sets for both the

static and dynamic backgrounds were established manually for error calculations.

Each algorithm relays a tracking point per image which allows calculation of the RMS

error given the truth sets. RMS pixel error is given per frame by the following equation:

RMS pixel error =
√

(xtp − xtruth)2 + (ytp − ytruth)2 (4.20)

where (xtp, ytp) is the image pixel location of the tracking point calculated by the algo-

rithm, and (xtruth, ytruth) is the pixel location of the tracking point that was established

manually. Timing each algorithm consists of calculating the processing time required per

image. Memory score for each algorithm is based on a high, medium or low scoring based

on the number of operations required and amount of storage required per image to provide

a tracking point.

4.6.2.1 Static Background. One thousand frames are examined in order to

analyze the performance characteristics of each algorithm. The first 220 frames represent the

clipboard at rest. Frames ranging from 1-490, 515-610, 620-800, 810-865 and 935-1000 are

fully observable and contain a dynamic object of interest (i.e., the clipboard). The remaining

frames vary between fully observable, partially occluded and full occlusion. Occlusion causes

a loss of points for optical flow requiring a restart or selection of flowpoints, but error also

increases for the remaining algorithms as well during these intervals. Error from occlusions

is seen clearly in Figures 4.4, 4.5 and 4.6 starting at frame 490, 610 and 860. The clipboard

is only partially occluded for frames 800-810. Partial occlusion has little effect on the feature

detection algorithms and the PyrLK optical flow and MS methods. The optical flow and

MS methods were reset to the tracking point after the noted occlusions. These are marked

with dashed lines in Figure 4.6.
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Figure 4.4: SIFT, SURF and covariance

tracking RMS pixel error.

Figure 4.5: GMM RMS pixel error.
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Figure 4.6: PyrLK Optical flow and MS

RMS pixel error.
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Figure 4.7: Algorithm tracking speed.

GMM performs well in determining the location of a moving object in a static scene.

The large inaccuracies shown in Figure 4.5 come from measuring other moving objects

within the given image set (i.e., measurements include the person moving the clipboard).

Without incorporating matching schemes, the algorithm picks up on all movement, and
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therefore, the tracking point is skewed based upon this movement. The person moving

the clipboard throughout the images creates additional moving pixels counted in the point

average and therefore the RMS pixel error is much higher. Each algorithm calculation time

in milliseconds is plotted for each frame in Figure 4.7.

Table 4.1 provides the average RMS pixel error with standard deviations, the average

speed with standard deviations and a subjective assessment on memory requirements based

on computations required to obtain the tracking point. This assessment details tracking

performance of a fully observable object of interest. Therefore, the occluded portions of the

static image set were removed for purposes of determining the results in Table 4.1. The most

accurate algorithm is the optical flow PyrLK method and also has the smallest standard

deviation. The least accurate algorithm is the GMM due to measuring additional moving

objects (i.e., the person moving the clipboard). The fastest algorithm is also the optical

flow PyrLK method while the slowest algorithm is SIFT by more than 50 times. The lowest

amount of processing is inextricably linked to memory. Optical flow PyrLK requires the

least amount of processing whereas SIFT requires the most. As detailed above, the feature

matching algorithms detect keypoints, calculate descriptors of varying dimensions and then

go through several other matching schemes for robustness giving them a high mark for mem-

ory. The covariance tracker gets a medium mark due to the memory and processing required

in calculating a model used for matching, and the MS algorithm received a low/medium

memory rating due to the increased convergence required and tracking window.

Table 4.1: Static Background Algorithm Performance.

Method Accuracy (Pixels) Speed (ms) Memory

SIFT 23.7± 51.1 2560.6± 484.3 High

SURF 33.7± 62.9 549.0± 181.0 High

Covariance Tracker 100.3± 84.8 81.0± 99.0 Medium

GMM 166.8± 78.6 81.2± 4.5 Low

PyrLK Optical Flow 13.0± 20.4 47.2± 22.1 Low

MS 33.2± 30.6 280.1± 14.9 Low/Medium

Tyagi, et al. [122] report that their gradient descent (GD) covariance tracking algo-

rithm gives a minimum error ranging from 9.68 − 10.95 pixels over a sequence of around

100K frames captured at a resolution of 640x480. Table 4.1 shows that the covariance
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tracker is the second worst tracker and requires major tuning in order to obtain the accu-

racies seen in [122] and [121]. The MS algorithm provides increased accuracy and reduced

computational time in comparison to SURF.

4.6.2.2 Dynamic Background. The dynamic image set also consists of one

thousand frames. The first 115 frames represent the clipboard at rest. Frames ranging from

115-185 and 195-1000 are fully observable and contain a dynamic object of interest (i.e.,

the clipboard) against a dynamic background. Additionally, the PTZ camera system moved

in a non-smooth manner such that the object moved in large pixel displacements between

images.

SIFT and SURF show positive tracking with sporadic miscalculations and mismatches

whereas the covariance tracker needs some direction (see Fig. 4.8). It is much harder to

identify where, if any, occlusion occurs in the dynamic background. The first 115 frames, the

object is not moving. The covariance tracker does not perform well with large movements

and the feature space does not contrast the object from the background sufficiently. The

GMM tracker is the second worst because there is nothing moving in the images for it to

be able to track. Again, note that Figure 4.10 shows dashed lines indicating re-selection of

flowpoints about the tracking point. Figure 4.11 shows that the feature detection algorithms

take much longer than the motion detection algorithms. The segmentation algorithm, MS

performs similarly to the covariance tracker in time.

4-17



0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400
Feature Detection Normalized Error (Dynamic Background)

frame

no
rm

al
iz

ed
 e

rr
or

 (
pi

xe
ls

)

 

 
SIFT
SURF

Figure 4.8: SIFT, SURF and covariance

tracking RMS pixel error.
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Figure 4.9: GMM RMS pixel error.

Figure 4.10: PyrLK Optical flow and MS

RMS pixel error.
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Figure 4.11: Algorithm tracking speed.

Table 4.2 provides the average RMS pixel error and speed with standard deviations

for the selected algorithms as well as a subjective assessment of memory required based on

computations performed to achieve the tracking point.
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Table 4.2: Dynamic Background Algorithm Performance.

Method Accuracy (Pixels) Speed (ms) Memory

SIFT 26.6± 51.4 2668.4± 438.6 High

SURF 43.9± 68.1 788.9± 233.1 High

Covariance Tracker 169.3± 120.5 274.0± 14.2 Medium

GMM 117.5± 66.3 89.7± 6.8 Low

PyrLK Optical Flow 90.4± 91.7 28.1± 10.8 Low

MS 94.5± 106.0 269.3± 13.8 Medium

In Table 4.2, it is seen that the most accurate algorithm is SIFT and only degrades

in performance from the static case by 2.9 pixels followed by SURF which degrades in

performance by 10.2 pixels. Comparing the GMM plots of Figures 4.5 and 4.9, the dynamic

background shows more variation, but reduced error and standard deviation. It is still

3.4 times greater in error than SIFT, but the speed is desirable. Optical flow and MS

performance degrades dramatically. Of note is that both of these algorithms have high

standard deviations meaning that the accuracy includes those times when each algorithm

loses the target and collects spurious results. Re-selection and other means could help in

reducing error for making these algorithms more useful in dynamic settings. PyrLK optical

flow is the fastest algorithm again and is measured at 28.1 milliseconds followed by GMM

at 89.7 milliseconds. Again, SIFT is the slowest algorithm at 2,668.4 milliseconds; 94 times

slower than PyrLK optical flow.

4.6.3 Discussion. PyrLK optical flow represents the most accurate tracking point

and fastest algorithm in a static background. SIFT provides the most accurate tracking

point for the dynamic background and is second in accuracy for the static background. The

PyrLK optical flow algorithm was chosen for further development.

4.6.3.1 Advantages. Feature detection algorithms provide matching targets

automatically given that the algorithms know what to look for (i.e., training data is used to

identify the object of interest). These algorithms also find the target in the midst of partial

occlusion if the search is performed on the whole image. These algorithms also provide

more accurate results between static and dynamic backgrounds. Training of the covariance
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tracker is also much simpler than SIFT and SURF only requiring a single covariance matrix

per training image.

GMM provides the ability to find any moving pixel in a given scene. Given the

current scenarios, GMM would have performed very well if the clipboard was the only object

moving in a static background. In addition, the algorithm’s speed and adaptive nature of

determining foreground and background pixels may be taken advantage of in other ways

such as identifying areas of high activity or relative motion in a dynamic background.

Optical flow is fast and in the case of the static background, the PyrLK method is

also very accurate. Under the right settings where illumination is constant, the frame-rate

is sufficient to maintain pixel movement to within the window of integration, and no object

occlusion occurs, optical flow is a viable real-time tracking algorithm in both static and

dynamic settings.

Similarly, MS is a viable real-time tracking algorithm under the right conditions.

Some human-in-the-loop (HIL) may be required to direct the target distribution at times.

The sequence of images for each dataset only contained grayscale images, and so increased

accuracy would likely result in converting or capturing color images. However, even under

the current testing conditions, MS provided the third most accurate results beating the

second most accurate, SIFT, in time by more than 9 times.

4.6.3.2 Disadvantages. SIFT and SURF recognizably have higher computa-

tional costs based on the time required to perform object detection. Although this chapter

shows speeds for these algorithms that would not make real-time tracking possible, paral-

lel computing provides the potential for making this a reality. Other disadvantages include

preprocessing requirements such as training, and the time it takes to get rid of poor matches

and adding additional matching schemes. The covariance tracker requires more matching

schemes for robustness as that performed with the previous feature trackers; however, this

would increase the algorithm’s complexity and computational costs.

In a dynamic scene, GMM does not differentiate between background and moving

object making it very difficult to pinpoint an object of interest. More time is required to
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perform the operations with more movement in a scene. Increased tuning and use of other

algorithmic techniques are required to make this a more viable instrument of choice.

PyrLK and MS require HIL to start the tracking process by placing flowpoints and

target distribution. Points are lost quickly with no illumination constancy and object move-

ment greater than the assigned integration window for optical flow. MS loses the object

when similar color distributions are encountered. In addition, object occlusion requires HIL

selection of new flowpoints and target distributions for observation.

4.7 Summary and Selection

This chapter examined three feature detection, two motion detection, and one seg-

mentation algorithm in a static and dynamic background captured by a PTZ camera. The

advantages of the feature detection algorithms allows detection of objects even after occlu-

sion occurs in addition to lower tracking error between static and dynamic backgrounds. It

is also noted that the motion detection and segmentation algorithms provide fast, real-time

performance as long as the algorithms know where to look. Synergistic effects are possible

through a combination of the selected algorithms. Based on the static and dynamic testing,

the PyrLK optical flow algorithm was selected for developing a real-time, CV algorithm

using known camera motion as described in Chapter V.
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V. Algorithm Development and Error Analysis

5.1 Overview

The algorithm presented in this chapter leverages existing methods in a novel com-

bination for general-purpose tracking. It uses known camera motion with exact pixel dis-

placement [68], good features to track [106], and optical flow tracking [25]. Processing uses

Graphics Processing Unit (GPU)-based “good features” to track detector1 (e.g. corners)

and a GPU-based implementation of the Pyramidal Lucas-Kanade (PyrLK) optical flow al-

gorithm2 [26]. “Good features” are detected in an image and selected as optical flow points.

The background motion is calculated for each of these points in order to extract the derived

motion. Optical flow points with a derived motion less than a threshold are considered

background. Moving points can then be used for Computer Vision (CV)-based tracking.

The resulting system is able to track a single, generic moving object where no training or

selection is required.

The method presented in this chapter uses Kanatani’s derivation of pixel position

between images taken from different positions of rotation about the camera center [68].

Murray, et al. similarly use Kanatani’s relationship of knowing the pan/tilt motion in

supporting a motion tracking system to compensate for the background through image

subtraction, edge detection, morphological filtering and thresholding [92]. Their technique

employs a motion-energy method vs. the optic flow tracking employed in this work.

This work is novel in that it is suited for any textured moving object with the applica-

tion intent of tracking a free-flight, flapping-wing Unmanned Aircraft System (UAS). Due

to the speed of UASs, cameras must pan, tilt, and zoom to track the motion at a desired

resolution, and CV algorithms must run at least at 30 frames per second (fps). Pan/tilt

cameras have the advantage that the view is not fixed, but every motion of the camera causes

apparent motion of points in the image which are actually static. This apparent motion,

termed background motion, can be calculated by Kanatani’s relationship [68]. Background

motion must be known to determine the actual motion of moving points, termed derived

motion.

1OpenCV 2.4.2 Library - GoodFeaturesToTrackDetector GPU
2OpenCV 2.4.2 Library - PyrLKOpticalFlow (GPU)
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This work provides the analysis and experimental results of Kanatani’s relationship

with optical flow tracking using an active camera, and its implementation with GPU-based

optical flow for real-time, general-purpose tracking. The analytical results show the induced

error with respect to geometric approximations. The experimental results use the static

feature points with measured camera motion to determine the error introduced by optical

flow techniques. Known motion and inertial measurement have been used to compensate for

motion [92, 109], but using commanded motion with optical flow for exact derived motion

and background classification has not been seen to date [41]. GPU-based feature detection

and tracking is an advancement beyond the methods presented in Chapter II.

The system components are described in Sec. 5.2. The background motion estima-

tion is provided in Sec. 5.3.1. The algorithm development is provided in Sec. 5.3. The

experiments and results are provided in Sec. 5.4. The summary is described in Sec. 5.5.

5.2 System Components

5.2.1 Equipment used. Figure 5.1 shows the hardware used in this chapter. The

algorithm development and error analysis were performed outside of the laboratory and

so the lighting used consisted of two Bescor Video Accessories Ltd. LED-500, dimmable

studio lights. Chapter III provides the specifications. The requested image size for the

experiments is 656x524 with a requested shutter speed of 1.02 ms. The focal length is 1,076

pixels.

5.2.2 Background and Test Subject. A portion of the background used for the

initial performance testing is provided in Fig. 5.2.

The test subject is a UAS (see Fig. 5.3). The large, red circle indicates the calculated

pixel centroid, (x, y)pix, and the green rectangles represent the detected features, gi. For

system debug, the UAS was tethered. The length of the pendulum is approximately 1.2 m

(47 in), and so the dynamics of the system are known using

T = 2π

√
L

g
(5.1)
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Figure 5.1: Equipment used.

where T is the period, g is gravity, and L is the pendulum length. A period of 2.2 seconds was

determined experimentally over ten cycles which agrees with the theoretical period. Given

the period, the average velocity of the test subject is calculated using twice the length of

the arc divided by 2.2 seconds.

5.3 Algorithm Development

First, an overview of the theory for background motion estimation is presented along

with approximations. Then the steps of the tracking process are presented. Next, point

classification is covered to distinguish points as moving, background or noise. Point clas-

sification is followed by a description of the Kalman filtering process to increase tracking

performance. Lastly, pan/tilt control provides how a pixel position is interpreted and what

is sent to the pan/tilt controller.

5.3.1 Background Motion Estimation. The motion of the Pan/Tilt/Zoom (PTZ)

camera is modeled here for determining where background optical flow points should the-

oretically move based on PTZ camera movement. It is assumed that the rotation is about

the camera physical center. A change in the camera coordinate system due to pan and tilt

motions leads to background motion in an image. This background motion, is the relative

background due to the camera’s changing coordinate system based on pan/tilt motion.
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Figure 5.2: Background used for performance testing.

Equation (5.2) provides the rotation matrix for pan/tilt motions where the z-axis

represents the principal axis, the x-axis is positive, right and the y-axis is positive, down.

Pre-multiplying the rotation matrix, R, to a set of points from the camera’s previous co-

ordinate system, Xi−1, then gives the new locations of the points in (5.3) as seen by the

camera.

R(ψ, θ) =


cos(ψ) sin(ψ) sin(θ) sin(ψ) cos(θ)

0 cos(θ) − sin(θ)

− sin(ψ) cos(ψ) sin(θ) cos(ψ) cos(θ)

 (5.2)

Xi = R(ψi, θi)
>Xi−1 (5.3)

where Xi is the three-dimensional (3D) location of the point with respect to the camera

coordinate system, i is the frame number in a sequence of images, ψi and θi are the change

in pan and tilt angles, respectively, from the (i− 1)th to the ith coordinate system.

Using the focal length of the camera to provide proportional points on the image plane

with respect to three-dimensional coordinates provides the ability to determine optical flow

motion inputs of image coordinates (x, y) with respect to the principal axis, delta pan angle,

ψi, and delta tilt angle, θi. The pinhole camera model in Eq. 5.4 provides the means for
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Figure 5.3: The test subject is a helicopter that acts as a pendulum for tracking; green
squares represent the initial placement of the optical flow points from image,
Ii−1 and the large, red circle represents the calculated pixel centroid, (x, y)pix.

determining the image plane coordinates of a set of points from 3D points by using the

mapping to eliminate dependence upon the 3D coordinates.

(X,Y, Z)> 7→ (fX/Z, fY/Z)> = (x, y)> (5.4)

(x̂, ŷ)>i = f

(
Xi

Zi
,
Yi
Zi

)>
(5.5)

5.3.1.1 Closed-form solution. Substituting the transformed equations from

(5.3) into (5.5) results in equations (5.6) and (5.7) which provide the estimated background

location of a point (x̂, ŷ)i on the image plane given an input of focal length, delta pan and
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tilt angles, ψi and θi, and image coordinates (x, y)i−1. This relationship was first developed

by Kanatani [68].

x̂i(f, ψi−1, θi−1, xi−1, yi−1) = f

(
xi−1−f tan(ψi)

xi−1 tan(ψi−1) cos(θi−1)−yi−1
sin(θi−1)

cos(ψi−1)
+f cos(θi−1)

)
, (5.6)

ŷi(f, ψi−1, θi−1, xi−1, yi−1) = f
(
xi−1 sin(ψi−1) tan(θi−1)+yi−1−f cos(ψi−1) tan(θi−1)

xi−1 sin(ψi−1)−yi−1 tan(θi−1)+f cos(ψi−1)

)
. (5.7)

5.3.1.2 Small-angle/first-order approximation. Small movements are made

and captured from one frame to the next in the range of 0◦− 3.1◦ for the experiments given

in Sec. 5.4. Utility in using approximations is sought to understand the viability of making

such assumptions. The small-angle approximation simplifies the closed-form solution from

having to use basic trigonometric functions by neglecting any second or higher-order terms.

The following substitutions are made: sin(Θ) ≈ Θ, cos(Θ) ≈ 1, and tan(Θ) ≈ Θ where Θ is

an arbitrary angle in radians. The small-angle/first-order approximation is as follows:

x̂i =f

(
xi−1 − fψi−1

xi−1ψi−1 − yi−1θi−1 + f

)
, (5.8)

ŷi =f

(
yi−1 − fθi−1

xi−1ψi−1 − yi−1θi−1 + f

)
. (5.9)

5.3.1.3 Simplified, linear approximation. The small-angle/first-order ap-

proximation can be further simplified by assuming f is the dominant term in the denomi-

nator of (5.8) and (5.9). This gives a simplified, linear approximation of:

x̂i =xi−1 − fψi−1, (5.10)

ŷi =yi−1 − fθi−1. (5.11)

5.3.1.4 Summary of Proposed Models. The models above are proposed in

hopes that computational efficiency may be found and utilized according to application
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Figure 5.4: The mean error of the small-angle approximation (left) and linear approxi-
mation (right).

specific needs. Applications requiring faster processing times, such as embedded microcon-

trollers, may determine that one of the above approximations is more appropriate.

5.3.2 Approximation Accuracy. Sensor bias may be a problem in any sensor-based

application and must be calibrated for application accuracy. Theoretical accuracy of the

small-angle/first-order approximation and the simplified, linear approximation compared to

the closed-form solution provides insight into application-specific needs. Figures 5.4 and

5.5 show the mean and max differences of the small-angle and linear approximations with

respect to the closed-form solution. Note that the rotational matrix, R, in Eq. 5.2 applies

pan and then tilt explaining why axis error values are different. For a mean set of points

distributed uniformly, the small-angle approximation provides accuracy to within a pixel for

ψ ≤ 8◦, θ = 0◦. The linear approximation provides accuracy of a pixel for ψ ≤ 2.3◦, θ = 0◦.

Varying the tilt angle for these approximations reduces the theoretical accuracy according

to Fig. 5.4. Asymmetric error is seen in Fig. 5.4 and 5.5 primarily due to the closed-form

solution’s application of pan and then tilt operations in the rotation matrix.

Throwing out the assumption of uniform point placement, the worst case error due

to the models for a given ψ and θ is shown in Fig. 5.5 for the small angle approximation

and the linear approximation. The maximum approximation pixel error is greater with tilt

angle, θ, for the small angle/first-order approximation; however, the error is at least four
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Figure 5.5: Closed-form solution versus the max error of the small-angle approximation
(left) and linear approximation (right).

times smaller than the linear approximation (e.g., ψ = 4◦, θ = 2◦, the small-angle give

1/2 and the linear gives 7). The simplified, linear approximation is useful in applications

requiring less than 2.3◦ of pan/tilt between images.

5.3.3 Tracking Process. Figure 5.6 and Table 5.1 show a flowchart and steps for

real-time tracking of a single, moving object, respectively. The system rate consists of the

time required to capture an image, process the image, and move the pan/tilt unit. Real-

time tracking for this paper consists of image capture and image processing speeds ≥ 30 fps

and system rates ≥ 15 fps (i.e., image capture and image processing speed ≤ 0.033̄ ms and

pan/tilt movement ≤ 0.033̄ ms for a combined system rate ≤ 0.066̄ ms).

5.3.4 Point classification. In the process of detecting “good features”, gi for point

classification, a boundary of 50 pixels from the image edge is omitted to effectively make a

656x524 image, a 556x424 image for analysis. Omitting the edge facilitates better overlap

to match “good features” from the previous image, Ii−1, to the current image, Ii. Figure 5.7

shows three scenarios used to classify optical flow points in a given frame as background,

moving, or noise. Given a pan/tilt movement, the midpoint between the previous and
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Figure 5.6: Flowchart and steps for real-time tracking of a single, moving object.

estimated feature locations,

mi(n) =
ĝi(n) + gi−1(n)

2
, ∀n ∈ gi (5.12)

is used to establish the moving object threshold for noise determination. An optical flow

point, gi(n), lying within the estimated feature location/background threshold radius, bbkd,

is considered background, otherwise a point within the moving object threshold, dmov, is

considered a dynamic point (see Fig. 5.7).
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Table 5.1: Pan/Tilt/Zoom (PTZ) tracking with background subtraction

Step Procedure

0 Initialize parameters and capture first image: (x, y)ref = (0, 0),
(x, y)rel = (0, 0), and image, I0; i = i+ 1

1 Store previous image, Ii−1 and get current image Ii
2 Detect (x, y) coordinates of “good features”, gi−1, in Ii−1

3 Calculate optical flow from Ii−1 to Ii such that gi−1 gives gi
4 Convert relative pan/tilt units, (x, y)rel, to ψ and θ and estimate back-

ground pixel movement, ĝi, using gi−1, fi and fi−1

Subtract the midpoint, mi(n) = ĝi(n)+gi−1(n)
2 from gi(n) to give M dis-

placements, di(n) = ||gi(n)−mi(n)||∀n ∈ gi
Subtract ĝi from the optical flow movement to give M displacements,
bi : bi(n) = ||gi(n)− ĝi(n)||∀n ∈ gi

5 Points in bi : |bi(n)| > bbkd and di : |di(n)| < dmov are considered
moving ∀n ∈ {gi}

6 Determine the pixel centroid, (x, y)pix and magnitude, m(x, y), of re-
maining n in gi

7 Convert (x, y)pix and m(x, y) measurements to the pan/tilt coordinate
system and use a Kalman filter for predicting (x, y)rel for Ii+1

8 Convert (x, y)rel to (x, y)pix and apply deadzone check functions
dz(x, xdz) and dz(y, ydz)
If (x, y)pix is within a rectangular deadzone, then (x, y)ref remains the
same
Otherwise, (x, y)ref is adjusted based upon the deadzone, the scale fac-
tor, k, and (x, y)pix

9 Convert (x, y)pix to (x, y)rel
Update the reference pan/tilt coordinates, (x, y)ref = (x, y)ref+(x, y)rel,
and direct the pan/tilt camera

10 Repeat starting at step 1

The Euclidean norm between an estimated background location, ĝi(n), and the feature

point, gi(n), is used to establish a set of points, bi, for classifying background points. Points

falling within the background threshold radius, bbkd, are classified as background using

bi(n) = ||gi(n)− ĝi(n)||,

bi(n) > bbkd ∀n ∈ {gi}

(5.13)

where n is the index of the points in the set of matched features, and bbkd is the background

threshold radius for background classification.
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Figure 5.7: Interpreting optical flow points in a current frame as background, moving, or
noise.

The Euclidean norm between the midpoint, mi(n), and the feature point, gi(n), is

used to establish a set of points, di, for classifying points as moving or noise. Points falling

outside the moving object threshold radius, dmov, are classified as noise and all remaining

feature locations are classified as moving using

di(n) = ||gi(n)−mi(n)|| ,

di(n) < dmov ∀n ∈ {gi}

(5.14)

where n is the index of the points in the set of matched features, and dmov is the moving

threshold radius for classifying points as moving or noise. As a basic check for bad matches,

any point that has a bi(n) ≤ bbkd or di(n) ≥ dmov is considered background or noise,

respectively, and removed. The rest of the points are assumed to be accurately tracking the

moving object or are classified as background using Eq. 5.13 and 5.14.
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The centroid of the moving points should roughly correlate with the object’s center.

This assumes a symmetric distribution of “good features” across the UAS. The mean of the

current locations, gi, of the remaining points gives the centroid in pixels,

centroid = (x, y)pix =
1

M

M∑
n=1

gi(n), (5.15)

where M is the number of moving points. The mean of the current displacement vectors,

di, of the remaining points estimates the objects translation,

velocity = (x, y)vel =
1

M

M∑
n=1

di(n). (5.16)

5.3.5 Kalman filter. The Kalman filter is used to predict the movement of the

UAS. The Kalman filter model is given by

Xi = AXi−1 + νi−1

Zi = CXi + µi

(5.17)

where Xi is the state vector, Zi is the measurement vector, A is the state transition matrix,

C is the measurement matrix. The state and measurement noise, νi−1 and µi, respectively,

are assumed to be Gaussian random variables with zero mean. Their probability density

functions are N [0,Qki ] and N [0,Rki ], where the covariance matrix Qki and Rki are referred

to as the transition noise covariance matrix and measurement noise covariance matrix.

A constant acceleration system model is assumed with the model given by

Xi = Xi−1 + Ẋi−1∆t+
1

2
Ẍi−1∆t2 (5.18)

where ∆t is sample time and X represents horizontal and vertical state vectors.
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Therefore, two separate Kalman filters were incorporated, one for horizontal motion

and one for vertical motion, such that the state vectors look like Xi,x = [x, ẋ, ẍ]> and

Xi,y = [y, ẏ, ÿ]>, respectively. The resulting transition matrix is given in Eq. 5.19.

A =


1 ∆t 1

2∆t2

0 1 ∆t

0 0 1

 (5.19)

Both position and velocity are measured in a given image, I, so the measurement

matrix is given in Eq. 5.20.

C =

1 0 0

0 1 0

 (5.20)

The noise covariance matrix, Qki−1
, was set to the identity matrix multiplied by

1×10−4 and the measurement noise covariance, Rki , was set to the identity matrix multiplied

by 1 × 10−3 based on visual effects of reduced jitter. Experimental results were sufficient

using these settings; however, minimal adjustments were made so further tuning based on

objective testing would likely provide better settings.

5.3.6 Pan/tilt control. The goal of the pan/tilt controller is to track the object near

the center of the image. If the object were not moving, then the pan/tilt unit would simply

need to point at the previous location. Because the object is moving, the Kalman filter

is used to predict the next location, so that the pan/tilt unit will point to the anticipated

next location. Note that since the Kalman filter predicts the object location in pixels,

it is independent of the pan/tilt controller, so long as the object remains in the image.

Therefore, as long as the measurements, (x, y)pix and (x, y)vel, are accurate, the system will

be stable. The pan/tilt controller parameters controlled the abruptness of motion based on

user selection. The user-selected parameters for the pan/tilt unit were set to the pan/tilt

unit’s maximum speed and acceleration, 300◦/sec and 300◦/sec2, respectively (see Chapter

III for the pan/tilt specifications); the base speed was set to half of the maximum speed,

150◦/sec. This was done in order to achieve the requested pan/tilt movement as fast as

possible for a given iteration.
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A deadzone is implemented based on an acceptable bound of the object in the image

(i.e., the object is close enough to the center of the image that movement of the pan/tilt unit

is not required). If the predicted point is more than xdz or ydz away from the image center,

then the pan/tilt unit is commanded to move the appropriate axis so that the predicted

point will lie on the deadzone boundary for a scale factor of q = 1. For q < 1, the predicted

point falls outside the deadzone boundary causing a slower tracking response. The deadzone

function is

dz(x, xdz) =


q(x+ xdz) x < −xdz
0 |x| < xdz

q(x− xdz) x ≥ xdz

(5.21)

for the x direction. The values used in the experiments are xdz = 50, ydz = 50, and q = 0.8.

The result of the deadzone calculation for each independent direction is then converted to

pan/tilt units, added to the current position, and then sent to the pan/tilt controller:

xpan direction = dz(x, xdz)cx + xpan reference

ytilt direction = dz(y, ydz)cy + ytilt reference

(5.22)

where cx, cy represent the conversion constants from pixels to pan/tilt units in the x and y

directions, respectively.

5.4 Experiments and Results

5.4.1 Point estimation performance. The experiments in this section use the

closed-form solution of the background motion. Initial experiments contained a feature-

filled background as was shown in Fig. 5.2.

It is assumed that the object is no closer than 1 m with a system rate of 15 fps.

Using optical flow background estimation and the previous assumptions, Table 5.2 gives

approximate pixel movements and object speed for a given pan or tilt angle, Θ, with focal

length equal to 1,076 pixels used to interpret scale of results.

An object moving 1.2 m/s at 1 m distance will travel 90 pixels at a system rate of 15

fps if the camera is not moving. As the camera tracks the object, the background points will

move 90 pixels while the object will appear stationary. Because the threshold to identify
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Table 5.2: Approximate Pixel Movement and Speed for Pan or Tilt Angle, Θ, with Focal
Length = 1, 076 pixels.

Θ(◦) 1.0 1.5 2.1 2.6 3.1 3.7 4.2 4.7

Pixel
Movement 20 30 40 50 60 70 80 90

Speed (m/s)a 0.3 0.4 0.6 0.7 0.8 1.0 1.1 1.2

a Speed relates to an image plane 1 m from the camera with a system rate of 15 fps.

erroneous matches is based on the midpoint of gi−1 and ĝi, a minimum threshold would be

45 pixels and so this is used for dmov (see Fig. 5.7).

Testing included the use of only the feature-filled background. Because all of the

points are known to be static, any difference in optical flow points from background motion

is an error in the method. Horizontal, vertical and diagonal camera movements at varying

increments with one thousand features per frame were used. Table 5.3 shows the mean with

standard deviation in parentheses for each test along with the number of frames used.

The large errors of some points unduly influenced the results of Table 5.3, so a clas-

sification system (see Sec. 5.3.4) was used to identify points that could be ruled out as

incorrect matches.

Using the background estimation with the moving object threshold, Fig. 5.8 shows

the percentage of features accounted for with respect to the estimated distance in pixels for

a movement of 40 pixels.

Since larger errors are seen with diagonal movements as shown in Fig. 5.8, a combi-

nation of ψ and θ movements is used as a means for understanding performance limitations

of the system. Therefore, Fig. 5.9 shows the test scenario for diagonal movements with the

number of features accounted for versus distance. Given ψ ≤ 1◦, θ ≤ 1◦, 99% of the placed

features are accounted for to within 4 pixels. Figures 5.8 and 5.9 were used to come up

with an appropriate background threshold, bbkgd, to account for points based on selected

movements. Matches further than 8 pixels away were very spread out, resulting in lim-

ited advantage of a bbkgd larger than 8 pixels for the tested motions. Ideally, the smallest

threshold should be used, since it creates a minimum speed that a moving object would be

considered stationary. At 15 fps, 8 pixels would correspond to a speed of 0.1 m/s at 1 m.
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Table 5.3: Optical flow error for a stationary background with varying movements of pan,
4ψ, and tilt, 4θ.

Θa Vertical
4ψ = 0,
4θ = Θ

Horizontal
4ψ = Θ,
4θ = 0

Diagonal
4ψ = Θ,
4θ = Θ

Diagonal
4ψ = Θ,
4θ = −Θ

framesb

(◦) x,y pixelsc

(σx,σy pixels)d
x,y pixels
(σx,σy pixels)

x,y pixels
σx,σy pixels)

x,y pixels
(σx,σy pixels)

(#)

-3.1 -3.1, 17.8
(37.0, 39.2)

-47.1, 6.3
(51.6, 36.8)

-49.8, 28.6
(68.9, 55.7)

-36.9, -25.6
(53.4, 51.8)

16

-2.6 -1.3, 9.5 (23.9,
30.1)

-33.8, 7.0
(43.3, 34.2)

-35.8, 23.7
(60.1, 49.8)

-26.4, -17.0
(48.1, 43.0)

19

-2.1 -0.8, 3.5 (20.2,
19.1)

-10.5, 1.7
(33.4, 22.7)

-20.8, 13.6
(45.7, 40.9)

-18.1, -11.3
(38.6, 34.9)

24

-1.5 -0.4, 0.8 (11.1,
15.0)

-2.3, -0.3
(21.5, 12.3)

-5.1, 2.8
(25.0, 22.3)

-6.7, -4.8 (24.3,
23.3)

33

-1.0 -0.7, -0.7 (13.1,
2.2)

0.0, -0.4
(12.0, 8.6)

-0.6, -0.7
(13.0, 8.1)

-0.8, -0.1 (13.8,
12.5)

49

-0.5 -0.1, -0.4 (3.9,
1.2)

0.2, -0.1 (5.5,
4.1)

-0.1, -0.3 (3.9,
1.9)

-0.1, 0.2 (5.9,
5.5)

99

0.5 0.5, -0.2 (6.3,
6.4)

-0.3, 0.0 (0.6,
1.7)

-0.1, 0.1 (6.5,
6.6)

0.0, -0.4 (2.7,
1.7)

99

1.0 -0.9, 0.0 (15.4,
12.3)

-0.9, -0.5 (9.8,
9.7)

-0.3, -0.3
(12.5, 13.7)

0.0, -0.9 (10.8,
8.5)

49

1.5 -0.7, -0.8 (14.7,
14.6)

2.2, -0.7
(16.5, 14.2)

6.9, -5.2
(25.0, 23.6)

7.2, 3.9 (25.4,
26.0)

33

2.1 -1.6, -3.7 (22.2,
23.3)

7.4, -0.7
(21.7, 18.4)

15.6, -16.0
(39.6, 40.2)

15.3, 9.5 (30.7,
31.7)

24

2.6 -1.7, -11.2
(23.3, 34.5)

32.5, 2.8
(35.4, 33.3)

31.2, -25.0
(49.9, 48.6)

23.2, 16.2 (36.9,
37.8)

19

3.1 -2.6, -22.2
(33.4, 44.7)

42.8, 2.6
(38.5, 36.2)

41.5, -31.3
(56.2, 53.9)

34.5, 23.2 (50.5,
47.8)

16

aThe angle of movement; each column uses this value to determine the amount of pan and tilt movement
bConstitutes the frames used for a given Θ (e.g., a diagonal movement, where Θ = 3.1◦, is approximately 4.4◦

of pan/tilt movement per frame equating to approximately 70◦ of pan/tilt movement over the course of the
test)

cx,y pixels represents the global mean over a given number of frames.
dσx,σy represents the standard deviation over a given number of frames.

Table 5.4 shows average algorithm processing times in milliseconds over 4000 iterations

for varying number of features used and image resolution. A resolution of 656x524 with 250

features leaves 14.5 ms for camera and pan/tilt control for real-time tracking at 30 fps.
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Figure 5.8: Account of features (using background estimation with a moving object
threshold) given equal degrees of travel versus pixel distance.

Table 5.4: Average algorithm time (in milliseconds) for varying image resolutions versus
number of features used.

Image Resolution (width x height)

# of
features

328x262 656x524 984x786 1312x1048

250 14.0 18.8 21.5 30.6

500 19.6 24.1 27.3 38.0

750 22.1 30.9 33.3 45.8

1000 21.8 36.4 39.4 52.0

The camera used for these experiments achieved an average time to capture and process an

image of 3.4 ms for the requested image resolution of 656x524.

5.4.2 Test subject tracking and timing. Experiments were conducted by swinging

the test subject in the range of 30◦ − 40◦ from rest. This provides a maximum test subject
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Figure 5.9: Account of features (using background estimation with a moving object
threshold) given a diagonal movement versus pixel distance.
Note: a movement of ψ = 3.1◦, θ = 3.1◦ is actually 4.4◦ of travel

velocity of 1.1−1.5 m/s. The complete system, consisting of image capture, algorithm, and

pan/tilt movement; tracked the test subject at a system rate of 6− 18 fps.

The test subject scenario shown in Fig. 5.10 shows the various workings of the algo-

rithm for a moving test subject and static camera. Points that lie within bbkd are eliminated

and shown as red, closed circles. In particular, it is seen that those points on the doorknob

are correctly identified as background motion and are eliminated from the centroid calcu-

lation. The white, closed circle points show the matched optical flow points on the moving

test subject for determining the pixel centroid and velocity vector.

The second scenario shows the algorithm at work for a moving test subject, moving

camera (see Fig. 5.11). Again, those points near the doorknob are eliminated as they are

identified as stationary, global points. Despite movement of approximately 49 pixels, the

red points near the doorknob in Fig. 5.11 are still eliminated background motion.
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Figure 5.10: A moving test subject captured by a static camera with previous points
shown as green rectangles, gi−1, current optical flow points as white, closed
circles, gi, estimated points as green, open circles, ĝi, and removed outliers
shown as red, closed circles.

Table 5.5: Timing of image capture, algorithm and pan/tilt movement over 999 iterations

Procedure Average Minimum Maximum

Image Capture 3.4 ms 3.2 ms 3.4 ms
Algorithm 12.7 ms 10 ms 17 ms

Pan/Tilt Movement 65.0 ms 43 ms 159 ms

TOTAL 81.0 ms 56.2 ms 179.4 ms

Figure 5.12 provides a sequence of frames, approximately 0.24 seconds apart for one

period, showing the tracking of the moving (i.e., swinging) test subject with a moving

camera. Note that both upper and lower, left images show eliminated points in red due to

the lack of motion of the test subject during transition.

In order to achieve faster processing than that shown in Table 5.4, the number of fea-

tures used was 200 and the effective area was reduced to 456x324 image resolution. Timing

of the processes involved was determined using the Central Processing Unit (CPU) clock.

An average of 999 iterations for image capture, image processing, and pan/tilt movement

is shown in Table 5.5.

The results show that a system rate of 6-18 fps per camera may be realized for the

entire process. The slowest part of the process consisted of directing the pan/tilt unit at a

minimum of 43 ms and a maximum of 159 ms for the test given. Larger movements caused
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Figure 5.11: A moving test subject captured by a moving camera with previous points
shown as green rectangles, gi−1, current optical flow points as white, closed
circles, gi, estimated points as green, open circles, ĝi, and removed outliers
shown as red, closed circles.

larger delays in pan/tilt movement in order for the unit to complete the directed motion.

The algorithm operated at a minimum of 10 ms and a maximum of 17 ms (using 200 features

and an effective image area of 456x324), and the camera operated at a minimum of 3.2 ms

and a maximum of 3.4 ms for capturing a 656x524 image. Faster processing is possible by

not waiting for the pan/tilt unit to complete directed tasks, but the error would not be

compensated for. This would require determination of pan/tilt controller information such

as the time required to process commands, the time associated with initation of movement,

and the time required before being capable of accepting new commands.

5.4.3 Comparison testing. The proposed algorithm requires no training or match-

ing of features to templates. It is believed that the technique developed in this chapter

captures faster, single moving objects better than existing general-purpose methods. Train-

ing for specialized tracking is required in [32], [4], and [29]. A color histogram representation

is required in [72], [138], and [76] and often fails with large shifts in motion or objects of

similar colors. Specialized tracking of skin color for face detection is used in [5]. It is sought

here to provide further comparisons in order to give a general idea of realizable performance

characteristics by other algorithms with generic assumptions.
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Figure 5.12: A sequence of frames, approximately 0.24 seconds apart for one period, of
a swinging test subject with the center of the image identified by a white
diamond, previous points shown as green rectangles, gi−1, current optical
flow points as white, closed circles, gi, estimated points as green, open circles,
ĝi, and removed outliers shown as red, closed circles.

Comparisons were made using a set of 999 images captured using the optical flow

background estimation. The timing between images corresponds with Table 5.5 and ac-

curacy is determined through a combination of theoretical pendulum movement and user

verification.

The comparison algorithms chosen were accessible via the OpenCV library [26]. The

chosen comparison algorithms are optical flow, Continuously Adaptive Mean Shift (CAMShift)

and GPU Speeded-Up Robust Features (SURF) with Fast Library for Approximate Nearest

Neighbors (FLANN) matching. Since these algorithms vary in user requirements, tuning

and utility, it is sought here to provide the reader a general idea of performance character-

istics and comparability of the techniques developed in this chapter and not, necessarily,

optimized techniques.

Merely using optical flow requires the user to specify how many points to track and

where to start. Due to large shifts in the background, optical flow points are quickly lost and

re-selection is required to continue tracking. Therefore, it was sought to correct these large

displacements due to camera movement using phase correlation (e.g., phase correlation was

used in [10] to provide a rough estimate of displacement). However, the lack of background

features and the size of the moving object in the given test was detrimental in maintaining

optical flow points. Therefore, phase correlation was not used in the experiments. Both the

moving object size and background features are critical in using phase correlation.
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Figure 5.13: For comparison purposes, the CAMShift algorithm was used to determine
the object centroid. The color histogram (right) is made up of the compo-
nents within the ellipse of an image in the test set (left).

The CAMShift algorithm generally tracked well at slower speeds where the object was

within the range of a user-specified kernel. Tracking ceased where the local maximum was

found to be a background point that eventually left the screen upon pan/tilt movement.

Using a background with the same color as the moving object of interest would most likely

degrade the tracking of the object and would require user re-selection of the area of interest.

The GPU SURF feature detection was used due to its speed along with matching

using the FLANN. System timing, using solely the GPU SURF detection algorithm without

matching, provided an average processing speed of around 45 ms. Note that this time is

already greater than that achieved in [29] using OpenCL for the entire process. Therefore, in

fairness, the process could be optimized to possibly perform better tracking and timing than

given here. Training images consisted of twenty images with varying camera parameters of

the helicopter on a white background as shown in Fig. 5.14 (right). Convex hulls were

generated about the helicopter using the SURF features for each image for transformation

operations (see Fig. 5.15). Matches were rank ordered based upon a minimum distance

associated with a match. Matches within 20% of the best match were used to determine

the moving object’s centroid. From preliminary testing, the threshold of 20% was used

subjectively to eliminate outliers based upon examination of match distances for the given

test. The closest match was not always found to be on the moving object and therefore

false matches were often identified.
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Figure 5.14: For comparison purposes, good matches were used to provide the moving
object centroid using a point average. The training image (right) shows
feature locations that were matched to an image in the test set (left).

Figure 5.15: Affine transformation of the training contour (right) onto the moving object
(left).

An advantage of the technique described in this chapter is that it tracks a single,

moving object despite changing features and background while others require similarity in

features between frames. For example, the proposed algorithm would be able to track a UAS

from any orientation regardless of features whereas feature-based trackers require training

or minimal transient feature characteristics.

Table 5.6 shows some performance characteristics of the technique developed in this

chapter (GPU optical flow background estimation) along with the selected algorithms.

Again, these results provide a general idea of performance characteristics related to those

of the comparisons described in Chapter II.
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Table 5.6: General performance characteristics of object detection/tracking systems for
a set of 999 images at 656x524 resolution.

Algorithm Training / Timing / Pixel error /
Selection (System ratea) (# re-selects)

GPU Optical Flow - / 12.7 ms / 36 ± 34 /
Background Estimation - (12 fps) -

Optical flow - / 22.4 ms / 60 ± 65 /
Selection (11 fps) (46)

CAMShift - / 22.5 ms / 43 ± 95 /
Selection (11 fps) (23)

GPU SURF Training / 56.4 ms / 56 ± 51 /
- (8 fps) -

aSystem rate includes the average times for image capture and pan/tilt operation.

5.5 Summary

A real-time tracking algorithm capable of 30 fps using GPU-based algorithms for a

pan/tilt camera was presented. The theory and approximations were provided to estimate

background motion for optical flow background subtraction. The experiments with the

static background showed minute benefit in classifying points further than 8 pixels from the

predicted location as background. The larger this threshold, the larger the lower limit on

the speed of the moving object. Actual tracking experiments showed that greater angles,

≥ 4.4◦, could be achieved by tracking at speeds of ≥ 1.2 m/s with the system operating

between 6-18 fps.

An algorithm was developed consisting of point classification, Kalman filtering and

pan/tilt control where point classification consisted of whether points were background,

motion or noise. The magnitude of the camera movement was varied to show accuracy of

the estimation of the background motion by comparing it with the measured optical flow.

Results show algorithm processing times for various image resolutions and number of fea-

tures which shows how performance can scale to achieve desired frame-rates. In addition,

the results show that the technique developed in this chapter requires no training, initializa-

tion/operator selection, or pre-defined capture area (i.e., alert zone). The novel combination

captures free-flying, single moving objects better than existing general-purpose methods.
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The CV-tracking method was tested, analyzed and compared in this chapter. Chapter

VI employs the developed method with two PTZ cameras in order to track a UAS, estimate

its 3D position, and set desired camera focal lengths based on the size of the UAS.
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VI. Employing a Multiple, Real-Time, Pan/Tilt/Zoom Camera Object

Tracking, and 3D Position Estimating System

6.0.1 Overview. The goal of this work is to develop a system capable of tracking

a single moving object (specifically a UAS) with Pan/Tilt/Zoom (PTZ) cameras, estimat-

ing its three-dimensional (3D) position, and estimating ideal camera focal lengths based

on desired object size resolution. This work is novel in the application of tracking all tex-

tured moving objects (or general-purpose) with the intent of tracking an indoor Unmanned

Aircraft System (UAS). This chapter presents the experimental results of a system that

can: 1) track a moving object using two or more cameras, 2) estimate its 3D position, and

3) estimate ideal camera focal lengths based on desired object size resolution leading to a

solution that is easily expandable to a multiple camera, photogrammetry system. In addi-

tion, the methodology for estimating background motion, using Kanatani’s relationship on

optical flow tracking, is developed for pan, tilt and zoom operations. Furthermore, a parallel

implementation is presented with Graphics Processing Unit (GPU)-based optical flow for

real-time, general-purpose tracking. The experimental results show the root mean square

error with respect to data obtained using a Vicon Motion System, Ltd R© system. A parallel

implementation of GPU-based feature detection, tracking and zooming is an advancement

beyond the methods presented in Chapter II.

Some possible applications include: tracking and testing of flexible vehicles and struc-

tures without the use of tracking aids, tracking or monitoring vehicles, to include satellites

for intercepting space debris, incoming/departing aircraft from a flight tower, and obtaining

high-quality images of UASs, satellites, debris, intruders, aircraft, etc.

The system components are described in Sec. 6.1. The theoretical overview for esti-

mating background motion based on camera pan, tilt, and zoom operations and the basis

for determining 3D position and ideal focal length is presented in Sec. 6.2. A parallel im-

plementation of Computer Vision (CV)-tracking using a PTZ camera is presented in Sec.

6.3. Zoom control is presented in Sec. 6.4. Finally, the experiments and results are shown

in Sec. 6.5 followed by the conclusions in Sec. 6.6.
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6.1 System Components

6.1.1 Equipment used. In comparison to the equipment used in Chapter V, an

additional camera and pan/tilt unit have been added (see Fig. 6.1). The testing was per-

formed in the laboratory with the commercial photogrammetry system and so the lighting

consisted of the fluorescent and high performance lights. Chapter III provides the specifi-

cations. The requested image size for the experiments is 656x524 with a requested shutter

speed of 1.02 ms. The focal length is 748 pixels.

Figure 6.1: Equipment used.

6.2 Theoretical Overview

Extending the relationship developed in Chapter V, Sec. 5.3.1, to accomodate a

change in focal length gives

(x̂, ŷ)>i−1 = fi−1

(
Xi−1

Zi−1
,
Yi−1

Zi−1

)>
(6.1)

and

(x̂, ŷ)>i = fi

(
Xi

Zi
,
Yi
Zi

)>
. (6.2)
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Utilizing Eq. (5.3), (6.1) and (6.2) results in equations (6.3) and (6.4) incorporating

the dependence upon the change in focal lengths before and after movement, fi−1 and fi,

respectively.

x̂i(fi, fi−1, ψi−1, θi−1, xi−1, yi−1)

= fi

(
xi−1−fi−1 tan(ψi)

xi−1 tan(ψi−1) cos(θi−1)−yi−1
sin(θi−1)

cos(ψi−1)
+fi−1 cos(θi−1)

)
,

(6.3)

ŷi(fi, fi−1, ψi−1, θi−1, xi−1, yi−1)

= fi

(
xi−1 sin(ψi−1) tan(θi−1)+yi−1−fi−1 cos(ψi−1) tan(θi−1)

xi−1 sin(ψi−1)−yi−1 tan(θi−1)+fi−1 cos(ψi−1)

)
.

(6.4)

6.2.1 3D Position Estimation. Let the world coordinate system be established

such that camera poses are known with respect to the world coordinate system. The jth

camera position in the world coordinate system, P0,camj (x, y, z), may be determined using

its initial pose, R0,camj and T0,camj , by

P0,camj = R>0,camj (P0 − T0,camj ) (6.5)

where P0 is the origin in the world coordinate system, R0,camj is the initial jth camera orien-

tation from the world coordinate system to the jth camera’s coordinate system, and T0,camj

is the initial jth camera translation vector from the world to the jth camera coordinate

system.

As the jth camera tracks the moving object, the change in pan and tilt angles from

R0,camj are given by Ψ and Θ, respectively. Therefore, the rotation matrix of the camera

including pan and tilt angles is given by

Robjj = Rj(Ψ,Θ) ∗R0,camj (6.6)

where Rj(Ψ,Θ) represents the rotation matrix based upon the jth camera’s pan and tilt

angles, and R0,camj represents the initial orientation of the jth camera with respect to the

world coordinate system.
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Now the centroid of the moving object in the image needs to be accounted for from

Robjj . Knowing the image focal length, f , principal point, (px, py), and the centroid of

the moving object, (x, y), a point, Pobjj , can be established from the jth camera location,

P0,camj , by

Pobjj = P0,camj + Robjj


x− px

py − y

f

 . (6.7)

Given N camera locations, P0,camj (x, y, z) and the rays for the moving object’s cen-

troid, Pobjj (x, y, z), the intersection, Pint(x, y, z), may be found using [126]

Pint =

 N∑
j=1

njn
>
j

−1 N∑
j=1

njn
>
j P0,camj

 (6.8)

where Pobjj (x, y, z) − P0,camj (x, y, z) are normalized and given by n>j = [njx , njy , njz ] and

njn
>
j is a 3× 3 matrix.

The distance to the camera is then found by determining the Euclidean norm

dcamj =
∣∣∣∣Pint − P0,camj

∣∣∣∣ . (6.9)

6.2.2 Ideal Focal Length Estimation. Assuming that the size of the moving object

is known, by similar triangles the physical object size, oact, divided by the distance to the

camera, dcam, is approximately equal to the focal length, f(pixels), divided by the object

size in an image, oimg(pixels),

(
oact
dcam

)
≈
(
oimg
f

)
(6.10)

where oact is the Euclidean norm of the object width and heighth in millimeters, and oimg

is the Euclidean norm of the object width and heighth in pixels.

After establishing the approximate relationship, rearranging Eq. 6.10 gives the ability

to change models by only changing the actual model size, oact. Using a new model size,
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oactmdl , allows the ability to determine the new model size in pixels, oimgmdl , and, in turn,

set a desired ratior, r, based on the image width by

oimgmdl = oactmdl

(
f

dcam

)

r = oimgmdl/(image width).

(6.11)

where r equals the ratio of the model in pixels with respect to the image width in pixels.

Setting the desired ratio, r, determines how much of the image frame should contain

the object. This gives the ability to determine what focal length is required for a given

distance. Solving for f in Eq. 6.11 with the desired image size gives an ideal focal length,

fidl(i) = r(image width)

(
dcam(i)

oactmdl

)
(6.12)

where dcam(i) is the distance to the object from the camera at a given time step, i.

6.3 Parallelized Tracking Using a PTZ Camera

6.3.1 Parallel Process Development. Image capture, algorithm computation, pan-

ning, tilting and zooming operations all take time, but are not completely dependent upon

each other. Parallelizing the tracking process with a PTZ camera allows algorithm compu-

tation while the PTZ camera operates. Those components requiring serial operation include

capturing the image, performing a digital zoom operation on the image, and running the

tracking algorithm on the digitally zoomed image. While these operations are taking place,

the pan/tilt unit can process a previous iteration’s commands and move the pan/tilt unit

to the commanded position.

The parallel process parameters and initialization steps are shown in Fig. 6.2 (left).

The initialization is unique from other steps in that a number of cameras, N, can be set

up for parallel operation. The variables provided in initialization are provided as inputs to

parallel tasks. Note that operations within each parallel task are performed serially with

exception to GPU-based functions within the CV algorithm. Figure 6.2 (top, right) shows

two parallel tasks, associated with the jth camera and pan/tilt unit with digital zoom,
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enclosed in a dotted, black line to show those tasks repeated for N cameras. Figure 6.2

(bottom, right) shows the last parallel task that utilizes data from each camera, calculates

the least squares intersection of N lines, and then provides object distances and focal lengths

for each camera. The inputs for all of the parallel tasks require their outputs from the

previous step. For example, let i = 2, and N = 2, then Parallel Task 1 and 3 have inputs

x1,1, y1,1, f1,1, f2,1, and x1,2, y1,2, f1,2, f2,2, to find x2,1, y2,1 and x2,2, y2,2, respectively, then

Parallel Task 2 and 4 have inputs x1,1, y1,1, and x1,2, y1,2, respectively, and Parallel Task 5

has inputs f2,1, d1,1, x1,1, y1,1, f2,2, d1,2, x1,2, and y1,2 to find d2,1, d2,2, f3,1, and f3,2. All of

the inputs for the parallel tasks are provided by the previous step.

Parallel Task 2j-1 

Inputs:  xi-1,j, yi-1,j, fi-1,j, fi,j 

Tasks:  

     1) Capture image;  

     2) Execute digital zoom; 

     3) Run Algorithm 

Outputs:  xi,j, yi,j 

Parallel Task 2j 

Inputs:  xi-1,j, yi-1,j 

Task: Direct pan/tilt unit 

Parameters 

i = time step (global) 

j = PTZ camera number 

N = number of cameras 

Ii,j  = image 

fi,j = focal length 

xi,j = pan 

yi,j = tilt 

di,j  = object distance 

          from the camera  

Camera j 

Initialization for j = 1…N 

i = 1 

f0,j  = camera focal 

length 

f1,j  =  f0,j  

x0,j = 0 

y0,j = 0 

d0,j  = Calibrated 

          camera distance 

Parallel Task 2N+1 

Inputs: {fi,j, di-1,j,xi-1,j, yi-1,j} V j 

Task: Calculate least squares 

intersection of N lines 

Outputs: {di,j ,fi+1,j} V j 

Initialize and Implement Parallel Tasks 

 

Note: Parallel tasks enclosed in the dotted black line require N parallel implementations 

(e.g., for N=2 cameras would give 2 parallel implementations of the enclosed tasks plus 

the last parallel task for a total of five parallel tasks for one iteration, i). 

for j = 1…N 

 

for i = 1… 

 

8
 

Figure 6.2: Parallel process parameters and camera initialization (left) and tasks (right)
using digital zoom.

The system described in Sec. 6.1 does not contain cameras with mechanical zoom.

However, the parallel tasks may be easily adjusted by removing the digital zoom from
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‘Parallel Task 2j-1’ and adding it to the ‘Parallel Task 2j’ (see Fig. 6.2 (top, right)). Also,

mechanical zoom could be accomplished using a separate parallel task if the hardware is

independent of the pan/tilt unit. Another parallel task consideration is that of displaying

the images obtained by the system. Depending on the computer system and number of

cameras, the parallel task could be implemented as another subtask in the ‘Parallel Task

2N+1’ (see Fig. 6.2 (bottom, right)).

Note that a CV algorithm of choice may be used in ‘Parallel Task 2j-1’, subtask 3)

Run Algorithm (see Fig. 6.2 (top, right) providing the ability to test other CV methods

with a PTZ system using known camera motion.

6.4 Zoom control

Zoom was accomplished by using a priori knowledge of the moving object and its

environment. Specifically, the size of the moving object was specified along with the pose

of each camera. In order to establish an environment for simple zoom estimation, a cal-

ibration board was used with known square sizes to set up the world coordinate system.

The Levenberg-Marquardt optimization was used to find a pose that minimizes the sum

of squared distances between observed projections given the camera matrix and distortion

coefficients1 [26].

Figure 6.3: Checkerboard with established coordinate system (x-axis, red; y-axis, green,
and z-axis, blue circle into the checkerboard) based on point to point corre-
spondences and known checkerboard square size.

Point to point correspondences are found based on a given checkerboard size and a sub-pixel

corner detection algorithm. The correspondences between images provides the relation for

identifying the camera rotation and translation matrices for setting up the world coordinate

1OpenCV 2.4.3 Library - solvePnP
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system. Once the coordinate system is in place and the camera locations have been identi-

fied, approximating the distance is trivial in that the least squares approximation may be

used to find a 3D point with respect to the newly established coordinate system (see Sec.

6.2.1).

Once an intersection is found, the process begins for identifying the appropriate zoom

based on object distance from each camera (see Sec. 6.2.2). In order to eliminate noise, a

low-pass filter is used:

fcmd,i = −k4t(fcmd,i−1 − fidl,i) + fcmd,i−1,

with 0 < k4t < 1

(6.13)

where fcmd is the commanded focal length, k is the filter time constant affecting rate of

change, 4t is the change in time, and fidl is the ideal focal length using Eq. 6.12.

The commanded focal length is also what is used to determine the scaling provided to

the digitial zoom calculation. The digital zoom calculation simply uses bilinear interpolation

for resizing the image to the commanded scale,

scale =


fcmd
f0

fcmd > f0

1 otherwise
(6.14)

where f0 is the actual focal length of the camera without scaling. For scale ≤ 1, the

commanded focal length, fcmd, is set equal to the actual focal length, f0.

6.5 Experiments and Results

6.5.1 Relating the “Two-camera, PTZ system” to Truth Data. The system was

designed such that each camera operates independently in addition to making it simple to

add more cameras. Initial testing of the system described in this chapter began with relating

it to the established coordinate system of the Vicon Motion Systems Ltd. R©2 system referred

to simply as Vicon. Relating systems was done by placing four retro-reflective markers on

2Vicon California, 5419 McConnell Avenue, Los Angeles, CA 90066; (310) 306-6131, email:
info@vicon.com
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the checkerboard used to calibrate and establish the world coordinate system for the “two

camera, PTZ system”. Rotation and translation values of the checkerboard in the Vicon

coordinate system were recorded in order to place the Vicon points into the world coordinate

system established by the “two camera, PTZ system”. The following relation provides Vicon

points in the “two camera, PTZ system” world coordinate system:

Pnew = R>ckbd(PV icon − Tckbd) (6.15)

where Pnew is a point in the “two camera, PTZ system” coordinate system, Rckbd is the

rotation matrix of the checkboard, PV icon is the point as recorded by Vicon, and Tckbd is

the translation matrix from the Vicon origin to the “two camera, PTZ system” origin.

The flight paths were aligned using a combination of visualizing vehicle trajectories

in 3D space and considering visually plausible root mean square error between systems of

the observed flight path. Vicon data was considered truth and used to determine the root

mean square error of the “two camera, PTZ system”. In addition, a bicubic interpolation

was used to fill in any missing Vicon points due to occlusion of the retro-reflective markers.

6.5.2 Experiments. The algorithms are evaluated for tracking generic moving

objects and the performance is quantified in Chapter V. Using a single camera with no

zoom, objects were tracked at approximately 1.2 m/s at a distance of 1 m. As an extension

to this work, several new experiments were performed to test the tracking algorithm, the

3D position estimation, and digital zoom of a moving object using two cameras. The 3D

position estimation was restricted to a 7.6 m x 7.6 m x 2.4 m room using a Vicon camera

system for providing accurate truth data (i.e., 3D position and time) of the moving object

with error at the sub-millimeter level.

In order to obtain accuracy measurements, the Vicon camera system was used to

identify and compare position of the vehicle. Several vehicles were used in the experiments

to demonstrate the generic moving object capability. However, only the Blade R©3 mQX

quadcopter was used in obtaining Vicon truth data (i.e., position vs. time) for error analysis

(see Fig. 6.4). The quadcopter’s maximum base dimension is 250 mm and maximum

3Horizon Hobby, Inc., 4105 Fieldstone Road, Champaign, IL 61822; (217)352-1913

6-9



Five retro-reflective markers 

Maximum dimension: 
360 mm (blade tip to blade tip) 

Test Subject (Quadcopter) 

Figure 6.4: The test subject used to obtain data using the “two-camera, PTZ system”
and the Vicon camera system.

dimension from blade tip to blade tip is 360 mm. Five retro-reflective markers were placed

on the vehicle in order for the Vicon camera system to track the quadcopter using the 10

specialized cameras.

The experiments, objectives and subjective pass/fail criteria are listed in Table 6.1.

The subjective pass/fail criteria is based solely on whether or not the PTZ cameras visually

tracked the quadcopter 200 out of 275 recorded test frames (i.e., visually tracked > 70% of

the test); which equated to ≥ 10 seconds of flight time. Note that the 3D position estimation

error increased exponentionally as the projection lines of the cameras were near parallel

so this data was removed from error calculation; however, visual tracking still persisted.

Further data reduction occurred when trying to line up the data obtained from the two

systems showing decreased test times and frames as a result (see Table 6.2).

Above camera-level testing failed due to the bright lights used to enable minimum

shutter speeds of ≈ 1ms. Due to the nature of optical flow and approximating pixel location

using brightness constancy, the algorithm performs poorly against bright lights. It would

pass if the lights were filtered out or otherwise moved out of the way. The predicted points
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Table 6.1: Specific tests with objectives and pass/fail.

# Test Objective Pass/Fail

1 x-axis testing verify system positioning/test the ability to track
flight and determine depth primarily in the x-axis

Pass

2 y-axis testing verify system positioning/test the ability to track
flight and determine depth primarily in the y-axis

Pass

3 z-axis testing verify system positioning/test the ability to track
flight and determine depth primarily in the z-axis

Pass

4 below camera-
level testing

test the ability to track and determine depth at a plane
below the camera plane

Pass

5 camera-level
testing

test the ability to track and determine depth at
camera-level flight

Pass

6 above camera-
level testing

test the ability to track and determine depth at a plane
above the camera plane

Fail

7 proximity
testing

test the ability to track and determine depth at close
range

Pass

8 approach test-
ing

test the ability to track approach and passing between
cameras

Pass

9 range testing test the ability to track and determine depth at dis-
tances outside Vicon range

Pass

against lights produced an increase feature count and often apparent motion thereby causing

the “two-camera, PTZ system” cameras to fixate on the lights.

6.5.3 Flight Profile Examination. Different flight profiles were examined here to

give the reader an understanding of the capability of this “two-camera, PTZ system” with

respect to the ten Vicon camera system. Figures 6.5, 6.6, and 6.7 demonstrate the tracking

of the quadcopter, using both systems, primarily in the x, y and z-axes, respectively, using

the world coordinate system initially established by the “two-camera, PTZ system”. Note

that the y-axis testing in Fig. 6.6 specifically shows the y-axis in both the top and bottom

plots for visualizing the flight path of the quadcopter with respect to the y-axis. The fourth

flight profile in Fig. 6.8 shows both systems tracking the quadcopter primarily at below

camera-level flight to show another arbitrary flight profile.

All of the specific tests were performed to test the viability of the system, the accuracy

of the range, and the zoom capability. Those flight paths shown in Fig.’s 6.5, 6.6, 6.7, and
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Figure 6.5: X-axis testing of the quadcopter’s 3D position using Vicon and “two-camera,
PTZ system” with a point-to-point (P2P) relationship. Note: The ‘Time of
Capture’ relates to the image sequence shown in Fig. 6.13.

6.8 are provided to show the point-to-point (P2P) relationship between the “two-camera,

PTZ system” and the Vicon system.

Table 6.2 shows the root mean square (RMS) error associated with the specific tests

listed in Table 6.1. Two of the specific tests, range and above camera-level testing, are
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Figure 6.6: Y-axis testing of the quadcopter’s 3D position using Vicon and “two-camera,
PTZ system” with a point-to-point (P2P) relationship. Note: The ‘Time of
Capture’ relates to the image sequence shown in Fig. 6.14.

not shown due to the lack of Vicon data for the range testing and the failure of the above

camera-level testing due to the lights. The axis with the least amount of average error was
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Figure 6.7: Z-axis testing of the quadcopter’s 3D position using Vicon and “two-camera,
PTZ system” with a point-to-point (P2P) relationship. Note: The ‘Time of
Capture’ relates to the image sequence shown in Fig. 6.15.

the y-axis with 91 mm ±89 mm followed by the x-axis with 112 mm ±34 mm. The x-axis

had the smallest standard deviation over the course of the tests. The Z-axis (the depth
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Figure 6.8: Below camera-level testing of the quadcopter’s 3D position using Vicon and
“two-camera, PTZ system” with a point-to-point (P2P) relationship. Note:
The ‘Time of Capture’ relates to the image sequence shown in Fig. 6.16.

from the camera) had the largest error over the course of the tests with an average error

of 218 mm ±100 mm. The total average error of 290 mm ±100 mm was ∼ 20% less than
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the maximum test subject size of 360 mm (i.e., the maximum size corresponds to possible

image points that could be identified as moving points in an image).

Table 6.2: Root mean square (RMS) error associated with specified tests.

# Test X Error
(mm)

Y Error
(mm)

Z Error
(mm)

Total
Error
(mm)

1 x-axis test, 189 frames, 11.1 seconds 139.9 40.6 119.9 201.9

2 y-axis test, 225 frames, 13.6 seconds 135.8 89.2 350.2 397.6

3 z-axis test, 211 frames, 13.2 seconds 138.6 68.8 371.2 412.9

4 below camera-level test, 234 frames,
14.9 seconds

134.4 70.8 209.7 279.1

5 camera-level test, 223 frames, 12.2
seconds

102.8 39.1 157.7 214.5

7 proximity test, 115 frames, 6.7 sec-
onds

72.6 287.8 184.1 359.1

8 approach test, 152 frames, 8.8 sec-
onds

58.2 41.8 132.8 165.9

TEST AVERAGE, 1349 frames,
80.5 seconds

111.8 ±
34.4

91.2 ±
88.8

217.9 ±
102.2

290.1 ±
100.4

Using the results of Table 6.2, the average processing speed for the system, to include

visualizing and recording, equates to 16.8 frames per second (fps) with a range from 15.7

- 18.2 fps. Tests without additional processes such as recording and visualizing the data

showed processing times of 21 fps.

Figures 6.13, 6.14, 6.15, and 6.16 each show a sequence of five images for x-axis, y-axis,

z-axis and below camera-level testing, respectively, which relate to the ‘Time of Capture’

shown in Fig.’s 6.5, 6.6, 6.7, and 6.8, respectively. On the right side of each set of images is a

blue bar indicating focal length, f0, and a green bar indicating the commanded focal length,

fcmd, indicating the level of zoom accomplished (see Fig.’s 6.13, 6.14, 6.15, and 6.16).

Figure 6.9 shows the tracking error with respect to the Vicon system for all of the

tests performed. Assuming the position of the camera center remains fixed with rotation

causes noticeable errors with increased pan/tilt angles. Note that the Euclidean norm of

the pan and tilt angles was used to highlight its effect on tracking error where tracking

error noticeably increases for angles ≥ 30◦ at distances less than 2000 mm (see Fig. 6.9

(top)). Figure 6.9 (bottom) shows a box plot of error versus distance where the central
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mark is the median, the bottom and top lines of each box are the 25th and 75th percentiles,

respectively, the whiskers are the furthest points not considered outliers, and outliers are

plotted separately.
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Figure 6.9: Error versus the average distance of the moving object from the cameras.
Color and circle size is used to distinguish larger pan/tilt angles (top), and
a box plot (bottom) is used to show the median (red line), 25th and 75th

percentiles as the bottom and top edges of each box, whiskers as extreme
points, and outliers plotted individually.

The following moving objects were tracked effectively (i.e., greater than 200 out of

275 frames) using two cameras:

• a remote-controlled car

• a remote-controlled helicopter

• a remote-controlled quadcopter

• a person

• a hand

• a checkerboard

6.5.4 Focal Length Estimation. The ideal focal length is estimated based upon

the distance of the object from the camera (see Sec. 6.2.2). First, parameters are set for
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establishing thresholds and an ideal focal length to meet the intent. The intent is to obtain

higher resolution images of the moving object captured in full so that no part of the object

is outside the image frame. The ideal pixel resolution is to fill 40% of the image width

with the moving object. The following percentages are given for filling the screen with the

moving object: 1) the lower threshold is set to no smaller than 20% of the image width,

and 2) the upper threshold is set to no larger than 60% of the image width. Thus, we have

the following parameters using Eq. 6.12 with varying r settings as follows:

• r = 0.4 for ideal focal length determination,

• r = 0.2 for determining lower focal length threshold,

• r = 0.6 for determining upper focal length threshold.

Should one camera lose the object, the other camera will continue to track. In the case

of losing a moving object, the actual focal length becomes the default if the commanded

focal length become less than the actual focal length.

Figures 6.10 and 6.11 show the actual, commanded focal length for each camera de-

termined by the “two camera, PTZ system”, the ideal focal length determined by Vicon,

and the upper and lower focal length thresholds using Vicon for the x-axis, y-axis, z-axis

and below camera-level testing. Note that the focal lengths for cameras 1 and 2, are 1,090

pixels and 1,087 pixels, respectively. The actual focal length for all scenarios falls within

the specified criteria and can be seen to slowly change over time due to setting the time

constant in Eq. 6.13, k, to a value of 0.05. The figures show that automatic digital zoom

may be accomplished simply by adding in the size of the moving object being tracked and

specifying how much of it should fill the image frame by setting, r. Setting the zoom time

constant, k, and desired image resolution ratio, r, gives the ability to maximize the object

size for higher resolution measurements.

6.5.5 Additional Design Considerations. The system was designed such that

each camera operates independently in addition to making it simple to add more cameras.

Also, changing the test subject is easily done by stopping movement of one test subject

and starting movement of another within each camera’s field of view. Remote-controlled

helicopter, person, and remote-controlled car tracking show the moving object tracking
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Camera 1 Focal Length vs. Vicon Lower/Upper/Ideal Focal Lengths

Figure 6.10: Camera 1 focal length vs. Vicon lower/upper/ideal focal length.

capability of the system developed in this chapter in Fig. 6.12. The independence of each

camera allows the ability for one camera to track until the other catches the test subject

within its Field of View (FOV) enabling both zoom and 3D position estimation. Tracking

abilities include complex backgrounds, varying object shapes and sizes, various lighting

conditions and varying speeds.

6.6 Conclusions

The system developed in this chapter requires no training or matching of features and

captures faster, single moving objects better than existing general-purpose methods with the

ability to zoom and estimate 3D position. The theory, parallel implementation, GPU-based

functions and algorithm provide for a unique photogrammetry system capability without

the need for retro-reflective markers. Modifications may be made to easily add multiple
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Camera 2 Focal Length vs. Vicon Lower/Upper/Ideal Focal Lengths

Figure 6.11: Camera 2 focal length vs. Vicon lower/upper/ideal focal length.

cameras. Zoom parameters may be adjusted for higher resolutions. The system is also very

portable for various indoor or outdoor applications. The parallel implementation for CV-

tracking developed in this work is versatile allowing the ability to test other CV methods

with a PTZ system using known camera motion.

Several tests were performed demonstrating the ability to track with two cameras, to

estimate the moving object’s 3D position, and to digitally zoom according to a commanded

focal length. The 3D position data was compared to data obtained by a Vicon Motion

Systems, Ltd. system showing a testing average over 1349 frames, 80.5 seconds (i.e., 16.8

frames per second), of 290.1 mm ±100.4 mm. Focal lengths for both cameras were shown to

fall within set lower and upper focal length thresholds with the potential to digitally zoom

up to four times the actual focal length. Different objects were tracked to show the system’s

generic tracking capabilities.
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Figure 6.12: Generic moving object tracking using “two-camera, PTZ system”.
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Figure 6.13: X-axis testing of the quadcopter’s 3D position using Vicon and “two-camera,
PTZ system”.
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Figure 6.14: Y-axis level testing of the quadcopter’s 3D position using Vicon and “two-
camera, PTZ system”.
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Figure 6.15: Z-axis level testing of the quadcopter’s 3D position using Vicon and “two-
camera, PTZ system”.
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Figure 6.16: Below camera-level testing of the quadcopter’s 3D position using Vicon and
“two-camera, PTZ system”.
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VII. Discussion, Conclusion, and Future Work

State-of-the-art non-contact measurement systems currently track points in three-dimensional

(3D) space using specialized cameras, requiring retro-reflective markers. The importance of

creating a Computer Vision (CV) Pan/Tilt/Zoom (PTZ) non-contact measurement system

is to advance the state-of-the-art beyond marker requirements and laser limitations. Par-

allelization and Graphics Processing Unit (GPU) programming enable CV algorithms and

other systems to run with ease on a multi-core computer with the ability to expand to more

PTZ cameras as needed. The use of CV capabilities for 3D point tracking may be extended

to a multitude of points based on the use of image information and views from multiple

cameras containing corresponding points. The importance of adding PTZ is to enable a

dynamic system capability for varying the attainable angle and Field of View (FOV) for

capturing high-resolution, high frame-rate images of the object being measured.

7.1 Flapping Wing Research

One particular area of research that makes this system relevant is understanding the

flight dynamics of flying organisms through photogrammetric, state measurements. Many

small, biological flappers go undetected in households and in our everyday surroundings.

Their ease of maneuvering through complex flight paths make studying biological flying

organisms an interesting area of research. Numerous military applications are feasible with

the development of such small, maneuverable devices. Tracking and measuring these de-

vices provides insight into the complex aerodynamic, aeroelastic, and wing-warping effects

that make their maneuverability possible. Adding contact measurement devices to these

Unmanned Aircraft System (UAS) would only hinder their normal flying operations. There-

fore, non-contact methods are required towards measuring such flight characteristics. In

developing a CV system, 3D measurements from stereo vision systems could be used to in-

form and validate the motion of a flapping UAS to provide finite element and Computational

Fluid Dynamics (CFD) analyses. Target photogrammetry has been validated by laser scans

and texture photogrammetry has been found to be comparable in accuracy [62]. There-

fore, careful selection of proper CV algorithms could lead to comparable target and texture

photogrammetry results using a collection of synchronized images from multiple cameras.
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7.2 Conclusions

Visual tracking of a quadcopter was performed for ≥ 10 seconds. A specified focal

length fell within the ±20% thresholds and is verified using truth data obtained with an in-

dustrial turn-key photogrammetry system. In addition, pan and tilt movements are verified

leading to successful completion of the objectives and exit criteria listed in Table 7.1.

Table 7.1: Fulfillment of exit criteria.
Exit Criteria Specific Criteria Achievement

Each camera zooms out
and falls within speci-
fied thresholds Pass

0.2fidl < rdes < 0.6fidl
1

for ≥ 10 seconds
The rate at which the camera zooms
is sufficient to maintain a lower and
upper threshold of ±20% over an in-
terval ≥ 10 seconds. Up to 3.2X
the focal length is achieved for each
camera during the course of the
experiments associated with truth
data.

Each camera zooms in
and falls within speci-
fied thresholds Pass

0.2fidl < rdes < 0.6fidl
1

for ≥ 10 seconds
The rate at which the camera zooms
is sufficient to maintain a lower and
upper threshold of ±20% over an in-
terval ≥ 10 seconds.

Each camera pans and
continues to track the
test subject Pass

Pan ±10◦ movements
during test

Measuring pan movement > ±10◦

occurred while visually tracking a
test subject over an interval ≥ 10
seconds. Pan ranges for camera 1
are between −70.2◦ to 34.3◦, and
for camera 2 are between −35.8◦ to
35.3◦.

Each camera tilts and
continues to track the
test subject Pass

Tilt ±5◦ movements
during test

Measuring tilt movement > ±5◦ oc-
curred while visually tracking a test
subject over an interval ≥ 10 sec-
onds. Tilt ranges for camera 1
are between −40.6◦ to 3.9◦, and
for camera 2 are between −75.7◦ to
1.6◦.

Each camera pans, tilts,
and zooms and contin-
ues to track the test
subject Pass

0.2fidl < rdes < 0.6fidl
1

for ≥ 10 seconds Pan
±10◦ movements dur-
ing test Tilt ±5◦ move-
ments during test

The previous four objectives are ful-
filled over an interval of ≥ 10 sec-
onds while visually tracking the test
subject.

1Where fidl is the ideal focal length using truth data.
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Other objectives considered, not listed as part of the exit criteria from Chapter I, were

also fulfilled. These objectives are listed along with specific information pertaining to their

fulfillment.

• Processing the CV algorithm should be greater than 30 frames per second (fps) in

order to provide the Pan/Tilt Unit (PTU) ample time for processing and executing

commands

Processing the CV algorithm developed in this work averaged 12.7 ms with a range of

10− 17 ms leaving ample time for the PTU to process and execute commands.

• Digital zoom should be based on the distance of the test subject from the camera

Digital zoom functioned independently based on the location of the test subject as

shown in Chapter VI.

• Incorporation of parallel-processing and GPU-based algorithms

GPU-based algorithms are implemented starting in Chapter V. Parallel implementa-

tion is introduced in Chapter VI.

• Development of a state-of-the-art PTZ camera system capable of tracking any UAS or

moving object faster than any other generic, CV PTZ system

The culmination of this work shown in Chapter VI describes a state-of-the-art PTZ

camera system capable of tracking any UAS or moving object faster than any other

generic, CV PTZ system.

• Development of a versatile, parallel implementation platform, capable of examining

the performance of other CV algorithms

The system is versatile by providing a parallell implementation of CV-tracking with

PTZ cameras capable of examining the performance of other CV algorithms.

• Design of an easy setup only requiring a calibration board, enabling a versatile, portable

CV PTZ system

The system is easy to set up. The system is portable. The system only requires a

270 mm x 210 mm calibration board to establish a world coordinate system. Other

calibration sizes are most likely acceptable, but have not been tested with the current

system.
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A real-time, CV PTZ multi-camera system capable of tracking at ∼ 17 frames per

second was developed using a parallel implementation and GPU-based algorithms. The

system developed in this work requires no training, matching of trained or pre-defined fea-

tures, or initialization/operator selection and captures faster, single-moving objects better

than existing general-purpose methods with the ability to zoom and estimate 3D position.

The importance behind not having to train or set pre-defined features include: reducing the

setup time and the ability to easily change test subjects. The general-purpose method pre-

sented in this work enables moving objects of various shapes and sizes to be tested with only

requiring a pre-defined length or width of the object size whichever is greater, a textured

object, and a static background. The theory and approximations are provided to estimate

background motion for optical flow background subtraction for pan, tilt, and zoom move-

ments. Varying degrees of camera movement were analyzed and a classification method was

developed for determining whether points are background, motion or noise. The magnitude

of the camera movement was varied to show accuracy of the estimation of the background

motion by comparing it with the measured optical flow. Algorithm processing times are

shown for various image resolutions and number of features showing how performance can

scale for various frame-rates in real time. The experiments with the static background

showed minute benefit in classifying points as background further than 8 pixels from the

predicted location. Actual tracking experiments showed that greater angles, greater than

4.4◦ between successive images, could be achieved by tracking at speeds greater than 1.2

m/s with the system operating between 6-18 fps.

The theory, parallel implementation, GPU-based functions and algorithm provide for

a unique photogrammetry system capability without the need for retro-reflective markers

or adding numerous lasers. Modifications may be made to easily add multiple cameras by

adding parallel tasks for each camera, parallel tasks for each additional pan/tilt unit, and

adjusting the inputs/outputs of the last parallel task associated with determining multiple

line intersections. Zoom parameters may be adjusted for higher resolutions. The system is

also very portable for various indoor or outdoor applications. The parallel implementation

technique developed in this work is versatile allowing the ability to test other CV methods

with a PTZ system using known camera motion.
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7.3 Limitations of the Computer Vision (CV) Pan/Tilt/Zoom (PTZ) System

The limitations listed in this section are those related to the current system tested in

this work.

The UAS must move fast enough for the CV-tracking algorithm to classify it as moving.

This is based on the background threshold setting, bbkd. For example, bbkd was set to 8 pixels

in this work requiring movement from one frame to the next greater than bbkd to be seen as

moving. A moving object could potentially move slow enough and not be picked up by the

tracking algorithm.

The CV-tracking algorithm loses the UAS in high performance lighting. Tracking

performance is based on the limitations of the optical flow tracking algorithm used. Other

algorithms or methods could be explored to reduce illumination effects for specific tracking

applications.

The 3D position estimation of Chapter VI, Sec. 6.2.1, was sensitive near and between

the cameras. As the UAS approached the area between the cameras (within ∼ 200 mm of

camera vectors being in parallel), the results for 3D position estimation were asymptotic.

Additional cameras could help prevent this baseline issue by employing the line intersection

using two or more cameras where the UAS is not near the baseline.

Portability requires a power supply, lighting (application-specific), the system de-

scribed in Chapter VI, and the calibration board. Setup requires the calibration board and

knowledge of the size of the UAS.

The CV PTZ system only tracks a single UAS or moving object. Other moving objects

entering a given camera’s FOV will cause tracking loss or degrade tracking performance.

7.4 Future Work

Ideas are presented in this section as additional areas of research for incorporation

into this CV PTZ system.

7.4.1 Pose Estimation. Pose estimation was briefly explored; however, due to

time limitations this was not implemented in this work and is recommended for future
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Figure 7.1: Example output using the POSIT algorithm on a helicopter with five known
model coordinates.

work. The Pose from Orthography and Scaling with ITerations (POSIT) algorithm [38]1

was implemented successfully over a sequence of images. This was done using known model

coordinates and by placing optical flow points on those known locations in order to estimate

pose (see Fig. 7.1).

Capturing image sequences of a moving object, with known model coordinates, with

the system developed in this research and applying the POSIT algorithm would enable pose

estimation.

7.4.2 Computer-Controlled Mechanical Zoom. In order to truly realize the capa-

bilities of zoom, mechanical zoom is essential in obtaining high-resolution images. This is

primarily a hardware issue where only minor modifications to the code would be required.

It is expected that the features obtained using a mechanical zoom would also prove more

valuable for tracking purposes since each pixel is not digitally interpreted as with digital

zoom.

7.4.3 Image Registration. Many image registration techniques are available with

claims of sub-pixel accuracy and matching [97, 100]. Companies continue to add CV ca-

1OpenCV 2.4.3 Library - cvPOSIT
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pabilities to their software, but automated processing often still requires operator selec-

tion/initialization. Jennings, et al. [62] state “A limitation is the often labor-intensive

process of feature matching despite advances in automatic feature extraction”. Therefore,

automation is sought using the studied CV algorithms for both real-time and post-processing

activities.

7.4.4 Data Fusion. Fusion techniques should also considered in post-processing

to speed up operations and to ensure that matched points between frames are optimally

selected using collected information to provide the best results. The Kalman Filter (KF) is

used in this work to improve the individual PTZ camera tracking. There are many other

areas using various Data Fusion (DF) techniques for improving the tracking process. Some

areas to consider include:

• Using a KF to improve 3D point estimation

• Fusing images using image registration techniques

• Fusing multiple cameras to obtain 3D points

7.4.5 Velocity control for Pan/Tilt Unit (PTU). The CV PTZ system developed

in this research tracks using x and y positions. The pan/tilt unit starts and stops abruptly

for every given position command while tracking a moving object. Research should be

conducted to utilize the position commands and the time required between movements for

velocity control. This could help prevent the abruptness of motion currently seen with the

existing system and should help to smooth out the tracking process.

7.4.6 Tracking of a Flapping-Wing Unmanned Aircraft System (UAS). Lastly,

the CV PTZ system developed in this work should be used to track a flapping-wing UAS

and record high frame-rate, high resolution images. These images should be reviewed to

determine how many cameras may be required in order to perform photogrammetry of a

free-flight, flapping-wing UAS.
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7.5 Summary

The motivation of this research was to perform photogrammetry of a flapping-wing

UAS. The first steps of tracking, using a non-contact method, and zooming in on a UAS

were achieved. Next steps include incorporating additional PTZ cameras (with computer-

controlled mechanical zoom) followed by tracking a flapping-wing UAS.

The current system utilizes cameras achieving an average frame-rate of 294 fps; the

cameras are capable of capturing ∼ 12 frames per flap for a flap frequency of 25 Hz. A

flapping-wing UAS should be captured at this frame-rate, filling at least 20% of the image.

In the beginning stages, these images could be used for matching specific points such as the

nose, tail, and wingtip of the UAS.

In order to perform photogrammetry, the motivation behind this work, further study

into photogrammetry techniques is required for developing a 3D model of the UAS for

every synchronized capture using multiple cameras. The point in capturing high-resolution

images is so that UAS features can be matched between synchronized images with greater

accuracy to increase measurement precision. One recommendation is to explore the Point

Cloud Library [103] for determining the 3D object representations for every synchronized

capture.

This work advances the state-of-the-art in developing a parallel implementation of a

non-contact, CV-tracking technique using PTZ cameras. This technique is employed with

multiple cameras to determine an estimated 3D position of a moving object (e.g., a UAS)

enabling the ability to zoom to a desired focal length based on the moving object’s size.
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Appendix A. Fusion Background

A.1 Introduction

This appendix provides background information regarding data fusion models. The

focus will be on highlighting the revision to the Joint Director of Laboratories (JDL) data

fusion model while reviewing other models that either relate or try to improve upon the

JDL data fusion model. There have been several books and papers written recently regard-

ing fusion (i.e., data fusion, mult-sensor data fusion, high-level data fusion, image fusion,

mathematical techniques, etc.). Each book and paper covers models ranging from the Joint

Directors of Laboratories data fusion model to the Observe, Orient, Decide and Act (OODA)

model created by Col (Ret.) John Boyd, USAF, during the Korean War. These models

range from being functional (i.e., illustrating the primary functions, relevant databases, and

interconnectivity), architectural (i.e., specifying hardware and software components, associ-

ated data flows, and external interfaces), and mathematical (i.e., the algorithms and logical

processes) [57]. mult-sensor data fusion has been broken down into six categories [81, Hack-

ett and Shah (1990)]:

1. scene segmentation

2. representation

3. three-dimensional shape

4. sensor modeling

5. autonomous robots

6. object recognition

Differing views on fusion definitions exist and communities have tried to disassociate

the term from the tracking world. One could contend that the above categories fit the

tracking mold and therefore other categories likely exist. First, we start with a discussion of

those differing views on terminology and then work through the JDL data fusion model and

its evolution as a basis for comparison to other related fusion models. Other fusion models

are briefly covered in the remaining sections of this appendix.

Although not a comprehensive listing, other surveys/reviews are listed here containing

much of the information used in this appendix:
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• Data Fusion Lexicon [127]

• Manufacturing automation fusion issues [82, Henderson, Allen, Mitiche, Durrant-

Whyte, & Snyder, 1987]

• Spatial Reasoning [82, Kak & Chen, 1987]

• Techniques for mult-sensor integration and fusion [82, Dougherty & Giardina, 1988,

pp. 273-277]

• Pattern Recognition [82, Therrien, 1989, pp. 232-242]

• An Introduction to mult-sensor Data Fusion [55]

• An Introduction to Sensor Fusion [43]

• Handbook of mult-sensor Data Fusion [56]

• JDL Level 5 Fusion Model User Refinement Issues and Applications in Group Tracking

[19]

• Mathematical Techniques in mult-sensor Data Fusion [57]

• mult-sensor Data Fusion: An Introduction [89]

• High-Level Data Fusion [36]

• The International Society of Information Fusion (ISIF) provides current areas of in-

terest as target tracking, detection, applications of information fusion, image fusion,

fusion archietectures and management issues, classification, learning, data mining, and

Bayesian and reasoning methods [1].

A.2 Fusion

Let us start with the term fusion and expand into the worlds of data fusion, sensor

fusion, and image fusion. The New Oxford American Dictionary refers to fusion as the

process or result of joining two or more things together to form a single entity [87]. Let us

first take a look at “things” from a mathematical point of view. If we take “things” and

fuse them together, what does this mean using mathematical notation? We will call these

“things” x and y and put them together to form a single entity, z. From this examina-

tion, we can infer that a process exists for producing a fused result (i.e., x“fused”y = z,
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where “fused” refers to mathematical operation(s) that could be used to combine x and

y (i.e.,+,−,×,÷,⊕,	,⊗,∪,∩, etc.). One example is the use of an inner product, where a

vector is turned into a scalar. From the scalar, we are unable to derive or separate this scalar

back to its original or un-fused state without a priori knowledge. As with this example after

fusion has occurred, one cannot perform a complete separation. We have covered here that

the process of fusion has many forms. This complicates matters as to what form provides

the best fusion and many of the aforementioned books and papers try to address findings

and improvements that lead to better fusion algorithms. Fusion continues to be an highly

active field of research.

So it is understandable that there can be some confusion between fusion and inte-

gration since integrate means to combine (one thing) with another so that they become a

whole [87]. These definitions sound identical with the exception that fusion forms a single

entity and integration forms a whole. So we can make a separation here by using another

example. Say x and y are two distinct pieces of apple pie. Then x fused with y to form z

might look like throwing both pieces into a blender so that both pieces are indistinguish-

able, but yet they are fused together. There is no separation between the two, but yet they

contain all of the properties with the exception of shape. We lose the shape of each of the

pieces in this example which can be linked back to the fusion process we chose which led

us to a loss of information (information we could retain with a priori knowledge). They no

longer look like x and y, rather, they look like z and are a single entity of apple mush. Now

if we take x and integrate it with y, we have two pieces side by side or one on top of the

other or pick your combination such that both pieces retain their physical properties (i.e.,

you can still extract x from z to get y). The point of this exercise and these examples is

to show that fusion and integration are closely related, and that a fusion approach could

be considered integration. If we have a priori knowledge and are able to separate the data

back into its original components, then we will refer to this as integration.

A.2.1 Data Fusion. Multiple definitions have been proposed for the term data

fusion, and it has often been associated with tracking and military application. Others

have tried to broaden this definition such that is more encompassing. One such attempt

expresses data fusion as ‘the process of utilizing one or more data sources over time to
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assemble a representation of aspects of interest in an environment.’ [46, Lambert, D. A.,

‘An Exegis of Data Fusion’, 2001] Another attempt to lead one away from “data fusion”

as a tracking-based definition is where it is used to denote fusion of raw data. When

performing a search of the term “data fusion”, it is also associated with earth image data

processing and is defined as “a formal framework in which are expressed the means and tools

for the alliance of data originating from different sources [2]”. Elmenreich [2001] suggests

that if the earth community’s definition is used, that a prefix like “low-level” or “raw”

would be adequate for making this association [43]. High-level data fusion is the study of

relationships among objects and events of interest within a dynamic environment [36]. The

initial data fusion lexicon as proposed by the White, et al. [1991], A process dealing with the

association, correlation, and combination of data and information from single and multiple

sources to achieve refined position and identity estimates, in addition to complete and timely

assessments of situations and threats, as well as their significance [127]. It was later revised

by Steinberg, et al. [1999] as ‘the process of combining data to refine state estimates and

predictions’ [113]. In the sense that this paper is for use in developing a state-of-the-art

computer vision measurement tool, the revised version of data fusion is used with the idea

that we seek refined state estimates and predictions. This definition also falls nicely under

the term fusion as described above. A comparative analysis of these definitions is as follows:

Table A.1: Comparison of definitions for Fusion and Data Fusion.

Fusion (New Oxford American Dictionary) Data Fusion (Bowman, Steinman and White)

The process or result The process

of joining two or more things together of combining data

to form a single entity to refine state estimates and predictions

We see that the data fusion definition differs only by expressing things as data and the

single entity as a refinement of this data in terms of state (i.e., position, velocity, acceleration,

attributes, etc.).

A.2.1.1 Fusion Types. Now that data fusion has been defined, we can break

this down into the four types of data fusion. Mitchell [2007] categorizes data fusion types

as follows [89]:
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1. Property fusion - measurement of the same property to be fused (e.g., location esti-

mates and predictions)

2. Attribute fusion - measurement of different properties to be fused (e.g., color estimates

and predictions)

3. Range/domain fusion - measurement of the same attributes for different ranges or

domains (e.g., specified area)

4. Time fusion - measurements of temporal information to be fused (e.g., time step k

and k+1)

A.2.2 Sensor Fusion. Now let us move on to sensor fusion and its definition. We

start by examining processes of sensor fusion that we can relate to from our human senses.

The traditional five senses are sight, hearing, touch, smell and taste. Human beings use

these senses to make decisions and actions based on what is being sensed. In a sense, each

of us uses the senses we have been given to determine the best course of action (i.e., highest

utility). Each of our senses interacts with others to tell our brains what it is we want to do.

We see a baked apple pie, fresh from the oven. We smell the aroma of freshly baked apples

and cinnamon and see the drizzling juices culminating in a state of salivating desire to cut

a piece and enjoy. On the other hand, the smell could be that of a pungent, unpleasant

stench from the burning crust. The appeal to partake leaves instantly and produces a desire

to vacate the premises as soon as possible. The interaction between sight and smell are

intertwined (fused) to produce desires and outcomes in this case. If the pie were delicious

looking and awful smelling, the decision to eat the pie would be more difficult. If you are

starving, then the utility of eating overrides the utility of evacuating or not eating. Let us

look at a few more examples as we explore the idea of sensor fusion. Going to an air show is

another example that will relate more directly as to where this paper will put its attention.

Airplanes, people, skydivers, acrobatic aircraft, etc. are all typical performances at an air

show. How is it that one can track these flying objects as they cut through sky? As an

aircraft flies off into the distance, it is still known that the flying object is an aircraft. It is

stored in the memory banks of the human mind, and it is tracked. As one goes to bite some

of their hot dog and to drink some choice beverage, their eyes lose sight of the target, yet

they are able to hear a distant rumble and look back up (perform a search) and find the spec
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off in the distance that is now approaching at a rapid speed. Experience would tell one that

either ear plugs are required or that covering their ears at this point might be a good idea

to prevent auditory overload. Again, we can see the interaction of several sensory devices

to create an enjoyable experience (i.e., seeing, hearing, tasting, smelling and touching are

all present in creating this state). Total fusion provides the enjoyable experience. Fusion

of seeing and hearing helps one with the search process of of determining the location of

the flying object. Tasting and smelling satisfies the appetite of the individual along with

many other fused processes for producing a desired effect. Several papers refer to humans

and animals and use of their senses to make decisions about present and future actions

(see [43,55] for these examples).

A.2.3 Mult-Sensor Data Fusion. mult-sensor data fusion can be defined as “the

theory, techniques and tools which are used for combining sensor data, or data derived from

sensory data, into a common representational format [89].” The aim in performing sensor

fusion is to improve the quality of the information, so that it is, in a sense, better than would

be possible if the data sources were used individually [89]. The distinction between data

fusion and mult-sensor data fusion is not made clear in other texts. For example, Hall and

McMullen define data fusion and mult-sensor data fusion synonymously. The terms data

and information are also used interchangeably so we will use the definition that uses data

and makes use of multiple sources or sensors from Hall, et al. [2004]: “combining information

from multiple sources or sensors to achieve inferences not possible using a single sensor or

source” [57].

Let us look at four different ways that data fusion may improve the performance of a

system [89]:

1. Representation: The information obtained during, or at the end, of the fusion process

has an abstract level, or a granuality, higher than each input data set. The new

abstract level or the new granuality provides a richer semantic on thte data than each

initial source of information.
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2. Certainty: If V is the snesor data before fusion and p(V ) is the a priori probability of

the data before fusion, then the gain in certainty is the growth in p(V ) after fusion.

If VF denotes data after fusion, then we expect p(VF ) > p(V ).

3. Accuracy: The standard deviation on the data after the fusion process is smaller than

the standard deviation provided directly by the sources If data is noisy or erroneous,

the fusion process tries to reduce or eliminate noise and errors. In general, the gain

in accuracy and the gain in certainty are correlated.

4. Completeness: Bringing new information to the current knowledge on an environment

allows a more complete view on this environment. In general, if the information is

redudndant and concordant, we could also have a gain in accuracy

A.2.3.1 Sensor Configuration. We can also look at various sensor configura-

tions that help to classify mult-sensor data fusion systems. Three basic configurations are

given by Durrant-Whyte [89]:

• Complementary - sensors do not depend upon each other

• Competitive - sensors measure the same information to reduce uncertainty and erro-

neous information

• Cooperative - information is derived that would not otherwise be sensed using single

sensor information

A.2.4 Image Fusion. Image fusion is commonly described as the task of enhancing

the perception of a scene by combining information captured by different modality sensors

as described by Mitianoudis and Stathaki (Image Fusion: Algorithms and Applications, p.

85). Let us provide a comparative analysis of definitions once again to image fusion by

rearranging phrases:

Using this table helps us to come up with a standard definition for image fusion like

that of data fusion. “The task of combining information to enhance the perception of a

scene” We see that the only difference between data fusion and image fusion is the result.

Image fusion is tailored specifically to refining image states. Therefore, without diluting

the terms we can express image fusion as image data fusion. Extending this terminology to
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Table A.2: Comparison of definitions for Fusion and Image Fusion.

Fusion (New Oxford American Dictionary) Image Fusion (Mitianoudis and Stathaki)

The process or result Task (captured by different modality sensors)

of joining two or more things together by combining information

to form a single entity to enhance the perception of a scene

other specific areas of fusion may result in audio data fusion, signal data fusion, and other

percepts that provide data to be fused.

A.2.5 Other Types of Fusion. Other forms of fusion may be the following:

A.2.5.1 People Fusion. Marriage may be seen as a form of fusion. For

example, Genesis 2:24 [New International Version] states ’For this reason a man will leave

his father and mother and be united to his wife, and they will become one flesh.’ They will

become one flesh goes along with becoming a single entity with respect to fusion.

A.2.5.2 Object/Physical Fusion. A simple example of object fusion would

include the combination of different colors of Playdoh (i.e., combine red and blue to get

green).

A.3 Fusion Models

We have talked a little about fusion and have gone over some examples in society and

nature. The desire is to develop a system that can both track and measure an object or a

system of objects with human ability and computer speed using various sensing capabilities

to make decisions and perform actions based on expected utilities. Now let us focus on

the functional, architectural and mathematical models that represent data fusion. The

intelligence cycle, the JDL model and the Boyd control models were developed in the 1980’s.

The Dasarthy model, the Waterfall model and the Omnibus model came about to improve

upon previous fusion models in the 1990s. Revisions and additions to the JDL model

continued throughout the 2000s. The following subsections are are a review of these models

with the JDL model as the basis for comparison.
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A.3.1 Joint Directors of Laboratories (JDL) Data Fusion Model. We begin with

looking at the Joint Directors of Laboratories (JDL) model that was initiated by a U.S. DoD

government committee overseeing U.S. defense-technology research and development [46].

The JDL commissioned a subpanel in 1985, now called the Data-and-Information Fusion

Group (DIFG), to help bring order to the community. The DIFG focused on bringing

about a common language and framework that included data fusion taxonomy, lexicon and

a model which has since been reviewed and revised. The evolution of some of these changes

is presented in this section.

The traditional roots of the data fusion community are in sensor fusion, where the

“data sources” are established sensors and the “aspects of interest in the environment” are

moving objects, each typically represented by a set of state vectors [46]. This relates back to

the earth community’s definition of data fusion [2], but can be easily used with our revised

definition as well, ‘the process of combining data (provided by data sources/established sen-

sors) to refine state estimates and predictions (aspects of interest in the environment/moving

objects).’ The JDL functional model was intended for communication among data fusion

practitioners, rather than a complete architecture detailing various processes and their in-

teractions [36]. The JDL model was designed to be a functional model – a set of definitions

of the functions that could comprise any data fusion system. Process models specify the

interaction among functions within a system [56]. Hall and McMullen [2004] do not make

this distinction of functional and process models, but relate the interconnectivity as part of

the functional model. Therefore, we will be able to observe that Boyd’s Observe, Orient,

Decide and Act (OODA) loop model and others can be seen as process models that can be

fit to the JDL data fusion model.

A.3.1.1 Original 1992 Model. We start with the original JDL data fusion

model introduced in 1992 (see Figure A.1). This model introduces sources, pre-processing,

level 1: object refinement, level 2: situation refinement, level 3: threat refinement, level

4: process refinement, a database management system, and a human computer interaction

element. These elements are covered thoroughly in [55].
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Figure A.1: JDL data fusion model (1992).

A.3.1.2 Steinberg, Bowman and White Revision, 1998. The revised JDL

model from 1998 was developed under Steinberg, et al. [113] and is shown in Figure A.2.

During development of the 1999 revised JDL data fusion model, it became clear to Steinberg,

et al. [1999] that the initial definition for data fusion was too restrictive. So it was simplified

a provided that ’data fusion is the process of combining data to refine state estimates and

predictions’ [113]. Furthermore, data fusion “levels” were revised in this model to account

for some of the concerns of its use (i.e., that it is not a step by step process, that the focus is

not just on tactical targeting, and that there are no distinguishing features for interpreting

each level).
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Figure A.2: Revised JDL data fusion model (1998).

The revisions are as follows: a new Level 0: sub-object assessment was added in

place of the preprocessing element, object refinement was replaced by object assessment,

situation refinement was replaced by situation assessment, and threat refinement was re-

placed by impact assessment. Each of these levels are characterized according to association

process, estimation process and entity estimated to address the aforementioned concerns by

distinguishing features of each level. These are described more clearly in the list below [113]:

• Level 0 - Sub-Object Data Assessment: estimation and prediction of signal/object ob-

servable states on the basis of pixel/signal level data association and characterization;

• Level 1 - Object Assessment: estimation and prediction of entity states on the basis

of observation-to-track association, continuous state estimation (e.g., kinematics) and

discrete state estimation (e.g., target type and ID);

• Level 2 - Situation Assessment: estimation and prediction of relations among entities,

to include force stucture and cross force relations, communications and perceptual

influences, physical context, etc.;

• Level 3 - Impact Assessment: estimation and prediction of effects on situations of

planned or estimated/predicted actions by the participants; to include interctions

between action plans of multiple players (e.g., assessing susceptibilities and vulnera-

bilities to estimated/predicted threat actions given one’s own planned actions);
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• Level 4 - Process Refinement: (an element of Resource Management) adaptive data

acquisition and processsing to support mission objectives.

A.3.1.3 Steinberg and Bowman Revision, 2004. The 2004 model proposes

extending JDL levels of data fusion to their dual levels in resource management. This

approach provides a framework for less mature technology by enabling a parallel or dual

framework called the Dual Node Network (DNN) technical architecture for performing per-

formance assessment and design management functions [112]. This extension provides for

affordability and reuse and can be further explored in [112].

Figure A.3: Revised JDL data fusion model (2004).

Changes to the levels are as follows: Level 0: sub-object assessment was changed to

signal/feature assessment, level 1: object assessment was changed to entity assessment, and

resource management was added as another element next to the human computer interaction

(HCI) element.

Further refinements were made regarding an understanding the internal processing of a

fusion node, extending the JDL model on issues of quality control, reliability, and consistency

in data fusion processing, asserting the need for co-processing of abductive/inductive and

deductive inferencing processes, asserting the need for an ontologically-based approach to

data fusion process design, and extedning the account for the case of Distributed Data

Fusion (DDF) [79]. Further information on these refinements can be found in [79].
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Let us review these in more detail before proceeding onto more recent developments.

Level 0 seeks to determine the presence of a signal and it’s current state (e.g., feature

extraction in image data, signal data, etc.). In this level we are trying to figure out what is

interesting about what is being sensed. Level 1 then proceeds with what has been detected

(i.e., extracted features) from level 0 and associates reports. The general idea is that a set of

reports contain features that can be associated across sensors or an individual sensor. Thus,

we have a set of reports that represent an entity or entities based on the information detected

in level 0. After associating these features with respect to a set of reports, level 2 (Situation

Assessment), involves aggregating the entity or entities to provide any variety of relations

- physical, organizational, information, perceptual - as appropriate to the given system’s

mission. Level 3 assignment is then used as a prediction function based on the developed

situation assessment. Here the estimated or predicted utility or cost of an estimated world

state (i.e., the location of a moving object of interest) can be evaluated and meet user-

specified needs (i.e., capturing high-resolution images capable of being used for system

identification or inferring a system’s intent whether it is a friend or foe). The last level

so far is Level 4 (Process Refinement). Estimation has already been accomplished at this

point, so now there is a need for planning and controlling the process. A good question to

ask at this point is, ’How can the system be improved’? This begins the process of refining

the data fusion system being implemented.

A.3.1.4 Blasch and Plano JDL-User Data Fusion Model Introduction, 2002.

The last couple of models attached to the JDL data fusion model incorporate the user at

all levels. As seen in Figure A.4, a level 5: user refinement is introduced at all levels to

delineate human processing from machine processing of the data fusion architecture.
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Figure A.4: JDL user data fusion model 2002 [19].

Level 5 focuses on the “human in the loop” (HIL) as related to the machine fusion

process. For HIL there exists a need to address issues such as situation awareness, attention,

workload, and trust. These issues and this model are explained in more detail in [19].

A.3.1.5 Blasch and Plano JDL-User Data Fusion Model Defense, 2005.

Defense of the Blasch and Plano JDL user data fusion model was proposed to highlight the

need of the user-fusion model. Figure A.5 seeks to highlight the
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Figure A.5: JDL user data fusion model 2005 [20].

Table A.3: Review of levels and their respective roles regarding the JDL-user model [22].

Level Role

0 Determines what and how much data value to collect

1 Determines the target priority and where to look

2 Understands scenario context and user role

3 Defines what is a threat and adversarial intent

4 Determines which sensors to deploy and activate Assesses the utility of information

5 Designs user interface controls

Blasch and Plano [2011] provide us with a framework for user refinement (UR) with

the interface actions allowing coordination between machine and user. At every point in

the machine process a human component is interwined in understanding and facilitating the

interfaces required for HIL programming. This model and [22] present fusion from tracking

point of view and posit that as the number of targets and speed increases, a user will get

overloaded requiring assistance from the machine fusion system to make routine calculations,

etc. for satisfying mission requirements. It is further argued that this provides critical user

information needs for knowledge representation and cognitive reasoning in order to support

effective and efficient, proactive decision making [20].
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A.3.1.6 Information Fusion Situation Assessment Reference Model, 2011.

The Information Fusion (IF) Situation Assessment reference model in Figure A.6 provides

a glimpse of interactions between the other JDL levels with level 2 Situation Assessment as

the hub. A need to develop SA models and metrics for interfaces, user control actions, and

methods of situational analysis is proposed in [22].

Figure A.6: Information fusion situation assessment reference model [22].

A.3.2 Observe, Orient, Decide and Act (OODA) Loop. The Observe, Orient,

Decide and Act (OODA) loop is a common use model in the military and represents the

architecture developed by Col (Ret) John Boyd, USAF. Figure A.7 shows each step as its

interaction with the other steps of this loop. Col Boyd used this architecture during the

Korean War while referring to the ability possessed by fighter pilots that allowed them

to succeed in combat [36]. Observation refers to gathering information as in level 0, pre-

processing, of the JDL model. Orientation can then be applied to JDL level 1 in trying to

interpret the data and to determine how to use it. Decide then coincides with both levels

2 and 3 of the JDL model such that options are available and decisions are based on an

understanding of what the possible outcomes may produce. Action is the step in which the

decision is carried out.
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Figure A.7: Observe, Orient, Decide and Act (OODA) Loop.

Now does level 5 exist in this process? Where does user refinement exist in the OODA

loop? Recall that this model was designed specifically for fighter pilots, so we can generalize

that each level also coincides with user refinement (UR). The observe step is where the user

provides value to the machine interface as to what observations are more important than

others. The user then prioritizes important observations in the orient step (i.e., where and

what to focus on). Then in the decide step, the user determines if action is required based

upon the context and intent of the situation or if more observations are required, etc. This

demonstrates that the fusion process, in general, provides functions and processes for dealing

with information in an as needed basis as decisions are made (i.e., these fusion models are

not sequential in nature). The action step of the OODA loop is not necessarily modeled

according to the JDL model, but it is inferred in UR by the user providing adjustments

to the utility of the situation based upon actions or what the user is provided via a user

interface.

A.3.3 Data, Information, Knowledge, Wisdom (DIKW) Pyramid. The pyramid

presented in Figure A.8, provides a representation of data layered from lowest to highest in

understanding. The hierarchy bears some resemblance to the JDL data fusion model in the

sense that both start from raw transactional data to yield knowledge at an increasing level

of abstraction.
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Figure A.8: Data, Information, Knowledge and Wisdom (DIKW) Pyramid.

• Data Layer Data is defined as the facts and statistics collected together for reference

or analysis [87]. The data layer is the lowest level of the data layers and provides no

utility in understanding it’s purpose. For example, we have a set of numbers such as 1,

10, 100, 1000, and 10000, but we are not sure exactly what they represent. These set

of numbers are just data presented to us for which we have no information, knowledge

or wisdom in handling them (i.e., no utility). As we continue to climb the pryamid, we

shall see an increase in understanding as Figure A.8 represents. This can be depicted

as the data received from the data sources for pre-processing as in level 0 of the JDL

model.

• Information Layer Information is defined as the facts provided or learned about

something or someone [87]. The information layer is one level up from the data layer

which represents some increased understanding of the data provided. For example,

the number 1 corresponds to camera 1, 10 to camera 2, 100 to camera 3, 1000 to

camera 4, and 10000 represents noise. This information allows us to interpret how to

prioritize the data received and whether there is any utility. Note that there is still

little understanding involved. This relates to levels 1 and 2 of the JDL model where

features are provided by the user to determine object and situation assessment. In

our example, we have four cameras (object assessment) and some noise that is of no

value (situation assessment).
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• Knowledge Layer Knowledge is defined as the facts, information, and skills acquired

by a person through experience or education; the theoretical or practical understand-

ing of a subject [87]. Since we have described the information layer as providing some

utility, the knowledge layer provides a general awareness or possession of information,

facts, ideas, truths, or principles [36]. Continuing with our example, we now know

that we have four cameras available associated with a particular number. The user

must provide intent at this point in how to use the cameras (impact assessment) and

decisions on what to discard.

• Wisdom Layer Wisdom is defined as the quality of having experience, knowledge,

and good judgment [87]. Wisdom is at the highest level of the data layers and provides

us with the knowledge of what is true and right (i.e., making the right decisions and

jugments in action). Although the action is not explicit in the JDL-user model, it can

be inferred that based upon actions the user provides utility refinements for updating

the various functions in the model.

Now that we have gone through the various layers of the pyramid. Let us take a loop

at another simple example to try and make things clearer. Data - we have an orange, we

do not know what to do with it or what can be done with it; Information - the orange is

edible and can be processed; Knowledge - the orange is healthy to our bodies and should

be eaten for sustenance; Wisdom - we first peel the orange and then eat it because of our

experience in knowing that it is right to do so.

A.3.4 Rasmussen Information Processing Hierarchy. The Rasmussen information

processing hierarchy provides us with three-tiers that model human information processing

(Rasmussen, 1983, 1986). This tiered approach is shown in Figure A.9, and steps through

the flow of information through human decision-making. Again, we can look at the HIL

and the JDL-user model for interpreting this particular hierarchy.
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Figure A.9: Rasmussen information processing hierarchy [36].

Let us examine the three categories more closely:

• Skill-Based Processing The lowest level corresponds closely with the JDL level 0

of feature extraction. Example: identifying a moth in a set of images

• Rule-Based Processing The next level lays out execution of well-practiced pro-

cedures such as maintaining visual contact of a moth within a room as it is flying

around.

• Knowledge-Based Processing Of course if it is too dark in the room, then utiliz-

ing night vision goggles to maintain visual contact of the moth would require novel,

complex handling of the situation.

We can relate the various JDL levels in the following manner [36]:

Table A.4: Rasmussen Information Processing Hierarchy and the JDL Data Fusion
Model.

Rasmussen JDL Level

Skill/Rule-based processing 1

Rule/Knowledge-based processing 2

Rule/Knowledge-based processing 3
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A.3.5 The Intelligence Cycle. Another approach to model a fusion application is to

line out its cyclic character. Representatives of such an approach are the intelligence cycle [9]

and the Boyd control loop [10]. The Intelligence Cycle [9] comprises the following five stages:

Planning and Direction: This stage determines the intelligence requirements. Collection:

Gathering of appropriate information, e. g., through sensors. Collation: Here the collected

information is lined up. Evaluation: The actual fusion is done and the information gets

analyzed. Dissemination: Dissemination distributes the fused intelligence [45].

A.3.6 Waterfall Model. The UK Government Techology Foresight Data Fusion

Working Party [Markin et al, 1997] endorsed the Waterfall model that was proposed in 1994

[Bedworth, M.] [16]. Corresponding JDL levels are shown regarding the Waterfall model

elements in Figure A.10. Feedback is not implied in this model and from observation it

seems as though it is sequential in nature thus leaving room for improvement.

Figure A.10: Waterfall fusion process model [45].

A.3.7 Omnibus Model. The Omnibus model is an attempt to improve upon the

known disadvantages of the intelligence cycle, the 1990s JDL model, the Dasarthy model

and the Waterfall model [16]. Figure A.11 shows the diagram of the cyclic nature of the
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intelligence cycle and the Boyd control loop, but it uses terminology more closely related to

the Waterfall model [16].

Figure A.11: Omnibus model (Bedworth, O’Brien).

It is said that disadvantages originate within the various models due to their origin

(i.e., the Joint Directors of Laboratories come from military backgrounds). The Omnibus

model is said to move away from a military perspective and that it is more loosely based

for broader use [16]. With the updated JDL-user model from [20], we can observe that

each level can be associated rather easily. Sources and level 0 of the JDL model relate to

the signal processing/sensing element of the Omnibus model. Level 1 relates to the pattern

processing/feature extraction element. Levels 2 and 3 relate to the decision making/context

processing, and levels 4 and 5 relate to the control/resource tasking element of the Omnibus

model. In Figure A.11, it can be seen that the Omnibus model is an extension of the OODA

loop. Blasch and Plano refer to this model as being machine-centric related to the human

reasoning strategy [19].
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A.3.8 Situation Awareness Reference Model. The Situation Awareness (SAW)

model looks to capitalize on the data fusion process from a human perspective. The levels

of the JDL model can be shown throughout the awareness and cognitive processes of the

human operator/analyst. Situation awareness has been defined as “the perception of the

elements in the environment within a volume of time and space, the comprehension of their

meaning, and the projection of their state in the future” (Endsley, 1988). Figure A.12 shows

the levels as defined by Endsley as perception, comprehension, and projection.

Figure A.12: Model of situation awareness [47].

Level 1: Perception of Elements in Current Situation This level takes into account

the human operators ability to perceive events such as current status, attributes, and dy-

namics of relevant elements in the environment. This includes current and historical events.

Information overload may occur in a high-tempo, dynamic environment. This can be related

to the JDL model’s sources, level 0 and level 1 elements in that perception is a result of

sensing data, pre-processing and determining if an object has been assessed.

Level 2: Comprehension of Current Situation At this level, the human operator

takes into account all of those elements perceived in order to comprehend relationships and

courses of actions based on those relationships. Comprehension may vary depending on the

human operators experiences and training. This can be related to level 2 of the JDL model

where the current situation is being assessed/comprehended.

Level 3: Projection of Future States The last level, interprets the perceived and com-

prehended relationships of elements in order to predict possible outcomes. Projection applies
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experience and training of comprehended elements based on an understanding of the current

dynamics. Decisions can then be made to best mitigate risk or to deal with threatening

situations before or as they occur. This can be related to level 3 of the JDL model where

impact assessment takes into account experience and training and determines the impact

for decision-making.

Note that other levels of the JDL model are not realized in the situation awareness

reference model (i.e., level 4: process refinement and level 5: user refinement).

A.3.9 Visual Data Fusion Model. The Visual Data Fusion (VDF) model is an

extension of the JDL data fusion model [46, Karakowski, 1998]. It emphasizes the human

as the central participant, much like that of the JDL-User model such that the human is

given a visual interface for properly interpreting the problem and possible courses of action

from which to select a solution. The human is involved throughout the entire process and

provides relevant information requests and support to the process based on learning and

experiental analysis. The purpose of the VDF model is to integrate the human participant

into the JDL data fusion model.

A.3.10 Unified Data Fusion (λJDL) Model. The Unified Data Fusion model is

the integration of situation awareness (SAW) and common operating picture (COP) with

respect to data fusion [46, Lambert, D. A., 2003]. Bossé, et al. [46] describe Lambert’s

conceptualization as the intersection between SAW and COP, essentially leading to a SAW

model with levels of fusion which is described by the COP. The COP is composed of tech-

nology, psychology, and integration. Technology represents the means by which something

is sensed and analyzed. Psychology represents the observations and interpretations and

integration is the composition of the two. For example, (technology) an unmanned aerial

vehicle (UAV) is sensed and location data is provided on a screen, (psychology) it is iden-

tified as unfriendly, (integration) location and unfriendly visualization is provided to the

user. Comprehension and Projection levels of SAW would warrant further action from the
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user to possibly disrupt, intercept or deceive the UAV given the ability of the fusion system

with regard to technology, psychology and integration.

The mental data fusion model is similar to the SAW model and is similar to the union

of the first three levels of the JDL data fusion model.

A.3.11 Perceptual Reasoning Machine (PRM). The perceptual reasoning model

(PRM) [66] consists of a feedback planning/resource control system whose interacting ele-

ments are: “assess”, “anticipate”, and “predict” [21]. Figure A.13 shows the flow of queries

and beliefs and hypotheses as an interface to the decision maker as well as cycle for updating

those beliefs and hypotheses.

Figure A.13: Perceptual reasoning machine [21, Kadar, SPIE02].

A.3.12 Dasarathy Model. The Dasarathy Model contains an input/output inter-

pretation of various functions. Linking these elements to the JDL model, we have sources

as the data/input element which gives an output element in the Dasarathy model of ‘Data’.

The functions are then linked to the arrows of the Dasarathy model such that the JDL

model’s level 1: object assessment is performed for the next element of features which gives

an output of ‘Features’. Level 2 of the JDL model can then be associated with the decision

element which leads to an output of ‘Output/Decision’.
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Figure A.14: Data feature decision model (Dasarathy, B., 1994).

Examining the Dasarathy model, researchers identified three main levels [16]:

1. Decisions - symbols or belief value

2. Features - or intermediate-level information

3. Data - or more specifically sensor data

Fusion can occur both within or between these levels as can be seen from our discussion

above. Some of the JDL levels can be associated with those between transformations.

A.3.13 Distributed Network of Autonomous Modules [89, Henrich and Kausch, 2004].

Each module represents a separate function in the data fusion system, and it is represented

by a physical, an informative, and a cognitive domain. The physical domain contains those

sensors that retrieve sensory data within its environment for fusion. This domain may

also contain those actuators that may modify the environment in which it resides. The

informative domain processes the sensory data retrieved/shaped by the physical domain

and seeks/implements decisions based upon the cognitive domain. Therefore, the cognitive
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domain contains the human interface/decision-making block for interpreting the courses of

actions provided by the informative domain.

A.3.14 Other Fusion Models. Other fusion models are listed in this section but

are left to the reader as to whether further investigation is warranted.

A.3.14.1 Neurophysiological Information Fusion (NIF) Model [19].

A.3.14.2 Luo and Kay’s Architecture (Springer).

A.3.14.3 Pau’s Sensor Data Fusion Process (Springer).

A.3.14.4 Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS) Archi-

tecture [43].

• Logical robot level

• Functional level

• Execution control level

• Decision level

A.3.14.5 Transformation of Requirement for the Information Process (TRIP)

Model [57].
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