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Abstract 

 Water quality monitoring is critically important in efforts to both limit human 

exposure to toxic chemicals and to protect ecosystems.  Researchers have demonstrated 

potential in the use of microbial fuel cells (MFCs) for water quality monitoring.  

However, there is a need to demonstrate that MFCs can be used to identify specific 

industrial pollutants.    

 This study integrates artificial neural network (ANN) processing with MFC-based 

biosensing in the detection of three organic pollutants that have relevance to DoD 

operations: aldicarb, dimethyl-methylphosphonate (DMMP), and bisphenol-A (BPA).  

Overall, the use of the ANN proved to be more reliable than direct correlations with raw 

data in the prediction of both chemical concentration and type.  The ANN made no errors 

in the identification and quantification of all chemicals in three concentration ranges and 

throughout a wide range of stepwise tests.  Additionally, chemicals dissolved in the 

standard feed medium were accurately identified by the ANN even though the pollutant’s 

effects on response charge were essentially masked.  The ANN also accurately revealed 

the identity of chemical mixtures.  Finally, the newly-tested response peak metrics of 10-

hour Subsidence Rate (10SR) and First Moment (FrM) proved to be useful in ANN 

development.   

 This study is the first to incorporate ANN modeling with MFC-based biosensing 

for the detection and quantification of organic pollutants that are not readily 

biodegradable.  It is also the first to investigate the characterization of response charges 
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by using the quantifiable properties of 10SR and FrM.  Furthermore, this work provides 

insight into the flexibility of MFC-based biosensing as it pertains to limits of detection 

and its applicability to scenarios where mixtures of pollutants and unique solvents are 

involved.  This research effort is expected to serve as a guide for future MFC-based 

biosensing efforts.    
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DETECTING INDUSTRIAL CHEMICALS IN WATER WITH MICROBIAL FUEL 

CELLS AND ARTIFICIAL NEURAL NETWORKS 

 

I.  Introduction 

Fresh water is a finite resource and is vitally important to every aspect of human 

life.  The availability of fresh water, or lack thereof, can impose socio-economic burdens 

on society and plays a major role in sustainable development.  Pollutant discharges from 

industry, high nutrient levels leading to eutrophication, and the over-pumping of aquifers 

are all examples of prominent concerns regarding water quality degradation today.  Water 

quality monitoring to detect contamination issues is therefore essential in protecting 

public health and the environment.   

Biosensors can be used to monitor water quality.  Biosensors combine a 

biological component and a physiochemical detector component to create a signal that 

can be processed in the detection of an analyte.  MFCs, while best known for their 

potential to generate electricity, have also been used as biosensors for water quality 

monitoring (Feng et al., 2013a; Feng et al., 2013b; Tront et al., 2008; Kumlanghan et al., 

2007).  An MFC is a device that uses microorganisms to produce bioelectricity.  The 

microorganisms survive in an anoxic environment near the anode and produce electrons 

from the oxidation of organic matter.  These electrons are transported exogenously from 

the cell to the anode of the fuel cell.  The electrons then travel from the anode to a 

cathode that is exposed to a terminal electron acceptor (e.g. oxygen).  The amount and 

type of organic matter in the substrate has an effect on current generation in an MFC.  

Since this information can be measured and collected, the data can be correlated with 
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water quality data to determine the presence of certain organic compounds.  Feng et al. 

(2013a, 2013b) successfully used MFC data to distinguish between four separate, readily 

biodegradable, simple organic substances and for different chemical oxygen demand 

(COD) concentrations.   

This work further interprets the raw data generated by MFCs as biosensors with 

the establishment of never-before used metrics.  Additionally, a proven nonlinear 

modeling technique is used to identify, characterize, and distinguish between 3 types of 

toxic organic pollutants that are relevant to Department of Defense (DoD) activities.  This 

report is the first to utilize ANN processing to fully interpret the MFC electrical signals 

from organic pollutants in water for their identification and quantification.   
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II. Literature Review 

2.1 Microbial Fuel Cells (MFCs) 

2.1.1  Bioelectricity Generation Using Microbial Fuel Cells  

A microbial fuel cell is a bioreactor that produces electrical energy from chemical 

energy in the bonds of organic substances.  MFCs are similar to any other battery or fuel 

cell in that electrons are first generated, and then pass between two electrodes, an anode 

and a cathode, connected by a wire.  The main difference, however, between MFCs and 

other fuel cells is that the electricity is generated through the work of electrode-reducing 

microorganisms.   

A schematic of a typical MFC is shown in Figure 1.  Electrode-reducing 

microorganisms in the anode chamber first transfer electrons to the anode.  The anode 

chamber does not contain oxygen because it, being an excellent electron acceptor, would 

inhibit current generation by preventing electrons from reaching the anode.  Electrons 

travel through a wire from the anode chamber to a cathode that is either air-exposed or in 

a separate chamber where there is available dissolved oxygen.  The two chambers are 

sometimes separated by a membrane that allows for the transfer of protons.  When the 

electrons reach the cathode, they combine with the protons to from water or another 

reduced compound.  Finally, the current is determined with the use of a multimeter which 

measures a voltage drop across the resistor (Logan, 2008).   
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Figure 1. Typical Single-Chamber MFC Design  

Evidence for the generation of electricity from microbial metabolism has existed 

for over 100 years.  The first observations of this are credited to Potter in 1911 (Potter, 

1911).  MFC and bioelectricity research for the next 88 years, however, utilized chemical 

mediators that transferred electrons exogenously from the cell to an electrode.  It wasn’t 

until 1999 when Kim et al. revealed a breakthrough discovery that electrons could be 

efficiently transferred from microorganisms to an electrode via direct contact (Kim et al. 

1999a; Kim et al. 1999b).   
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2.1.1.1 Electrode-reducing Microorganisms  

Microorganisms that have the ability to interact with the anode and cathode of an 

MFC are known as electrode-reducing microorganisms (Lovley, 2008).  To produce 

electricity, these electrode-reducing microorganisms first oxidize (degrade) organic 

matter in an MFC which produces electrons.  The microorganisms then transfer electrons 

exogenously to an electrode; in this case the anode of the MFC (Logan, 2008).  It should 

be noted that electrode-reducing microorganisms are distinctly different from most 

anaerobes that can only transfer electrons to soluble compounds that diffuse into the cell 

like nitrate or sulfate.  The ability to transfer electrons outside of the cell (exogenously) to 

an anode is what allows an MFC to function.  Microorganisms that can contribute 

electrons to fuel cell anodes are also known as: exoelectrogens, electrogenic 

microoganisms, electrochemically active bacteria, and anode-respiring bacteria (Lovley, 

2008).   

Energy conservation in the cell is maintained though respiration.  This process 

involves the pumping of protons and the related transfer of electrons across the inner 

membrane. Nicotinamide adenine dinucleotide (NADH) derived from the oxidation of 

organic matter is taken up by protein complexes, which have the ability to force protons 

into the outer membrane.  The energy for the movement of protons is generated by a 

number of electron transport complexes.  After protons are moved into the outer 

membrane, another membrane complex called adenosine triphosphate (ATP) synthase 

uses the proton gradient that was created in the previous step to move the protons back 

toward the inner membrane.  ATP synthase uses these protons in the regeneration of 

cellular energy in the form of ATP.  Subsequent electron transfer steps (Figure 2) serve 
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mainly to dispose of electrons and are therefore not directly providing energy for the cell.  

However, it is these final electron transfer steps that allow the anode of the MFC to be 

reduced.   

 

Figure 2. Electron Transfer Model to a MFC Anode (modeled after Lovley, 2008) 

 Many types of bacteria are capable of transferring electrons exogenously.  

However, two of the most prominent genera used in MFC research include Shewanella 

and Geobacter (Logan, 2008).  Both of these groups have been used extensively in the 

inoculation of MFCs (Sun et al., 2010; Choi and Chae, 2013; Bifflinger et al., 2008).  

Geobacter species are most commonly known to harvest electricity from organic 
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substrates and anaerobic aquatic sediments.  They are known to produce the highest 

current densities amongst all organisms in MFCs (Lovley et al., 2011).  Shewanella 

species are known to be more versatile having an ability to grow in both aerobic and 

anaerobic conditions.  Additionally, Shewanella species can use a variety of electron 

acceptors and can secrete mediators that enhance electron transfer capabilities.  For these 

reasons, it is often looked to for use in a variety of power applications (Bifflinger et al., 

2008).       

 2.1.1.2 Extracellular Electron Transfer (EET) Mechanisms 

Research indicates that the mechanisms through which electrons are passed from 

the microorganisms to the anode can vary (Lovley, 2008).  The four predominant theories 

(Figure 3) for microbe-electrode interaction pertaining to the transfer of electrons are: 1) 

transfer via conductive pili or nano-wires; 2) long-range transfer via soluble electron 

shuttles in the substrate; 3) transfer through a conductive biofilm and 4) direct contact 

with the anode surface (Lovley, 2008; Reguera et al., 2005; Holmes et al., 2006). 
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Figure 3. Proposed Mechanisms for Electron Transfer to the Anode (modeled after 

Lovley, 2008) 

 Gorby and Beveridge (2005) revealed that conductive “nanowires” or pili were 

present on both, Geobacter and Shewanella species of bacteria.  They proved the 

electrical conductivity of these appendages by using scanning tunneling microscopy 

(STM) and concluded that these nanowires were capable of carrying electrons from the 

cell to the anode surface.  Similarly, Reguera et al. (2005) observed that G. 

sulfurreducens possesses conductive pili or nanowires.  In addition, they noted that there 

is a difference between the structure of the nanowires produced by G. sulfurreducens and 

that of S. oneidensis.  The appendages of G. sulfurreducens are thin and appear to be 

composed of single strands while the appendages of S. oneidensis appear to be thicker 

“cables” that are made up of smaller conductive nanowires.  Reguera et al. (2005) 
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concluded that the pili of S. oneidensis were not conductive, demonstrating that other 

electron transfer mechanisms can play a role even if cells possess nanowires.   

 It is also well documented that soluble electron shuttles or chemical mediators can 

be added to a fuel cell in order to facilitate electron transfer from inside the cell to the 

outside (Logan, 2004; Bond et al., 2002; Rabaey and Verstraete, 2005).  Chemical 

mediators used in the past include neutral red (Park et al. 1999), thionin potassium 

ferricyanide (Bond et al. 2002), methyl viologen (MV) (Aulenta et al., 2007; Steinbusch 

et al., 2010) and anthraquinone-2, 6-disulfonate (AQDS) (Hatch and Finneran, 2008).  

However, it is now known that mediators do not have to be added to cultures since they 

are often self-produced.  For instance, pyocyanin is an endogenous chemical mediator 

produced by Pseudomonas aeruginosa that can shuttle electrons to the electrode of an 

MFC (Rabaey et al. 2004).  Marsili et al. (2008) showed that riboflavin is another 

endogenous mediator that is produced by S. oneidensis that is capable of shuttling 

electrons. 

 Finally, it has been shown that both conductive biofilms and direct contact with 

the anode may also be viable mechanisms for electron transfer.  Reguera et al. (2006) has 

shown that G. sulfurreducens can form a thick, conductive biofilm and that the biofilm is 

essential for the transfer of electrons in fuel cells that use this culture.  Furthermore, G. 

sulfurreducens has been shown to transfer electrons to the anode through c-type 

cytochromes on the cell surface (Holmes et al., 2008; Kim et al., 2008).   

2.1.1.3 Competing Microorganisms and Metabolisms 

The efficient conversion of organic material to electricity depends on the 

microorganism’s ability to completely oxidize their organic fuels to carbon dioxide.  
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However, some microbial populations are simply not capable of achieving complete 

oxidation (Lovely, 2008).  Additionally, some microbial populations are inherently 

diverse and therefore possess metabolic pathways that are concurrent to oxidation.  It is 

theorized that the anode serves as a convenient surface for attachment and that many 

microorganisms are carrying out a wide variety of metabolic processes besides 

electrogenesis.  These competing side reactions can divert electrons away from current 

production (Rismani-Yazdi et al., 2013; Lovely, 2008).  An example of a competing 

reaction process in MFCs is methanogenesis.     

The presence of methanogens can be particularly problematic in MFCs because 

their growth conditions are similar to that of electrode-reducing microorganisms.  

Additionally, methanogens are prevalent in anaerobic digester sludge, a common 

inoculum for MFCs (Chae et al., 2010).  Since they compete with electrode-reducing 

bacteria for their substrate at the anode, methanogens inhibit the performance of MFCs.  

Much research has accomplished to find ways of inhibiting methanogens including air 

and heat exposure, acid/base treatment, and chemical inhibitors (Kim et al., 2004; Li and 

Fang, 2007).  Primary methanogens for anodic methanogenesis include 

Methanosarcinaceae, Methanosaetaceae, Methanosaeta, and Methanobacteriales (Chae 

et al., 2010).   

Chae et al. (2010) found that lowering resistance and the injection of 2-

Bromoethanesulfonate (BES) were effective at inhibiting methanogens.  By lowering the 

resistance from 600 to 50 Ohms, electron loss was reduced by 24%.  The addition of BES 

increased columbic efficiency (CE) from 35% to 70%.  They also concluded that oxygen 
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stress was effective, but had a detrimental effect on electrode-reducing bacteria.  Jung et 

al. (2005) also performed experiments with BES that yielded a 70% increase in CE.   

2.1.1.4 Voltage and Power Generation 

 The working voltage of MFCs commonly range from 0.3-0.7 V (Logan, 2008).  

For the purpose of comparison, typical voltages for flashlight batteries is in the range of 

1.5 V, car batteries have a voltage of 12 V, and power companies in the United States 

typically supply 110 V to consumers.  The voltage of an MFC, however, is difficult to 

predict since it is dependent upon the various electron-generating metabolisms of 

microorganisms.  It takes time for bacteria to colonize, competing metabolisms exist, and 

different bacteria possess different levels of ability in transferring electrons outside of the 

cell (Logan, 2008).   

Many types of MFC designs have been developed.  Two-chamber (Oh and Logan, 

2006), single-chamber (Liu et al., 2005) flat (Min and Logan, 2004), and tubular (Zuo et 

al., 2011) designs have all be used in research.  Single-chamber air cathode MFCs, 

however, are known as the easiest ones to scale up because of their high power output, 

simple design, and lower cost (Cheng and Logan, 2011).  MFCs with oxygen have been 

optimized to reach power densities of 6.9 W/m
2
 (normalized to the anode area) (Fan et 

al., 2008) and 1.55 kW/m
3
 (normalized to reactor volume) (Fan et al., 2007).  

Furthermore, high power densities have only been achieved in laboratory settings with 

volumes of less than 30 mL (Zhang et al., 2010a; Zhang et al., 2010b; Zhang et al., 

2010c).  Testing with MFCs of larger volumes has generally resulted in lower power 

densities of less than 35 W/m
3
 (Dekker et al., 2009; Liu et al., 2008).  This is an 

indication of a scale-up issue in the development of MFCs as a source of power 
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generation.  Many variables, including surface area of the electrode (Cheng and Logan, 

2007),  electrode surface treatments (Feng et al., 2010), solution composition (Liu et al., 

2008), and pH (Clauwaert et al., 2009), have been tested in order to better understand 

scaling factors that contribute to electricity generation.      

2.1.2 Other MFC Technologies 

 MFCs are most notably thought of as either a solution for renewable energy 

production in the form of electricity or hydrogen gas, wastewater treatment, or a 

combination of both.  Liu et al (2004) furnished the first study that revealed that MFCs 

could be used to treat wastewater to practical levels while still producing electricity.  This 

demonstration as well as the similar contribution of others (Kim et al. 1999c; Reimers 

and Tender, 2001; Rabaey et al. 2003) initiated a race to create practical applications and 

scalable technologies for MFCs in the areas of wastewater treatment and energy 

production.  It is now known that the potential energy benefit from domestic wastewater 

is large enough to power a treatment plant at 100% energy recovery (Logan, 2008).  MFC 

technologies have energy efficiency values from 2% to 50% (Liu and Logan 2004; 

Rabaey et al. 2003).    

 Other well-known MFC technologies include applications as sediment MFCs and 

as a tool for bioremediation.  Reimers and Tender (2001) were the first to publish a paper 

about sediment MFC technology.  With sediment MFCs, the anode is placed into the 

sediment of the ocean floor where there is a naturally-occurring anaerobic environment 

and naturally-occurring anode reducing bacteria.  The cathode is placed in the seawater 

above that contains dissolved oxygen.  The salinity of the water allows for good ion 

conduction to connect the anode and cathode.  Sediment MFC technologies could be used 
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as a remote power device to harvest energy from the seafloor or to power data-collecting 

devices in the ocean. 

 Bioremediation with MFC technologies is possible as has been shown through the 

works of Gregory et al. (2004) in nitrate reduction and Gregory and Lovley (2005) to 

reduce uranium (VI) (2005).  With this technology, the anode receives electrons from the 

degradation of a long-lasting substrate like chitin.  At the cathode, also known as a 

biocathode, electrons are used by bacteria to reduce the contaminants (Logan, 2008).  

Gregory et al. (2004) used biocathode technology to reduce nitrate to nitrate using river 

sediments.  However, complete denitrification to nitrogen gas was not achieved.  Gregory 

and Lovely (2005) used biocathode technology to reduce soluble uranium (VI) to 

insoluble uranium (IV).  Uranium (IV) was readily removed from solution by the 

electrodes, and 87% was recovered from the electrode surface.   

2.1.3 MFCs as Biosensors 

MFC-based biosensing has already been proven to be relevant in the field of 

water quality monitoring.  For example, Di Lorenzo et al. (2009) used single-chamber 

MFCs with an air cathode for the determination of biochemical oxygen demand (BOD) in 

wastewater.  They found that the MFC outputs correlated linearly with BOD 

concentrations of up to 350 mg BOD/cm
3
.  Kumlanghan et al. (2007) also used single-

chamber MFCs as biosensors in the detection of glucose in solution, further proving the 

usefulness of MFCs as detectors for organic matter.  In this study they correlated the 

MFC outputs linearly with glucose concentrations in the range of 0.025 to 25 g/L.  

Additionally, Stein et al. (2012) used MFCs and Butler-Volmer-Monod modeling of the 

current outputs to evaluate nickel toxicity in water. 
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A particularly sophisticated approach to modeling the signals produced by an 

MFC-based biosensor was used by Feng et al. (2013a, 2013b) while using artificial 

neural networks (ANNs).  Their research resulted in the successful prediction of COD 

concentrations and the identification of four different readily-degradable substrates: 

acetate, butyrate, glucose, and corn starch.  They accomplished this by creating 

quantifiable metrics that described the MFC signals and inputted them into the ANN.  

The fully-developed and trained ANNs made no errors in any of the chemical 

identification or COD concentration tests.  This research effort was the first of its kind.   

2.2 Artificial Neural Networks (ANNs) 

 Advances in the development of intelligent systems have led to the design of 

artificial neural networks (ANNs) to solve many types of problems.  ANNs are inspired 

by human biological neural networks and are differentiated from other computer models 

for their ability to “learn” like the human brain.  These models have become powerful 

tools in areas such as prediction, forecasting, and recognition in a variety of applications 

and in various fields including environmental engineering.   

2.2.1 Overview and Theory 

 The human biological neural network functions via an interconnected network of 

axons, synapses, and dendrites.  A neuron receives signals of information through its 

dendrites and transmits signals back out through its axon.  The neural contacts between 

the nerve cells are called synapses.  These synapses are influenced by weighed inputs 

which can essentially either enhance or inhibit the emission of electrical impulses.  The 

synapse also has a dependence on history which allows it to become more efficient.  
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When a person experiences something new, changes occur at the synapses and dendrites 

and new connections are made.  The reinforcement of those connections, such as when 

something is experienced repeatedly, is what forms the building blocks for human 

learning and memory.       

 An ANN is a network of computational models that resemble natural neurons.  

Within this framework an artificial neuron accepts information (inputs) and applies 

weights to the information.  Then, a summation of the weighted inputs is formulated and 

a computational model within the neuron known as the activation function then 

determines whether or not the neuron will be activated.  In a simple model such as the 

McCulloch-Pitts model (McColloch and Pitts, 1990), activation depends on a threshold 

value.  A value of either 0 or 1 is assigned as the output depending on whether or not the 

weighted sum meets the threshold and the information propagates forward.  Figure 4 

illustrates the concept of an artificial neuron.   

 

Figure 4. McCulloch-Pitts Model of an Artificial Neuron (modeled after Krogh, 

2008) 
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 In a simple classification problem, a hyperplane exists to help differentiate the 

inputs that result in a 0 and inputs that result in a 1.  A hyperplane, as shown in Figure 5, 

can be thought of as a regular plane in space.  For a two dimensional problem, the 

hyperplane is simply a straight line.  This hyperplane represents the threshold value.  The 

ANN takes on the task of determining where the hyperplane is for every neuron in the 

network so that it can correctly solve the problem.   

 

Figure 5. Conceptual Illustration of a Hyperplane (modeled after Krogh, 2008) 

2.2.2 Development and Training 

 The process of setting weights to the inputs and the determination of a threshold 

value is how the ANN is trained.  Each time the ANN receives new information, 
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algorithms allow it to make small changes to the weights and thresholds.  The result is 

that the hyperplane shifts slightly.  This happens incrementally until the error in the 

model is minimized to the fullest extent possible.   

 Feed-forward ANNs function through the implementation of a back-propagation 

algorithm.  Initially, the inputs are assigned random weights and an output is generated.  

Then the system-generated output is compared to the desired output and the amount of 

error is calculated.  Errors are propagated backwards through the model, the weights are 

adjusted, and more outputs are generated until the error is minimized.  This pattern of 

events occurs every time something new is experienced by the model and is often 

repeated hundreds of times until the either the error is minimized or there is no error in 

the model.  Corrections like this can be accomplished analytically in linear regression.  

However, there is no analytical solution in ANNs that possess multiple layers of hidden 

neurons as is shown in Figure 6.   
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Figure 6. Feed-forward ANN 

2.2.3 ANNs in Environmental Modeling 

 Aside from the aforementioned works of Feng et al. (2013a, 2013b), ANNs have 

been used for multiple applications in environmental modeling efforts.  For example, 

Maier et al. (2004) used ANN modeling in order to predict optimal alum doses and other 

water quality parameters.  They used raw data from Australian surface waters to train and 

develop an ANN that successfully predicted turbidity, color, and ultraviolet absorbance 

with coefficient of correlation (R
2
) values ranging from 0.90 to 0.98 in a comparison of 

the predicted values to actual values.  They also formulated an ANN model that accepted 

those water quality parameters as inputs and generated residual alum concentrations and 
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pH as outputs.  The R
2
 values for these outputs were 0.96 for alum concentrations and 

0.85 for pH.  This ANN model was developed into a simulation tool for water treatment 

operators to use, saving time over traditional jar tests.   

 In another water quality application, Gazzaz et al. (2012) designed a three-layer 

ANN for the calculation and forecasting of water quality index for the Kinta River in 

Malaysia.  They used multiple water quality parameters as inputs in a feed-forward ANN 

with water quality index as the output.  The predicted values had strong corrleations (R
2
 = 

0.977) to the actual values.  The intent of the study was to provide analysts with an 

alternative to time-consuming water quality index calculations.   

ANNs have also been applied to air quality matters.  Perez (2012) used local air 

quality data in Santiago, Chile to develop an ANN that could be used in air quality 

forecasting.  The ANN was combined with a nearest neighbor method to predict 

particulate matter (PM-10) conditions with accuracy levels of the order of 90%.  This 

model was actually used by environmental authorities for air quality management in 

Santiago from 2009 to 2011 substantiating its use as a tool for air pollution control 

elsewhere.   

2.3 Organic Industrial Pollutants in the Environment 

 Three organic chemicals have been chosen for analysis in this study for their 

potential relevance to Department of Defense (DoD) applications.  Aldicarb, dimethyl 

methylphosphonate (DMMP), and bisphenol-A (BPA) all represent classes of chemicals 

known to pose priority industrial chemical hazards and risks to deployed troops and 

military operations (Hauschild and Bratt, 2005).  These chemicals are not readily 
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biodegradable and have never before been used in the testing of MFC-based biosensing.  

The structures of the studied chemicals are shown in Table 1.   

Table 1. Chemical Structure of the Three Chemicals Under Study 

 

2.3.1 Aldicarb 

 Aldicarb (C7H14N2O2S) is a carbamate pesticide and nematicide and is produced 

in the United States by Bayer CropScience under trade name Temik.  It is a systemic 

insecticide that is taken up by the roots of plants, protecting them from pests such as 

aphids, mites, flies, beetles, and maggots.  As of 2007, the pesticide was used on a wide 

variety of crops such as peanuts, potatoes, sorghum, soybeans, sweet potatoes, citrus 

fruits, and many others (USEPA, 2007).  However, in 2010 the EPA announced its 

intentions to terminate all uses of the chemical because of its potential to cause 

neurotoxic effects in humans.  A risk assessment was conducted by the EPA resulting in 

the agency’s determination that the chemical no longer met food safety standards and that 
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it might pose unacceptable dietary risks to infants and children.  As a result, the primary 

producer of the chemical, Bayer CropScience, agreed to voluntarily phase out production 

of the chemical by 2015 and end all remaining uses in 2018.  Aldicarb is not available to 

the public for residential applications (USEPA, 2010).  The toxic effects of aldicarb have 

led to bans or restrictions in other countries (e.g. Europe).  However, aldicarb is still used 

for agricultural applications in some countries around the world (Maran et al. 2009).   

 Both the production of aldicarb and the use of the chemical as a pesticide can lead 

to direct releases to the environment.  Aldicarb is highly soluble in water (4930 ppm) and 

degrades slowly with half-lives of approximately 62 days (anaerobic conditions) and 34-

94 days (aerobic conditions) (H.S.D.B., 2013a).  Kök et al. (1999) has shown that 

aldicarb can be moderately biodegradable, observing complete degradation in 4 days 

using cultures of Methylosinus.  Hydrolysis half-lives for aldicarb in water have been 

reported in ranges from 6 days (pH 9.85; 20
o
C) to 559 days (pH 6.02; 20

o
C) (Given and 

Dierberg, 1985).  Aldicarb is not known to readily adsorb to suspended solids or sediment 

and volatilization from water surfaces is not expected to be an important environmental 

fate process.  The persistence of aldicarb in soil can range from 1-15 days (H.S.D.B., 

2013a). 

2.3.2 Dimethyl Methylphosphonate (DMMP) 

 Dimethyl methylphosphonate (C3H9O3P) is a colorless liquid that has an industrial 

application as a flame retardant, a preignition additive for gasoline, an antifoam agent, a 

plasticizer and stabilizer, a textile conditioner and antistatic agent, and an additive for 

solvents and low-temperature hydraulic fluids.  DMMP also belongs to a group of 

chemicals known as organo-phosphorous compounds and shares similarities to nerve 
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agents.  In 1976, the U.S. Army selected the chemical for toxicological and carcinogenic 

research because it was being considered for use as an anticholinesterase agent simulant 

(D.H.H.S., 1987).  The military has used the chemical as a Sarin simulant in the testing of 

personal protective equipment such as gas masks and filters (Mahle et al., 2003).  It is a 

weak cholinesterase inhibitor and is an irritant of the skin, eyes, mucous membranes and 

upper respiratory tract (N.O.A.A., 2013). There is some evidence of carcinogenic activity 

for DMMP in animal studies, though it is not currently listed as a human carcinogen 

(H.S.D.B., 2013c). 

 If DMMP is released into the environment, it has a high mobility in soil and 

possesses a moderate volatility from water surfaces.  Volatilization half-lives have been 

modeled to be 22 days for rivers and 240 days in lakes (H.S.D.B., 2013c).  Additionally, 

DMMP is fully miscible in water (Bennett and Philip, 1928).  The chemical has an 

estimated bioconcentration factor of three, which means that it has a low potential for 

bioconcentration in aquatic organisms.  DMMP can be persistent in the water with a 

hydrolysis half-life of 124 days at pH 7.  Finally, biodegredation in water is not 

considered a prominent environmental fate process (H.S.D.B., 2013c).  

2.3.3 Bisphenol-A (BPA) 

 BPA (C15H16O2) is widely used in the production of certain polyester resins, 

flame retardants, epoxy, and polycarbonate.  These products are used in food and drink 

packaging, dental fillings, and many other products.  As a result, it is common to detect 

BPA in industrial and municipal wastewater (Stasinakis et al., 2010).  BPA is a known 

endocrine disrupting compound, is weakly estrogenic, and has been shown to cause 

reproductive and developmental effects in animal studies (USEPA, 2013).   
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The production of BPA and use in industrial applications can lead to releases to 

the environment.  It is estimated that over one million pounds of BPA is released into the 

environment per year in the U.S. (USEPA, 2013).  BPA has a low volatility, low 

solubility (300 ppm), and it is not readily degradable in water (H.S.D.B., 2013b).  

However, there is evidence to suggest that BPA is moderately biodegradable (Robinson 

and Hellou, 2009) in natural environments such as seawater.  It should also be noted that 

studies have shown no evidence of biodegradation in seawater (Kang and Kondo, 2005) 

and groundwater aquifers (Ying et al., 2003) indicating that some microbial communities 

may be more suitable than others in the biodegradation of BPA.   
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III. Research Objectives 

The overall goal of this study is to evaluate the potential of MFC-based 

biosensing for the purpose of monitoring water quality for industrial chemicals that are 

relevant to DoD activities.  The specific objectives are as follows: 

(1) The first objective is to determine if an analysis of the raw metrics can 

produce correlations that can be used in the identification of chemical type or 

chemical concentration. 

(2) The second objective is to integrate ANNs into MFC-based biosensing for the 

identification and quantification of specific organic pollutants.   

(3) The third objective is to determine the effect of using the feed medium as a 

solvent on the identification of organic pollutants via the ANN. 

(4) The fourth objective is to determine the effect of chemical mixtures on the 

identification of organic pollutants via the ANN.   

This study is expected to be the first to provide insight into the usefulness of 

MFC-based biosensing to detect and quantify organic pollutants that are toxic and not 

readily biodegradable.  All of the efforts described within this work aim to expand upon 

the existing knowledge base of MFCs as biosensors and to demonstrate the usefulness of 

MFCs as a water quality monitoring device.   
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IV. Materials and Methods 

The overall strategy involved the injections of aqueous solutions of dissolved 

chemicals into the MFCs in order to generate a response in the form of electric current.  

Each injection of chemical resulted in a single electric current profile that was evaluated 

on the basis of six separate metrics.  Those metrics were: Peak Height (PH), Peak Area 

(PA), Acceleration Rate (AR, i.e. rate of increasing charge), Subsidence Rate (SR, i.e. 

rate of decreasing charge), 10-hour Subsidence Rate (10SR, i.e. rate of decreasing charge 

over a 10 hour period), and First Moment (FrM).  For each set of experiments, manual 

correlations were attempted first in order to determine whether further processing of the 

data was required.  For example, each metric was plotted against chemical concentration 

to evaluate basic correlations within the data.  Then, ANNs were trained and tested with 

the same data sets to see if the required correlations could be made and to determine if 

useful outputs could be generated to support the use of ANNs with biosensors in the 

detection of organic pollutants in water.  Systematic testing was accomplished for the 

purpose of quantification of chemical concentration and identity of the chemical.  In 

addition, testing included the determination of chemical type when the feed medium was 

used as a solvent.  Lastly, experiments were performed to determine whether or not the 

discrimination of mixtures was possible.     

4.1 Microbial Fuel Cell Configuration and Operation 

 Six single-chamber MFCs were utilized and operated as batch reactors in this 

study.  Two MFCs were used for each of the three sets of stepwise tests.  MFC #5 and 

MFC #10 were used for quantification and identification experiments.  MFC #6 and MFC 
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#7 were used in the evaluation of solvent effects.  Finally, MFC #8 and MFC #9 were 

used in the tests incorporating mixtures of chemicals.   

 Two different single-chamber MFC designs were used.  The only difference 

between the designs was a slight variation in the construction of the anode.  In one 

design, an acrylic tube (2.25” OD; 2” ID) served as the anode chamber and was clamped 

between two acrylic plates (3” x 3” x 0.38”).  In the other MFC design, the only notable 

difference was that it had been constructed by using three acrylic plates instead of two.  

In this design, the housing for the anode chamber was created by hollowing out the 

middle plate instead of using an acrylic tube. All MFCs in both designs had an anode 

chamber volume of approximately 40 mL.  Carbon fiber was used as the anode and inlet 

and outlet valves were inserted into the anode chamber for draining and feeding.  A 

cation exchange membrane (CEM) and an air-exposed cathode was also used.  The air-

exposed cathode was coated with powdered activated carbon and 5% platinum, then 

further enhanced with a separate piece of carbon fiber to increase contact area with the 

alligator clips.  Both electrodes were connected via alligator clips and an external resistor.  

Both 47  (MFC #5, #6, #7 and #8) and 470  (MFC #9 and #10) resistors were used.  

Electrodes were connected via copper wire to a Keithley meter (Model 2750) to monitor 

voltage outputs from the MFCs.  The Keithley meter served as a volt meter to measure 

the voltage drop across the resistors.  Data collected by the Keithley meter was converted 

into electronic database format via the ExceLINX program (Keithley Co.) for analysis.  

The operating temperature in the laboratory was approximately 21 
o
C .  These MFCs 

were originally built and inoculated for research performed by Feng et al (2013a, 2013b).  
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Figure 7 and Figure 8 show details pertaining to MFC design and the overall system set-

up used in this study.   

 

Figure 7. MFC Design and Configuration 

B 

D 

Photographs of (A) the two different sing le-chamber M FC designs; (B) view of 
the anode chamber and graphite anode; (C) configuration of electrode con­
nections and external resistor; (D) cross-sectional view of interior and location 
of CEM; and (E) configuration of the enhanced carbon fiber cathode. 
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Figure 8. Overview of System Set-up 

4.2 Synthetic Solutions 

 Four types of synthetic solutions were used for the duration of the experiment.  A 

standard feed medium, adopted from Feng et al. (2013a, 2013b), was used as a proven 

source of reliable charge.  The feed medium was an acetate-based aqueous solution 

composed of the following substrates:  C2H3NaO2, 430 ppm; NH4Cl, 20 ppm; KH2PO4, 

1360 ppm; K2HPO4, 200 ppm; MgCl2, 250 ppm; CoCl2, 20 ppm; ZnCl2, 10 ppm; CuCl2, 

10 ppm; CaCl2, 4 ppm; and MnCl2, 10 ppm.  Additionally, aqueous solutions for each of 

the three chemicals used in the experiment were created at different concentration levels.  

The three chemicals tested included aldicarb, DMMP, and BPA.  Aldicarb was purchased 
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from Ultra Scientific in a solvent matrix form at a concentration of 100 μg/mL in 

acetonitrile.  DMMP was purchased from Sigma Aldrich in a purum (≥ 97%) liquid form.  

BPA was purchased from Sigma Aldrich in a crystalline solid (97% purity) form.  Since 

BPA has a low solubility in water, 8E-3 g of the chemical was first dissolved into 2 mL 

of Methanol, then dissolved into 1.0 L of water.  Finally, this 8 ppm stock solution of 

BPA was diluted to the concentrations outlined in this study.  All water used in the 

composition of solutions was purified through reverse osmosis (RO). 

4.3 Enrichment 

 All MFCs were inoculated with activated sludge as a source of bacteria.  Previous 

studies have also utilized activated sludge as an inoculation medium for MFCs (Park and 

Zeicus, 2003; Kim et al., 2004b; Fan et al., 2007).  All activated sludge was obtained 

from the Fairborn Water Reclamation Facility in Fairborn, Ohio.  Raw activated sludge 

was mixed with the feed medium in a 1:3 ratio and injected into the MFCs until the 

response peaks stabilized for a minimum of three consecutive feedings.  Stabilization was 

measured by a ± 5% change in maximum charge.  After stabilization was achieved, the 

MFCs were deemed ready for the stepwise testing experiments.  Feeding intervals for 

inoculation was spaced at a time period of approximately 48 hours and injections were 

accomplished by using a 60 mL disposable syringe.   

4.4 Analytical Methods 

 Testing schedules and procedures were similar for each of the three main 

experiments in this study.  For this stage of testing the overall methodology involved the 

injection of the chemical solution for eight consecutive injections, an intermittent 
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injection of standard feed medium, followed by eight consecutive injections of chemical 

solution for the next stage of testing.  The intermittent injection of feed medium was 

introduced in order to revive the microbial community within the MFC since it was not 

known whether the chemicals would have a detrimental effect on the microbial 

population.  The amount of consecutive injections was set at eight because it was deemed 

a conservative amount to enable the collection of enough data for ANN processing.  This 

pattern proceeded until the experiment was complete.  Stability of the peaks was not 

sought after since the testing was intended to simulate real-time monitoring.  Intervals 

between injections remained constant at roughly 48 hours.    

4.4.1 Quantification and Identification Testing 

 Stepwise testing for each chemical was accomplished for the quantification and 

identification testing.  Each chemical was introduced at three concentration levels during 

the stepwise tests and in the pattern described above.  Both aldicarb and BPA were 

introduced at the concentrations of 800 ppb, 400 ppb, and 200 ppb, and in that order.  

DMMP was injected at concentrations of 916 ppm, 458 ppm, and 229 ppm so that (1) 

charge outputs from a wider range of chemical concentrations could be observed and (2) 

the higher concentrations might better simulate a chemical spill event where MFC-based 

biosensing could be used as a decision support tool.     

4.4.2 Solvent Effects Testing 

 The goal of the solvent effects experiments was to determine whether or not the 

presence of the feed medium as a solvent, as opposed to RO water as a solvent, would 

have an effect on the ability to detect the chemical type.  Since the feed medium 

promotes microbial activity and the exogenous transfer of electrons, increased microbial 
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activity could either enhance the responses making them more easily discernible or serve 

to mask any inhibiting effect that the chemical had on the electrode-reducing 

microorganisms.    

 During these tests only one concentration per chemical was used.  For 

consistency, the maximum concentrations used in the quantification and identification 

tests were selected for use.  For instance, a concentration of 800 ppb was used for both 

aldicarb and BPA and a concentration of 916 ppm was used for DMMP.  During these 

tests an aqueous solution of a chemical was injected for eight consecutive feedings, 

followed by an injection of feed medium, followed by eight consecutive feedings of the 

same chemical dissolved in feed medium.  This pattern of feedings continued until all 

chemicals were tested in both their aqueous and feed medium form and the experiment 

was complete.   

4.4.3 Mixtures Testing 

 Testing with mixtures was intended to determine if the ANN could be used to  

distinguish mixtures of chemicals from individual chemicals.  During this set of 

experiments the concentrations of each chemical remained constant for both reasons of 

simplicity and consistency with the other experiments.  For aldicarb and BPA an aqueous 

concentration of 800 ppb was used.  For DMMP an aqueous concentration of 916 ppm 

was used.  For mixtures such as a mixture of BPA and DMMP, the solution contained 

800 ppb of BPA and 916 ppm of DMMP.  The testing procedure involved eight 

consecutive injections of each mixture (aldicarb/BPA, aldicarb/DMMP, and 

DMMP/BPA) with an intermittent injection of the feed medium.  Then, each chemical 
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was individually injected at its own respective concentration for eight consecutive 

injections with an intermittent injection of the feed medium.   

4.5 Artificial Neural Network Development 

 ANNs have a proven ability to solve complex problems via algorithms that mimic 

the learning processes of the human brain.  In this study a customized, feed-forward 

network was developed and tested with matrices of four simultaneous inputs, up to five 

hidden layers, and one output.  

The quantitative metrics obtained from charge profiles and used as ANN inputs 

included Peak Height (PH), Peak Area (PA), Acceleration Rate (AR), Subsidence Rate 

(SR), 10-hr Subsidence Rate (10SR), and First Moment (FrM).  PH, PA, AR, and SR 

were selected because of their proven usefulness in the ANN as discovered by Feng et. al 

(2013a, 2013b).  Additionally, two new metrics that have never been used before (10SR 

and FrM) were created to determine their utility as inputs.  A visual description of these 

metrics can be seen in Figure 9.  Response peaks that were caused by defective electrode 

connections or other errors were omitted from all analysis.  
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Figure 9. Description of Metric Information for MFC Response Peaks 

 Excluded from Figure 9 is a description of FrM.  FrM is typically used in the 

finding of centroids and centers of mass.  However, in this study it was selected as a way 

to characterize the wide variety of response curve shapes that were produced by the 

introduction of different chemicals.  FrM, often referred to as the first of area about the y-

axis, is calculated by Equation 1 and Figure 10 below.   

         
          

          
 

 
   (1) 
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Figure 10. Corresponding Figure for Equation 1 

The ANN code used during this study accepted a matrix of four metrics in the 

input layer.  The first set used was [PH, PA, AR, SR] which mirrored the proven input set 

used by Feng et al (2013a, 2013b).  Additionally, to incorporate the new un-tested 

metrics the input sets of [PH, PA, AR, 10SR] and [PH, PA, AR, FrM] were used.  All 

three sets of inputs were used for each set of experiments in this study.  Figure 11 

describes the basic architecture of the feed-forward ANN.    

 

Figure 11. Basic ANN Architecture  
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The ANN functions through a three-step process of training, validation, and 

testing.  First, the ANN interprets each response curve via a matrix of four input values 

that are associated with it.  The model randomly selects and uses 80% of the data set to 

train and develop its own correlations, weights, and network parameters within the data.  

This parameter (80%) was selected to optimize the performance of the ANN (Appendix 

M).  Second, the ANN uses 10% of the data for validation.  In this step, the performance 

of the network is estimated and stopping points for training are established.  Third, 

another randomly selected 10% of the data is used to test the ANN.  During testing, the 

effectiveness of the stopping points and the overall performance of the model are 

evaluated.  Five tests are accomplished during every ANN run to evaluate the use of 1 to 

5 hidden layers of artificial neurons.  During testing, the model generates a value for a 

specified output parameter (i.e. concentration or chemical type) based on its own 

correlations, then matches that predicted value against the actual value to determine 

accuracy.  The ability to evaluate the MFC responses via multiple metrics simultaneously 

is what gives the ANN so much more utility over basic manually-derived correlations.     
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V. Results and Discussion 

5.1 Quantification and Identification 

5.1.1 Laboratory Tests 

5.1.1.1 Quantifying Chemicals with Direct Correlations  

Figure 12 and Figure 13 display the operating history for MFC #5 and MFC #10, 

respectively.  The figures display all response data from the beginning of the stepwise 

testing stages to the end of the experiment.  Intermediate feedings with the standard feed 

medium are annotated in red.  Intermediate use of the feed medium between the DMMP 

concentrations of 916 and 458 ppm were not recorded due to a loss of communication 

between the Keithley Meter and the computer.  Several electrical signals with PH greater 

than 0.45 mA were observed MFCs 5 and 10.  Although the reason for these peaks is not 

clear, they are unlikely to be related to the biological activity in the MFCs and are not 

included in the correlations presented in this thesis. Most of the electrical signals begin 

with a region showing negative current; this is likely due to faulty electrical connections 

and corrosion occurring on the alligator clips.  Both of these MFCs were operated under 

the same conditions.  Qualitatively, all response peaks generally display an expected rise 

in current followed by a slower, more gradual, subsidence rate.  Figure 12 shows that 

when 800 ppb of aldicarb was injected into MFC #5, the PH was initially around 0.05 

mA and it gradually increased to approximately 0.20 mA.  When the aldicarb 

concentration was 400 ppb PH decreased from approximately 0.15 mA to 0.05 mA, and 

when the aldicarb concentration was 200 ppb, the PH values were between 0.15 and 0.20 

mA.  These data, as well as the data shown in Figure 13 show that the PH of the signals 
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was highly dynamic.  The DMMP signals were qualitatively different from aldicarb 

signals and smaller, with PH values less than 0.019 mA.  Furthermore, the BPA signals 

were qualitatively different from the other two chemicals with PH values less than 0.009 

mA.  
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Figure 12. Operating History for MFC #5 
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Figure 13. Operating History for MFC #10
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Table 2 and Table 3 show the minimum and maximum quantitative properties for 

all categories of response peak metrics.  A comparison of the two tables reveals the 

quantitative similarities between the two MFCs.  Even the relative scale and shape of the 

response peaks of MFC #5 and MFC #10 are similar, which can be seen in Figure 12 and 

Figure 13.  This is surprising considering the differences between resistor values 

(47:MFC #5: and 470:MFC #10), MFC design, and the complexities and variables 

associated with the two microbial populations.   

Figure 14, Figure 15, and Figure 16 show typical peaks generated by all three 

chemicals and at each concentration in MFC #10.  Figure 14 shows that, in the case of 

aldicarb, the 800 ppb signals had smaller PH and PA values than the 200 ppb signals, 

while the smallest PA and PH values were associated with 400 ppb signals. These 

findings are consistent with the idea that aldicarb is unlikely to serve as a substrate for 

electrode-reducing microorganisms, because the largest signals are associated with the 

smallest aldicarb concentration (i.e., 200 ppb).  However, it is likely affecting the 

electrode-reducing microorganisms in a number of ways, including direct inhibition or by 

inhibiting competing populations (e.g. methanogens).  The DMMP signals did not have 

normally distributed current values, and they tended to plateau after approximately 24 

hours making them qualitatively distinguishable from aldicarb signals (Figure 15).  The 

largest PA and PH values were associated with the 916 ppm signals, while the 458 and 

229 ppm signals had similar PH and PA values.  The BPA signals showed a quick rise in 

electrical current, followed by a relatively stable current.  The BPA signals reached a 

plateau after approximately 10 hours.  The size of the signals increased as the BPA 
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concentration increased. Figure 14 through Figure 16 are also representative of the type 

of data obtained for MFC #5.
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Figure 14. Typical Response Peaks for Aldicarb in MFC #10 
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Figure 15. Typical Response Peaks for DMMP in MFC #10 
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Figure 16. Typical Response Peaks for BPA in MFC #10
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Table 2. Description of Metrics for MFC #5 

  

Aldicarb DMMP BPA 

Min Max Min Max Min Max 

M
FC

 #
5

 

PH 4.50E-02 2.02E-01 2.00E-03 1.90E-02 4.00E-03 9.00E-03 

Area 1.94E-01 6.97E+00 -4.60E-02 7.11E-01 1.19E-01 2.81E-01 

AR  4.58E-03 9.06E-02 1.80E-04 7.56E-03 3.25E-03 1.24E-02 

10-hr SR -6.92E-03 2.07E-03 -3.90E-04 0.00E+00 -1.40E-04 0.00E+00 

SR -3.49E-03 -9.00E-05 0.00E+00 3.00E-05 -1.10E-04 0.00E+00 

FM 3.35E+01 4.67E+03 4.36E-01 1.77E+01 2.31E+00 7.35E+00 

 

Table 3. Description of Metrics for MFC #10 

  

Aldicarb DMMP BPA 

Min Max Min Max Min Max 

M
FC

 #
1

0
 

PH 3.00E-02 1.18E-01 1.00E-03 1.90E-02 1.00E-03 4.00E-03 

Area 9.13E-01 5.28E+00 -4.60E-02 7.43E-01 8.00E-03 1.72E-01 

AR  3.57E-03 9.87E-02 3.90E-04 8.42E-03 6.00E-05 1.32E-02 

10-hr SR -4.06E-03 -1.80E-04 -5.40E-04 0.00E+00 -1.00E-05 0.00E+00 

SR -9.50E-03 -4.00E-04 0.00E+00 6.00E-05 -1.00E-05 0.00E+00 

FM 2.01E+01 1.33E+02 1.10E-01 1.86E+01 5.70E-01 4.50E+00 

 

All recovered metrics in each category (PH, PA, SR, 10SR, AR, and FrM) were 

plotted against the measured concentrations of each respective chemical.  This was 

accomplished to determine whether or not correlations existed in the raw data.  If high 

coefficients of determination (e.g. R
2
 >0.95) were observed, then further data processing 

with the ANN might not be necessary.  Additionally, correlations like this would point 

toward metrics that may be better than others in the determination of concentration 

information.  A similar approach was used by Feng et al. (2013b), who plotted metrics in 

the categories of PH, PA, AR, and SR against COD concentration data.  Their work 

revealed that one metric, PA, produced strong correlations with influent COD 
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concentrations.  The research described in this work is notable because this type of 

analysis has never been accomplished with organic pollutants in water, nor has it been 

attempted with the metrics of 10SR and FrM.  

An example of the correlations between metrics and chemical concentration can 

be seen in Figure 17.  Overall, all combinations of metrics and concentrations resulted in 

non-linear correlations with weak coefficients of determination (R
2
).  All plots of 

correlations between raw metric data and chemical concentration can be found at 

Appendix I.  Examples of these correlations can be observed in Figure 17 and Figure 18 

which display the results for Aldicarb only.  It appears that stronger non-linear 

correlations were obtained when the data set was smaller.  For instance, the highest R
2
 

values were observed only in plots involving DMMP, where the data sets were either 

very small or contained only one data point for a given concentration.  For the DMMP 

plots, R
2
 values as high as 1.0 were observed.  However, these results may not be as 

reliable since the small data sets make them statistically prone to error as compared to the 

larger data sets associated with the other chemicals.  The next highest correlation was 

observed in the relationship between AR and BPA concentration in MFC #10 (R
2
=0.64), 

which was derived from a more meaningful data set.  Most coefficients of determination 

ranged from 0.02 to 0.64 for both MFCs.  Based on the results, non-linear correlations 

within the raw metric data did not prove to be useful in the determination of chemical 

concentration.
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Figure 17. PH and PA Correlations with Aldicarb Concentration in MFC #5 
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Figure 18. PH and PA Correlations with Aldicarb Concentrations in MFC #10
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5.1.1.2 Identifying Chemicals with Direct Correlations 

 The same data set used in the quantification of chemical concentration was also 

used for the purpose of identification.  An evaluation of each individual metric was 

accomplished to determine whether or not the raw data was suitable for the identification 

of chemicals.  Figure 19 presents an example of this analysis for MFC #5, which shows 

outlier box plots to help describe AR data for all three chemicals that were tested.  As can 

be seen in the figure, it would be hard to distinguish between chemical types if one were 

examining a single data point.  For example, an AR value of 0.007 mA/hr is not unique to 

a particular chemical in Figure 19.  Figure 20 shows the ranges of PH values observed 

across all concentrations levels and shows that aldicarb PH values were discernible from 

DMMP and BPA, but the latter two chemicals had PH ranges that overlapped.  No single 

metric took on unique values that allowed for the identification of all three chemicals at 

the same time (i.e., showing dependence only on the chemical type).  This was true for 

both MFC #5 and MFC #10.  All one-way analysis plots for metrics are provided at 

Appendix H.  The results show that there are limitations to the use of the raw data to 

identify chemicals.  
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Figure 19. One-way Analysis of AR(mA/hr) by Chemical Type in MFC #5 
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Figure 20. One-way Analysis of PH(mA) by Chemical Type in MFC #10
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5.1.2 Integration with ANNs 

5.1.2.1 Quantifying Chemicals with ANNs 

The data sets at Appendix A and Appendix B were used in the training and 

development of the ANN.  A set of 51 peaks were evaluated for MFC #5 and 58 peaks 

were in the data set for MFC #10.  However, the data used in the ANN for the purpose of 

quantification was first divided into like groups of chemical type.  In this manner the 

ANN evaluated data inputs from aldicarb only, a separate model was then built and run 

for BPA, and then another for DMMP.  The entire data set was not evaluated 

simultaneously.  Run times for these models averaged less than one minute.  Quicker run 

times are a relative indication of effortless network processing.  It appeared that quicker 

ANN-based correlations were obtained when the data set was smaller.  The relationship 

between data set size and ANN performance is an issue that merits further study.    

In each ANN trial, the ANN-derived concentrations were correctly modeled and 

correlated to the actual concentrations for each combination of metric inputs and for each 

chemical tested.  The ANN-derived concentrations matched the actual concentrations of 

aldicarb (Figure 21), DMMP (Figure 22), and BPA (Figure 23) for ANN simulations.  

For each chemical, the ANN was designed to test its effectiveness on model performance 

with variations of 1-5 hidden layers.  The results showed that the model performed as 

well with 1 hidden layer as it did with 5 hidden layers.  This shows that the ANN can 

convert raw data, even though it was not directly correlated to chemical concentration, 

into meaningful water quality information.  Furthermore, each of the input matrices ([PH, 

PA, AR, SR], [PH, PA, AR, 10SR], and [PH, PA, AR, FrM]) produced identical results, 

proving that the new metrics (10SR and FrM) were valid metrics for use in the ANN.
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Figure 21. ANN Results for Aldicarb Quantification Tests 
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Figure 22. ANN Results for DMMP Quantification Tests 
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Figure 23. ANN Results for BPA Quantification Tests
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5.1.2.2 Identifying Chemicals with ANNs 

 In the identification of the chemicals a revised ANN was created where the 

specific chemical was the target of ANN prediction in the output layer instead of 

chemical concentration.  Run times for these models averaged less than one minute as 

well.  As was the case in the previous ANN experiments, the new metrics (10SR and 

FrM) were incorporated into the input matrices and tested separately.  Figure 24 shows 

that the ANN-derived chemical identities matched the actual identities for 1-5 hidden 

layers and for every combination of metric input tested in both MFC #5 and MFC #10.  

As was the case in the quantification experiments, these results also demonstrate that the 

new metrics (10SR and FrM) are valuable in ANN processing.   

This time the data set encompassed all metrics for the three chemicals and over 

multiple concentration ranges.  The fact that the ANN was able to distinguish differences 

within the entire data set is particularly impressive since the quantitative range of metrics 

was so diverse.  This provides evidence that multi-parameter ANN modeling is highly 

flexible in differentiating between chemical types and supports its use as a chemical 

detection device.  Furthermore, since the ANN was able to accurately sort out the 

chemical type amongst the broad range of data inputs, it is conceivable that a more 

sophisticated model would be able to first determine chemical type, then determine the 

concentration of the chemical within that type.  
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Figure 24. ANN Results for Chemical Identification Tests
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5.2 Solvent Effects 

5.2.1 The Effect of Solvents on Response Metrics 

Figure 25 and Figure 26 show the operating histories for MFC #6 and MFC #7 

respectively.  Each of the three test chemicals was introduced into the MFCs in aqueous 

solution and then as part of the acetate-based feed medium.  Signals with peak heights 

greater than 0.3 mA were excluded as described previously.  Qualitatively, the response 

peaks showed the sharp rise and gradual fall that were characteristic of the other 

experiments.  Overall, results were more clearly observed in MFC #7.  In Figure 26 

DMMP(aq) peaks had PH values < 0.033 mA while DMMP(FM) peaks had PH values of 

up to 0.145 mA.  BPA(aq) peaks had PH values of < 0.019 while BPA(FM) had PH 

values up to 0.163 mA.  Aldicarb(aq) had PH values of up to 0.143 mA while 

aldicarb(FM) had PH values of up to 0.259 mA.  Similar results were observed for MFC 

#6.   

The results show that the peaks with feed medium as the solvent show similarities 

in both size and shape.  Figure 27 displays overlaid images of typical peaks for all three 

chemicals with the feed medium as the solvent as well as a typical peak from the feed 

medium by itself.  The similarities between peaks suggest that current production is 

driven by the presence of the acetate-based feed medium and not the presence of the three 

target chemicals. 

Although it was not the focus of the solvent effects testing, an additional 

experiment was performed in order to observe the effects of using tap water as a solvent 

for aqueous solutions in lieu of RO water which was used for all aqueous solutions 

throughout the study.  The results for this experiment can be found at Appendix L.  The 
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results revealed that tap water produced a higher PH in all cases.  This was expected 

since reverse osmosis has the capability of filtering out many of the trace metals often 

needed by bacteria.
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Figure 25. Operating History for MFC #6 
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Figure 26. Operating History for MFC #7 
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Figure 27. Representative peaks from MFC #7
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5.2.2 Using ANNs to Identify Chemicals Dissolved in Feed Medium 

 The ANN was used to attempt to distinguish the three target chemicals 

when they were introduced as a solute in the feed medium.  All metrics (PH, PA, AR, 

10SR, SR, and FrM) were used in the development of the ANN.  The input matrices 

consisted of four metrics at a time constructed in the same fashion as was accomplished 

in previous tests ([PH, PA, AR, SR], [PH, PA, AR, 10SR], and [PH, PA, AR, FrM]).  A 

total of 15 peaks were evaluated for MFC #6 and 16 peaks were evaluated for MFC #7.  

The complete data sets can be found at Appendix C and Appendix D.   

 Figure 28 shows the results from MFC #6 when the matrix [PH, PA, AR, FrM] 

was used as the input.  As can be seen in the figure, the ANN algorithms sorted out 

differences in the data inputs and correctly determined the chemical type for all three 

chemicals.  However, it should be noted that correct correlations were formulated only 

when the ANN utilized three, four, and five hidden layers.  The number of hidden layers 

resulting in successful correlations did not vary between combinations metric inputs.  

This is an indication that neither of the newly-tested metrics (10SR and FrM) served to 

enhance ANN performance.  All ANN outputs from this set of experiments can be found 

at Appendix K.  A higher order of modeling complexity was necessary for the model to 

create the correlations required to distinguish the small variances between response peaks 

in this experiment (as shown in Figure 27).
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Figure 28. ANN Results for Solvent Effects Testing Using [PH, PA, AR, FrM] as the Input Matrix for MFC #6
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5.3 Mixtures 

5.3.1 Laboratory Tests 

 Figure 29 and Figure 30 show the operating histories for MFC #8 and MFC #9, 

respectively.  These two MFCs were subjected to a series of chemical injections in order 

to determine whether mixtures of the three target chemicals could be distinguished from 

individual target chemicals.  Many of the measured signals from MFC8 were highly 

dynamic (Figure 29).  For example, the aldicarb/BPA signals had PH values that were 

between 0.026 and 0.063 mA.  Only one aldicarb/DMMP peak with a PH of 0.052 mA 

was recovered due to bad electrode connections and a loss of communication with the 

computer.  The DMMP/BPA signals were relatively stable in size and shape and had PH 

values that fluctuated around 0.020 mA.  Three of the DMMP (only) peaks resembled the 

DMMP/BPA peaks but not the aldicarb/DMMP peak.  The aldicarb (only) peaks were 

highly variable and had larger PH and PA values than the aldicarb/BPA or 

aldicarb/DMMP peaks.  The BPA (only) peaks had relatively consistent size and shape 

while being qualitatively different from aldicarb/BPA or DMMP/BPA peaks.   

Figure 30 shows more evidence of the dynamic nature of peaks generated by 

these industrial chemicals (and their mixtures).  The aldicarb/BPA signals had PH values 

that were between 0.017 and 0.079 mA.  This time, only two aldicarb/DMMP signals 

were recovered because of the communication loss with the computer.  These peaks had 

PH values that were approximately 0.03 mA.  The DMMP/BPA signals were highly 

dynamic, they showed negative voltages, and lacked the well-organized structure that is 

needed to facilitate retrieval of response metrics.  Only three of these peaks provided 

usable metrics for the ANN.  The peaks associated with the individual chemicals were 
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also highly dynamic.  These results show that the qualitative differences in the shapes of 

the response peaks are not as obvious as what was observed in the quantitative and 

qualitative tests.   

The same difficulties that were obvious in the other data sets also exist in this data 

set with regard to establishing correlations within the raw data.  For example, Figure 31 

describes an example of a single-metric evaluation using SR in the data set for MFC #8.  

Once again, in this figure outlier box plots help to highlight the data ranges.  In this case, 

SR values are not unique to chemical mixtures.  None of the raw metrics enabled the 

distinction of all chemical types simultaneously.  The results show that direct correlations 

with raw data does not easily allow for the determination of unique chemical mixtures.  

All one-way correlations for MFC #8 and MFC #9 can be found at Appendix J.  



67 

 

 

Figure 29. Operating History for MFC #8 
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Figure 30. Operating History for MFC #9 
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Figure 31. One-way Analysis of SR (mA/hr) By Chemical Type for MFC #8
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5.3.2 Integration with ANNs 

 All metrics (PH, PA, AR, 10SR, SR, and FrM) were obtained from the data set in 

the analysis of mixtures.  Since not all peaks were useful for generating metric 

information, only 51% of the response peaks for MFC #8 and 47% of the peaks from 

MFC #9 were used in the ANN.  A total of 25 peaks were evaluated in the data set for 

MFC #8 and 23 were in the data set for MFC #9.  These data sets can be found at 

Appendix E and Appendix F.  Figure 32 shows that the ANN correctly identified all 

mixtures and individual chemicals using any number of hidden layers.  Additionally, this 

was the case for each set of input matrices tested in both MFC #5 and MFC #10.  10SR 

and FrM were useful metrics for use in the ANN.  Also, ANNs are highly capable in the 

determination of chemical type even when the input metrics are dynamic in nature.  

Clearly, ANNs can be used in water quality monitoring applications.    
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Figure 32. ANN Results for Mixtures Testing
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VI. Conclusion 

 This study has provided an evaluation of the use of MFC-based biosensing for the 

detection of three specific organic pollutants.  A variety of quantitative metrics were 

derived from electronic response signals for all three chemicals over a range of 

concentrations and experimental conditions.  These metrics were correlated with water 

quality data using direct regressions and also via computer modeling with an ANN.   

The direct correlation of raw metrics with water quality data proved to be 

ineffective in the distinction of chemical type or concentration.  Non-linear correlations 

of large data sets generated low coefficients of determination (0.02 ≤ R
2 

≤ 0.64) that were 

unreliable in the prediction of relevant outputs.  Additionally, basic one-way analysis of 

the raw metric data proved to have limited application.   

Three sets of experiments revealed the flexibility and utility of the ANN in MFC-

based biosensing.  In the first experiment, the use of the artificial neural network enabled 

the identification of chemical type and concentration with only one hidden layer of 

neurons.  In the second experiment, when the standard feed medium was used as a 

solvent only small qualitative and quantitative differences in the response peaks were 

observed.  The ANN, however, correctly derived the identity of each chemical with a 

model using three hidden layers.  In the third experiment, chemical mixtures were 

correctly identified and differentiated from individual chemicals using an ANN with one 

hidden layer.  Finally, two metrics that have never been used before, 10SR and FrM, 

proved to be equally as useful as metrics previously used in MFC research. 

This study proves that MFC-based biosensing, when used in conjunction with 

ANNs, can successfully be applied to the detection and quantification of organic 
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pollutants.  This report is the first to integrate ANNs and MFC-based biosensing for the 

detection of organic pollutants that are toxic and only partially biodegradable.  It is also 

the first study to evaluate the utility of 10SR and FrM as metrics.  The study also 

provides insight into the application of MFC-based biosensing with regard to limits of 

detection and in scenarios where chemical mixtures and unique solvents are involved.  

These findings have wide-ranging implications for the field of water quality monitoring 

as they suggest that MFC-based biosensing is flexible enough to be used in a variety of 

scenarios and under various conditions.  It is even conceivable that MFCs can someday 

be used as both a power source and a water quality monitoring device simultaneously 

(e.g. use at wastewater treatment plants).  
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VII. Future Work 

This study has shown that MFC-based biosensing coupled with ANN processing 

has legitimate applications in the field of water quality monitoring.  However, issues exist 

that should be addressed either to improve this approach or to answer questions that 

might remain.  Future work should address the following issues: 

 Field trials that apply the technology to surface water sources like ponds and 

rivers where microbial populations and other water parameters are likely to be 

very dynamic 

 Long-term field trials in outdoor environments to determine the effects of 

weather and atmospheric conditions on MFC response peaks 

 Continuous-flow MFCs that can be used in real-time water quality monitoring 

applications 

 More sophisticated ANN models that have the ability to perform multiple 

functions either in stepwise phases or simultaneously (e.g. identify then 

quantify) 

 Monitoring experiments with other analytes of concern in water quality 

monitoring (e.g. regulated contaminants) 

 Alternative MFC designs including smaller anodes for faster response times 

and materials that are substantial enough to endure outdoor weather conditions 

 The use of electrode-reducing microorganisms that are engineered or enriched 

for enhanced current production 
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Appendix A. Raw ANN Data for MFC #5 

Table A1. Data for MFC #5 

  

Date

PH 

(mA)

PA   

(mA-hr)

AR 

(mA/hr)

10SR      

(mA/hr)

SR 

(mA/hr) FrM

[Aldicarb] 

(ppb)

[DMMP] 

(ppm)

[BPA] 

(ppb)

MFC 

No.

9-Apr-13 0.055 2.146 0.036970 -0.00171 -0.00009 52.86966 800 0 0 5

11-Apr-13 0.054 1.817 0.025690 -0.00139 -0.00073 43.94673 800 0 0 5

15-Apr-13 0.045 1.447 0.028820 -0.00049 -0.00033 33.52991 800 0 0 5

17-Apr-13 0.047 1.654 0.017140 -0.00048 -0.00028 43.07422 800 0 0 5

19-Apr-13 0.055 1.645 0.016620 -0.00057 -0.00089 36.98571 800 0 0 5

27-Apr-13 0.065 2.099 0.007400 -0.00118 -0.00076 49.79976 800 0 0 5

29-Apr-13 0.082 2.596 0.01869 -0.00106 -0.00087 52.76811 800 0 0 5

1-May-13 0.117 3.784 0.018480 -0.00312 -0.00160 84.9971 800 0 0 5

3-May-13 0.195 5.178 0.051550 -0.00692 -0.00349 96.92441 800 0 0 5

5-May-13 0.202 6.407 0.075680 -0.00400 -0.00299 131.3494 800 0 0 5

7-May-13 0.178 5.618 0.052120 -0.00355 -0.00227 421.2728 800 0 0 5

9-May-13 0.143 4.973 0.048180 -0.00208 -0.00195 103.4949 800 0 0 5

13-May-13 0.076 0.194 0.011350 -0.00148 -0.00092 50.28361 400 0 0 5

19-May-13 0.194 6.672 0.035840 -0.00291 -0.00276 146.2349 400 0 0 5

21-May-13 0.076 2.016 0.019980 0.00207 -0.00217 36.67929 400 0 0 5

23-May-13 0.054 1.414 0.018570 -0.00057 -0.00058 4668.855 400 0 0 5

25-May-13 0.046 1.604 0.009670 -0.00070 -0.00051 38.0894 400 0 0 5

29-May-13 0.048 1.541 0.01093 -0.00106 -0.00045 35.84498 400 0 0 5

2-Jun-13 0.179 3.542 0.07889 -0.00118 -0.0014 40.4991 200 0 0 5

4-Jun-13 0.157 6.097 0.03552 -0.00055 -0.00144 136.5657 200 0 0 5

6-Jun-13 0.17 6.246 0.03755 -0.00246 -0.00215 136.7935 200 0 0 5

8-Jun-13 0.17 5.931 0.0387 -0.00259 -0.00171 128.3959 200 0 0 5

12-Jun-13 0.202 6.965 0.09055 -0.00118 -0.00225 145.7877 200 0 0 5

16-Jun-13 0.18 6.662 0.00458 -0.0019 -0.00216 146.9971 200 0 0 5

30-Jun-13 0.019 0.711 0.00756 -0.00039 0.00003 17.71667 0 916 0 5

2-Jul-13 0.014 0.421 0.00366 0 0 10.08737 0 916 0 5

22-Jul-13 0.003 -0.046 0.00062 0 0.000 0.436 0 458 0 5

26-Jul-13 0.003 -0.017 0.0005 0 0.000 0.734 0 458 0 5

28-Jul-13 0.002 -0.046 0.0056 0 0.000 0.641 0 458 0 5

5-Aug-13 0.003 0.124 0.00042 0 0.000 3.17 0 229 0 5

7-Aug-13 0.003 -0.027 0.0005 0 0.000 0.637 0 229 0 5

17-Aug-13 0.002 0.005 0.00018 0 0.000 0.708 0 229 0 5

19-Aug-13 0.002 0.02 0.00021 0 0.000 0.91 0 229 0 5

23-Aug-13 0.006 0.281 0.00407 0 0.000 7.35 0 0 800 5

25-Aug-13 0.006 0.204 0.00772 0 0.000 5.22 0 0 800 5

2-Sep-13 0.009 0.262 0.01235 0 0.000 6.73 0 0 800 5

6-Sep-13 0.006 0.227 0.00408 0 0 5.303 0 0 800 5

14-Sep-13 0.005 0.192 0.00783 0 0 4.66 0 0 400 5

16-Sep-13 0.005 0.202 0.00807 0 0 5.353 0 0 400 5

18-Sep-13 0.005 0.188 0.00695 -0.00004 -0.00004 4.714 0 0 400 5

20-Sep-13 0.005 0.198 0.00579 -0.00002 -0.00002 4.986 0 0 400 5

22-Sep-13 0.005 0.206 0.00646 -0.00006 -0.00009 5.004 0 0 400 5

24-Sep-13 0.005 0.192 0.00516 0 -0.00005 4.704 0 0 400 5

28-Sep-13 0.007 0.274 0.00893 -0.00003 -0.00002 6.37 0 0 200 5

30-Sep-13 0.007 0.236 0.00822 -0.00013 -0.00004 5.545 0 0 200 5

2-Oct-13 0.004 0.157 0.01083 -0.00002 -0.00005 3.48 0 0 200 5

4-Oct-13 0.004 0.16 0.00737 -0.00004 -0.00007 3.502 0 0 200 5

6-Oct-13 0.004 0.164 0.01073 -0.00001 -0.00005 3.816 0 0 200 5

8-Oct-13 0.004 0.13 0.0054 -0.00014 -0.00011 2.488 0 0 200 5

10-Oct-13 0.004 0.119 0.00522 -0.00003 -0.00008 2.306 0 0 200 5

12-Oct-13 0.004 0.136 0.00325 -0.00008 -0.0001 2.769 0 0 200 5

Input Matrix Data Output Matrix Data
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Appendix B. Raw ANN Data for MFC #10 

Table B1. Data for MFC #10 

  

Date

PH 

(mA)

PA   

(mA-hr)

AR 

(mA/hr)

10SR 

(mA/hr)

SR 

(mA/hr) FrM

[Aldicarb] 

(ppb)

[DMMP] 

(ppm)

[BPA] 

(ppb)

MFC 

No.

9-Apr-13 0.048 1.540 0.03216 -0.00193 -0.00044 35.73824 800 0 0 10

15-Apr-13 0.050 1.615 0.01142 -0.00100 -0.00103 37.76086 800 0 0 10

17-Apr-13 0.044 1.609 0.01327 -0.00038 -0.00069 37.53825 800 0 0 10

19-Apr-13 0.052 1.581 0.01432 -0.00089 -0.00076 32.10609 800 0 0 10

21-Apr-13 0.038 1.330 0.00357 -0.00089 -0.00043 32.58294 800 0 0 10

23-Apr-13 0.038 1.107 0.00463 -0.00115 -0.00054 22.98566 800 0 0 10

25-Apr-13 0.040 1.142 0.00825 -0.00128 -0.00052 23.14054 800 0 0 10

27-Apr-13 0.059 1.547 0.00812 -0.00277 -0.00094 31.71992 800 0 0 10

29-Apr-13 0.050 1.390 0.00838 -0.00145 -0.00078 27.10321 800 0 0 10

1-May-13 0.089 2.621 0.01202 -0.00266 -0.00183 54.78257 800 0 0 10

5-May-13 0.095 2.879 0.02704 -0.00245 -0.00143 58.92710 800 0 0 10

7-May-13 0.105 3.283 0.02974 -0.00165 -0.00289 63.86678 800 0 0 10

9-May-13 0.070 2.491 0.01480 -0.00224 -0.00162 54.59157 800 0 0 10

13-May-13 0.048 1.497 0.00457 -0.00149 -0.00950 34.04088 400 0 0 10

17-May-13 0.043 1.540 0.00701 -0.00081 -0.00040 35.66350 400 0 0 10

19-May-13 0.113 4.478 0.01465 -0.00038 -0.00051 106.94750 400 0 0 10

21-May-13 0.046 1.399 0.00706 -0.00117 -0.00087 29.59246 400 0 0 10

29-May-13 0.030 0.913 0.01505 -0.00090 -0.00106 20.13369 400 0 0 10

4-Jun-13 0.083 2.517 0.01290 -0.00182 -0.00246 49.45327 200 0 0 10

6-Jun-13 0.098 2.840 0.09870 -0.00406 -0.00259 60.01716 200 0 0 10

8-Jun-13 0.095 3.132 0.01250 -0.00061 -0.00213 66.74736 200 0 0 10

10-Jun-13 0.102 3.906 0.01557 -0.00061 -0.00091 88.18084 200 0 0 10

12-Jun-13 0.086 3.226 0.01633 -0.00072 -0.00121 70.13469 200 0 0 10

14-Jun-13 0.118 5.282 0.05673 -0.00092 -0.00075 132.88120 200 0 0 10

16-Jun-13 0.093 3.756 0.02501 -0.00018 -0.00050 89.14399 200 0 0 10

30-Jun-13 0.019 0.743 0.00842 -0.00054 0.00006 18.60927 0 916 0 10

18-Jul-13 0.007 0.243 0.00650 0.00000 0 6.03 0 458 0 10

20-Jul-13 0.005 0.092 0.00081 0.00000 0 2.96 0 458 0 10

22-Jul-13 0.004 -0.003 0.00103 0.00000 0 0.61 0 458 0 10

24-Jul-13 0.004 0.061 0.00054 0.00000 0 1.9 0 458 0 10

26-Jul-13 0.004 0.007 0.00098 0.00000 0 1.02 0 458 0 10

28-Jul-13 0.005 0.061 0.00105 0.00000 0 2.21 0 458 0 10

30-Jul-13 0.004 0.024 0.00116 0.00000 0 1.3 0 458 0 10

1-Aug-13 0.003 0.011 0.00090 0.00000 0 0.81 0 458 0 10

5-Aug-13 0.004 0.109 0.00378 0.00000 0 3.4 0 229 0 10

7-Aug-13 0.003 -0.013 0.00125 0.00000 0 0.63 0 229 0 10

9-Aug-13 0.002 0.009 0.00053 0.00000 0 0.91 0 229 0 10

11-Aug-13 0.002 -0.003 0.00050 0.00000 0 0.69 0 229 0 10

13-Aug-13 0.001 -0.020 0.00047 0.00000 0 0.39 0 229 0 10

15-Aug-13 0.002 -0.018 0.00039 0.00000 0 0.48 0 229 0 10

17-Aug-13 0.002 -0.026 0.00044 0.00000 0 0.46 0 229 0 10

19-Aug-13 0.001 -0.046 0.00050 0.00000 0 0.11 0 229 0 10

23-Aug-13 0.004 0.172 0.01322 0.00000 0 4.5 0 0 800 10

25-Aug-13 0.004 0.120 0.00881 0.00000 0 3.12 0 0 800 10

27-Aug-13 0.004 0.088 0.00623 0.00000 0 2.43 0 0 800 10

29-Aug-13 0.004 0.111 0.00831 0.00000 0 3.33 0 0 800 10

31-Aug-13 0.004 0.108 0.00819 0.00000 0 3.45 0 0 800 10

2-Sep-13 0.003 0.008 0.00699 0.00000 0 2.26 0 0 800 10

4-Sep-13 0.002 0.076 0.00729 0.00000 0 2.22 0 0 800 10

6-Sep-13 0.003 0.067 0.00329 0 0 1.895 0 0 800 10

12-Sep-13 0.004 0.128 0.00677 0 0 3.3 0 0 400 10

14-Sep-13 0.003 0.086 0.00497 0 0 2.215 0 0 400 10

16-Sep-13 0.003 0.092 0.00461 0 0 2.566 0 0 400 10

18-Sep-13 0.003 0.086 0.00434 0 0 2.234 0 0 400 10

20-Sep-13 0.003 0.096 0.00429 0 0 2.424 0 0 400 10

24-Sep-13 0.001 0.037 0.00081 0 0 0.871 0 0 400 10

28-Sep-13 0.002 0.081 0.00046 -0.00001 -0.00001 2.073 0 0 200 10

30-Sep-13 0.001 0.023 0.00006 0 0 0.57 0 0 200 10

Input Matrix Data Output Matrix Data
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Appendix C. Raw ANN Data for MFC #6  

Table C1. Data for MFC #6 

 

  

Date

PH 

(mA)

PA   

(mA-hr)

AR 

(mA/hr)

10SR 

(mA/hr)

SR 

(mA/hr) FrM DV1* DV2* DV3*

Chemical 

Type**

30-Jun-13 0.119 4.454 0.05951 -0.00099 -0.00171 98.77941 0 0 0 1

2-Jul-13 0.11 4 0.04107 -0.00157 -0.00123 86.13739 0 0 0 1

5-Aug-13 0.086 3.678 0.03437 -0.00131 -0.00177 93 0 0 0 2

7-Aug-13 0.099 3.818 0.373 -0.00155 -0.00231 85.1 0 0 0 2

9-Aug-13 0.1 4.08 0.04699 -0.00036 -0.00247 93.3 0 0 0 2

11-Aug-13 0.098 3.871 0.05066 -0.00034 -0.00171 85.7 0 0 0 2

13-Aug-13 0.106 4.033 0.05504 -0.0005 -0.00226 86.7 0 0 0 2

15-Aug-13 0.11 4.317 0.0636 -0.00072 -0.00264 95.5 0 0 0 2

19-Aug-13 0.111 3.447 0.10097 -0.0013 -0.0015 77.1 0 0 0 2

14-Sep-13 0.15 5.307 0.1682 -0.00209 -0.00153 113.9559 0 0 0 3

16-Sep-13 0.144 5.299 0.11394 -0.00182 -0.00155 114.5259 0 0 0 3

18-Sep-13 0.153 5.346 0.12371 -0.00253 -0.00163 112.3191 0 0 0 3

20-Sep-13 0.146 5.008 0.11922 -0.0025 -0.00172 104.138 0 0 0 3

22-Sep-13 0.149 5.115 0.13498 -0.00228 -0.00173 107.0792 0 0 0 3

24-Sep-13 0.148 5.202 0.11126 -0.0024 -0.00148 113.2197 0 0 0 3

Input Matrix Data Output Matrix Data

* DV denotes the use of a dummy variable in the matrix
** Chemical type codes for solutions where the feed medium was used as the solvent are: 1) DMMP; 2) BPA; 3) 
Aldicarb
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Appendix D. Raw ANN Data for MFC #7 

Table D1. Data for MFC #7 

 

 

  

Date

PH 

(mA)

PA   

(mA-hr)

AR 

(mA/hr)

10SR 

(mA/hr)

SR 

(mA/hr) FrM DV1* DV2* DV3*

Chemical 

Type**

30-Jun-13 0.145 5.16 0.11468 -0.0022 -0.00192 111.6439 0 0 0 1

2-Jul-13 0.131 4.537 0.12796 -0.00134 -0.00187 90.25503 0 0 0 1

5-Aug-13 0.125 5.215 0.18039 -0.00011 -0.00077 125 0 0 0 2

7-Aug-13 0.156 5.124 0.17698 -0.00237 -0.00243 102 0 0 0 2

9-Aug-13 0.148 5.015 0.16145 -0.00292 -0.00192 105.8 0 0 0 2

11-Aug-13 0.147 4.859 0.16956 -0.00271 -0.00207 98.3 0 0 0 2

13-Aug-13 0.142 4.746 0.18454 -0.00224 -0.00182 97.6 0 0 0 2

17-Aug-13 0.163 5.779 0.24813 -0.00265 -0.00191 123.9 0 0 0 2

19-Aug-13 0.149 5.004 0.20621 -0.00242 -0.00195 103.7 0 0 0 2

10-Sep-13 0.185 5.951 0.20889 -0.00262 -0.00252 119.522 0 0 0 3

12-Sep-13 0.2 5.768 0.17359 -0.0038 -0.00297 111.131 0 0 0 3

16-Sep-13 0.259 7.952 0.2286 -0.00495 -0.0032 165.599 0 0 0 3

18-Sep-13 0.226 6.76 0.16769 -0.00509 -0.00273 137.514 0 0 0 3

20-Sep-13 0.237 6.465 0.18254 -0.00509 -0.00379 121.461 0 0 0 3

22-Sep-13 0.217 6.044 0.17768 -0.00572 -0.0029 119.208 0 0 0 3

24-Sep-13 0.237 7.007 0.14942 -0.00534 -0.00319 139.8 0 0 0 3

Input Matrix Data Output Matrix Data

* DV denotes the use of a dummy variable in the matrix
** Chemical type codes for solutions where the feed medium was used as the solvent are: 1) DMMP; 2) BPA; 3) 
Aldicarb
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Appendix E. Raw ANN Data for MFC #8  

Table E1. Data for MFC #8 

 

  

Date

PH 

(mA)

PA   

(mA-hr)

AR 

(mA/hr)

10SR 

(mA/hr)

SR 

(mA/hr) FrM DV1* DV2* DV3*

Chemical 

Type**

12-Jun-13 0.03 1.01 0.00404 -0.00029 -0.00035 21.52317 0 0 0 1

14-Jun-13 0.035 1.104 0.00694 -0.0005 -0.00061 23.97951 0 0 0 1

16-Jun-13 0.036 1.263 0.00517 -0.00042 -0.00023 27.49795 0 0 0 1

18-Jun-13 0.063 1.895 0.00882 -0.00086 -0.001 37.97976 0 0 0 1

20-Jun-13 0.054 1.744 0.00745 -0.00098 -0.00115 36.04927 0 0 0 1

22-Jun-13 0.053 1.79 0.00762 -0.00109 -0.00026 41.972 0 0 0 1

24-Jun-13 0.6 2.215 0.01147 -0.00023 -0.0002 47.1617 0 0 0 1

26-Jun-13 0.06 2.484 0.01217 -0.00033 -0.00042 60.67105 0 0 0 1

2-Jul-13 0.052 1.659 0.00529 -0.00084 -0.00068 35.374 0 0 0 2

18-Jul-13 0.02 0.698 0.01396 -0.00022 -0.00017 15.1 0 0 0 3

20-Jul-13 0.017 0.668 0.00935 -0.00026 -0.00013 16.3 0 0 0 3

22-Jul-13 0.021 0.708 0.01261 -0.00017 -0.00021 14.7 0 0 0 3

24-Jul-13 0.021 0.747 0.00852 -0.00024 -0.00024 17.3 0 0 0 3

30-Jul-13 0.022 0.737 0.01032 -0.00021 -0.00021 16.6 0 0 0 3

7-Aug-13 0.015 0.291 0.00254 0 0 9.05 0 0 0 4

11-Aug-13 0.012 0.249 0.00092 0 0 2 0 0 0 4

13-Aug-13 0.013 0.271 0.00091 0 0 6.55 0 0 0 4

2-Sep-13 0.129 5.206 0.06241 0 -0.00036 122.74 0 0 0 5

4-Sep-13 0.28 10.896 0.23015 -0.0038 -0.003 248.54 0 0 0 5

14-Sep-13 0.05 1.92 0.01036 -0.0004 -0.00032 46.075 0 0 0 6

16-Sep-13 0.04 1.688 0.011 -0.00025 -0.00005 41.501 0 0 0 6

18-Sep-13 0.038 1.496 0.0087 -0.00004 -0.00007 35.862 0 0 0 6

20-Sep-13 0.038 1.478 0.00749 -0.00007 -0.00007 36.274 0 0 0 6

22-Sep-13 0.036 1.419 0.00789 -0.00014 -0.00024 34.965 0 0 0 6

24-Sep-13 0.032 1.265 0.00626 -0.00026 -0.00019 31.176 0 0 0 6

Input Matrix Data Output Matrix Data

* DV denotes the use of a dummy variable in the matrix
** Chemical type codes for aqueous chemical mixtures and individual aqueous chemical solutions are: 1) 
Aldicarb/BPA; 2) Aldicarb/DMMP; 3) DMMP/BPA; 4) DMMP; 5) Aldicarb; 6) BPA
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Appendix F. Raw ANN Data for MFC #9 

Table F1. Data for MFC #9 

 

 

  

Date

PH 

(mA)

PA   

(mA-hr)

AR 

(mA/hr)

10SR 

(mA/hr)

SR 

(mA/hr) FrM DV1* DV2* DV3*

Chemical 

Type**

10-Jun-13 0.028 0.993 0.02055 -0.00003 -0.00036 20.29798 0 0 0 1

12-Jun-13 0.017 0.591 0.00938 -0.00022 -0.00008 12.68642 0 0 0 1

14-Jun-13 0.061 2.348 0.00302 0 0 67.43188 0 0 0 1

16-Jun-13 0.067 2.404 0.00766 0 0 63.08373 0 0 0 1

18-Jun-13 0.066 2.096 0.00564 0 0 48.95272 0 0 0 1

20-Jun-13 0.064 2.299 0.00441 -0.00133 -0.00133 61.56813 0 0 0 1

22-Jun-13 0.079 2.282 0.00536 0 0 60.28423 0 0 0 1

24-Jun-13 0.066 2.369 0.00564 -0.00053 -0.00028 57.34818 0 0 0 1

30-Jun-13 0.028 1.091 0.01239 -0.00025 -0.00019 27.453 0 0 0 2

2-Jul-13 0.032 0.908 0.00398 -0.0012 -0.00036 19.155 0 0 0 2

18-Jul-13 0.015 0.574 0.01119 0 0 13.447 0 0 0 3

24-Jul-13 0.172 0.557 0.1169 -0.01584 -0.03068 -8.291 0 0 0 3

28-Jul-13 0.141 -0.615 0.26026 -0.01556 -0.04695 -0.01283 0 0 0 3

7-Aug-13 0 0.007 0.00003 0 0 0.1812 0 0 0 4

9-Aug-13 0 0.016 0.00008 -0.00002 -0.00001 0.323 0 0 0 4

13-Aug-13 0 0.012 0.00003 -0.00002 -0.00001 0.319 0 0 0 4

27-Aug-13 0.054 0.27 0.05163 -0.00468 -0.01531 1.38 0 0 0 5

14-Sep-13 0.006 0.246 0.00086 -0.00004 -0.00002 6.063 0 0 0 6

16-Sep-13 0.006 0.279 0.00087 0.00004 0 7.131 0 0 0 6

18-Sep-13 0.007 0.272 0.00067 0.00007 0 6.878 0 0 0 6

20-Sep-13 0.008 0.305 0.00071 0.00007 0.00001 7.99 0 0 0 6

22-Sep-13 0.008 0.284 0.00095 0.00002 0.0001 7.28 0 0 0 6

24-Sep-13 0.006 0.196 0.00089 0.0001 0.00002 4.8 0 0 0 6

Input Matrix Data Output Matrix Data

* DV denotes the use of a dummy variable in the matrix
** Chemical type codes for aqueous chemical mixtures and individual aqueous chemical solutions are: 1) 
Aldicarb/BPA; 2) Aldicarb/DMMP; 3) DMMP/BPA; 4) DMMP; 5) Aldicarb; 6) BPA
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Appendix G. Sample ANN Code using MATLAB 

Actual code used for MFC #10 in aldicarb quantification tests (format shown here was 

the same for all ANN runs): 

 
%The format for the input matrix is: ['PH' 'PA' 'AR' '10SR'] 

%The format for the output matrix is: ['dummy' 'dummy' 'dummy' 'cell_number'] 

 

tstart = clock; 

  

inputs = [0.048 1.540   0.03216 -0.00193; 0.050 1.615   0.01142 -0.00100; 0.044 1.609   0.01327 

-0.00038; 

0.052   1.581   0.01432 -0.00089; 0.038 1.330   0.00357 -0.00089; 0.038 1.107   0.00463 -

0.00115; 

0.040   1.142   0.00825 -0.00128; 0.059 1.547   0.00812 -0.00277; 0.050 1.390   0.00838 -

0.00145; 

0.089   2.621   0.01202 -0.00266; 0.095 2.879   0.02704 -0.00245; 0.105 3.283   0.02974 -

0.00165; 

0.070   2.491   0.01480 -0.00224; 0.048 1.497   0.00457 -0.00149; 0.043 1.540   0.00701 -

0.00081; 

0.113   4.478   0.01465 -0.00038; 0.046 1.399   0.00706 -0.00117; 0.030 0.913   0.01505 -

0.00090; 

0.083   2.517   0.01290 -0.00182; 0.098 2.840   0.09870 -0.00406; 0.095 3.132   0.01250 -

0.00061; 

0.102   3.906   0.01557 -0.00061; 0.086 3.226   0.01633 -0.00072; 0.118 5.282   0.05673 -

0.00092; 

0.093   3.756   0.02501 -0.00018]; 

   

targets = [800  0   0   10; 800 0   0   10; 800 0   0   10; 

800 0   0   10; 800 0   0   10; 800 0   0   10; 

800 0   0   10; 800 0   0   10; 800 0   0   10; 

800 0   0   10; 800 0   0   10; 800 0   0   10; 

800 0   0   10; 400 0   0   10; 400 0   0   10; 

400 0   0   10; 400 0   0   10; 400 0   0   10; 

200 0   0   10; 200 0   0   10; 200 0   0   10; 

200 0   0   10; 200 0   0   10; 200 0   0   10; 

200 0   0   10]; 

   

%preallocate the plotting matrix (PM) 

PM = zeros(25,5); 

  

%the variable is interest is vv - this is the column number in the target 

%matrix 

vv = 1; 

countt = 1; 

  

for count = 1:1:5 

% Create a Fitting Network 

hiddenLayerSize = count; 
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net = fitnet(hiddenLayerSize); 

% Set up Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 80/100; 

net.divideParam.valRatio = 10/100; 

net.divideParam.testRatio = 10/100; 

% Train the Network 

[net,tr] = train(net,inputs,targets); 

% Test the Network 

outputs = net(inputs); 

errors = gsubtract(outputs,targets); 

performance = perform(net,targets,outputs); 

% View the Network 

%view(net) 

plotperf(tr) 

  

Outputs = net(inputs); 

%trOut = Outputs(tr.trainInd); 

%vOut = Outputs(tr.valInd); 

%tsOut = Outputs(tr.testInd); 

%trTarg = Outputs(tr.trainInd); 

%vTarg = targets(tr.valInd); 

%tsTarg = targets(tr.testInd); 

%figure (98) 

%plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',tsTarg,tsOut,'Testing'); 

  

PM(:,countt) = Outputs(:,vv); 

countt = countt +1; 

end 

  

figure(1) 

plot(targets(:,vv),PM(:,1),'ro',targets(:,vv),PM(:,2),'go',targets(:,vv),PM(:,3),'ko', 

targets(:,vv),PM(:,4),'m--',targets(:,vv),PM(:,5),'k-.') 

title('MFC10 Aldicarb Conc using 10-hr SR') 

xlabel('Aldicarb Conc') 

ylabel('ANN-Derived Aldicarb Conc') 

legend('One','Two','Three','Four','Five') 

  

%figure(2) 

%plot(targets(:,vv),PM(:,6),'ko',targets(:,vv),PM(:,7),'b-',targets(:,vv),PM(:,8),'--

m+',targets(:,vv),PM(:,9),'bd',targets(:,vv),PM(:,10),'kx') 

%title('Model performance for identical simulations') 

%xlabel('MFC Number') 

%ylabel('ANN-Derived MFC Number') 

%legend('Run_6','Run_7','Run_8','Run_9','Run_10') 

  

tstop = clock; 

runtime = etime(tstop,tstart)/60; 

disp('length of run in minutes:') 

disp(runtime) 
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Appendix H. One-way Analysis Plots for MFC #5 and MFC #10 

 

 
Figure H1. One-way Analysis of 10SR (mA/hr) By Chemical Type in MFC #10 

 

 

 
Figure H2. One-way Analysis of AR (mA/hr) By Chemical Type in MFC #10 
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Figure H3. One-way Analysis of FrM By Chemical Type in MFC #10 

 

 

 
Figure H4. One-way Analysis of PA (mA-hr) By Chemical Type in MFC #10 
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Figure H5. One-way Analysis of PH (mA) By Chemical Type in MFC #10 

 

 

 
Figure H6. One-way Analysis of SR (mA/hr) By Chemical Type in MFC #10 
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Figure H7. One-way Analysis of 10SR (mA/hr) By Chemical Type in MFC #5 

 

 

 
Figure H8. One-way Analysis of AR (mA/hr) By Chemical Type in MFC #5 
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Figure H9. One-way Analysis of FrM By Chemical Type in MFC #5 

 

 

 
Figure H10. One-way Analysis of PA (mA-hr) By Chemical Type in MFC #5 
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Figure H11. One-way Analysis of PH (mA) By Chemical Type in MFC #5 

 

 

 
Figure H12. One-way Analysis of SR (mA/hr) By Chemical Type in MFC #5 
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Appendix I. MFC #5 & MFC #10 Metric Correlations for Quantification 

Experiments 

 
 

Figure I1. PH and PA Correlations with Aldicarb Concentrations in MFC #5 

 

 

 
 

Figure I2. AR and 10SR Correlations with Aldicarb Concentrations in MFC #5 
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Figure I3. SR and FrM Correlations with Aldicarb Concentrations in MFC #5 

 

 

 
 

Figure I4. PH and PA Correlations with DMMP Concentrations in MFC #5 
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Figure I5. AR and 10SR Correlations with DMMP Concentrations in MFC #5 

 

 

 
 

Figure I6. SR and FrM Correlations with DMMP Concentrations in MFC #5 
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Figure I7. PH and PA Correlations with BPA Concentrations in MFC #5 

 

 

 
 

Figure I8. AR and 10SR Correlations with BPA Concentrations in MFC #5 
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Figure I9. SR and FrM Correlations with BPA Concentrations in MFC #5 

 

 

Figure I10. PH and PA Correlations with Aldicarb Concentrations in MFC #10 

 



94 

 

Figure I11. AR and 10SR Correlations with Aldicarb Concentrations in MFC #10 

 

 

Figure I12. SR and FrM Correlations with Aldicarb Concentrations in MFC #10 
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Figure I13. PH and PA Correlations with DMMP Concentrations in MFC #10 

 

 

 
 

Figure I14. AR and 10SR Correlations with DMMP Concentrations in MFC #10 
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Figure I15. SR and FrM Correlations with DMMP Concentrations in MFC #10 

 

 

 
 

Figure I16. PH and PA Correlations with BPA Concentrations in MFC #10 
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Figure I17. AR and 10SR Correlations with BPA Concentrations in MFC #10 

 

 

 
 

Figure I18. SR and FrM Correlations with BPA Concentrations in MFC #10 
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Appendix J. One-way Analysis Plots for MFC #8 and MFC #9 

 
Figure J1. One-way Analysis of PH (mA) By Chemical Type for MFC #8 

 

 
Figure J2. One-way Analysis of PA (mA-hr) By Chemical Type for MFC #8 
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Figure J3. One-way Analysis of AR (mA/hr) By Chemical Type for MFC #8 

 

 
Figure J4. One-way Analysis of 10SR (mA/hr) By Chemical Type for MFC #8 
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Figure J5. One-way Analysis of SR (mA/hr) By Chemical Type for MFC #8 

 

 
Figure J6. One-way Analysis of FrM By Chemical Type for MFC #8 
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Figure J7. One-way Analysis of PH (mA) By Chemical Type for MFC #9 

 

 
Figure J8. One-way Analysis of PA (mA-hr) By Chemical Type for MFC #9 
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Figure J9. One-way Analysis of AR (mA/hr) By Chemical Type for MFC #9 

 

 
Figure J10. One-way Analysis of 10SR (mA/hr) By Chemical Type for MFC #9 
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Figure J11. One-way Analysis of SR (mA/hr) By Chemical Type for MFC #9 

 

 
Figure J12. One-way Analysis of FrM By Chemical Type for MFC #9 
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Appendix K. ANN Outputs for Solvent Effects Testing 

 

Figure K1. ANN Results Using [PH, PA, AR, 10SR] as the Input Matrix for MFC #6 

 

Figure K2. ANN Results Using [PH, PA, AR, SR] as the Input Matrix for MFC #6 
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Figure K3. ANN Results Using [PH, PA, AR, FrM] as the Input Matrix for MFC #6 

 

Figure K4. ANN Results Using [PH, PA, AR, 10SR] as the Input Matrix for MFC #7 
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Figure K5. ANN Results Using [PH, PA, AR, SR] as the Input Matrix for MFC #7 

 

Figure K6. ANN Results Using [PH, PA, AR, FrM] as the Input Matrix for MFC #7 
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Appendix L. Results for Tap Water Experiments 

 For this experiment MFCs that were previously exposed to an aqueous solution of 

chemical (in RO water) were selected to be fed the same chemical dissolved in tap water.  

The MFCs were exposed to the tap water solutions for three consecutive feedings.  

Feeding intervals were 48 hours to be consistent with the rest of the study.  The results 

are shown in Table L1 and Figures L1, L2, and L3 below.  All relevant PH data was 

averaged in Table L1 to highlight the increased charges exhibited by the tap water 

solutions.  Figures L1, L2, and L3 show actual response peaks that are representative of 

the average results.  The tap water contributed to a higher charge (i.e. higher PH) for each 

of the three chemicals tested (BPA, DMMP and aldicarb).  This is an expected result 

since reverse osmosis has the potential to filter out trace metals and other minerals 

needed by the bacteria.   

Table L1. Peak Height (PH) Data from Tap Water Experiments 

Date BPA (MFC #6) DMMP (MFC #7) Aldicarb (MFC #8) 

8-Oct-13 0.029 0.043 0.228 

10-Oct-13 0.024 0.043 0.285 

12-Oct-13 0.025 0.027 0.321 

Ave in Tap H2O 0.026 0.038 0.278 

Ave in RO H2O (previous 
experiments) 0.001 0.019 0.205 

 



108 

 

Figure L1. Typical Responses (MFC #6) for BPA(aq) in Tap Water vs. RO Water 

 

 

Figure L2. Typical Responses (MFC #7) for DMMP(aq) in Tap Water vs. RO Water 
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Figure L3. Typical Responses (MFC #8) for Aldicarb(aq) in Tap Water vs. RO Water 
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Appendix M. The Effect of Training Ratio on ANN Performance 

 

 

Figure M1. Figure showing the effect of the training fraction on ANN performance. 

Using 80% of the data for training the model worked better than 50, 60, or 70%. 
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