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Abstract 

This paper represents orbit propagation and determination of Low Eearth Orbit(LEO) satellites, 

which is immediate orbit satellite positioning. Beiseds, satellite global positioning system (GPS) 

configured satellite receiver provides position and velocity measures by navigating the filter to get 

the coordinates of the orbit propagation (OP), while the satellite orbit coordinates is an important 

basis for the task operation. 

  The main contradictions in real time orbit which is determined by the problem are: orbit 

positioning accuracy and the amount of calculating two indicators; how to balance these two 

indicators. This article is dedicated to solving the problem of tradeoffs. To plan to use a non-linear 

filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a 

short time. Although the traditional extended Kalman filter (Extended Kalman Filter, EKF) method 

is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was 

especially evident, without compromising Kalman filter (Unsented Kalman Filter, UKF). As a new 

non-linear estimation method, it is measured at the estimated measurements on more and more 

applications. This paper will be the first study to UKF microsatellites in LEO orbit in real time, 

trying to explore the real-time precision orbit determination techniques. 

Through the preliminary simulation results, they show that based on orbit mission requirements 

and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators. 

 

Keyword: global positioning system, low Earth orbit satellites, orbit propagation, orbit 

determination, Unsented Kalman Filter 

 

1. Introduction 

The satellite orbit determination (OD) estimates discrete observating the position and velocity of 

an orbiting object.  The set of observations includes the measurements from the space based GPS 

receiver (GPSR) that is located on the object itself.  Satellite orbit propagation (OP) estimates the 

future state of motion of an object, whose orbit has been determined from past observations.  The 

satellite’s motion is described by a set of approximate equations of motion.  The degree of 
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approximation depends on the intended use of orbital information.  Observations are subjects to 

systematic and random uncertainties; therefore, orbit determination and propagation are 

probabilistic. 

The satellite is influenced by a variety of external forces, including terrestrial gravity, 

atmospheric drag, multi-body gravitation, solar radiation pressure, tides, and spacecraft thrusters.  

Selection of forces for modeling depends on the accuracy and precision required from the OD 

process and the amount of available data.  The complex modeling of these forces results in a 

highly non-linear set of dynamical equations.  Many physical and computational uncertainties 

limit the accuracy and precision of the object state that may be determined.  Similarly, the 

observational data are inherently nonlinear with respect to the state of motion of the object and 

some influences might not have been included in models of the observation of the state of motion. 

The remainder of this paper is organized as follows: Section 2 describes the methodology of 

GPSR based orbit determination; Section 3 is brief introduction of the disturbance mathematical 

model; Section 4 legends the orbit determination algorithm description; Section 5 describes the 

GPS measurement models; OP algorithm settings description in the Section 6; and Section 7 offers 

the conclusion. 

   

2.  Methodology of GPSR Based Orbit Determination 

Three basic strategies are presently in use to determine precise LEO orbits with GPS.  They are 

the dynamic, the kinematic or non-dynamic, and the hybrid or reduced-dynamic strategies.  

The dynamic orbit determination approach [1] requires precise models of the forces acting on 

user object.  This technique has been applied to many successful space vehicle missions and has 

become the mainstream of Precision OD (POD) approach.  Dynamic model errors are the limiting 

factor for this technique, such as the geopotential model errors and atmospheric drag model errors, 

depending on the dynamic environment of the user space vehicle.  With the continuous, global, 

and high precision GPS tracking data, dynamic model parameters, such as geopotential parameters, 

can be tuned effectively to reduce the effects of dynamic model error in the context of dynamic 

approach.  The dense tracking data also allows for the frequent estimation of empirical parameters 

to absorb the effects of unmodeled or mismodeled dynamic errors. 

The kinematic or geometric approach does not require the description of the dynamics except 

for possible interpolation between solution points for the user object, and the orbit solution is 

referenced to the phase center of the on-board GPS antenna instead of the space vehicle's center of 

mass.  Yunck and Wu [2] proposed a geometric method that uses the continuous record of object 

position changes obtained from the GPS carrier phase to smooth the position measurements made 

with pseudorange.  This approach assumes the accessibility of P-codes at both the L1 and L2 

frequencies.  Byun [3] developed a kinematic orbit determination algorithm using double- and 

triple-differenced GPS carrier phase measurements.  Kinematic solutions are more sensitive to 

geometrical factors, such as the direction of the GPS satellites and the GPS orbit accuracy, and they 
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require the resolution of phase ambiguities. 

The previous two strategies each have counterbalancing disadvantages: various mismodelling 

errors in dynamic OD, and GPS measurement noise in kinematic OD.  A hybrid dynamic and 

kinematic OD strategy would down-weight the errors caused by each strategy, but still utilize the 

strengths of each.  One such strategy has been devised and is referred to as reduced dynamic orbit 

determination.  The reduced-dynamic approach [1] uses both geometric and dynamic information 

and weighs their relative strength by solving for local geometric position corrections using a 

process noise model to absorb dynamic model errors. 

 

2.1 Orbit Propagation Algorithm Description 

The orbit propagation algorithm can be divided into two main tasks: orbit determination and orbit 

prediction (propagation).  The general diagram of Orbit Propagation algorithm is described on the 

following figure: 
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Fig. 1: Orbit Propagation algorithm diagram 

The Orbit Determination algorithm is based on Unsented Kalman Filter (UKF) and estimates the 

object state vector 1kx̂  and covariance matrix 1kP̂  from discrete observations.  The set of 

observations include the measurements }dataraw {  from the space based GPS receiver that is 

located on the space vehicle itself.  The Orbit Determination algorithm includes the Orbit Prediction 

task as Time Update stage of UFK. 

Orbit Prediction algorithm calculates the future state of motion of a vehicle 1kx~  whose orbit has 
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been determined from past observations.  Moreover the covariance matrix 1kP
~

 is propagated.  A 

numerical integration of the Dynamic Model is applies for orbit prediction. 

The OP solution 11  kkt x,  is output data of Orbit Propagation algorithm.  The OP solution and 

covariance matrix can be obtained as from Prediction task as from Determination task.  The 

following external data are required for OP solution calculation: 

 init time and state vector initinitt x,  for algorithm initialization / reinitialization; 

 the time moment 1kt  to new OP solution 1kx calculation; 

 the set of observations }dataraw {,N SV
k 1  for new estimation 1kx̂  calculation. 

The following input data are obtained from the previous OP solutions calculation: 

 the last OP solution kkt x, ; 

 the time estt  of last calculation of estimation 1kx̂ ; 

 the covariance matrix kP . 

The maximal time of continuous propagation prp
maxT , maximal integration time step maxh , minimal 

count of available Navigation SV SV
minN , default covariance matrix defP  are used for algorithm 

control. 

 

2.2 Dynamic Model 

A dynamic model of the object motion essentially adds a priori knowledge from the equations of 

the orbital motion to the kinematic position knowledge as obtained from the raw GPS measurements. 

In our case, the dynamic model incorporates the complex Earth gravity field (EGM 96) truncated to 

order and degree 18. Furthermore, the Sun and Moon gravitation and atmospheric drag are 

accounted.  
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The differential dynamic equation of motion is given by: 
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where: 

zyx vvv ,, – are the ECEF velocity components of object; 

zyx ,, – are the ECEF radius vector components of object; 

b – is the receiver clock bias; 

d – is the receiver clock drift; 

Nbodya – is Sun and Moon gravitation forces; 

GEOa – is the acceleration due to geopotential ; 

Fdrag = {Fx, Fy, Fz} – is a perturbing force due to aerodynamic drag,  

e  – is the angular velocity of Earth rotation, hire and below e = 7.2921151467e-5 rad/sec.  

The user coordinates are in the rotating Earth-fixed frame (ECEF). Although this adds some 

complexity, especially due to the Coriolis and centrifugal acceleration in the dynamic model, no 

reference system transformations are required in the main program since input (initial position and 

velocity), as well as the OP output are consistently referring to the Earth-fixed frame. In this way, 

reference system transformations may completely be encapsulated in the dynamic model. Moreover, 

some dynamic algorithms, which compute the accelerations due to the Earth’s gravity field and the 

atmospheric drag, may be formulated simpler in an Earth-fixed than in an inertial frame. 

The integration is carried out by using the simple fourth order Runge-Kutta algorithm without any 

mechanism of step adjustment or error control. The fourth order Runge-Kutta is considered an 
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adequate numerical integrator due to its simplicity, fair accuracy, and low computational burden. 

Numerical integration is performed in the rotating Earth-Fixed frame (ECEF). 

Solar radiation can be neglected because its effect on total object acceleration is much smaller 

than acceleration due to perturbing geopotential, the third body forces from the Sun and the Moon, 

and atmospheric drag.  According to [12] magnitude ratio of atmospheric drag and solar radiation 

for average size spherical objects with 4.2xc  moving along the circular LEO 

SV altitude, km 400 500 600 700 800 

Solar Radiation to 

atmospheric  

drag ratio 

0.018 0.08 0.27 0.8 2.1 

 

We can see that for altitudes less than 600 km solar radiation pressure is significantly smaller 

than atmospheric drag.  Furthermore atmospheric drag decreases with altitude and it becomes 

negligible for altitudes higher 700 km. 

 

3. Disturbance Mathematical Model 

3.1 Earth Gravity 

The gravitational potential function for the solid-body mass distribution of the Earth is generally 

expressed in terms of a spherical harmonic expansion, referred to as the geopotential in the 

Earth-fixed reference frame (ECEF).  The gravitational potential function U is defined as [9]: 
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where: 

U – Gravitational potential function ( 22 sm ); 

GM – Earth’s gravitational constant, hire and below GM = 3986004.418e8 23 sm ; 

r – Distance from the Earth’s center of mass (m); 

R – Semi-major axis of the WGS 84 Ellipsoid , hire and below R = 3986004.418e8 m; 

n,m – Degree and order, respectively; 
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  – Geocentric latitude; 

  – Geocentric longitude; 

nmnm SC ,  – Normalized gravitational coefficients, it is defined in EGM-96 model [9]; 

 sinnmP – Normalized associated Legendre function; 

 sinnmP – Associated Legendre function; 

 sinnP – Legendre polynomial. 
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In Eq. (2) and (3) k = 1 for m = 0 and k = 2 for m ≠0. 

The series is theoretically valid for Rr  . 

The acceleration due to geopotential can be defined as; 
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Variables ,,r  are related with object ECEF radius vector components zyx ,,  by: 
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Projections of Earth gravitation force in ECEF are 
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The following recurrence equation can be applied to mcos and msin  calculation; 

 sinsincoscos))cos(( mmm  1  

 cossinsincos))sin(( mmm  1  
      (9)

3.2 N-Body Perturbation 

The gravitational perturbations of the Sun, Moon and other planets can be modeled with sufficient 

accuracy using point mass approximations.  In the geocentric inertial coordinate system, the N-body 

accelerations can be expressed as [12]: 
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where 

G – the universal gravitational constant 

iM  – mass of the i-th perturbing body (Sun or Moon) 

ir  – position vector of the i-th perturbing body in ECEF 

rri   – position vector of the i-th perturbing body with respect to the object mass center in ECEF, 

i – planet index, i = S for the Sun and i = M for the Moon. 

 

The values of the Sun and Moon position vectors ir  can be obtained from the following equations: 

e
SS Crr   

e
MM Crr   

(11) 

where 

  – is a transfer matrix from current Equatorial Earth Centered Inertial Frame to ECEF defined as: 
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e – is angular velocity of Earth; 

t – is time in seconds from the beginning of current sidereal day as defined below:: 

;63290840.99726956 GSMTt   (13) 

 

GSMT – is Greenwich Sidereal Mean Time, see [21] fo detail; 

C  – is a transfer matrix from Ecliptic Earth Centered Inertial Frame of J2000.0 to current Equatorial 

Earth Centered Inertial Frame as defined in the following equation: 
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 – is the mean obliquity of the ecliptic as defined in [21]; 

e
Sr  – is radius vector of Sun mass center in Ecliptic Earth Centered Inertial Frame of J2000.0 

defined as: 
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S – is mean distance between Earth and Sun mass centers 

) 'cos2*0.00014 -  '0.01673cos - (1.00014 llAUS   (16) 

 

 AU – astronomical unit, hire and below AU = 1.49597870e11 m; 

'l – is the mean anomaly of the Sun, see [21] and [22] for detail; 

S – is the ecliptic longitude of the Sun defined as: 

'sin30.0003  'sin20.02  'sin1.9171  LS lllS   (17) 

 

SL  - the mean longitude of the Sun as defined below: 

) T498135999.3724  66100.464571 (  180LS   (18) 

 

T – is Julian centuries from J2000.0; 

e
Mr  –  is radius vector of Moon mass center in Ecliptic Earth Centered Inertial Frame of J2000.0 

which is defined as: 
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QM
1 – is the distance between Earth and Moon mass centers defined as: 
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M – is the Moon geocentric longitude. It can be defined as: 
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FL  – is the mean longitude of the Moon; 

M – is the Moon geocentric latitude as defined in the following equation: 

)  sin(2  0.017  )2  (sin   .033 0 )2 -   (sin   0.046
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,,,', DFll  – are fundamental arguments of Moon motion theory, they are defined in [21]. 

 All equations of this item are given according to [21] and [22]. 

 

3.3 Atmospheric Drag 

A near-Earth space vehicle of arbitrary shape moving with some velocity v in an atmosphere 

will experience drag force. The drag force acceleration can be modeled as [12]: 

rr
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where 

 – the atmospheric density; 
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rv  – the object velocity vector relative to the atmosphere; 

m – mass of the object; 

dC  – the drag coefficient for the object; 

A – the cross-sectional area of the main body perpendicular to rv . 

The parameter 
m

ACd
x   is sometimes referred to as the ballistic coefficient.  It is varied during 

an orbital motion due to an object attitude and an object mass center evolutions and others factors.  

The middle (typically) value of a ballistic coefficient is used because this factors are unknown for OP 

algorithm. Hire and below x = 0.01 
kg

m2

. 

Different empirical dynamical atmospheric models can be used for computing the atmospheric 

density. These include the Jacchia 71 [15], Jacchia 77 [16], the Drag Temperature Model (DTM) [17], 

DTM-2000 [18], MSIS-90 [19] and NRLMSISE-00 [20] and others.  The density computed by 

using any of these models could be in error anywhere from 10% to over 200% depending on solar 

activity.  A deal settings are used for aforementioned atmospheric models computation.  For 

example geomagnetic activity index, daily and average solar flux index and so on.  They are 

fluctuated during orbital flight and must be monitored. Sizeable density errors can be acquired 

otherwise.  Furthermore all abovementioned models require appreciable computation resources. 

According to aforesaid in the current project local atmosphere density model [12] is employed.  It 

is rough density model relative to dynamical models but this model is very easy for computation and 

requires no settings monitoring.  

Equations for density calculation are the following: 

;H

hh

e
1

1




   

);(h - h..+H = 1075070000  

Rrh   

(24) 

where  

1h  – the reference height, 1h = 500000 m; 
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1  – the atmospheric density on reference height, 1 = 2.e-13 
3m

kg
; 

h  – is the object height; 

H  – is the height scale of the uniform atmosphere. 

r – Distance from the Earth’s center of mass; 

R – Semi-major axis of the WGS 84 Ellipsoid, 

 

4. Prediction Algorithm Description 

Orbit Prediction algorithm calculates the future state of motion of a vehicle whose orbit 

has been determined from past observations.  Moreover the covariance matrix is propagated.  

To construct the future object trajectory the Orbit Prediction algorithms uses the dynamic equation of 

motion given in section 2.1.  This fundamental equation of mechanics provides the dynamic 

constraint governing the orbit solution.  The true acceleration at any instant depends on the space 

vehicle position and velocity at that instant, and on many other parameters that characterize the 

forces at work.  The predicted trajectory is then generated by integration of the Eq. (25): 

 

 

 

)()(
~

)()(
~

)()(~

)()(~

kk

k

ht

t

k

k

ht

t

k

k

ht

t

k

tdhtd

tbdttdhtb

trdttvhtr

tvdttvhtv

k

k

k

k

k

k























      (25)

where  

h – is the integration step, it is limited by maxh  (see Fig. 1 for detail); 

},,{)(~
zyxk vvvhtv  – is the predicted ECEF velocity vector of the object; 

},,{)(~ zyxhtr k  – is the predicted ECEF radius vector of the object; 

)(
~

htb k  – is the predicted receiver clock bias; 

)(
~

htd k  – is the predicted receiver clock drift; 

)(),(),(),( kkkk tdtbtrtv – define last object state. 
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The object state derivatives vector is defined using dynamic motion model which is 

described in section 2.1.  As the numerical integrator we will use a simple fourth order 

Runge-Kutta algorithm without any mechanism of step adjustment or error control.  

Numerical integration is performed in an ECEF reference frame. 

The covariance matrix propagation is defined below. 

The differential dynamic equations of motion are given by: 

 txfx ,        (26)

where 

 Tzyx dbzyxvvvx ,,,,,,,  is a state vector that includes the spacecraft position and velocity vectors, 

and the receiver clock bias and drift.  

The propagation of 1kx~  from the previous state for covariance matrix propagation is 

generated by the following reduced equation: 

   txhfxdttxfxxfx rk

ht

t

rkkmk

k

k

,,)(~  


1        (27)

where  

kk tth  1  – is the integration step, it is limited by maxh (see Fig. 1 for detail), 

kx – is the state vector from the previous step, 

 txf r , – is the reduced dynamic model of notion witch is defined below. 
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4.1 Orbit Determination Algorithm Description 

The Orbit Determination algorithm applies an UKF to estimate the state vector which comprises 8 

components: 

 object velocity }ˆ,ˆ,ˆ{ˆ zyx vvvv   

 object position }ˆ,ˆ,ˆ{ˆ zyxr   

 receiver clock bias b̂  

 receiver clock drift d̂  

 ˆ ˆˆ ˆ= T Tv r b d 
 x  

The diagram of Orbit Determination algorithm describes on the following. 

 

The following process and measurement models can be established: 

 1k k kf  x x w                                                     (29a) 

 k k kh z x v                                                     (29b) 

The variables in the above equation will be described  

kx is a system condition vector in the k moment  

 f   is unscented system model 

kw is a dynamic mixed signal in the k moment 

kz is a measuring dynamic vector in the k moment 

 h  is a unscented system measuring model 

kv is dynamic measuring mixed signal in the k moment 

The measurement vector is denoted by kz , the process noise kw  and the measurement noise 
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kv are assumed to be zero-mean white noise. The process noise covariance matrix and the 

measurement noise covariance are given by jQ  and jR , respectively.  

The system error covariance matrix jQ  is as follows.  

    ,

0    ,
jT

i j

i j
E

i j


  

Q
w w                                                (30) 

The measuring error covariance matrix jR  is as follows.   

    ,

0    ,
jT

i j

i j
E

i j


  

R
v v                                               (31) 

Here, kw   and kv are independent and unrelated 

  0,    ,T
i jE i j w v                                               (32) 

 

4.2 Unscented Kalman Filter Processing 

1) Producing Standard Points and Calculation Value 

  0
ˆ

k  x  

  ˆ   1, 2, ,
T

i k k
i

n P i n    x                                             (33) 

  ˆ   1, 2, ,
T

i n k k
i

n P i n 
    x   

   
 

m
iW

n







 

 2
0 0 1 21c mW W                                                             (34) 

 
1

2
m c

i iW W
n 

 


 

The parameter is a scaling parameter defined as  

 2
2 1 3n n                                                               (35) 

The positive constants i , i=1,2,3 are used as parameter of the method, a priori and a posteriori 

estimates of the state are denoted by ˆ
k
x  and ˆ

kx . 



18 
 

2) Time Updating: 

Condition Predicted Value 

     k k ii
f                                                               (36) 

Condition Predicted Average 

 
2

0

ˆ
n

m
k i k i

i

x W  



                                                            (37) 

Covariance Matrix 

    
2

0

ˆ ˆ
n T

c
k i k k k k ki i

i

P W      



          x x Q                                         (38) 

3) Observation Updating: 

Observation Measurement Predicted Value 

    k ki i
h  z                                                                (39) 

Observation Measurement Predicted Average 

 
2

0

ˆ
n

m
k i k i

i

W 



 z z                                                              (40) 

xyP and yyP update 

    
2

0

ˆ ˆ
n T

c
xy i k k k ki i

i

P W     



         x z                                              (41) 

   
2

0

ˆ ˆ
n T

c
yy i k k k k ki i

i

P W    



          z x z z R                                         (42) 

4) Calculating Kalman Gain Value 

1
k xy yyK P P                                                                  (43) 

5) Updating Estimated Value to Measurement Value 

 ˆ ˆ ˆk k k k kx x K   z z                                                           (44) 

6) Updating Condition Error Covariance Matrix 

1
T

k k k yy kP P K P K
                                                          (45) 

 

4.3 Unscented Kalman Filter Flow Chart 

The flow chart of the UKF is as shown in Fig.2 
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The time update phase of the UKF includes the propagation of state vector 1k

x from the previous 

object state and the state covariance matrix 1kP  . It is defined in item section 2.1. 

The subsequent measurement update adjusts the state vector 1k

x  components and state covariance 

matrix 1kP   to best fit the GPS pseudorange and pseudorange rate measurement data. 

4.4 The meassurement update phase 

The measurement residual and sensitivity matrix are found by forming the computed observation 

equation. 

The model for a GPS pseudorange measurement is given by: 

Figure 2 The algorithm flow chart of  UKF

 | 1 1 | 1 | 1ˆ ˆ ˆk k k k k k k kx x K z z     

k=k+1 

 , | 1 | 1 1 | 1ˆ, ,i k k k k k k kx Q P      

k=1 

0 0ˆ ,  x P  

, , , ,   0,1,2m c
i k i i jW W j  

 , | 1 , 1 1 1, ,i k k i k k kf u w    

2

| 1 , | 1
0

ˆ
n

m
k k i i k k

i

x W  



 

 , | 1 , | 1 1,i k k i k k kz h v  

   , | 1 | 1 , | 1 , | 1ˆ ˆ, , , , , ,c m
i i i k k k k i k k i k k xz zzW W x z z P P     

1
1k xz zzK P P
 

| 1 1 1
T

k k k k zz kP P K P K   

2

, | 1 , | 1
0

ˆ
n

m
i k k i i k k

i

z W z 



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  i
kk

i
kkk

i
p btxy 11111    ~~,~       (46)

where 

     21

2

1

2

11   k
i
GPSk

i
GPSk

i
GPS

i
k zzyyxx ~~~~       (47)

is the geometric range; 

111  kkk zyx ~,~,~ are the positional states of the user object at reception time; 

 GPSx , GPSy , and GPSz  are the positional states of the i-th GPS satellite according to item,  

1kb
~

 is the receiver clock offset; 

i
k 1  accumulates all unmodeled errors.  

Using the abovementioned non-linear measurement equation the sensitivity matrix is given by the 

Jacobian matrix of partial derivatives of non-linear measurement vector with respect to the state 

vector x:  

       







 






 010001 i

k

k
i
GPS

i
k

k
i
GPS

i
k

k
i
GPS

k
i
p

zzyyxx
tH

 ~
~

~

~

~

~
      (48)

 

The model for a GPS Doppler measurement is given by: 

    i
kk

k
i

k

k
i

k
k

i
kk

i
k

i
v d

rr

rr
vvtxy 11

11

11
1111 




 




 ~
~

~
~,~       (49)

where  

i
kv 1 , i

kr 1  are the i-th GPS satellite velocity vector and radius vector according to item; 

1kv~  is the user object velocity; 

 1kr
~  is the coordinates of the user object at reception time; 

1kd
~

 is the receiver clock drift; 

i
k 1  accumulates all unmodeled errors of the Doppler observation.  

Using the abovementioned non-linear measurement equation the sensitivity matrix is given by the 
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Jacobian matrix of partial derivatives of non-linear measurement vector with respect to the state 

vector x: 

 








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
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v       (50)

where 
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(51) 

where 

GPSGPSGPS zyx ,,  repesent },,{ i
GPS

i
GPS

i
GPS

i
k zyxr 1 ; 

GPS
z

GPS
y

GPS
x vvv ,,  repesent })(,)(,){( iii

GPSzGPSyGPSx
i
k vvvv 1 ; 

zyx ,,  repesent }~,~,~{~
1111   kkkk zyxr ; 

zyx vvv ,,  repesent })~(,)~(,)~{(~ iii
1111   kzkykx

i
k vvvv ; 

D represents iD . 

If both pseudorange and Doppler measurement are used the sensitivity matrix will be composed of 

pH  and vH  matrices in the following way 

 
 






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


1

1
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H .      (52)

where pH  and vH  are matrixes size of ][N 81 
SV
k defined as: 
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The measurement residuals, or innovations sequence is: 
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where  

 11  kkp txy ,  and  11  kkv txy ,  are the measured pseudo ranges and pseudo range rates witch are 

computed according to section;  11  kkp txy ,~~  and  11  kkv txy ,~~  are the predicted pseudo ranges 

and pseudo range rates witch are computed according to section. 

The measurement update phase uses the Kalman equations to incorporate the information given by 

the measurements themselves, and obtains improved estimates of the state and of the covariance: 
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     (55) 

where 1kR  is the discrete measurement noise covariance which is basically a measurement weight 

matrix. 

The QR-decomposition algorithm is applied to inverse matrix calculation.  The general idea of this 

algorithm is described in item. 

 

5. GPS Measurement Models 

The basic measurement types that will be employed in the current project are GPS pseudorange 

and Doppler in L1 frequency.  The equation of the pseudorange in L1 frequency is given by: 

     kkUkGPS
i
k

i
k

i
k tdttdtcIP         (56)

where i
kP  is the pseudorange in L1, i

k  is the geometric range to the i-th satellite at the 
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observation instant kt  is given by 

        222

k
i
GPSk

i
GPSk

i
GPS

i
k tzztyytxx        (57)

i
kI  is the ionospheric delay, c is the vacuum speed of light,  kGPS tdt  is the GPS satellite clock 

offset,  kU tdt  is the receiver clock offset, kt  is the observation instant in GPS time, and k  is a 

remnant error supposed random gaussian.  

The numerically controlled oscillator (NCO), which controls the carrier tracking loop, provides an 

indication of the observed frequency shift of the received signal. This observed frequency differs 

from the nominal L1 frequency because of Doppler shifts produced by the GPS satellite and user 

motion, as well as the frequency error or drift of the satellite and user clocks. The equation of the 

Doppler shift in L1 frequency is given by: 
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where i
kv  is the i-th GPS satellite velocity at the observation instant kt , uv  is the receiver velocity, 

i
kLOS  is the line-of-sight to the i-th GPS satellite at kt , and L1=1575.42 MHz is the transmitted 

frequency. 

The Doppler can be converted to a pseudorange rate observation given by the following: 

  i
kk

u
i

k

u
i

k
u

i
k

i
k f

rr

rr
vv  




       (59)

where f is the receiver clock drift in m/s; and i
k  is the error in observation in m/s. 

Another possible GPS measurement model is a linear combination of GPS L1 C/A code and 

carrier phase. Since both data types are affected by systematic ionospheric errors with the same 

magnitude but opposite signs, their arithmetic mean is free of ionospheric errors. This approach, as 

proposed by Yunck in 1996 [1], removes the dominant systematic error source for raw GPS data, 

which may amount to 10-20 m [5] at low elevations. As a matter of fact, the resulting so-called 

GRAPHIC data (Group and Phase Ionospheric Calibration) provide a low-noise biased range with an 
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accuracy of half the C/A code noise. A drawback of using the GRAPHIC data type originates from 

the employed carrier phase data which introduce range biases for each of the twelve receiver 

channels. As consequence, twelve range biases have to be adjusted as part of the estimation process 

which significantly complicates the orbit determination algorithms. Finally, it has to be noted, that 

GPS broadcast ephemeris errors with a mean standard deviation of about 3 m (3D position) and 1 m 

(User Equivalent Range Error, UERE) are still present in real-time applications [11], if no counter 

measures, such as the upload of precise ephemeris, are taken. 

 

6. OP Algorithm Settings 

6.1 Integration Settings 

The maximal time of continuous propagation prp
maxT  = 2400 seconds (it is specified in 0). 

The maximal integration time step maxh = 30 seconds. It was defined according to the table bellow 

which describes maximal Runge-Kutta method errors respectively to integration step. The period of 

dynamic model integration is one turn. 

 

h,sec 

altitude, km 

500 1200 

dR,m dV,m/sec dR,m dVm/sec 

1 6.00E-07 8.00E-08 4.00E-07 4.00E-08 

10 0.009 9.00E-06 5.00E-03 4.50E-06 

20 0.16 1.60E-04 0.09 8.50E-05 

30 0.9 9.00E-04 0.5 4.50E-04 

50 9 9.00E-03 5 4.50E-03 

100 150 0.15 80 0.075 

 

6.2 Dynamic Model Settings 

The maximal half-interval of multi body acceleration fixing mb
max = 30 sec. It was defined 

according to the table bellow which describes integration errors respectively to the half-interval. The 
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period of dynamic model integration is one turn. 

altitude, 

km 

half-interval of fixing  

10 30 60 300 

dR,m dV,m/sec dR,m dV,m/sec dR,m dV,m/sec dR,m dV,m/sec

500 0.169 0.000185 0.551 0.000602 1.168 0.00128 5.806 0.00635 

800 0.189 0.000193 0.615 0.000631 1.304 0.00134 6.489 0.00666 

1200 0.216 0.000204 0.706 0.000668 1.497 0.00142 7.454 0.00705 

 

The fixed multi-body acceleration components are available on time interval mb
fixt max . 

Where fixt is time of acceleration fixing. 

 

6.3 Estimation Settings 

The minimal count of available Navigation SV SV
minN  = 2 (it is defined by test results). 

The discrete state-noise covariance matrix Q, the discrete measurement noise covariance R and the 

initial covariance matrix of 0P  can have different components values and structure for special 

receiver application. According to the requirements 0 in current protect them can be defined for 

example as the following: 
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mRpr 955. – pseudo range measurement dispersion 

2

2

0370
sec

.
m

Rd  – pseudo range rate measurement dispersion 

 

7. Simulation and Analysis 
Using the Kalman algorithm to estimate orbit propagation and determination in this section 

have been proposed to simulate, to validate that the derivation of the formula. Simulation results 

are shown in Figure 2, the initial conditions are selected at the beginning of the track after 

leaving a balance within 200 seconds after convergence. The simulation results as expected.  
 

Simulated conditions: 

 

Micro-satellite altitude 500 km, longitude 108 and latitude 35 , sampling time 4sec, 

On-modulator magnitude = 2, satellite attitude motion trajectory is shown in Figure 3. The UKF of 

direct observation equation is used in the simulation. 

In Figure 3(a),  time response of micro-satellite measured, estimated and difference between 

measured and estimated. Deliberately made a real track star with an initial value is not the same 

kalman filtering, 200 seconds after the kalman algorithm convergeswithin 200sec. In Figure 3(b),  

time response of micro-satellite velocity measured, estimated and difference between measured and 

estimated. Same as Figure 3(a), willfully made a real track star with an initial value is not the same 

kalman filtering, 200 seconds after the kalman algorithm convergeswithin 200sec. 
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Figure 9(a)
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Simulation results show that when the micro-satellite attitude and orbit to maintain balance, 

satellite orbital position and velocity in the estimated value and the measured via GPS satellite 

computer considerable amount. Initial value change in a relatively small error, the maximum error of 

10 °. If the number of GPS by the change, the number of GPS consists of four changes into three or 

less Error is relatively large when the attitude changes, the maximum error is instantaneous 32 °. In 

the academic theory and engineering practice, a systematic analysis is generally considered 

consistent with the conclusion that it is feasible. 
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