Short-Crested Breaking Waves and Vorticity

David B. Clark
Woods Hole Oceanographic Institution, MS12
Woods Hole, MA 02543
phone: (508) 289-2935 fax: (508) 457-2194 email: dclark@whoi.edu

Steve Elgar
Woods Hole Oceanographic Institution, MS11
Woods Hole, MA 02543
phone: (508) 289-3614 fax: (508) 457-2194 email: elgar@whoi.edu

Britt Raubenheimer
Woods Hole Oceanographic Institution, MS12
Woods Hole, MA 02543
phone: (508) 289-3427 fax: (508) 457-2194 email: britt@whoi.edu

Award Number: N00014-12-10511
http://www.whoi.edu/science/AOPE/people/dclark/

LONG-TERM GOALS

The long-term goal is to determine the contribution of short-crested breaking waves to vorticity (and thus mixing) in nearshore regions and near strong flows from inlets or river mouths.

OBJECTIVES

The objectives of our research in FY13 were:

- Preparation and revision of a manuscript on vorticity generated by short-crested breaking waves
- To investigate the relationship between vorticity generation and the low frequency eddies that drive surfzone tracer dispersion
- Determine the usefulness of high-resolution ultra wide-angle optical images for measuring breaking wave crest lengths

APPROACH

Our approach is to develop new field methods and instrumentation to enable measurements of the processes affecting vorticity, and to assess the importance of those physical processes to numerical models of the nearshore region.
Title: Short-Crested Breaking Waves and Vorticity

- **Report Date:** 30 SEP 2013
- **Dates Covered:** 00-00-2013 to 00-00-2013
- **Performing Organization:** Woods Hole Oceanographic Institution, MS12, Woods Hole, MA, 02543
- **Distribution/Availability Statement:** Approved for public release; distribution unlimited
- **Subject Terms:**
 - Short-Crested Breaking Waves
 - Vorticity

Security Classification:
- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified

Limitation of Abstract: Same as Report (SAR)

Number of Pages: 4
WORK COMPLETED

We finished the revision and publication of an article titled “Vorticity generation by short-crested breaking waves.” The article was published in Geophysical Research Letters, and featured on the December 2012 cover (Figure 1). The data from the 2011 VORTEX pilot study was further analyzed for connections between vorticity generated by short-crested breaking waves and the low frequency horizontal eddies thought to mediate tracer dispersion.

![Geophysical Research Letters](image)

Figure 1. The cover of Geophysical Research Letters featuring short crested waves breaking at Duck, NC. This image is a small subsection of a high-resolution ultra-wide angle image considered for remote sensing of breaking wave crests.

The initial analysis was completed on high-resolution ultra-wide angle optical images of the surfzone acquired in July 2012. The images were compared with existing beach imagery (e.g., ARGUS) for the potential to identify individual breaking wave faces in the surfzone and to measure the lengths of breaking crests (thought to control wave generated vertical vorticity).
RESULTS

Low frequency eddies are thought to be the primary process that disperses tracers in the surfzone and nearshore, but the mechanisms that generate these eddies are not understood. We found that the strength of low frequency eddies was highly correlated with the magnitude of vorticity generated by short crested breaking waves, which varied over a tidal cycle (Figure 2). The high correlation suggests that short-crested breaking waves are a primary forcing mechanism for surfzone eddies and tracer dispersion. The transfer of energy from small scale $O(10 \text{ m})$ eddies generated by breaking waves to low-frequency large-scale $O(100 \text{ m})$ eddies is expected for the quasi 2D flows found at those scales in the surfzone.

Figure 2. Vorticity generated by individual short-crested breaking waves within the surfzone (red curve), shown as 2-hour binned means ± the error in the mean, and the rms low frequency eddy velocity (blue curve) versus time t. The generated vorticity varies with the tidal water depth, with low vorticity at high tide (near $t = 9 \text{ hours}$) and high vorticity at low tide (near $t = 15 \text{ hours}$). The strength of low frequency eddies is highly correlated with the magnitude of wave generated vorticity ($r = 0.94$), and suggests that short-crested breaking waves are a primary forcing mechanism for surfzone eddies and tracer dispersion. The transfer of energy from small scale $O(10 \text{ m})$ eddies generated by breaking waves to low-frequency large-scale $O(100 \text{ m})$ eddies is expected for the quasi 2D flows found at those scales in the surfzone.
IMPACT/APPLICATIONS

This project made the first measurements of surfzone vorticity about a vertical axis (i.e., horizontal eddies), and the first measurements of vertical vorticity generated by short crested breaking waves. Short-crested breaking is found to be a significant source of surfzone vorticity, and high correlations with low frequency eddies suggest short-crested breaking is a controlling factor on surfzone tracer dispersion. Our study indicates that the effects of short crested breaking waves should be included in numerical models of the surfzone.

High-resolution ultra wide-angle images of the surfzone are a promising tool for measuring breaking crest-length and other parameters that could determine the influence of short-crested breaking on surfzone flows. The image processing required for this analysis is complex and beyond the scope of this project, however we plan to continue exploring image-processing solutions in the future. An image processing planning letter was submitted in April 2013 to the ONR Littoral Geosciences & Optics Program for CORE funding, with extensions to identifying active wave breaking with radar.

RELATED PROJECTS

An ongoing surfzone vorticity project funded by NSF complements the pilot project analysis funded by this ONR project. A month-long time series of surfzone vorticity will be used to explore the variation in wave-generated vorticity over a range of wave conditions.

PUBLICATIONS

This article is available at: