Low Temperature Powder Coating
February 9, 2011

ASETSDefense Conference
New Orleans, La

Wayne Patterson
Hill AFB, Utah
801-775-2992
wayne.patterson@hill.af.mil
Low Temperature Powder Coating

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 FEB 2011</td>
<td></td>
<td>00-00-2011 to 00-00-2011</td>
</tr>
</tbody>
</table>

Performing Organization:
Ogden Air Logistics Center, Hill AFB, UT, 84056

Performing Organization Report Number:

Distribution/Availability Statement:
Approved for public release; distribution unlimited

Supplementary Notes:
ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop, February 7 - 10, 2011, New Orleans, LA. Sponsored by SERDP/ESTCP.

Abstract:

Subject Terms:

Security Classification of:
- a. Report: unclassified
- b. Abstract: unclassified
- c. This Page: unclassified

Limitation of Abstract:
- Same as Report (SAR)

Number of Pages:
- 26

Name of Responsible Person:
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

• Current wet coating processes present environmental risks
 • Results in the release of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs)
 • Legacy primers contain hexavalent chrome

• Conventional powder coatings result in an alternative highly durable coating
 • Results in the release of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs)
 • Conventional powders cure at temperatures detrimental to some alloys

• Low Temperature Cure Powder Coating (LTCPC) is an alternative to conventional powder coating
 • Cures at < 300 F
 • Still HAP/VOC free
 • Possibly formulated with corrosion inhibitors so chromated primers are not required
Project Team

<table>
<thead>
<tr>
<th>Wayne Patterson</th>
<th>Warren Assink</th>
<th>David Piatkowski, Chris Mahendra</th>
<th>James Davila, Chris Geib</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOGDEN ALC</td>
<td>AFRL</td>
<td>NAVYAIR</td>
<td>SAIC</td>
</tr>
<tr>
<td>OO-ALC 809 MXSS/CLA</td>
<td>AFRL</td>
<td>NAVYAIR</td>
<td>SAIC</td>
</tr>
<tr>
<td>Hill AFB, UT</td>
<td>Wright-Patterson AFB, OH</td>
<td>NAVYAIR</td>
<td>SAIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beavercreek, OH</td>
</tr>
</tbody>
</table>
Demonstration Sites

Validation Phase
- Hill AFB, UT
- NAVAIR Pax River, MD
- CTC, Johnstown, PA
- NASA, Kennedy Space Center, FL

Evaluation Phase
- OO-ALC, Hill AFB, UT
- OC-ALC, Tinker AFB, OK
- WR-ALC, Robins AFB, GA
- NAS Whidbey Island, WA
- FRC Southwest, North Island, CA
Technical Objectives

The LTCPC Program was initiated with the following performance objectives:

• Demonstrate that LTCPC can show performance comparable to wet paint coatings in laboratory testing

• Demonstrate that the LTCTC, as applied by trained coating personnel can withstand operational conditions as well as, or better than, wet paint coatings

• Determine whether the use of LTCPC can result in process and/or environmental cost savings
TECHNICAL APPROACH

Powder Coating Technology

- Low Temperature Cure Powder Coating
 - Developed under SERDP Project WP-1268
 - Addressed deficiencies of conventional powder coatings
 - High curing temperatures
 - Long-term (>1000hrs) corrosion resistance

Equipment

- Corona Gun with adjustable voltage
 - Addresses limitation of conventional Corona Guns (Faraday Cage)
 - Improves uniformity of powder coverage within tight corners and recessed areas
TECHNICAL APPROACH

Current Wet Coating Process

- Solvent
- Part A
- Part B
- Mix/Thin
- Primer Application
- Spray primer
- Wait 8-12 hours
- Topcoat Application
- Spray topcoat
- Wait 12 hours
- Done

Proposed LTCPC

- Powder
- Hopper
- Spray component
- Bake 30 minutes 250 F
- Done

BE AMERICA’S BEST
Pros
- Storage / Shelf Life
- Single Component
- Quick
- Durable
- No VOC
- Transfer Efficiency 95%
- Waste is recyclable

Cons
- Small Parts (limited to booth & oven size)
- Geometries
- Must be cured at Temperature/Time
- Gas or Electric Oven
JTP Results

Filiform Corrosion Resistance

- LTCPC met requirements of MIL-PRF-23377 on two panels
- Third panel exhibited a single filament extending slightly beyond allowable tolerance

LTCPC on 2024 T-3 Clad

LTCPC on 2024 T-3 Clad
JTP Results

Neutral Salt Spray

- LTCPC performance similar or better than wet coating
JTP Results

Flexibility / Impact Resistance

- LTCPC met requirements of MIL-PRF-23377 and MIL-PRF-85285

Back – LTCPC on 2024, 0 Temper Al

Front – LTCPC on 2024, 0 Temper Al
JTP Results

Adhesion Testing

- LTCPC with pretreatment passed all adhesion testing

19. MIL-PRF-23377/MIL-PRF-85285 w/DOW 7 Pretreatment
20. LTCPC w/DOW 7 Pretreatment
21. LTCPC w/No Pretreatment (3b adhesion rating)
22. LTCPC w/DOW 7 and Prekote Pretreatment

(Magnesium Substrate, AZ31B)
JTP Results

Gravelometer

MIL-PRF-23377/85285

Powder Coat
JTP Results

Summary

WP-0614 LTCPC JTP Test Results

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Appearance</th>
<th>Salt Spray</th>
<th>SO2</th>
<th>Cyclic</th>
<th>Filiform</th>
<th>Adhesion</th>
<th>Impact</th>
<th>Strip</th>
<th>Immersion</th>
<th>Humidity</th>
<th>Gravel</th>
<th>Low T Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>4130 steel</td>
<td>SAME</td>
<td>SAME</td>
<td>SAME</td>
<td>SAME</td>
<td>SAME</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2024-T0 Al</td>
<td>SAME</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Note 2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Note 2</td>
<td>--</td>
</tr>
<tr>
<td>2024-T3 Al (CCC)</td>
<td>SAME</td>
<td>SAME</td>
<td>SAME</td>
<td>--</td>
<td>--</td>
<td>Note 2</td>
<td>Note 2</td>
<td>--</td>
<td>Note 2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2024-T3 Al (No)</td>
<td>SAME</td>
<td>LESS</td>
<td>LESS</td>
<td>--</td>
<td>--</td>
<td>Note 2</td>
<td>Note 2</td>
<td>--</td>
<td>Note 2</td>
<td>Note 2</td>
<td>--</td>
<td>Note 2</td>
</tr>
<tr>
<td>6060-T6 Al (CCC)</td>
<td>SAME</td>
<td>SAME</td>
<td>SAME</td>
<td>--</td>
<td>--</td>
<td>Note 1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6060-T6 Al (No)</td>
<td>SAME</td>
<td>LESS</td>
<td>LESS</td>
<td>--</td>
<td>--</td>
<td>Note 2</td>
<td>Note 2</td>
<td>--</td>
<td>Note 2</td>
<td>Note 2</td>
<td>--</td>
<td>Note 2</td>
</tr>
<tr>
<td>2024-T3 Clad (CCC)</td>
<td>SAME</td>
<td>SAME</td>
<td>BETTR</td>
<td>--</td>
<td>--</td>
<td>Note 4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2024-T3 Clad (No)</td>
<td>SAME</td>
<td>LESS</td>
<td>BETTR</td>
<td>--</td>
<td>--</td>
<td>Note 4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6061-T6 Al (CCC)</td>
<td>BETTR(note 4)</td>
<td>SAME</td>
<td>SAME</td>
<td>--</td>
<td>SAME</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6061-T6 Al (PK)</td>
<td>BETTR(note 4)</td>
<td>LESS</td>
<td>SAME</td>
<td>--</td>
<td>SAME</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AZ31B Mg (Dow)</td>
<td>SAME</td>
<td>SAME</td>
<td>BETTR</td>
<td>--</td>
<td>SAME</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>Note 3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Legend:
- LESS = Less than control
- SAME = Same as control
- BETTR = Better than control

Notes:
1. Two of three LTCPC panels passed. One panel exceeded limit by 1/32 in.
2. Met requirements in the MIL Standards (MIL-PRF-23377, MIL-PRF-85285, MIL-PRF-24712)
3. Non methylene chloride stripper effective.
4. Exceeded 3300 hrs in salt spray
Demonstration Testing

- USAF & USN Demonstration Sites & Test Articles
 - NAS Whidbey Island, WA
 - Depot for majority of the LTCPC Navy Demo GSE
 - Engine Yokes
 - Partial results collected on tow bars, pod cradles, and bomb hoists, but coating was stripped early due to NDE requirements
 - NAS North Island, CA
 - Maintenance facility for GSE deployed on the USS Ronald Reagan
 - Nitrogen Carts
 - OO-ALC, Hill AFB, UT
 - C-130 forward landing gear doors
 - C-130 Throttle Quads
Results - Demonstration Testing

- Navy Ground Support Equipment Field Service Evaluation – NAN-4 Nitrogen Servicing Cart
Results - Demonstration Testing

Results - Demonstration Testing

- Air Force Field Service Evaluation – C-130 Nose Landing Gear Doors (Interior Surfaces)

Chromate CC LTC Powder
C-130 Throttle Quads

BE AMERICA’S BEST
Conclusions and Summary

• Low Temperature Cure Powder Coatings performs comparably to conventional wet coatings both in laboratory and field service evaluations

• LTCPC allows environmental cost reductions through VOC/HAP elimination and hexavalent chrome reduction.

• The LTCPC process greatly shortens the coating operation (LTCPC cures much more rapidly then conventional wet coatings) resulting in labor savings and improved part processing rates.
Conclusions and Summary

• Powder Coatings are not a total replacement for wet paints…However they are a viable replacement for quite a few back shop processes
 • Be observant and cognoscente of processes
 • Don’t be afraid to try it…Use the Correct Procedure…get authorizations
 • Document successes and failures

• New Powders are being Developed as Industry sees the Need and possibilities of use.

