Electrocoat Process for Non-Chromate Primers in DoD Manufacturing

ESTCP Project: WP-201010

Presenter: Thor Lingenfelter
PPG Industries, Inc.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEB 2011</td>
<td></td>
<td>00-00-2011 to 00-00-2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocoat Process for Non-Chromate Primers in DoD Manufacturing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPG Industries, Inc, One PPG Place, Pittsburgh, PA, 15272</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop, February 7 - 10, 2011, New Orleans, LA. Sponsored by SERDP/ESTCP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
• Electrocoat Process Description
 – Electrocoat “Basics”
 – Performance review

• Overview of ESTCP Program
 – Scope of Project
 – Project Tasks
Electrocoat Applications
Anodic Electrocoat

- Waterborne coating
- Negatively charged paint particles; applied with electrical current
- Lower temperature cure: 30 minutes metal at 200°F
- Chemistry and cure requirements are uniquely suited for aerospace aluminum.
Electrocoat System

- Alkaline clean
- Rinse
- De-oxidizer
- Rinse 1st
- Rinse 2nd
- RO Rinse
- Fully cured for 30 min @ 200°F metal temp
- Oven
Why Electrocoat for Aerospace?

- Environmental, Health and Safety Considerations
 - Aqueous based
 - Minimal waste discharge – closed loop process
 - Minimal exposure of workers to hazardous materials

- Productivity / Efficiency
 - Automated process – increased productivity
 - Virtually 100% materials utilization
 - Immediate part handling after thermal cure (30 minutes metal @ 200 ºF)
 - Do not have “dry to touch”, “dry to tape”, “dry to fly” restrictions

- Application / Performance
 - Uniform film across entire surface including recessed areas
 - Excellent barrier / corrosion resistance properties
Electrocoat Performance

• Requirements of MIL-PRF-23377
 – Corrosion Resistance
 • Salt Spray
 • Filiform
 – Adhesion
 – Flexibility
 – Water Resistance
 – Solvent Resistance
 – Fluid Resistance

➤ SO₂ Salt Fog testing (ASTM G 85 Annex 4)

Electrocoat passes all performance specifications
Electrocoat Performance
Galvanic Assemblies

After 500 hrs B117
Cr-free Ecoat over CrCC
MIL-PRF-23377 Type I Class N over CrCC

After stripping off primer
• Beach exposure – 18 months at Kennedy Space Center

Chromium spray primer over Cr conversion coat

10 rating

Cr-free Ecoat over Cr CC

9 rating
(initial rating was 9 prior to exposure)

Cr-free Ecoat over TCP

10 rating
• Demonstration and validation of a novel, non-chromated, environmentally friendly, electrodeposited primer.
 - The primers will be tested and demonstrated with previously transitioned “green” metal finishing solutions

• Depot level rework will be used to validate the performance of the proposed coating system.

• Environmental, productivity and life cycle cost benefits of the technology will also be evaluated.
The proposed demonstration and validation project will be structured in two phases:

- **Phase I- Task 1: Proof of concept test matrix**
 - Performance over various substrates will be evaluated
 - Multiple surface treatments
 - Conversion coats (MIL-DTL-81706 Type I and II)
 - Anodized (MIL-A-8625 IIB)
 - Panels topcoated with MIL-PRF-85285 Type IV coating

Upon completion of testing, a Go/ No Go decision will be based upon coating performance and program office buy-in
Technical Approach

• Phase II- Task 2: Installation of an electrocoat system at FRC-Southwest North Island

 – System will include a 2000 gallon electrocoat tank and rinse stages to enable coating parts and assemblies up to several feet in diameter.

 – The electrocoat system will be installed in several unused tanks in the cleaning shop

 If material is qualified, system can accommodate full-scale production
Technical Approach

Layout of existing cleaning shop tanks at North Island

Proposed site for electrocoat system

Existing hoist can be used
• Phase II/ Task 3: Selection, coating, and evaluation of various test parts

 – Focus on components such as wheel assemblies and seat tracks to be installed on Air Force and Naval aircraft.

 – Performance will be tracked relative to hexavalent chromated spray controls.

 – Electrocoat performance productivity will be measured in terms of material usage, labor costs, hazardous waste volumes for life cycle calculations.

Representative test parts: wheel assemblies and seat track components
Acknowledgements

• ESTCP
 – Bruce Sartwell

• ASETSD Defense
 – Keith Legg

• USAF Corrosion Office
 – 2nd Lt. Doug Banning - PI
 – Mark Foley
 – SMSgt Donald S. Ward
 – Corey Bliss (AFRL)
 • FA8650-5-C-5010 Task 8

• NAVAIR
 – Julia Russell - PI
 – Bill Nickerson
 – Craig Matzdorf
 – Luc Doan

• PPG
 – Duane Utter
 – Robin Peffer
 – Gary Orosz