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1.  Introduction 

On-site detection of nitroaromatics and nitramines is an ongoing concern for the 

Navy and Department of Defense as it relates to the detection of underwater mines, 

improvised explosive devices, and environmental contamination from training areas.  Our 

efforts have focused on developing electrophoretic methods for the direct analysis of 

seawater samples [1, 2] for the presence of nitroaromatic and nitroamine explosives and 

their degradation products.   

Most separation techniques require a discrete injection of analyte followed by a 

separation step in order to establish the identity and concentration of analytes of interest.  

By the nature of the separation mechanism, electrophoretic processes can replace the 

separation step with continuous electrophoretic injections.  Sample is continuously 

electrokinetically injected into the capillary, resulting in zones of analyte migrating past 

the detector.  Instead of a discrete peak, whose migration time is indicative of mobility, a 

plateau rises and maintains its height.  Multiple analytes in the sample matrix will result 

in multiple plateaus, with the electropherogram taking on the appearance of stair steps.  

This work addresses the issues associated with processing complex continuous 

electrokinetic injection data sets by implementing partial least square regression analysis 

to multi-wavelength absorbance data via a diode array for the detection and quantitation 

of a mixture of trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, and 4-amino-2,6-

dinitrotoluene. 

  

_______________
Manuscript approved November 1, 2013. 
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2. Materials and Methods 

2.1 Reagents and Materials 

Sodium tetraborate, sodium cholate, and sodium hydroxide were purchased from 

Sigma-Aldrich (St. Louis, MO).  Individual explosives standards, including TNT, 2,4-

DNT, 2,6-DNT, and 4-Amino-2,6-DNT, were purchased from AccuStandard (New 

Haven, CT) at a concentration of 1000 g/mL in acetonitrile.  Fused silica capillary (100 

micron i.d., 360 micron o.d.; polyimide coated) was purchased from Polymicro (Phoenix, 

AZ) with internal diameters of 50, 75, and 100 microns.  All capillaries had an outer 

diameter of 360 microns and were coated with polyimide to impart mechanical stability. 

2.2 Instrumentation 

All separations were performed on a Beckman Coulter PACE MDQ capillary 

electrophoresis instrument equipped with a diode array detector detector (Fullerton, CA).  

Detection occurred from 190-300 nm at 1 nm increments.  Capillary temperature was 

maintained at 25C and the instrument was utilized at all times per manufacturer 

recommendations. 

2.3 Separation Conditions 

The capillary was rinsed with 1 M NaOH and water, followed by the background 

electrolyte (BGE).  The BGE consisted of 10 mM tetraborate and 80 mM cholate.  A 

voltage of 15 kV was applied with sample at the inlet and BGE at the outlet.  The 

capillary has a total length of 30 cm and an effective length of 10 cm. 

2.4 Data Set 

Six replicate CIMEKC analysis were performed for each of four analytes (TNT, 2,4-

DNT, 2,6-DNT, 4-Am-2,6-DNT) at each of three concentrations (5, 10, and 20 ppm in 
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acetonitrile) in background electrolyte (BGE) as well as standard BGE blanks.  

Additionally, several mixtures of the four analytes were analyzed in triplicate.  

Each analysis resulted in a matrix of data comprised of UV spectra acquired over 

time.  In the early portion of the analysis, only background electrolyte is moving past the 

detector.  Each analyte begins to appear at the detector at a different time, and past that 

time, continues to be present.  Prior to construction of chemometric models, all data were 

background-subtracted by averaging 50 spectra extracted from a non-analyte region of 

the data and then subtracting this average spectrum from all spectra in the data set.  

Figure 1 shows background-subtracted spectra for 20 ppm TNT, 2,4-DNT, 2,6-DNT, and 

4-aminoDNT. 

 

Figure 1.  Background-subtracted spectra for 20 ppm TNT, 2,4-DNT, 2,6-DNT, and 4-aminoDNT. 
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Partial least squares (PLS) regression models were constructed from CIMEKC data by 

extracting 200 spectra from the later regions of three of the six replicate runs for each 

concentration, as well as the blanks.  These models were then evaluated against the 

remaining three replicate runs, as well as against the analyte mixture runs. 

3. Results and Discussion 

A representative image of the three dimensional data associated with the 

continuous injection of 20 ppm TNT in BGE is presented in Figures 2A (3D) and 2B 

(grayscale heatmap).  The sharp feature at approximately 2.5 minutes is a system peak 

associated with solvent from the TNT stock solution and serves as an indicator of 

electroosmotic flow.  The shift in baseline observed at 3 minutes is the TNT passing the 

detector.   

 

Figure 2.  A) Representative three dimensional data for the continuous electrokinetic injection of 20 ppm TNT in 

background electrolyte.  B) Grayscale heatmap of the continuous electrokinetic injection of 20 ppm TNT in 

background electrolyte. Background electrolyte is 10 mM sodium tetraborate, 80 mM sodium cholate.  Applied voltage 

is 15 kV. 
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Figure 3A depicts the results of a PLS regression model for TNT prediction 

constructed from spectra extracted from TNT-only CIMEKC runs as shown in Figure 2.  

This model was constructed from 7 latent variables, as determined from leave-one-out 

cross validation with the calibration set of spectra.  Prediction accuracy was quite good, 

with a root mean standard error of calibration (RMSEC) of 0.0488 and a root mean error 

of prediction (RMSEP) of 0.2459.  Figure 3B shows the PLS-predicted concentrations of 

TNT for data sets acquired from analysis of 5, 10 and 20 ppm TNT samples.  However, 

when this model is applied to CIMEKC data acquired from analysis of samples 

containing the other nitroaromatics, it becomes apparent that this model lacks the 

selectivity necessary to accuratly predict TNT concentration in the presence of other 

species.  This is not surprising, as there is a considerable amount of spectral overlap 

between the four analytes.  Figure 3C depicts an overlay of PLS-predicted concentrations 

from CIMEKC data acquired from analysis of 10 ppm samples of each analyte.  These 

results give an indication of the relative selectivity of this PLS model for each analyte 

and thus the bias in predicted value each interfering species is likely to induce if it is 

present in a mixture.  For example, Figure 3D shows the PLS predicted concentration of a 

mixture of 10 ppm TNT and 10 ppm 4-aminoDNT.  The presence of 4-aminoDNT is 

contributing to the PLS predicted concentration of TNT due to spectral similarities 

between the spectra of the two compounds. 

A key benefit of PLS regression (and other multivariate regression techniques) is 

the so-called first order advantage [3].  This refers to the ability of such techniques to 

calibrate against the presence of an interfering species at an unknown concentration.  This 

ability is leveraged by incorporating additional spectra into the calibration set used to  
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Figure 3.  A)  PLS regression model for prediction of TNT.  Circles represent predictions from calibration set spectra 

and crosses represent predictions from test set spectra.  B) Overlay of PLS-predicted TNT concentrations for CIMEKC 

analyses of 5, 10 and 20 ppm TNT solutions in acetonitrile.  C) Overlay of PLS-predicted TNT concentrations during 

CIMEKC analyses of 10 ppm samples of TNT, 2,4-DNT, 2,6-DNT, and 4-aminoDNT in acetonitrile.  D) PLS-

predicted TNT concentrations during CIMEKC analysis of a mixture containing 10 ppm TNT and 10 ppm 4-

aminoDNT in acetonitrile. 
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3D, augmented with spectra from CIMEKC analysis of 5, 10 and 20 ppm samples of 4-

aminoDNT.  In this case, 20 latent variables were used to construct the model, and the 

resulting RMSEC was increased to 0.0894; roughly twice that of the TNT-only model.  

The RMSEP, on the other hand, was decreased to 0.1746, one-third of that of the TNT-

only PLS model, suggesting that the incorporation of additional calibration set samples 

0 2 4 6 8 10 12 14 16 18 20 22

0

2

4

6

8

10

12

14

16

18

20

22

Reference TNT Concentration, ppm

P
re

d
ic

te
d

 T
N

T 
C

o
n

ce
n

tr
at

io
n

, p
p

m

0 5 10 15

0

5

10

15

20

CIMEKC Run Time, min

P
re

d
ic

te
d

 T
N

T 
C

o
n

ce
n

tr
at

io
n

, p
p

m

20 ppm TNT

10 ppm TNT

5 ppm TNT

0 5 10 15

-2

0

2

4

6

8

10

12

14

 

 

TNT

4-aminoDNT

2,6-DNT

2,4-DNT

CIMEKC Run Time, min

P
re

d
ic

te
d

 T
N

T 
C

o
n

ce
n

tr
at

io
n

, p
p

m

0 5 10 15
-2

0

2

4

6

8

10

12

14

16

CIMEKC Run Time, min

P
re

d
ic

te
d

 T
N

T 
C

o
n

ce
n

tr
at

io
n

, p
p

m

A B

C D



7 

 

results in greater robustness to run to run variation in the data.   Figure 4B shows PLS-

predicted concentrations of TNT for spectra acquired during CIMEKC analysis of the 

sample depicted in Figure 3D.  For clarity, the profile shown in Figure 3D is overlaid in 

gray.  As seen in Figure 4B, the incorporation of 4-aminoDNT spectra into the PLS 

regression model has successfully calibrated the model against this potential interferant.  

However, this model is not robust against the other potential interferents.  That is to say,  

both the 2,4-DNT and 2,6-DNT samples continue to result in erroneous TNT 

concentration predictions. 

 

Figure 4.  A) PLS regression model for prediction of TNT in the presence of 4-aminoDNT.  Circles represent 

predictions from calibration set spectra and crosses represent predictions from test set spectra.  B) PLS-predicted TNT 

concentrations during CIMEKC analysis of a mixture containing 10 ppm TNT and 10 ppm 4-aminoDNT in 

acetonitrile.  The PLS model was constructed using both TNT and 4-aminoDNT spectra. 
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in increased prediction bias due to incorporation of spectral features related to interferants 

or increased prediction variance due to a reduction in the amount of spectral information 

related to the analyte. 

Figure 5A depicts a PLS model constructed with 25 latent variables using spectra 

from each concentration of each of the four possible mixture components.  As expected, 

 

Figure 5.  A)  PLS regression model for prediction of TNT in the presence of three potential interferants.  Circles 

represent predictions from calibration set spectra and crosses represent predictions from test set spectra.  B) Overlay of 

PLS-predicted TNT concentrations during CIMEKC analyses of 10 ppm samples of TNT, 2,4-DNT, 2,6-DNT, and 4-

aminoDNT in acetonitrile using a PLS model constructed from TNT and all interferant spectra.  C) Overlay of PLS-

predicted concentrations during CIMEKC analyses of a mixture containing 20 ppm 2,4-DNT and 20 ppm 2,6-DNT in a 

standard background electrolyte matrix using a PLS model constructed from TNT and all interferant spectra.  D) 

Overlay of PLS-predicted concentrations during CIMEKC analyses of a mixture containing 20 ppm TNT and 20 ppm 

4-aminoDNT in a standard background electrolyte matrix using a PLS model constructed from TNT and all interferant 

spectra. 
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selective against the interferants.  Figure 5B shows an overlay of the resulting predicted 

TNT concentrations for single-component samples at 10 ppm.  In no instance was TNT 

identified in samples containing any of the three interferents.  Alternatively, rather than 

treating all analytes other than TNT as interferents, a PLS model to simultaneously 

predict the concentration of all four species was constructed from the single component 

data.  Figure 5C shows the predicted concentration of all four components tested against 

a binary mixture of 2,4-DNT and 2,6-DNT at 20 ppm and Figure 5D shows the predicted 

concentration of all four components tested against a binary mixture of TNT and 4-

Amino-2,6-DNT.  These results indicate that all four components can be correctly 

identified and quantified independent of one another in a single model. 

4. Conclusions 

This work has demonstrated the feasibility of a CIMEKC-based approach to 

multi-analyte detection and quantification with PLS prediction models.  This is an 

important step in transitioning benchtop MEKC detection strategies for trace 

nitroaromatics in seawater to a miniaturized, mobile platform.  PLS regression models 

were shown to accurately predict TNT concentration in the presence of three other nitro 

aromatic interfering species, provided the PLS model incorporated calibration data from 

those interfering species as well as from TNT.  It was also shown that such PLS models 

are capable of providing simultaneous quantification of TNT and the other three 

nitroaromatics in CIMEKC analyses of mixtures.  Importantly, it was observed that when 

interferent data were omitted from the PLS model, similarities among the UV spectra of 

TNT and the three nitroaromatic interferents led to significant prediction bias. Thus the 

utility of CIMEKC coupled with direct PLS regression model prediction as described is 
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dependent on knowledge of the identity of potential interferents and the extent to which 

their spectra are similar to that of the target analyte. 
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GLOSSARY

	 Am-DNT	 – 	Aminodinitrotoluene

	 BGE	 –	 Background electrolyte

	 CE	 –	 Capillary electrophoresis

	 DNT	 –	 Dinitrotoluene

	 EOF	 – 	Electroosmotic flow

	 MEKC	 –	 Micellar electrokinetic chromatography

	 PLS	 –	 Partial least squares regression

	 TNT	 –	 Trinitrotoluene
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