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Abstract

Proficient teams can accomplish goals that would not otherwise be achievable
by groups of uncoordinated individuals. This thesis addresses the problem
of analyzing team activities from external observations and prior knowledge
of the team’s behavior patterns. There are three general classes of recognition
cues that are potentially valuable for team activity/plan recognition: (1) spa-
tial relationships between team members and/or physical landmarks that stay
fixed over a period of time; (2) temporal dependencies between behaviors in
a plan or between actions in a behavior; (3) coordination constraints between
agents and the actions that they are performing. This thesis examines how to
leverage available spatial, temporal, and coordination cues to perform offline
multi-agent activity/plan recognition for teams with dynamic membership.

In physical domains (military, athletic, or robotic), team behaviors often
have an observable spatio-temporal structure, defined by the relative physical
positions of team members and their relation to static landmarks. We sug-
gest that this structure, along with temporal dependencies and coordination
constraints defined by a team plan library, can be exploited to perform behav-
ior recognition on traces of agent activity over time, even in the presence of
uninvolved agents. Unlike prior work in team plan recognition where it is as-
sumed that team membership stays constant over time, this thesis addresses
the novel problem of recovering agent-to-team assignment for team tasks where
team composition, the mapping of agents into teams, changes over time; this
allows the analysis of more complicated tasks in which agents must periodi-
cally divide into subteams.

This thesis makes four main contributions: (1) an efficient and robust tech-
nique for formation identification based on spatial relationships; (2) a new
algorithm for simultaneously determining team membership and performing
behavior recognition on spatio-temporal traces with dynamic team member-
ship; (3) a general pruning technique based on coordination cues that im-
proves the efficiency of plan recognition for dynamic teams; (4) methods for
identifying player policies in team games that lack strong spatial, temporal,
and coordination dependencies.
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Chapter 1

Introduction

Teamwork is the ability to work together towards a common vision. The ability to

direct individual accomplishments towards organizational objectives. It is the fuel

that allows common people to attain uncommon results.

-Andrew Carnegie

Proficient teams can accomplish goals that would not otherwise be achievable by

groups of uncoordinated individuals. Often when a task is too complicated to be per-

formed by an individual agent, it can be achieved through the coordinated efforts of a

team of agents over a period of time. In real life, human teams can be found everywhere

performing a wide variety of endeavors, ranging from the fun (sports, computer games)

to the serious (work, military). Moreover, teams exist in the virtual world as well—in

simulations, training environments, and multi-player games.

This thesis addresses the problem of analyzing team activities from external observa-

tions and prior knowledge of the team’s behavior patterns. To analyze the performance

of these tasks, we need to extend existing single-entity activity recognition algorithms to

accommodate team behaviors, regardless of whether the observed entities are software

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Applications for team activity recognition include: (a) Team MOUT training envi-

ronments; (b) Sports commentator agents such as ISAAC (ISI Soccer Automated Assistant

Coach) [74]; (c) Visual monitoring systems such as VSAM (Visual Surveillance and Monitor-

ing) [25].

agents, humans, or even robots. Embedding activity recognition algorithms into multi-

player virtual environments will enable:

• the development of smarter opponents that can recognize and respond to the tactics

of human teams;

• the creation of better synthetic training partners that can predict their teammates’

intentions and coordinate without unnecessary communication;

• automated annotation of multi-player game logs;

• intelligent user correction in team training environments.

Figure 1 shows some examples of applications of that could benefit from the inclusion

of team behavior recognition: team training environments (Figure 1a), sports commenta-

tor agents (Figure 1b), and visual surveillance systems (Figure 1c). The objective of our

teamwork analysis is to be able to identify the team’s goal, the actions the team members

are taking to achieve the goal, and the coordination patterns between team members.

Specifically we want to be able to answer queries of the following type:
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1. find all examples of a given team formation;

2. determine which players are cooperating;

3. identify the policy that a player is executing;

4. recognize which plan was used by the winning team.

1.1 Problem Formulation

This thesis addresses the general AI problem of keyhole plan recognition for multi-agent

systems. In intended plan recognition, it is assumed that the agents structure their behav-

ior to make their intentions clear to the observer, whereas in keyhole plan recognition the

algorithm “eavesdrops” on the agents’ actions [24].

We use the term agent to denote an independent entity capable of physical motion and

action, such as humans, simulated entities in a virtual environment, or robots. A team is

defined as “a set of agents having a shared objective and a shared mental state” [23].

Subteams are created when a subset of the team coordinates to independently pursue

a separate objective; members of a subteam can rejoin their original team after finishing

their objective or band with other agents to form different teams. Observations of the

agents are in the form of spatio-temporal traces, a time series of the agents’ physical

positions and actions. Although the agents (e.g., human game players) can communicate

verbally, their communications are not monitored nor included as part of the observed

trace (see Appendix A for a preliminary analysis on the role of communication in human

teams).

From a complete set of observations over all the agents, we recognize the following

team characteristics:
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formation: a static layout describing the relative positions between the agents and phys-

ical landmarks.

team behavior: a short, observable segment of coordinated movement and action exe-

cuted by an agent team. Unlike actions, team behaviors are (1) non-atomic and (2)

involve multiple agents.

plan: an ordered sequence of team behaviors describing a recipe used by an agent team

to achieve a goal. During the course of a single plan, the original team can split or

merge into different subteams to execute behaviors. Plans can be abandoned during

execution, if necessary.

This thesis assumes that a priori domain knowledge is specified in the form of a library

containing the set of possible formations, team behaviors, and plans; automatically learn-

ing these models from data is beyond the scope of this work.

In the literature, the term, activity recognition, is often used to describe the problem of

segmenting and classifying low-level data gathered by cameras or wireless sensors into

a description of the activity performed (e.g., walking or waving); this is analogous to the

process of behavior recognition described in this thesis, during which spatio-temporal

traces are mapped to sequences of behaviors. Plan recognition [2] is generally used to

describe the mapping of sequences of atomic actions to high-level plans, whereas in this

thesis the observed behavior sequences occur in a parallel, non-synchronous fashion.

1.2 Challenges

Multi-agent activity/plan recognition is a challenging problem for several reasons. First,

multi-agent behaviors often exhibit greater variation in the observed spatio-temporal
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traces than single-agent behaviors. For instance, when two soldiers execute the bounding

overwatch team behavior, one legal variation is that soldier A moves ahead of soldier B;

the other is that soldier B is the first to move. Checking all possible legal permutations

of the behavior to identify the match can be time-consuming. In the best case, certain

properties of the spatio-temporal trace (e.g., motion of the team centroid) are invariant

over all possible legal executions of the behavior. Second, in dynamic domains, the com-

position of the team can change over time as teams split into subteams, subteams merge

with one another, and individual agents join or leave teams. In a scenario where there are

uninvolved agents, it can be difficult to determine which agents are engaged in team be-

haviors without prior knowledge of the agents’ intentions (consider a convoy or funeral

procession driving on a crowded city street). In these cases, it is impossible to treat the

team observation as a single high-dimensional vector of concatenated single-agent obser-

vations, and identifying which agents share the team objective becomes a problem in its

own right. Third, when agents split into subteams, each subteam creates a parallel exe-

cution trace that has to be analyzed separately; synchronizing the timestamps between

behaviors can be a challenge when the behaviors have variable durations.

However, in one aspect, keyhole team plan recognition is easier than single-agent plan

recognition since it shares some characteristics with intended plan recognition. Although

the agents are not attempting to communicate their intentions to the recognizer, to coordi-

nate with their fellow team members, they often “telegraph” their future actions through

predictable behavior to facilitate coordination. In that sense, the observable component

of their actions can be more revealing than that of a single independent agent.
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1.3 Approach

There are three general classes of recognition cues that are potentially valuable for multi-

agent activity/plan recognition:

• spatial relationships between team members and/or physical landmarks that re-

main fixed over a period of time;

• temporal dependencies between behaviors in a plan or between actions in a team

behavior;

• coordination constraints between agents and the actions that they are performing.

Thesis Question: How can we leverage available spatial, temporal, and coordination

cues to perform multi-agent activity/plan recognition for teams with dynamic member-

ship?

The approach in this thesis is to explore the use of spatial, temporal, and coordina-

tion cues to perform offline multi-agent plan/activity recognition in physical domains.

Although there has been recent progress in robustly tracking multiple moving objects in

video data [111], in this thesis we focus on analyzing team behaviors in simulations and

games, due to the relative ease of simultaneously acquiring unambiguous location data

for multiple entities.

In physical domains (military, athletic, or robotic), team behaviors often have an ob-

servable spatio-temporal structure, defined by the relative physical positions of team

members and their relation to static landmarks; we suggest that this structure, along with

temporal dependencies and coordination constraints defined by a team plan library, can

be exploited to perform behavior recognition on traces of agent activity over time, even

in the presence of uninvolved agents.
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Unlike prior work in team plan recognition where it is assumed that team membership

stays constant over time, this thesis addresses the novel problem of recovering agent-

to-team assignment for team tasks where team composition, the mapping of agents into

teams, changes over time; this allows the analysis of more complicated tasks in which

agents must periodically divide into subteams.

For this thesis, we examine the problem of recognizing activities and plans within a

military setting . We analyze four types of data: (1) agent plans and activities in a MOUT

(Military Operations in Urban Terrain) battlefield simulation; (2) teams of human players

reproducing military maneuvers in a computer game environment (Unreal Tournament);

(3) teams of human players playing tactical battlefield scenarios using a turn-based table-

top game (Dungeons and Dragons); (4) human subjects performing physical movements

in a motion capture lab.

1.4 Contributions

This thesis makes the following contributions:

• an efficient and robust technique for formation identification based on spatial rela-

tionships (Chapter 3);

• a new algorithm for simultaneously determining team membership and perform-

ing behavior recognition on spatio-temporal traces with dynamic team membership

(Chapter 4);

• a general pruning technique based on coordination cues that improves the efficiency

of plan recognition for dynamic teams (Chapter 5);

• an approach for identifying player policies in team games that lack strong spatial,
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Table 1.1: Summary of data requirements for the algorithms discussed in the thesis

Method Input Data Library Chapter

formation identification single snapshot of positions spatial templates 3

spatially-invariant HMMs time series of positions HMM models 3

STABR time series of positions spatial templates 4

multi-agent plan recognition time series of actions HTN plans 5

policy recognition (Dempster-Shafer) time series of actions m-values 6

policy recognition (SVM) time series of actions simulated game data 6

physical capability model single snapshot of positions cost maps 7

human activity recognition motion capture data behavior graphs 7

temporal, and coordination dependencies (Chapter 6).

• a physical capability model for human agents based on motion capture data that

enables online prediction of opponent movements (Chapter 7)

Earlier versions of this research have appeared in several conference publications [90–

95]. In the next chapter, we provide an overview of related work on activity/plan recog-

nition.



Chapter 2

Related Work

In his seminal work on plan recognition, Kautz defined his framework as a process for de-

termining “which conclusions are absolutely justified on the basis of the observations, the

recognizer’s knowledge, and a number of explicit closed-world assumptions” [2]. In gen-

eral, this union of observations, prior knowledge, and closed-world assumptions char-

acterizes the research efforts on plan and activity recognition. This chapter discusses

the related work on general plan recognition, activity recognition, military domains, and

multi-agent plan/activity recognition.

2.1 Plan Recognition

Much of the early work on plan recognition relied on logical methods, either viewing plan

recognition as a specialized type of hypothetical [21] or unsound reasoning [1]. However,

Kautz’s event hierarchy framework [54] combined deductive reasoning with a specific

set of assumptions. Two important assumptions that he introduced are exhaustiveness

assumption and minimum cardinality. The exhaustiveness assumption specifies that the

9
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world is limited to the known types of events (plans), hence it is possible to determine

that a particular event has taken place by eliminating all other possibilities. The mini-

mum cardinality assumption follows the principle of parsimony, only assuming the min-

imum number of events that explain the observations. These two assumptions are either

explicitly or implicitly made by most current plan recognition frameworks and are also

important in this thesis.

By introducing probabilistic reasoning techniques, plan recognition becomes a process

of determining which plans are likely rather than which conclusions are justified. Char-

niak and Goldman [20] developed the first probabilistic model of plan recognition, using

Bayesian belief nets for plan inference. Like Kautz’s model, Charniak and Goldman’s

plan language relied on hierarchical action descriptions and did not support sequences of

actions; later Huber et al. [46] demonstrated a method for translating general acyclic plan

specifications, including action sequence dependencies, into belief nets, Alternatives to

Bayesian inference, such as Dempster-Shafer theory, have also been explored [9, 17] and

are used in portions of our work (see Chapter 6).

Kautz’s plan recognition algorithm is exponential in the size of the knowledge base.

By conceptualizing plan recognition as a variant of a context-free grammar parsing prob-

lem, some researchers [64, 106] have developed approaches to reduce the complexity of

the problem. Pynadath demonstrated a hybrid method for combining probabilistic rea-

soning with a grammar parsing approach using probabilistic state-dependent grammars

(PSDGs) for plan recognition [72]. The PSDG model can be represented as a dynamic

Bayesian network, which is a commonly used model for activity recognition (see next

section). Goldman et al. [40] noted that one problem with the use of parsing as a model

of plan recognition is that it does not handle partially-ordered or interleaved plans and

proposed an alternate representation based on probabilistic Horn abduction.
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Specialized search techniques have been developed to reduce the time required for

plan recognition; for instance, RESC (Real-Time Situated Commitments) is a real-time ap-

proach to tracking the operator hierarchies of a Soar agent [100]. RESC uses information

from the current world state to determine the validity of the operator hierarchies, com-

mits to a a single interpretation, and backtracks in case of mistaken interpretation; this ap-

proach has the advantage that it can be used in real-time opponent modeling and handles

reactive behaviors well [100]. Rather than committing to a single interpretation, the RESL

algorithm marks every plan whose observations matches expectations and maintains it as

a possible hypothesis [52]. Avrahami-Zilberbrand and Kaminka later developed a single-

agent plan recognition algorithm [5] which improves on RESL in several ways: (1) more

efficient observation matching through the use of feature decision trees (FDTs); (2) the use

of temporal structure to rule out inconsistent hypotheses for current state queries.

2.2 Activity Recognition

The term activity recognition is used to describe the problem of segmenting and classify-

ing low-level movement data into a higher-level description of the activity performed.

Whereas plan recognition algorithms typically deal with symbolic data and atomic ac-

tions, activity recognition algorithms begin with traces of the human’s position over time,

gleaned from sources such as cameras, GPS readings, wireless signal strength measure-

ments, or a motion capture apparatus.

The dynamic Bayesian network model has been applied successfully to both plan

recognition and activity recognition. Bui has demonstrated the use of different types

of DBNs—the Abstract Hidden Markov Model (AHMM) [16] and the Abstract Hidden

Markov Memory Model (AHMEM) [15]—for recognizing the future destinations of a sin-
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gle moving human from camera data. The AHMM model is representationally quite sim-

ilar to the PSDGs introduced by Pynadath although it can only be used to model “memo-

ryless” policies. An AHMM has no mechanism for remembering the originating subplan

and thus cannot be used to model behavior hierarchies in which lower-level behaviors

can be followed by a return of control to a higher-level behavior. However the AHMEM

(Abstract Hidden Markov MEmory Model) rectifies this omission; Bui demonstrates an

approximate inference technique based on Rao-Blackwellized particle filters that can han-

dle partial observability and deep behavior hierarchies better than exact inference meth-

ods. Often the specialized problem of recognizing the human subject’s future location is

known as “goal recognition”. N-gram models have been used successfully for goal recog-

nition in interactive narrative environments [66] and RF-based wireless localization [112].

2.3 Multi-Agent Activity/Plan Recognition

Previous work on team behavior recognition has been primarily evaluated within athletic

domains, including American football [48], basketball [13, 50], and Robocup soccer sim-

ulations [58, 78, 79]. Recognition for military air-combat scenarios has been examined in

the context of event tracking [99] and teammate monitoring [52], A general framework

for multi-agent activity recognition (Hierarchical Multiagent Markov Processes) [83] has

been demonstrated for a single pair of humans moving around a laboratory.

To recognize athletic behaviors, researchers have exploited simple region-based [48]

or distance-based [79] heuristics to build accurate, but domain-specific classifiers. For in-

stance, based on the premise that all behaviors always occur on the same playing field

with a known number of entities, it is often possible to divide the playing field into grids

or typed regions (e.g., goal, scrimmage line) that can be used to classify player actions.
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The first part of Intille and Bobick’s work [47] on football game annotation addresses the

low-level problem of extracting accurate player trajectories from video sequences that in-

clude substantial camera movement (panning and zooming). Using knowledge of the

football field geometry and markings, they warp the original distorted image sequence

into a rectified one with the appearance of a stationary camera and background. Then, by

exploiting closed-world knowledge of the objects in the scene, they create context-specific

feature templates for tracking individual players. Play recognition [48] is performed on

player trajectories using belief networks both to recognize agent actions from visual evi-

dence (e.g., catching a pass) and to determine the temporal relations between actions (e.g.

before, after, around). Jug et al. [50] used a similar framework for basketball analysis.

These frameworks do not address the problem of dynamic team composition; all agents

are committed to the execution of the single plan for the duration of the play.

Unlike Intille and Bobick, Riley does not attempt to produce annotated traces with

sequences of Robocup team behaviors. Instead he extracts specific information, such as

home areas [80], opponent positions during set-plays [79], and adversarial models [78],

from logs of Robocup simulation league games to be used by a coach agent advising a

team. For instance, information about opponent agent home areas are used as triggers

for coaching advice and for doing “formation-based marking”, in which different team

members are assigned to track members of the opposing team.1 Formations are generated

from past logs in two phases: (1) fitting a minimal rectangle that explains the majority of

each agent’s past positions; (2) modeling pair-wise distance correlations between agents

by shifting the minimal rectangles.

Commentating from post-game log analysis has been demonstrated in the Robocup

domain by the ISAAC system [74] using a combination of data mining and inductive

1Riley uses the term “formation” to specify a grouping of home areas, regions of the field where an agent

can generally be found; in this thesis, formations designate a spatial pattern of relative agent positions.
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learning; unsupervised data mining and knowledge discovery approaches have also been

applied to the problem of recognizing strategic patterns from NBA basketball data [13].

However, the emphasis of the ISAAC system was to produce a high-level summary of

game action, suitable for natural language summaries or debugging general team prob-

lems, rather than detailed play recognition of each team’s actions.

In the 2005 Robocup coach competition, Kuhlmann et al. [58] demonstrated a game

analysis approach in which the team’s movement patterns were fitted to a parametric

model of agent behavior. Patterns were scored according to their similarity to models

learned from the pre-game logs. This work is conceptually similar to our data-driven

approach for policy recognition (described in Chapter 6). Recently, Beetz et al. [10] devel-

oped a system for matching soccer ball motions to different action models using decision-

trees.

There has also been work on extending single-agent plan recognition frameworks [15,

100], both to create symbolic [99] and probabilistic [83] multi-agent plan recognition frame-

works. These efforts have focused on the use of temporal behavior models and do not

extensively utilize spatial information; such models have also been employed to detect

teamwork failures [52] and agent-coordination termination [83]. Due to the difficulty of

acquiring reliable location data for multiple entities, much of the research has been eval-

uated in simulation; however improvements in sensor technology such as the microwave

position system described in [11] should make real-world deployments possible in the

future.

Tambe [99] observed that the use of team models for multi-agent plan recognition can

aid the process of tracking team activity by constraining the tracking search and elimi-

nating the execution of large numbers of agent models. Unlike our algorithm, his system

RESCteam does not maintain multiple hypotheses of team behavior nor does it precom-
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pute temporal and inter-agent constraints to prune the plan library. RESCteam executes a

team model and invokes a minimal cost repair mechanism if the operator hierarchy selec-

tion or the role assignment causes match failure. RESCteam assumes that the subteams are

either known in advance or detected solely based on agents’ proximity to each other; al-

though this assumption is often valid, it is violated when a subteam that shares a common

purpose becomes spatially separated (e.g., perimeter guarding in the MOUT domain).

Saria and Mahadevan [83] demonstrate how a single-agent probabilistic plan recog-

nition framework (the Abstract Hidden Markov Model) can be extended to reason about

the joint policies of multiple cooperating agents. Their model, the Hierarchical Multiagent

Markov Process, only represents two possible outcomes of agent coordination: (1) joint

policies terminate when all of the participating agents complete their individual policies;

(2) joint policies terminate when any of the agents completes its policy. This limited sub-

set of execution outcomes is insufficient to model the common situation in which an agent

abandons one plan in favor of a new plan, while the other agents continue executing the

initial plan. Our framework (described in Chapter 5) correctly handles this situation be-

cause we do not assume that agent plan abandonment terminates the team plan. Also it

is unclear whether this type of simple coordination mechanism can scale to handle the

complexity of larger teams with multiple subteams.

Unlike other groups, Kaminka and Tambe’s work [52] on plan recognition for socially-

attentive monitoring does not treat teams as automatically sharing a single plan. Due to

message failure and sensor error, team members’ plans might diverge, in spite of sharing

the same top level goal. The focus of their research on socially-attentive monitoring is

the use of plan recognition by teammates to determine when other team members have

inconsistent beliefs. Kaminka [51] developed the concept of team coherence, the ratio of

total agents to the number of active plans, to represent the possibility of team coordi-
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nation failures; he demonstrates that plan recognition can be used as part of scalable

disagreement-detection system to detect the existence of incoherent team plans. In this

thesis, we represent these teamwork failures as plan abandonment; if the agents reconcile

their differences and resume coordination, it is detected as a new plan instance, rather

than a continuation of a previous team plan.

2.4 MOUT Domain

Many of the experiments in this document use behaviors, maps, and scenarios derived

from human soldiers performing MOUT (Military Operations in Urban Terrain) tasks as

described in [76]. In MOUT scenarios, platoons of soldiers attempt to achieve strategic

objectives, such as clearing buildings, escorting convoys, and attacking enemy positions,

within a cluttered, hazardous urban environment. The commanding officers must react to

new threats in the environment and changes in spatial layout (e.g., blocked roads, booby-

trapped zones) without direct guidance from the chain of command. It is often unclear

whether observed people in the combat zone are civilians or enemy snipers. Although

deliberative planning is required to systematically clear large areas of urban terrain, sol-

diers must execute reactive behaviors in the face of unexpected threats such as snipers

and booby-traps.

The MOUT domain poses several significant teamwork challenges. Adversarial team

planning is required when soldiers coordinate to outmaneuver and flank an enemy in an

covered position. Successful teams cooperate to assist team members in trouble, such as

wounded soldiers or teammates pinned down by enemy fire. Some team tasks, such as

moving in formation, demand tightly-coupled physical coordination whereas other team

tasks (e.g., securing a defensive perimeter) only require loose coordination. Splitting into
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sub-teams is commonly required to achieve goals; even formation movement is usually

accomplished by dividing into smaller groups.

Spatial environmental features (buildings, intersections, doorways) are important fea-

tures that influence MOUT planning [12], yet unlike team sports which are played on a

field that can be simply characterized by regions (e.g., goal, yard lines, end zone), MOUT

spatial landmarks are a complex combination of features. According to the cognitive task

analysis of the building clearing task [71], spatial cues dominate all of the task-focused

decision requirements of building clearing MOUT operations. The six task-focused deci-

sion requirements include: (1) securing the perimeter; (2) approaching the building; (3)

entering the building; (4) clearing the building; (5) maintaining and evaluating security;

(6) evacuating the building. For these tasks, features such as proximity to other build-

ings, opportunities for cover, open spaces, windows in the building, street layout, fortifi-

cations, height of buildings, locations of stairways, obstacles, potential booby-traps, and

doors, are critical cues that human decision-makers use to determine how to achieve the

building clearing task. Dynamic spatial features such as civilian activity and presumed

enemy location also factor into several stages of the decision making process. Out of the

five task-independent decision requirements, spatial cues are used for three of them: (1)

maintain the enemy’s perspective; (2) maintain big picture and situation awareness; (3)

project into the future. For these three decision requirements, important spatial cues in-

clude: location of hallways, stairwells, general building layout, teammates’ locations, and

last known enemy positions.

Although some aspects of MOUT planning are highly structured, commanders are

encouraged to be sufficiently unpredictable to frustrate potential enemies. The cognitive

task analysis for building clearing [71] offers suggestions such as “Refrain from establish-

ing patterns the enemy could learn” and “Use creative thinking to bypass obstacles”. This
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suggests that expert MOUT teams demonstrate variability in how they approach build-

ings with similar layouts, perhaps approaching from different vantage points or clearing

rooms in different orders. However, expert teams exhibit coherent movement patterns.

In Jirsa’s study on MOUT team coordination dynamics [49], he hypothesizes that expert

team performance is limited to a low-dimensional subspace. He suggests that the degree

of confinement to the experts’ subspace is a measure of team performance and coherence.

In summary, the MOUT domain offers the following interesting challenges to team

behavior recognition:

1. The behavior recognition algorithm must be able to handle deliberative, hierarchical

behaviors, as well as reactive behaviors.

2. The spatial landmarks that are important cues for MOUT behavior recognition can-

not be simply characterized by static regions in a playing field, as has been done in

other work [48, 78] on team behavior recognition.

3. Team tasks frequently require the splitting and merging into subteams, making the

agent-to-team assignment problem more challenging.

4. Complete MOUT scenarios, including a soldier platoon, enemy snipers, and civil-

ians, can feature large numbers of agents (50–100) cooperating in multiple team

groupings; this is significantly greater than the number of agents addressed in multi-

agent plan recognition frameworks [83] that only address coordination between

pairs of agents.

Most of the work in the MOUT domain has tackled the problem of plan generation for

computer-generated forces (CGFs) rather than the inverse problem of plan recognition.

Pearson and Laird [70] created a diagrammatic tool for authoring exemplars of spatial

plans which their system later generalized into SOAR productions to be incorporated
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into MOUT bots; Best and Lebiere [12] created a spatial language for authoring plans to be

executed in ACT-R. The primary goal of these systems was to create easily-authored and

reusable spatial representations that MOUT subject matter experts could use to program

cognitive models.

Several MOUT training systems have been developed to teach human soldiers the

building clearing task. The Collaborative Warrior tutor, a prototype model-tracing tu-

toring system for MOUT described in [65], included both plan generation for CGFs and

plan recognition of the trainee’s actions. This system used very simple spatial models

to evaluate the correctness of the trainee’s plan (e.g. whether the trainee failed to clear

rooms of enemy soldiers) and no recognition results are reported. Fowlkes et al. [37] de-

veloped a haptic-enhanced team training environment to train human subjects to move

in a back-to-back formation with a simulated soldier; their study examined how haptics

could improve acquisition of movement and communication skills. Recently, Hoover et

al. [44] constructed a full-scale MOUT training environment at the 263rd Army National

Guard, Air and Missile Defense Command site. Teams of trainees learn the room clearing

task in a “shoothouse” consisting of 6 rooms and interconnecting hallways, instrumented

with 36 cameras.
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Chapter 3

Formation Identification for Agent Teams

To analyze performance of team tasks, we need to extend existing behavior recognition

formalisms to accommodate group behaviors. Due to the increase in number of actions

generated, assuming that each agent is simultaneously executing actions, team behaviors

have a more complicated temporal structure than single agent behaviors. However team

plans involving physical movement also possess a distinctive spatial structure, character-

ized by the relative positions of teammates and external landmarks, that can be exploited

to classify team behaviors. This chapter describes a framework for constructing spatio-

temporal models to robustly recognize physical team behaviors from position traces of

the agents’ movement.

We demonstrate our method in the domain of MOUT (Military Operations in Urban

Terrain) team planning to recognize military team behaviors customarily performed by

human soldiers while moving through an urban environment. Examples of team behav-

iors include building entry, perimeter guarding, opponent flanking, and formation move-

ment, such as stacked and bounding overwatch.1 Although we focus on MOUT team

1See Section 3.1 for more details on MOUT team behaviors

21
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behaviors, our algorithms are also applicable for recognizing team behaviors in other

military, robotic, and athletic domains.

Specifically, we present two classes of spatial models and illustrate how they can be

used to robustly recognize team behaviors in the presence of spatial variations, noise,

clutter, and human variability in behavior execution.

team templates: models encoding static spatial relationships between team members and

external landmarks. These models are composed of the relative positions of map en-

tities and can be generalized to different geographic layouts using similarity trans-

forms. To efficiently identify team templates over large map areas without using

exhaustive search, we employ an efficient randomized search technique, RANSAC

(Random Sampling and Consensus) [35].

spatially-invariant HMMs: a set of Hidden Markov Model classifiers applied over short

overlapping time windows to identify temporal patterns in agent team configura-

tions. By representing the agents’ positions in a canonical reference frame, the clas-

sifier is robust to certain spatial variations.

We evaluate our modeling and recognition techniques on two different types of data: (1)

large urban simulation battle maps, and (2) position traces of two-person human teams

performing designated sequences of MOUT behaviors in a customized version of Unreal

Tournament (a commercially available first-person shooter game).

3.1 MOUT Formations

MOUT (Military Operations in Urban Terrain) scenarios involve moving teams of sol-

diers and vehicles through heavily-cluttered urban areas to accomplish high-level strate-
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gic objectives. A common task performed by human soldiers is building clearing, during

which a firing-team of soldiers must enter a building and clear it of enemy occupants and

hazards; the challenge is to explore unknown areas while constantly remaining in a de-

fensible position against enemy attack. To achieve this, soldiers move through the urban

terrain using set procedures that maintain a defensive position while still propelling the

team forward.

The cognitive task analysis of building clearing given in [71] emphasizes the impor-

tance of spatial cues in the soldiers’ decision making process. Features such as proxim-

ity to other buildings, opportunities for cover, open spaces, windows in the building,

street layout, fortifications, height of buildings, locations of stairways, obstacles, poten-

tial booby-traps, and doors, are critical cues that expert human decision-makers must

take into account while performing the task. Certain team behaviors are triggered by the

spatial characteristics of the terrain; for instance, firing-teams have special procedures for

moving through L-shaped and T-shaped street intersections. In these cases, we hypoth-

esize that static spatial configurations, such as the ones described in our team template

models, are highly predictive of the teams’ actions.

However, there are some cases, particularly for smaller two-soldier subteams, in which

static spatial configurations, by themselves, lack predictive power. The second part of the

chapter focuses on three such behaviors: stacked movement, bounding overwatch, and

buttonhook entry commonly used during the building clearing task. These behaviors are

difficult to identify solely on the basis of static snapshots due to their spatial similarities

(see Figure 3.4).

During stacked movement the purpose is to move the team in such a way that their

gun angles completely span all possible areas of approach; the team moves slowly and

in synchrony. For moving through open areas or intersections, this approach is less fea-



24 CHAPTER 3. FORMATION IDENTIFICATION FOR AGENT TEAMS

Figure 3.1: MOUT scenario in customized Unreal Tournament environment from spectator view-

point. A pair of human players control soldiers A and B as they execute the procedure for traversing

a T-shaped intersection. The bot models and animations were modified to conform to the appear-

ance of real human soldiers rather than the larger-than-life UT fantasy fighter models.
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sible since it’s difficult to cover all possible threatened areas. In this case, the bounding

overwatch behavior is used; one soldier moves forward while the other remains station-

ary. The buttonhook entry is similar to bounding overwatch; one soldier moves through

the doorway hugging the wall while the other soldier waits and guards. After the entry

is clear, the second soldier moves through the doorway hugging the opposite wall. To

recognize these behaviors, our classifier needs to exploit the temporal information in be-

havior sequences in conjunction with spatial information on the position and velocities of

team members in a way that is robust to geographic variations that modify the execution

of the behavior.

3.2 Methods

In this section, we present our methodology for developing spatial models and using

them to classify instances of team behavior. Section 3.2.1 discusses the representation and

authoring of team templates to encode static spatial relationships between team mem-

bers and external landmarks. Section 3.2.2 provides an overview of the randomized

search technique, RANSAC (Random Sampling and Consensus) that we use to efficiently

and robustly identify these templates over large simulation map areas without resort-

ing to exhaustive search. In Section 3.2.4 we describe the Unreal Tournament simulation

environment that we use to collect data from pairs of human subjects performing the

three types of statically-similar team behaviors (bounding overwatch, buttonhook entry,

stacked movement). Finally, Section 3.2.5 presents our procedure for converting agent

position traces into the canonical representation used by our Hidden Markov Model clas-

sifiers (Section 3.2.6).
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3.2.1 Static Formation Representation

To model team behaviors, we developed a tool that enables the interactive specification of

static formation models based on their characteristic spatial relationships. Once a library

of spatial models has been constructed, they can be used to classify formations of MOUT

entities on a 2D annotated urban map. If labeled training data of team behaviors exists,

these team templates could potentially be learned from data using a supervised classifier;

however all the experiments described here were created with the authoring interface

shown in Figure 3.2.

Each formation template contains the following attributes:

behavior name: Behaviors are represented by collections of spatial models; however no

particular temporal structure, or execution order, is attached to the collection. Each

spatial model can only belong to a single behavior; we do not include models which

appear in a large set of behaviors since they are unlikely to help in discriminating

between multiple behaviors.

spatial position of entities: Spatially-compact entities such as soldiers and small terrain

features (e.g., doors, obstacles providing cover), are treated as points and repre-

sented by the (x, y) locations of their centroids; larger entities, such as walls or roads,

are represented by sets of points connected by visibility constraints.

entity type: For our library of MOUT behaviors, we designated the following eleven

types of entities: teammate, opponent, civilian, person (unknown type), hard cover,

soft cover, empty area, window, intersection, doorway, hazard, and spatial objective

(e.g., assembly area).

An important consideration in matching formations is generalization—how well do

models developed for one scenario match formations observed in a different spatial lay-
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Figure 3.2: Spatial model authoring and matching system. The library of previously created spatial

models are shown to the right of the screen; the left side of the GUI displays an annotated map to

be analyzed. A fire team of soldiers (blue circles) examining a hazard (orange inverted triangle)

are displayed on the map; a second fire team prepares to enter the building through the door

(marked by the white rectangle). Our matching technique successfully associates both groupings

of soldiers with the correct spatial models; hollow circles and rectangles show the locations of the

entities as predicted by model projection.
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out? Without generalization it is impractical to exhaustively enumerate all possible spa-

tial relationships of interest that can occur across different maps. To address this problem,

we explore generalization as defined by the space of similarity transforms. Specifically,

we consider a model to match an observed formation if there exists a combination of

rotations, translations and scalings that map the model to the observed entities. Such

transforms can be parametrized in homogeneous coordinates as:

T =


s cos(θ) s sin(θ) tx

−s sin(θ) s cos(θ) ty

0 0 1

 ,

where θ is the angle of rotation, s is the scale factor, and tx and ty denote the translation

vector. We can extend this formulation to 3-D transforms by using a 4× 4 matrix, but we

focus on 2-D transforms suitable for the MOUT domain in this chapter. Given a model

consisting of entities whose positions are denoted by {(xi, yi) : i ∈ 1 . . . N}, one obtains

their corresponding transformed positions {(Xi, Yi)} through
X1 . . . Xi . . . XN

Y1 . . . Yi . . . YN

1 . . . 1 . . . 1

 = T


x1 . . . xi . . . xN

y1 . . . yi . . . yN

1 . . . 1 . . . 1

 .

The goal of matching a formation model to observed map entities is to determine whether

there exists a similarity transform T that maps elements in the model to legal entities on

the map. The next section describes a robust technique for efficiently searching the space

of possible transforms.

3.2.2 Efficient Template Matching

Given a set of spatial models and valid transforms, the problem of determining which

spatial models are applicable to the current map can be solved by searching the space
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of potential transforms and models to find all the combinations of model plus transform

that result in a match of sufficient quality. A standard approach to similar problems is

exhaustive template matching [7]. The space of transforms is discretized to create a man-

ageable set of maps that can be applied to each template. Each transformed instance of

the model is evaluated against the map using a function that quantifies the quality of the

given match, and those model instances that score better than a threshold are retained.

This process is exhaustively repeated over a range of scales and rotations, over all models

in the library. Clearly, such a process is time consuming, scales poorly to higher dimen-

sional transforms, and can be sensitive to discretization effects, noise and occlusion.

Instead, we employ a statistically-robust technique, Random Sampling and Consensus

(RANSAC) [35], to efficiently sample the space of transforms using hypotheses generated

from minimal sample sets of point correspondences. The key difference is that, rather

than enumerating over the unrestricted space of all similarity transforms, we only sam-

ple from the subset of transforms that are consistent for some part of the model. The

algorithm can be summarized as follows:

hypothesis generation: entities are drawn uniformly and at random from the annotated

map and associated with randomly-selected entities of the same type in the model.

Two pairs of corresponding entities are sufficient to uniquely specify a transform

hypothesis. This data-driven method of generating hypotheses is much more ef-

ficient than uniformly sampling the space of possible transforms or exhaustively

searching a discretization of the transform space.

hypothesis testing: Given a transform hypothesis, we project all of the entities in the

model to the coordinate frame of the map and assess the quality of the match based

on both spatial similarity and type matching. This gives us the likelihood that the

given hypothesis could have generated the observed data in the map.
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For each spatial model, we use RANSAC to randomly generate and test a large number of

plausible transforms and select those hypotheses (a combination of a model and a valid

transform) with match quality better than a specified threshold.

Since our spatial transforms have four degrees of freedom, they can be fully specified

by two pairs of point correspondences. First, we randomly select two entities from the

model under consideration; then based on the types of the entities (e.g., civilians, hard

cover, hazard) we randomly select candidate entities on the map with compatible object

types. The positions of these entities is used as the minimal set to generate a transform

hypothesis as follows.

Given the minimal set {(x1, y1), (x2, y2)} from the model and the corresponding set of

points {(X1, Y1), (X2, Y2)} from the map, we generate a third virtual pair of correspon-

dences (x3, y3) 7→ (X3, Y3) where

x3 = x1 + y2 − y1

y3 = y1 + x1 − x2

X3 = X1 + Y2 − Y1

Y3 = Y1 + X1 −X2.

The third point creates a right-angled isosceles triangle with clockwise vertex order in

both model and map. Three point correspondences completely specify an affine trans-

formation, and an affine transform that preserves both aspect ratio and chirality is an

orientation-preserving similarity transform. From these three pairs of correspondences,

we can directly recover T using matrix inversion,

T =


X1 X2 X3

Y1 Y2 Y3

1 1 1




x1 x2 x3

y1 y2 y3

1 1 1


−1

.
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Although this is a solution to a general affine transform given three pairs of point corre-

spondences [42], T is guaranteed to be a valid, orientation-preserving similarity.

To score a hypotheses, we transform the location of every entity in the model to the

map using the transform T. Each model entity contributes a positive vote for the given

hypothesis if the distance from its predicted location to a nearby valid entity of compat-

ible type falls within a specified threshold. The quality of a hypothesis is defined as the

normalized sum of these individual votes.

Since RANSAC stochastically searches the space of possible transforms it is not guar-

anteed to find the best match. However the following formula can be used to determine

how many iterations are necessary to achieve the best match with a specified probability

of success [109]:

m =

⌈
log(1− P )

log[1− (1− ε)s]

⌉
.

P is the target probability (e.g., P = 0.99 means the best match is found 99% of the time).

s is the number of elements required to define the minimal set (s = 2 since a similarity

transform requires 2 pairs of point correspondences). ε is the expected fraction of outliers

in the data set. In traditional RANSAC applications ε is typically only about 0.1 (10% of

the points are expected to be invalid). For our application, the fraction of outliers refers

to the number of map annotations that do not match a single model; since each map

actually contains multiple models in addition to entities that do not match any model the

fraction of expected outliers is approximately 0.95. From the formula above, this indicates

that the number of RANSAC iterations required to reliably find the best match is 1840.

Note that executing the given number of iterations does not guarantee a particular level

of classification accuracy; it merely ensures that there is only a 0.01% probability that

a similarity transform exists that would achieve a higher score than the one returned by

RANSAC. In Section 3.3.1, we present classification results for identifying team behaviors
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from 2D annotated maps of simulated urban layouts using our team template model and

RANSAC.

3.2.3 Spatio-temporal Classification

There are some cases, particularly for smaller two-soldier subteams, in which static spa-

tial configurations, by themselves, lack sufficient predictive power. To recognize these

behaviors, our classifiers need to exploit the temporal information in behavior sequences

in conjunction with spatial information on the position and velocities of team members.

Since team behaviors can be executed in a variety of terrains, the classifiers must be ro-

bust to deviations in behavior execution caused by the team’s response to local terrain

features. However, arbitrarily introducing similarity transforms in the middle of a behav-

ior sequence can destroy the spatio-temporal pattern created by the team’s movements.

To address the problem, we developed spatially-invariant classifiers, by transforming our

position data into a canonical reference frame defined by the team’s motion, and apply-

ing a set of Hidden Markov Model classifiers to recognize three statically similar team

behaviors (bounding overwatch, buttonhook entry, stacked movement).

3.2.4 Human Data Collection

To evaluate our spatio-temporal classifiers, we collected data from a pair of human play-

ers using our modified Unreal Tournament game interface to manipulate “bots” through

a small urban layout while performing a particular sequence of team behaviors (see Fig-

ure 3.1). Note that the subjects were not playing Unreal Tournament, but using Unreal

Tournament to execute sequences of commonly used MOUT team maneuvers. To directly

monitor the performance of human players, we customized Unreal Tournament (UT) us-
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ing the game development language Unrealscript. Many of the original UT game classes

were written in Unrealscript and thus can be directly subclassed to produce modified ver-

sions of the game (known as mods); for example, Gamebots [53] is an example of a mod

that allows external programs to control game characters using network sockets.

We developed our own TrainingBot mod that allows us to save the state of all the

bots in the scenario; currently we save each player’s ID number, position (x, y.z), and

rotation (θ,φ) every 0.15 seconds. This information is useful for both offline behavior

analysis and for a separate replay mode that allows us to create bots that follow the paths

recorded by the original players.

3.2.5 Canonical Representation

Due to the continuous nature of the domain, automatically determining the exact tran-

sition points between team behaviors is a difficult problem. While approaching and en-

tering buildings, the players continue moving their bots, changing team behaviors as ap-

propriate for the physical layout. We address this issue by dividing the traces into short,

overlapping time windows during which we assume that a single behavior is dominant;

these windows are classified independently as described in Section 3.2.6. To recognize

team behaviors performed in different physical layouts, it is important for our classifier

to be rotationally- and translationally-invariant; we achieve this by transforming the data

in each window into a canonical coordinate frame as described below.

More formally, we define:

• a ∈ 1, . . . , A is an index over A agents;

• j is an index over W overlapping windows;

• t ∈ 1, . . . , T is an index over the T frames in a given window;
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• xa,j,t is the vector containing the (x, y) position of agent a at frame t in window j.

The centroid of the positions of the agents in any given frame can be calculated as:

Cj,t =
1

A

∑
∀a

xa,j,t.

We describe the configuration of the agent team at any given time relative to this centroid

to achieve translation invariance. However, rather than rotating each frame indepen-

dently we define a shared canonical orientation for all of the frames in a window. This

is important because it allows us to distinguish between similar formations moving in

different directions (e.g., agents moving line abreast vs. single file). One standard tech-

nique for defining a canonical orientation is to use the principal axis of the data points for

that window, which can be calculated using principal component analysis (PCA). How-

ever for efficiency we have empirically determined that one can achieve similar results

by defining the canonical orientation as the displacement of the team centroid over the

course of this temporal window: dj = Cj,T −Cj,1.

We rotate all of the data in each window so as to align its canonical orientation dj

with the x-axis, using the rotation matrix Rj . Thus the canonical coordinates, x′, can be

calculated as:

x′a,j,t = Rjxa,j,t − cj,t.

Our recognition technique (described in Section 3.2.6) also employs an estimate of the

agents’ velocities, which we compute as:

va,j,t = ||x′a,j,t+1 − x′a,j,t||.

The intuition behind the canonical representation is that a team’s behavior is defined

not by the absolute positions and orientation of its agents, but rather by their relative

motions. In the canonical representation, the team is oriented so that it is facing along
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the positive x-axis, and motions are encoded with respect to the team’s centroid. In this

representation, instances of team behaviors such as the stacked formation are clearly dis-

tinguishable from bounding overwatch since the lead agent’s x position in the former is

consistently positive while the corresponding agent in the latter oscillates from positive

to negative with each bound. The agents in the buttonhook behavior both approach each

other (as they pass through the doorway) but then separate; this is clearly different from

stacked formation but superficially resembles bounding overwatch.

3.2.6 HMM Classification

For each canonically-transformed window in our trace, our goal is to select the best be-

havior model. We perform this classification task by developing a set of hidden Markov

models (HMMs), one for each behavior b, and selecting the model with the highest log-

likelihood of generating the observed data. Our models ({λb}) are parameterized by the

following:

• N , the number of hidden states for the behavior;

• A = {aij}, the matrix of state transition probabilities, where aij = Pr(qt+1 = j|qt =

i),∀i, j and qt denotes the state at frame t;

• B = {bi(ot)}, where bi(ot) = N (µi, Σi). The observation space is continuous and

approximated by a single multivariate Gaussian distribution with mean, µi and a

covariance matrix, Σi, for each state i;

• π = {πi}, the initial state distribution.
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For our problem, given A agents in a team, the observations at time t and window w are

the tuple:

ot = (x′1,w,t, v1,w,t, . . . ,x
′
A,w,t, vA,w,t).

We determine the structure for each behavior HMM based on our domain knowledge. For

instance, the stacked behavior can be described using only two states (N = 2), whereas we

represent the more complicated bounding overwatch behavior using six states connected

in a ring. Each hidden state captures an idealized snapshot of the team formation at some

point in time, where the observation tuple (in canonical coordinates) is well modeled

by a single Gaussian. Rather than initializing the HMMs with random parameters, we

use reasonable starting values. These can be polished using expectation-maximization

(EM) [28] on labeled training data.

To determine the probability, Pr(o1...T |λb), of generating the observed data with the

model λb, we employ the forward algorithm [73] as implemented in the Hidden Markov

Model toolbox [67]. We classify each window segment with the label of the model that

generated the highest log-likelihood.

3.3 Formation Recognition Results

We evaluate our methods using two sets of experiments: (1) formation recognition in sim-

ulated 2-D overhead maps of urban areas annotated with the location of MOUT entities

(see Section 3.2.1). (2) behavior identification from activity traces of two-person human

teams performing sequences of MOUT behaviors (see Section 3.2.4). The former assesses

the accuracy of the RANSAC-based method for static formation recognition while the

latter examines the performance of spatially-invariant HMMs on spatio-temporal traces.
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3.3.1 Static Formation Matching

To test the robustness of our approach for static formation matching, we add clutter to

the maps and distort formations by perturbing the positions of MOUT entities. Figure 3.3

reports the precision (fraction of correctly-classified results) and recall (fraction of forma-

tions that were detected) of our classifier under different conditions of clutter and location

perturbation. Note that our approach independently matches each template against the

data; thus, all matches that exceed the threshold score are reported as detections. The

precision/recall curves are generated by varying this threshold parameter. There is no

intrinsic restriction against assigning the same map entity to different templates — this

enables us to create templates corresponding to a team and its component sub-teams, and

to simultaneously recognize both.

In each experiment, we randomly place fifty MOUT formations on the urban map and

report the precision and recall averaged over ten RANSAC searches. The left panel of

Figure 3.3 shows the effects of adding clutter (spurious MOUT entities of the appropriate

type) to the map, without increasing the number of RANSAC iterations. The percentage

of clutter is measured against the total number of MOUT entities in the formations on

the map (thus +100% clutter denotes a 1:1 ratio between spurious and desired MOUT

entities). The results show that, as expected, the RANSAC-based approach is very re-

sistant to the presence of spurious entities on the map, and that precision/recall remain

very high even at the extreme clutter levels. The right panel of Figure 3.3 shows preci-

sion/recall results for experiments where the locations of each of the MOUT entities were

perturbed with iid Gaussian noise. We show results under three noise conditions, where

the standard deviation of the noise is σ ∈ {0, 10, 20} pixels. As expected, the perfor-

mance degrades as noise is added since the spatial configuration of the formation ceases

to resemble the formation represented by the idealized model. However, the technique
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Figure 3.3: Precision and recall curves for matching team templates using the RANSAC-based

method. Fifty formations were placed on an urban map using randomized similarity transforms.

Each run employed 100,000 iterations and the precision/recall averaged over 10 trials is shown.

The left panel shows the effect of adding spurious MOUT entities (clutter) while maintaining

the same number of iterations. The right panel shows the results of distorting observed for-

mations by perturbing the location of each MOUT entity on the map with iid Gaussian noise

(σ ∈ {0, 10, 20}pixels). Our method is extremely robust to clutter and performs adequately un-

der moderately noisy conditions.

correctly identifying an acceptable fraction of the formations under reasonable noise con-

ditions (80% precision and 80% recall with noise at σ = 10).

3.3.2 Dynamic Formation Recognition

To evaluate our spatio-temporal classification method, we developed HMM models for

three behaviors typically employed by two-person firing teams during the building clear-

ing task: stacked movement, bounding overwatch, and buttonhook entry (see Figure 3.4).

Note that these three behaviors look very similar in static formation snapshots and can

only be robustly recognized by observing spatio-temporal traces. Position data was si-

multaneously recorded from two subjects at 0.15 second intervals using our TrainingBot
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mod (see Section 3.2.4). Players executed team behaviors in predesignated sequences,

transitioning smoothly from one behavior into the next, adapting each behavior as needed

to the local physical layout (turning corridors, entering rooms). The traces were divided

into overlapping 20 frame (3 second) windows, which were transformed into a canonical

coordinate frame as described in Section 3.2.5 (illustrated in the inset of Figure 3.4). The

window size was empirically selected base on the observed average speed of the MOUT

soldiers.

By using real data collected from human players rather than simulated traces, we can

evaluate the robustness of our approach to realistic deviations during behavior execu-

tion. Figure 3.4 (right) shows a raw trace for each behavior; note that consecutive por-

tions of the same behavior do exhibit significant variation, as observed in the bounding

overwatch behavior. Each behavior was also performed in a variety of local physical lay-

outs. Table 3.1 presents the classification results (confusion matrix) for the three modeled

behaviors; the accuracy of the HMM approach is good, particularly for the stacked for-

mation. Buttonhook entry is sometimes confused with bounding overwatch, as may be

expected from similarities in the canonical representation shown in Figure 3.4.

3.4 Discussion

The two approaches presented in this paper, RANSAC-based static formation matching

and spatially-invariant HMMs, are complementary. Team templates are easy to author

and can be rapidly executed over large, cluttered maps. Spatially-invariant HMMs are

more labor-intensive to design, but are well-suited for classifying statically-indistinguishable

behaviors. Formation templates are effective at determining the spatial context of an

observed behavior, enabling improved discrimination between behaviors that display a
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Figure 3.4: Team Behaviors: Stacked Formation (top), Bounding Overwatch (middle), Buttonhook

Entry (bottom). Schematics for each behavior, along with the canonical representation for several

frames, are depicted in the left column. A sample raw trace for each behavior is shown in the right

column; the coordinates of the axes are in Unreal Tournament length units.
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Table 3.1: Confusion matrix for HMM behavior classification. The ground truth is given in the left

column; the classification result is given in the top row. The spatially-invariant Hidden Markov

Model approach achieves good accuracy. Buttonhook entry is occasionally confused with bound-

ing overwatch, since both are superficially similar in their initial stages, as seen in Figure 3.4.

stacked bounding buttonhook

stacked 90% 10% 0%

bounding 14% 67% 19%

buttonhook 0% 33% 67%

similar temporal structure. For instance, although a buttonhook entry and a bounding

overwatch often appear similar from the perspective of a spatially-invariant HMM, the

presence of context can enable us to disambiguate them since the former behavior is typi-

cally performed to enter a door or window, while the latter is used to move the formation

down a corridor or street.

The MOUT domain demands scalability, both in terms of larger team sizes and large

maps. Our static formation matching approach scales well to larger team sizes. In fact, in-

troducing more points into the team template is actually beneficial for two reasons: (1) the

minimal set required to calculate the transform is independent of team size; (2) including

additional model entities improves the robustness of the matching since a greater number

of entities can contribute votes in support of the best hypothesis, and it is less probable

that an accidental configuration of spurious entities will be a good match. Our approach

also scales well to large map sizes since the complexity of the algorithm depends not on

the map nor its discretization but rather on the number of entities.

In principle, the spatially-invariant HMM approach can also be applied to larger teams;
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however constructing models for teams with more members can become difficult since

additional team members create a greater variety of observable configurations (even in

our canonical representation). For the MOUT domain, dividing larger teams (of 8 or 16)

into small (e.g., two-person) subteams that can be be analyzed independently can be a

practical approach. Larger team behaviors would be detected by combining the outputs

of specialized classifiers (e.g., detecting invariants) rather than requiring a single, highly-

complex classifier.

This chapter described two complementary methods for recognizing physical team

behaviors from observed formations. We showed that our techniques are robust to the

effects of local spatial variations, clutter, noise, and human variability during behavior

execution. However, a fundamental assumption in both of our approaches is that the

team composition is fixed and known a priori. The next chapter relaxes this assumption

and presents approaches for recognizing behaviors in scenarios with dynamic team com-

position.



Chapter 4

Simultaneous Team Assignment and

Behavior Recognition

4.1 Introduction

Although there has been considerable research on the problem of single-agent behavior

recognition, there has been substantially less work on multi-agent behavior recognition.

Most of the previous work makes one of two assumptions: (1) each agent is a decou-

pled entity that can be analyzed individually using a single-agent activity inferencing

algorithm, or (2) the agents are always working together and can be analyzed as a sin-

gle cohesive entity represented by a high-dimensional feature vector. In either case, team

composition is generally assumed to be static; this chapter specifically addresses the prob-

lem of behavior recognition for teams with dynamic team composition. In scenarios with

dynamic team composition, agents are assumed to be independent entities that coordi-

nate with other agents to perform team behaviors; teams disband when the behavior is

complete, merge with other teams to create larger formations, and occasionally split into

43
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subteams to perform multiple behaviors in parallel. Relaxing the assumption of static

team assignment is desirable because it enables the analysis of more complex team tasks.

However this makes the team behavior recognition problem substantially more difficult

since behaviors are characterized by the aggregate motion of the entire team and cannot

generally be determined by observing the movements of a single agent in isolation.

We introduce a new algorithm, Simultaneous Team Assignment and Behavior Recog-

nition (STABR), that recovers both team assignments and behavior annotations from traces

of agent position over time. STABR leverages information from the spatial relationships

of the team members to create sets of potential team assignments at selected time-steps.

These spatial relationships are efficiently identified using the formation recognition ap-

proach described in Chapter 3 to generate potential team assignment hypotheses. Se-

quences of team assignment hypotheses are evaluated using dynamic programming to

derive a parsimonious explanation for the entire observed spatio-temporal trace. To

prune the number of hypotheses, potential team assignments are fitted to a parameter-

ized team behavior model; poorly-fitting hypotheses are eliminated before the dynamic

programming phase. The proposed approach is able to perform accurate team behav-

ior recognition without exhaustive search over the partition set of potential team assign-

ments, as demonstrated on several scenarios of simulated military maneuvers.

4.2 Problem Formulation

We formulate our problem as follows. Let A = {a0, a1, . . . , aN−1} be the set of agents in

the scenario. A team consists of a subset of agents, and we require that an agent only

participate in one team at any given time; thus a team assignment is a set partition on

A. An agent that is not currently a member of any team is known as a singleton, and
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is unrestricted in its motion. By contrast, the agents in a team are constrained to move

according to a set of team behaviors, B. The subset of behaviors available to a given team

is specified by the domain and can depend on the number of agents in the formation and

their relative configurations. For instance, the domain could specify that four agents in a

square formation may execute a “wheel” (formation advances in an arc by rotating about

a corner), but not a “pivot” (formation rotates about its center), which may be restricted

to teams of three agents. In the course of a scenario, agents (either singletons or subsets of

disbanding teams) can assemble into new teams; similarly, teams can disband to enable

their members to form new teams or to operate as singletons. Thus the team assignment

is expected to change over time during the course of a scenario. The team assignments

over time and the behavior executed by each team are hidden from our system. We as-

sume that our input consists only of a spatio-temporal trace, which is a sequence of noisy

observations of the 2D position of each agent through time, ai(t) ∈ <2. We illustrate this

with an example: Figure 4.1 shows several frames from a scenario with 16 agents. In Fig-

ure 4.1(a), 12 of the agents are arrayed in three teams of four agents in a square formation,

({a0, . . . , a3}, {a4, . . . , a7}, {a8, . . . , a11}), with the remaining four agents as singletons. In

Figure 4.1(b), the squares are converging towards the central area and the formations are

starting to interleave. In Figure 4.1(c), the squares are disbanding and those are regroup-

ing into four groups of three, arrayed as triangles. Finally, in Figure 4.1(d), the triangles

are moving away from the central area. For illustration purposes, observation noise is not

shown in this figure.

Our goal is to recover a team and a behavior assignment for every agent ai ∈ A at

every time-step t. This can be succinctly expressed in the form of two tables: (1) an agent-

to-team assignment ai(t) 7→ S ⊂ A; (2) a team-to-behavior assignment Sj(t) 7→ b ∈ B. It is

important to note that one cannot, in general, infer the behavior of a team by examining

the motion trace of any single agent. Similarly, one cannot assign an agent to a team
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(a) t = 0 (b) t = 24

(c) t = 50 (d) t = 80

Figure 4.1: (a) An example scenario with three teams of 4 agents,

({a0, . . . , a3}, {a4, . . . , a7}, {a8, . . . , a11}) and four singleton agents (a12, . . . , a15); (b) teams

maneuver while maintaining formation and converge to central area; (c) the three teams disband

and regroup into four teams of 3 agents; (d) the various teams scatter as units. The interleaving

of agent formations, the presence of singletons and observation noise (suppressed here) makes

the team assignment and behavior recognition challenging.
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without confirming that the behavior of the proposed team is legal.

Ideally, one may wish to consider every legal agent-to-team assignment and team-to-

behavior assignment at every time-step and then select the sequence that best matches

the observed data. However, a straightforward implementation of this idea is computa-

tionally infeasible. The pool of potential agent-to-team assignments grows very quickly

with the number of agents; this is equivalent to the number of partitions of a set, and is

given by the Bell number of the set [81]:

Bn =
n∑
0

S(k, n),

where S(k, n) denotes a Stirling number of the second kind,

S(k, n) = S(k − 1, n− 1) + kS(k, n− 1) 1 ≤ k ≤ n

S(n, n) = S(n, 1) = 1.

For instance, the number of team assignments in the 16-agent example shown in Fig-

ure 4.1, B16 > 1010. Clearly, examining every potential team assignment at even a single

time-step is infeasible. And naively evaluating all of the possible combinations of par-

titions over the entire spatio-temporal sequence further increases the complexity in an

exponential manner.

Fortunately, a closer examination of the problem reveals structure that can be ex-

ploited to generate a computationally-feasible solution. The key observations behind our

algorithm are summarized as follows. First, at each time-step, the relative positions of the

agents in a team is constrained by the spatial configuration of the formation. Even though

it may not be possible to unambiguously determine from a single time-step that an ob-

served subset of agents is arrayed in a particular formation, one can profitably employ a

static analysis of agent positions to generate hypotheses of valid team assignments and

behaviors. Second, although an analysis of the motion of a single agent may not be suf-
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ficient to infer its behavior, an examination of the aggregate movement of several agents

in isolation (i.e., a hypothesized team) generates significant information about team be-

havior. Third, by defining appropriate cost functions for the sequence, one can employ

dynamic programming to dramatically reduce the time needed to find good sequences of

team and behavior assignments through time. The next section details each of these ideas

and describes how they contribute to the design of the STABR algorithm.

4.3 The STABR Algorithm

STABR analyzes spatio-temporal traces in three stages. First, it performs a static analysis

of agent positions at each time-step to identify potential agent configurations that may

correspond to known formations; these are used as an initial set of agent-to-team assign-

ment hypotheses in later stages. STABR maintains multiple potentially-conflicting assign-

ments for an agent, if there is spatial support. Second, STABR examines hypothesized

team assignments in isolation and determines whether they have sufficient local spatio-

temporal support. Pruning unlikely hypotheses at this stage is crucial since it greatly

affects the performance of the last stage. This analysis also enables STABR to determine

plausible behavior assignments for each of the surviving hypotheses. Third, these agent-

to-team hypotheses are used to generate complete partitions over the agents. In the worst

case, this state space could be exponential in the number of surviving hypotheses, un-

derscoring the benefits of pruning. STABR then organizes the states (partitions) over the

spatio-temporal sequence in the form of a lattice and employs dynamic programming to

identify minimal cost solutions. These correspond to agent-to-team and team-to-behavior

assignments that are a good fit to the observed sequence.
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4.3.1 Static identification of agent formations

The first stage of the recognition process is to identify potential team assignments, based

on static spatial cues. We do this by matching agent positions to pre-specified geometric

formation templates; this enables the recovery of more complicated team relationships

than the standard approach of clustering agents into teams based solely on proximity.

STABR employs the static formation recognition approach described in Chapter 3 to gen-

erate and test potential team assignment hypotheses at selected time-steps. For each for-

mation template, agents are drawn uniformly and at random from both the template and

the scenario. These point correspondences are used to generate a transform hypothesis to

project the remaining template points into the scenario coordinate frame. If the predicted

positions are sufficiently close to the observations, the template is accepted as valid and

these agents are assigned to a team. In the example scenario, where 75% of the points are

effectively outliers for the square formation, a reliable detection (P=99%) only requires

71 iterations, whereas an exhaustive search through the space would need 16C4 = 1820

iterations.

4.3.2 Spatio-temporal analysis of individual teams

The first stage of the algorithm identifies, independently for each time-step, a set of hypo-

thetical team assignments. The second stage identifies those team assignments that have

significant temporal support, and generates behavior hypotheses for each such team that

are consistent with the observed positions. The inability to find a plausible behavior to

explain the motion of a hypothesized team is a strong indicator that the hypothesis does

not correspond to a real team, but is rather a visual illusion caused by a coincidental

configuration of agents.
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The behavior recognition proceeds on a team-by-team basis. Each team is indepen-

dently evaluated over the temporal intervals during which it was detected against a set of

parameterized team behavior models. Although STABR could employ arbitrary motion

models, here, we model team behaviors as a set of constrained rigid-body transforms,

such as “advance” (pure translation in the forward direction), “wheel” (rotation about

a forward corner), and “pivot” (rotation about team centroid). If the team’s movement

does not fit any known behavior, the assignment is discarded since it is likely to have

been the result of a spurious detection. This is best illustrated by an example. Consider a

team hypothesis that assigns three agents, (a1, a2, a3) to a “triangle” formation. Domain

knowledge specifies the set of behaviors that are available to each formation, and this im-

poses constraints on their observed motion. For instance, a triangle formation may only

be allowed to pivot about its centroid or advance as a wedge. The algorithm evaluates

the likelihood of explaining the observed team positions {a1(t), a2(t), a3(t)}, using each

behavior, over a sliding time window. Each behavior is characterized by a small number

of parameters; given these parameters and an initial agent configuration, the behavior

specifies the position of each agent in the formation over the time interval. For example,

the pivot behavior for a triangle formation is parameterized by the angular velocity, ω.

∀i ∈ {1, 2, 3}:

ai(t) =

 cos ω(t− t0) sin ω(t− t0)

− sin ω(t− t0) cos ω(t− t0)

 [ai(t0)− ā] + ā

where ā denotes the (stationary) centroid of the triangle formation. Our algorithm at-

tempts to fit the model to the observed data. In this example, if a1, a2 and a3 were re-

ally executing a pivot, the algorithm should recover an ω that matches the observations

well (in a least-squares sense). On the other hand, if a1, a2 and a3 were actually translat-

ing, then the pivot behavior would fail to match (for any choice of ω). Thus, we iterate

through each behavior and prune those behaviors that fail to match and also prune those
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team hypotheses that cannot be explained by any legal team behavior. The computational

benefits of pruning team hypotheses are discussed in the next section.

4.3.3 Explaining sequences of hypotheses

The final stage of STABR searches the space of team assignment and behavior recogni-

tion hypotheses generated by earlier stages for a consistent explanation over the entire

spatio-temporal trace. In general, there may be several consistent explanations for the

given observed agent movements; for instance, it is always possible to explain any trace

as a coincidental convergence of uncoordinated singleton movement (though this would

be highly improbable). We employ a cost function that formalizes the intuition that an ex-

planation that requires fewer changes in team assignment and behavior is preferable [91].

Given this cost function, we apply dynamic programming over the sequence to efficiently

find the minimal-cost solution.

For every time slice, STABR generates a list of potential set partitions from the team

assignment labels returned by the RANSAC-based formation matching and validated

by spatio-temporal behavior analysis. This list of set partitions represents a potential

world state for that time slice; each world state contains a team assignment for every

agent such that no agent is assigned to multiple teams (see Section 4.5 for ramifications

of relaxing this requirement). Generating a list of consistent world states is still (worst-

case) exponential in the number of team assignment hypotheses but this is a dramatic

improvement over considering the Bell number of total set partitions at each time step.

Thus, effective pruning of team assignment hypotheses using spatio-temporal behavior

analysis in earlier stages can greatly reduce running time.

Any sequence through this set of partitions is both consistent (all agents are assigned

to teams and no agent is assigned to multiple teams) and supported by local spatio-
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temporal evidence. We use a cost function to select the solution that most parsimoniously

explains the scenario. This be formulated as a shortest path problem through the space

of consistent team and behavior assignments and solved efficiently using dynamic pro-

gramming. The cost, CT−1 of explaining the entire sequence is computed using:

Cq
t+1 = min

∀p
{Cp

t + Dp,q}+ γ|q|,

where p and q are potential world states at time-steps t and t + 1 respectively, |q| denotes

the number of teams in the partition, and γ is a domain-specific parameter that controls

the degree to which STABR favors sequences with large teams. D is a “distance” between

states that captures differences in both team membership and behavior:

Dp,q =
∑
∀ai∈A

βI[bp(ai), bq(ai)] + τI[tp(ai), tq(ai)],

where I[., .] is an indicator variable; bp(ai) and bq(ai) return the behavior label for agent ai

under states p and q respectively; tp(ai) and tq(ai) return the team assignment for agent

ai under states p and q respectively; β and τ are domain-specific parameters that can be

tuned to improve recognition accuracy.

4.4 Experiments

We evaluate STABR on a set of scenarios of simulated military formations. The simulator

generates traces for the position of each agent, corrupted with iid Gaussian observation

noise and emits ground-truth data of the correct team assignments and behavior for the

scenario. STABR processes this data and generates a team-assignment and a behavior for

each agent, at every time-step. Our evaluation metrics are summarized below:

1. team assignment accuracy: We score, at each time-step, whether the team assign-

ment for each agent is correct. We employ a conservative metric and require the
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team memberships to match exactly; e.g., the absence of a single agent in a k-

member team counts as k errors — one for each of the incorrectly-labeled agents —

rather than a single assignment error. Team assignment accuracy is plotted over

time (Figure 4.2(a)) to show results on a particular scenario and averaged over the

scenario to generate aggregate results (Table 4.1).

2. behavior recognition accuracy: This measures the quality of behavior recognition

and is computed in an analogous manner as team assignment accuracy, using the

same conservative metric.

3. hypothesis set size: We examine the number of hypotheses that are considered by

STABR during various stages. This enables us to assess the contribution of spatio-

temporal pruning.

Each of the following experiments examines a particular aspect of STABR to better un-

derstand its contributions. In all of these experiments, the STABR parameters were set to

β = τ = 1 and γ=0.1, unless otherwise specified.

The first experiment evaluates the benefits of employing our static formation match-

ing approach against standard proximity-based clustering. K-means and agglomerative

clustering are two popular unsupervised clustering methods [28] that are frequently em-

ployed to group agents into teams. Since the former requires that the number of clusters

be externally-specified, we chose to compare STABR against the latter. In this experiment,

the first stage of STABR is replaced with agglomerative clustering, where groups of prox-

imal agents were aggregated into teams. Figure 4.2(a) presents the team assignment ac-

curacy for both algorithms on the scenario shown in Figure 4.1. Agglomerative clustering

and RANSAC both perform well when the agent teams are well-separated. However, as

the formations begin to interleave, the accuracy of agglomerative clustering deteriorates

rapidly. This is because agents that are proximal should frequently be assigned to differ-
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(a) team assignment accuracy (b) #hypotheses

Figure 4.2: (a) Team assignment accuracy for STABR comparing agglomerative clustering with

RANSAC on the scenario shown in Figure 4.1. Clearly proximity-based clustering is ineffective

when agent formations are in close proximity. (b) Pruning team assignment hypotheses based on

spatio-temporal behavior recognition drastically reduces the number of hypotheses that STABR

considers. The number of hypotheses that remain after pruning closely follows the actual size of

the consistent partitions.

ent teams. The transient drop in accuracy near t = 50 corresponds to frames where 12

agents simultaneously transition from three groups of 4 agents to four groups of 3 agents

over the span of a few frames; although either assignment would be correct during this

interval, the ground truth file arbitrarily selects a single transition point, and STABR’s

explanation is marked as incorrect. Results on behavior recognition mirror those for team

assignment, since correctly identifying an agent’s behavior generally requires the algo-

rithm to also group it into the correct team.

Table 4.1 summarizes the agent team assignment accuracy for STABR over several

scenarios. While proximity-based clustering can handle the simplest scenario, it copes

poorly with the interleaved formations in more complex scenarios.

The second experiment studies the contribution of the spatio-temporal behavior recog-

nition, not in terms of accuracy but rather in terms of reducing the number of hypotheses



4.5. DISCUSSION 55

Table 4.1: Agent team assignment accuracy, averaged over all agents and time for a variety of

scenarios. The benefits of RANSAC over proximity-based clustering are clearly evident. The

scenario illustrated in Figure 4.1 is Scenario D.

Cluster RANSAC

Scenario A 95.8% 97.8%

Scenario B 57.0% 99.3%

Scenario C 36.0% 99.5%

Scenario D 18.3% 98.5%

Scenario E 0.0% 95.0%

from which world-states need to be generated. Since the execution time of STABR’s last

stage can grow exponentially with the size of this hypothesis set, it is important to reduce

the set of team assignment hypotheses (without jeopardizing accuracy). Figure 4.2(b)

shows (in semi-log scale) the size of the hypothesis set before and after spatio-temporal

pruning along with the actual size of the consistent set (which is not actually known until

stage 3). As can be seen, the spatio-temporal behavior recognition dramatically reduces

the number of hypotheses that need to be considered by the third stage — without ad-

versely affecting accuracy.

4.5 Discussion

In military scenarios, group assignment can be quite challenging because modern forces

often split into multiple disconnected parts (e.g., far-ranging scouts, small diversion groups,

and flanking elements). Recognizing what the force is doing is often possible once it is

clear which units are involved. STABR correctly recovers team assignments even in cases
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of non-spatially contiguous divisions that foil standard clustering approaches to team

assignment.

The STABR approach is based on the following intuitions:

1. Initial agent-to-team assignments can be made on the basis of static spatial cues.

2. The aggregate agent movement for an incorrect team assignment will generally fail

to match any behavior model; this can be exploited to prune poor team assignments

thus speeding computation.

3. Desirable team and behavior assignments “explain” the activities of a large number

of agents over long chunks of the spatio-temporal sequence.

The scenarios presented in this chapter illustrate the operation of STABR in environments

that lack the external cues used by other multi-agent plan recognition approaches, such

as landmarks, cleanly-clustered agent teams, and extensive domain knowledge. When

such cues are available, they can be directly incorporated into STABR, both to improve

accuracy and to prune hypotheses. Thus, STABR provides a principled framework for

reasoning about dynamic team assignments in spatial domains.

The chicken-and-egg problem of simultaneous team assignment and behavior recog-

nition is conceptually similar to other AI problems, such as image segmentation/object

recognition in computer vision. During the image segmentation phase, pixels are as-

signed to objects that are then classified by an object recognition algorithm. The choices

made by segmentation affect the quality of the object recognition; thus one can favor

segmentations that generate recognizable objects. In the same way, STABR favors team

assignments that produce recognizable behaviors.

Although STABR was designed specifically for the analysis of spatio-temporal traces,

we believe that STABR can also be applied to a broader class of problems, where spatial

information does not govern team structure. For instance, agents could be assigned to
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teams based on observed inter-agent communication patterns in conjunction with role

templates that represent functional relationship between agents. In such domains, it may

be necessary to relax the restriction on team membership to allow an agent to simulta-

neously belong to multiple teams. This change would simplify the process of generating

valid world states since it removes the need for consistency checking at the expense of

increasing the number of potential hypotheses that need to be considered.

This chapter introduces a new algorithm, STABR, that generates both behavior an-

notations and team assignments from spatio-temporal agent traces. The proposed ap-

proach performs accurate team behavior recognition without an exhaustive search over

the combinatorial space of potential team assignments. Experiments on several simu-

lated military maneuvers demonstrate that STABR is accurate at both team assignment

and behavior recognition.

In the next chapter, we extend these ideas to cases where the sequence of actions per-

formed by each team are generated according to a specified set of plan libraries. We show

how this domain knowledge can be exploited to efficiently constrain the plan recognition

search space.
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Chapter 5

Efficient Plan Recognition for Dynamic

Teams

5.1 Introduction

In the previous chapter, we described STABR, an approach for recognizing behaviors

in scenarios where team membership is dynamic. STABR focuses on exploiting spatial

constraints between agents in a team and validating that the spatio-temporal behavior

of the hypothesized team (agent subset) matches valid movement patterns for the team.

However, STABR still operates at a lower level than classical plan recognition, where the

sequence of actions performed by an agent corresponds to an execution trace through a

plan tree. In this chapter, we address the problem of plan recognition for dynamic teams,

where the actions of the team are derived from an explicit plan and where the compo-

sition of agent teams changes according to the specified plan. Although it is possible to

apply single-agent plan recognition techniques in such scenarios, we demonstrate that

the existence of agent resource dependencies in the plan library can be leveraged to make

59
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the plan recognition process more efficient, in the same way that plan libraries contain-

ing certain temporal ordering constraints can reduce the complexity of single-agent plan

recognition [39].

Specifically, we present an algorithm for multi-agent plan recognition that leverages

several types of agent resource dependencies and temporal ordering constraints in the

plan library to prune the size of the plan library considered for each observation trace.

Thus, our technique can be used as a preprocessing stage for a variety of single-agent plan

recognition techniques to improve performance on multi-agent plan recognition prob-

lems. We also introduce a multi-agent planning formalism that explicitly encodes agent

resource requirements and illustrate how temporal dependencies extracted from this for-

malism can be precompiled into an index to be maintained in conjunction with the plan

library. We demonstrate the performance of our recognition techniques in the domain of

military plan recognition for large scenarios containing 100 agents and 40 simultaneously-

executing plans.

5.2 Problem Formulation

We formulate the multi-agent plan recognition problem as follows. LetA = {a0, a1, . . . , aN−1}

be the set of agents in the scenario. A team consists of a subset of agents, and we require

that an agent only participate in one team at any given time; thus a team assignment is a

set partition on A. During the course of a scenario, agents can assemble into new teams;

similarly, teams can disband to enable their members to form new teams. Thus the team

assignment is expected to change over time during the course of a scenario. The observ-

able actions of a team are specified by a set of behaviors, B. We assume that the sequence

of observed behaviors is the result of an execution of a team plan, Pr drawn from a known
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library P .

Let T = {T0, T1, . . . , Tm−1} be the set of agent traces, where each trace Ti is a temporally-

ordered sequence of tuples with observed behaviors and their corresponding agent as-

signment:

Ti = ((B0,Ai,0), (B1,Ai,1), . . . (Bt,Ai,t)) ,

where Bt ∈ B is the observed behavior executed by a team of agents Ai,t ⊂ A at time t.

Note that the composition of the team changes through time as agents join and leave the

team.

Our goal is to identify the set of plans, Pi that is consistent with each trace, Ti, and the

corresponding execution path through each plan (see Figure 5.1). This can be challenging

since most of the nodes in a plan tree do not generate observable behaviors and multiple

nodes in a single plan tree can generate the same observation.

5.3 Multi-agent Plan Representation

In this section, we describe our extensions to the hierarchical task network plan libraries

generally used for single-agent planning [30]. The principal purpose of our multi-agent

representation is to correctly model dependencies in parallel execution of plans with

dynamic team membership. Although our simulator uses this plan representation to

generate synthetic team plans, we do not suggest that the use of this formalism alone

guarantees good multi-agent coordination. Since our simulator operates in a centralized

fashion we deliberately omit considerations of communication cost and privacy from our

decision-making process. Instead, we focus on modeling possible sequences of externally

observable changes that can occur during the multi-agent execution process.

Each plan is modeled as a separate AND/OR tree, with additional directed arcs that
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Behavior: Advance
Team: A1,A2 ,A3 ,A4 B: Attack

T: A1…A6

Behavior: Withdraw
Team: A7

B: Advance
T: A5,A6

B: Defend
T: A1..A4

B: Withdraw
T: A1..A4

B: Ambush
T: A7

B: Advance
T: A7

B: D...
T: A…

B: Advance
T: A8,A9

B: Defend
T: A8,A9

Trace 0

Trace 1

Trace 2

Trace 3

Behavior: Attack
Team: A10

Trace 4

Behavior: Advance
Team: A10, A8, A9

Time

Figure 5.1: Example execution traces, T = {T0, T1, . . . , T4}. Each trace Ti is a temporally-ordered

sequence of tuples with observed behaviors, B, and their corresponding agent assignments, A.

Note that the composition of the team can change through time as agents join and leave the team.

The goal of multi-agent plan recognition is to identify the plan trees that generated these execution

traces.
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represent ordering constraints between internal tree nodes. Observable actions are rep-

resented as leaf nodes. These nodes are the only nodes permitted to have sequential

self-cycles; no other cycles are permitted in the tree. Figure 5.2 shows a small example

plan tree.

Additionally all plans are marked with an agent resource requirement, the number of

agents required for the plan to commence execution (additional agents can be recruited

during subsequent stages of a plan). For our military team planning domain, most leaf

nodes represent observable multi-agent behaviors (e.g., movement in formation) and thus

require multiple agents to execute. Note that the agent resource requirement specified in

the top level node does not represent the maximum number of agents required to ex-

ecute all branches of the plan, merely the number of agents required to commence plan

execution.

We use two node types, SPLIT and RECRUIT, to represent the splitting and merging

of agent teams. When a plan requires multiple subteams to execute subplans in parallel,

the SPLIT node is used. The children of the SPLIT node will commence execution in

parallel; optionally the parent plan can continue if there are still nodes in the original plan

that require execution. Merging teams are represented by RECRUIT nodes. RECRUIT

nodes are a mechanism for teams to acquire more members to meet an agent resource

requirement; if no agents can be found, plan execution blocks at the RECRUIT node until

sufficient agents become available. Agents that are not currently performing an action are

marked as executing a WAIT. All plan trees terminate with a WAIT node that frees agents

for recruitment by other plan trees. SPLIT and RECRUIT are not directly observable

actions and must be inferred from changing team sizes in observable leaf nodes. Note

that parallel agent traces are not assumed to be synchronized with strong timestamps,

nor are observations assumed to have atomic duration. Our simulator (described below)
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Plan039
Init: 4 agents

AND

Wait: 2 agentsANDOR

RECRUIT
4 agents

SPLIT
Plan002: 4 agents
Plan025: 2 agents

AttackAdvanceWheel Defend

D
ep

th
 =

 3

Figure 5.2: Example plan tree. The top node lists the plan library index and the number of agents

required (4) to start execution of this team plan. Hexagonal nodes denote directly observable

behaviors; square nodes are effectively invisible to an external observer and must be indirectly

inferred. The RECRUIT node indicates a point where additional agents are needed to continue

plan execution (i.e., to execute the Attack behavior). The SPLIT node denotes a point where the

plan requires multiple subteams to execute subplans (002 and 025) in parallel. At the end of the

plan, any remaining agents enter the WAIT state where they become available for recruitment by

new plans.



5.4. METHOD 65

records the order in which each trace commenced execution but there is no timestamp

synchronization across traces.

Kaminka [51] developed the concept of team coherence, the ratio of total agents to

the number of active plans, to represent the possibility of team coordination failures; he

demonstrates that plan recognition can be used as part of scalable disagreement-detection

system to detect the existence of incoherent team plans. Here, we represent such team-

work failures as plan abandonment; if the agents reconcile their differences and resume

coordination, it is detected as a new plan instance, rather than a continuation of a previous

team plan.

5.4 Method

In this section, we discuss our method of automatically recovering and utilizing hidden

structure embedded in user-defined multi-agent plan libraries. This hidden structure can

be efficiently discovered when the plan library is created, indexed in tables that are stored

and updated along with the plan library, and used as part of a pre-processing pruning

step before invoking plan recognition to significantly reduce the number of plan libraries

considered for each observation trace.

5.4.1 Implicit Temporal Dependencies

Traditional plan recognition would examine each trace Ti independently, and test each

plan from the library Pr ∈ P against the trace to determine whether Pr can explain the

observations in Ti. We propose uncovering the structure between related traces Ti and Tj

to mutually constrain the set of plans that need to be considered for each trace.
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Note that we cannot determine which traces are related simply by tracking a single

agent through time as that agent may be involved in a series of unconnected team plans.

However, by monitoring team agent memberships for traces Ti and Tj , we can hypothe-

size whether a subset of agentsAj from Ti may have left as a group to form Tj . In that case

the candidate plans Pr and Ps for traces Ti and Tj , respectively, must be able to generate

observations that explain both the final observation of Aj in Ti (not necessarily the final

observation in Ti) and the initial observation of Aj in Tj .1

Our method does not require synchronization across traces since it is difficult in prac-

tice to predict execution for a plan tree: (1) when behaviors have stochastic durations; (2)

many execution paths exist for a given plan tree; (3) plan execution can block pending

agent resource requirements. Although we eschew timestamps, we can still determine

temporal causality relationships between traces as described above.

Similar temporal dependencies also exist between consecutive observations during a

single execution trace. For instance, the observation sequence (Bp, Bq) can typically not

be generated by every plan in the library, particularly if |B| is large or when plans exhibit

distinctive behavior sequences. These dependencies are implicitly employed by typical

plan recognition algorithms; our work generalizes this concept across related execution

traces.

5.4.2 Plan Library Pruning

Our method exploits the implicit temporal dependencies between observations, across

and within traces, to prune the plan library and to dramatically reduce the execution

1For this constraint to hold if plan abandonment is possible, we must assume that abandonment cannot

occur during subteam formation— it either occurs before subteam formation or after the execution of the

subteam’s initial behavior.
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time of multi-agent plan recognition. Our algorithm for recovering hidden dependencies

from the plan library proceeds as follows. First, we construct a hash, h that maps pairs of

observations to sets of plans. Specifically, h : Bp×Bq → {Pj} iff some parent plan Pi could

emit observation Bp immediately before subteam formation and its subplan Pj could emit

observation Bq immediately after execution. h can be efficiently constructed in a single

traversal of the plan library prior to plan execution. Intuitively, h is needed because the

formation of a subteam (i.e., SPLIT) is an invisible event; one can indirectly hypothesize

the existence of a split only by noting changes in agent behavior. The presence of a SPLIT

node can also be detected by observing a drop in team size in the parent trace. Specifically,

h captures relationships between pairs of plans of the form that an observable behavior in

the first plan can be followed by an observable behavior in the second plan (i.e., a subset

of agents executing the first plan can SPLIT off to execute the second plan). Given a pair

of observations, h enables us to identify the set of candidate plans that qualify as subplans

for the identified parent plan. This allows us to significantly restrict the plan library for

the child trace. Figure 5.3 illustrates the construction of h for a highly-simplified plan

library consisting of two plan trees.

The temporal dependencies that exist between consecutive observations in a single

execution trace can be exploited to further prune the set of potential plans. This is also

implemented using a hash, g, that maps pairs of potentially-consecutive observations

within a plan tree to sets of plans, which we also precompute using a single traversal of

the plan library. Figure 5.4 illustrates a simple example with a plan library consisting of

two plan trees. Some observable sequences could only have been legally generated by

one of those two trees (e.g., C,A), while others are ambiguous (e.g., A,B).

The size of these hash can be O(|B|2|P|) in the worst case since each entry could in-

clude the entire set of plans. In practice h and g are sparse both in entries and values.
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Plan022
Init: 6 agents

Plan006
Init: 2 agents

AND

X

C

SPLIT
Plan006: 2 agents

Z

OR

X

Y

Insert into across-plan hash h:
-B,X Plan006
-B,Y Plan006
-C,X Plan006
-C,Y Plan006

B

OR

Z

AND

Figure 5.3: Example of across-plan relationships captured by hash h. h captures observable

behaviors across a team split. In this case, the SPLIT node in the parent plan (022) could be

preceded by observation B or C, while the first step in the subplan (006) will generate either X

or Y. Therefore, h will contain four entries, all pointing to Plan006. Observing one of these four

sequences is an indication that the system should consider the possibility of a SPLIT.
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Plan032
Init: 3 agents

Plan123
Init: 3 agents

AND

A

C

D

OR

A

C

Insert into within-plan hash g:
-A,B {Plan032,Plan123}
-A,C {Plan032}
-B,C {Plan123}
-B,D {Plan032}
-C,A {Plan123}
-C,D {Plan032}

B

OR AND

B

Figure 5.4: Example of within-plan relationships captured by hash g. g captures all plans where

two observations can be observed in sequence. For instance, the observed sequence of three

agents executing A,B could be generated by either of the plan trees whereas A,C could only be

the result of Plan032. These temporal constraints can significantly prune the set of possible plan

hypotheses.
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Applying h requires one lookup per execution trace while g requires a linear scan through

the observations.

5.4.3 Analyzing Scenarios with Dynamic Team Membership

This techniques described here rely on the availability of agent team assignments for

multi-agent behavior traces. Recovering this information can be challenging in scenar-

ios with dynamic team assignment, during which the composition of the team changes

over the course of the plan. The pool of possible agent-to-team assignments grows very

quickly with the number of agents and is equivalent to the number of partitions of a set.

Fortunately, for many applications involving physically-embodied agents it is possible

to robustly infer team membership from spatio-temporal data. In cases where the agent

teams are physically well-separated, clustering can be used to recover team assignments.

In more complicated scenarios, one can use algorithms such as STABR (Simultaneous

Team Assignment and Behavior Recognition), described in Chapter 4.

5.5 Results

Before describing the results of our experiments, we first present our methodology for

creating a plan library and simulating execution traces that respect both temporal and

resource constraints.

5.5.1 Plan Library Generation

We follow the experimental protocol prescribed by Avrahami-Zildebrand and Kaminka [5],

where simulated plan libraries of varying depths and complexity are randomly con-
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structed. Randomly-generated plans do not reflect the distinctive structure of real-world

plans and are therefore a pessimistic evaluation of our method since it relies so heavily

on regularities between consecutive observations (both within and between plans). The

plan trees are randomly assembled from OR, AND, SPLIT, RECRUIT nodes, and leaf

(behavior) nodes. Adding a higher percentage of SPLIT nodes into the tree implicitly

increases the number of execution traces since our simulator (described below) creates a

new execution trace for each subplan generated by a SPLIT.

5.5.2 Execution Trace Generation

Given a plan library and a pool of agents, the execution trace generator simulates plan

execution by allocating agents from the pool to plans as they commence execution and

blocking plans at RECRUIT nodes while agent resource constraints remain unfulfilled.

Note that a given plan tree can generate many node sequences; the same node sequence

will execute differently based on which other plans are simultaneously drawing from the

limited pool of agents.

5.5.3 Evaluation

To evaluate the efficacy of our method, we examine three pruning strategies over a range

of conditions. The default settings for each parameter are shown in Table 5.1. To reduce

stochastic variation, the following graphs show results averaged over 100 experiments.

On average, the across-trace (h) and within-trace (g) hashes are at 19% and 70% occu-

pancy, respectively. The average number of plans hashed under each key is 1.14 and 2.87,

respectively. The average wall-clock execution time for the default scenario, on a 3.6 GHz

Intel Pentium 4, is only 0.14s, showing that multi-agent plan recognition for a group of
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Table 5.1: Default plan generation parameters

Parameter Default

Number of agents |A| 100

Plan library size |L| 20

Plan tree depth (average) 4

Plan tree branching factor (avg) 3

Observation label size |B| 10

Parallel execution traces (average) 12

100 agents is feasible.

Since plan recognition methods can return multiple hypotheses for each trace, the nat-

ural metrics for accuracy are precision and recall. The former measures the fraction of

correctly-identified traces over the number of returned results while the latter is the ratio

between the number of correctly-identified traces to the total number of traces. Since all

of the methods evaluated here are complete, it is unsurprising that they achieve perfect

recall on all of our experiments. Precision drops only when multiple plan trees match

the observed trace. In these experiments, precision was near-perfect for all methods, in-

dicating that there was little ambiguity in the generated traces. In a small number of

cases (where the observable action vocabulary was small), our method achieved higher

precision than the baseline because it was able to disambiguate otherwise identical traces

based on parent-child dependencies. However, we do not claim better precision in gen-

eral over baseline methods since these cases are infrequent; rather, the primary focus of

this chapter is to present a more efficient scheme for team plan recognition that exploits

inter-plan constraints.
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We perform a set of experiments to evaluate the efficiency of three approaches to team

plan recognition:

Unpruned: standard depth-first matching of every observation trace against each plan in

the library.

Team Only: prune plan libraries for each observation trace using across-trace dependen-

cies from h before running depth-first matching.

Team+Temporal: prune plan libraries using both within-trace dependencies stored in g,

and across-trace dependencies from h, before running depth-first matching.

Figure 5.5 shows how plan recognition time (as measured by the number of leaf node

comparisons) scales with growth in library size (number of plan trees). We see that

the Unpruned and Team Only approaches scale approximately linearly with library size

while the cost for combined Team+Temporal pruning remains almost constant. This is

because the set of plan trees that could explain a given set of observed traces remains

small.

Figure 5.6 examines how the performance of the three methods scales with the num-

ber of observed execution traces. It is unsurprising that the time for all of the methods

grows linearly. However, the pruning approaches significantly reduce cost. In this case,

Team+Temporal achieves a consistent but less impressive improvement over Team Only.

We see that the pruning strategies enable us to run plan recognition on much larger sce-

narios.

Figure 5.7 presents the cost of plan recognition against the average depth size of plan

trees in the library. Since the number of nodes in a plan tree increases exponentially with

depth, we expect to see a similar curve for each of the three approaches. However, we do

see a dramatic reduction in cost due to pruning.
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Figure 5.5: Cost of plan recognition time (as measured by leaf node comparisons) with plan library

size, |P|.

Figure 5.8 shows how increasing the number of distinctly-recognizable low-level be-

haviors (number of observation labels) impacts the cost of team plan recognition. As the

number of potential labels grows, it becomes easier to disambiguate sequences of ob-

served actions. Consequently, the benefits of pruning within-trace (using hash g) become

increasingly important. This is evident in our results, where Team+Temporal pruning

shows clear benefits.

5.6 Discussion

Geib [39] discusses the problem of plan library authoring and suggests that users should

refrain from including plans that share a common unordered prefix of actions in their
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Figure 5.6: Cost of plan recognition time (as measured by leaf node comparisons) with increasing

number of execution traces.
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Figure 5.7: Cost of plan recognition time (as measured by leaf node comparisons) with average

plan tree depth.
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Figure 5.8: Cost of plan recognition time (as measured by leaf node comparisons) with potential

observation labels, |B|.
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libraries due to the enormous increase in potential explanations for a given observation

sequence. In our algorithm, we discover characteristics of the plan library that compress

the number of potential explanations. The benefits of implementing this process as an

automatic preprocessing step are:

1. By automatically recovering this hidden structure, we remove some of the burden

of plan library authorship from the user.

2. Preprocessing the plan library allows us to remain agnostic in our actual choice of

plan recognition algorithm.

Although there is some amount of hidden temporal structure in single-agent plan li-

braries, when plans involve the formation of teams, additional structure is created by

the enforcement of agent resource requirements.

We present a method for efficiently performing plan recognition on multi-agent traces.

We automatically recover hidden structure in the form of within-trace and across-trace ob-

servation dependencies embedded in multi-agent plan libraries. Our plan library prun-

ing technique is compatible with existing single-agent plan recognition algorithms and

enables these to scale to large real-world plan libraries.



Chapter 6

Analyzing Scenarios with Weak

Spatio-Temporal Cues

In previous chapters, we have presented methods that rely on spatio-temporal cues to

recognize the behavior of agent teams. However, agent teams in some domains may fail

to exhibit strong spatio-temporal cues, or may perform sequences of behaviors that do

not map well to traditional plan libraries. This chapter examines some of those issues in

the context of multi-player tactical games.

We focus on the problem of analyzing multi-player tactical battle scenarios from game

logs. The ability to identify individual and team plans from such observations is im-

portant for a wide range of applications including constructing opponent models, auto-

mated commentary, coaching applications, and surveillance systems. However, the mil-

itary adage “no plan, no matter how well conceived, survives contact with the enemy

intact” reveals that in many cases team plan execution halts early in the course of battle

due to unexpected enemy actions. Of course, an ideal plan would include courses of ac-

tion for all possible contingencies, but typical battle plans only include options for a small

79
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set of expected outcomes. If the enemy’s actions cause the world state to deviate from this

expected set, the team is often forced abandon the plan. After multiple plans have been

initiated and abandoned, matching the observation trace becomes a difficult proposition,

even for an omniscient observer. Moreover, it is unclear whether expert human teams

create deep plan trees in situations where enemy actions may force plan abandonment

after a few time steps.

Even in cases when the pre-battle plan has been abandoned, we hypothesize that suc-

cessful teams continue to follow a policy through the course of battle and that this policy

can be recovered from the observed data. We define a policy as a preference model over

possible actions, based on the current game state. A team policy is a collection of individ-

ual policies along with an assignment of players to policies (roles). Policies are typically

broad but shallow, covering all possible game states without extending far through time,

whereas plans are deep recipes for goal completion, extending many time steps into the

future, but narrow, lacking contingencies for all but a small set of expected outcomes. The

same player intentions can be expressed as either a plan or a policy for game play.

In this chapter, we present two techniques for recovering individual and team policies

from multi-player tactical scenarios. Our scenarios are described and played using the

Open Gaming Foundation d20 Game System (v3.5) [108]. The d20 System is a set of rules

governing combat, negotiation, and resource management employed by popular turn-

based tabletop games including Dungeons and Dragons and the Star Wars role-playing

game.

The remainder of the chapter is organized as follows. Section 6.1 defines the policy

recognition problem, describes the d20 rule system, and presents the battle scenarios that

are used by our human players. The game logs from these battles provided the data

on which our policy recognition approaches are evaluated. Sections 6.2 and 6.3 present
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two complementary methods for policy recognition: an evidential reasoning system for

scoring data from game logs and a discriminative classifier trained on simulated game

logs. Section 6.4 discusses results in the context of plan recognition, and concludes the

chapter.

6.1 Domain: d20 Gaming System

To simulate the process of enemy engagement, we adapted the combat section of Open

Gaming Foundation’s d20 System (v3.5) to create a set of multi-player tactical scenarios.

The d20 System has several useful properties that make it a promising domain:

1. D20 is a turn-based rather than a real-time game system. A game can thus be logged

as a sequence of discrete actions performed by each player and policy recognition

can be directly executed on these streams of actions and observed game states.

2. The outcome of actions is stochastic, governed by rolling dice (typically an icosahe-

dral die, abbreviated as d20). The rules define the difficulty levels for a broad range

of combat tasks; to determine whether a particular action succeeds, the player rolls

a d20 and attempts to score a number that is greater than or equal to the difficulty

level of the task.

3. Spatial arrangements affect the outcome of many of the combat actions, making

the difficulty level easier or harder; for instance, two allies on opposite sides of a

target gain a mutual benefit for flanking the enemy. Thus, the tactical arrangements

of units on the grid can significantly influence the course of a battle. Experienced

players coordinate such actions to maximize their chance of success.

4. Teamwork between players is of paramount importance. The opposing forces are
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designed to be impossible for a single player to defeat. However, certain game

rewards are occasionally awarded to the first player to achieve an objective. To suc-

ceed, players must simultaneously contribute to team goals in battle while pursuing

their own competitive objectives.

A typical d20 Game is played by a group of 3–6 players with one referee. Each player

controls one character within the virtual gaming world that the referee brings to life

through verbal descriptions and miniatures on a dry-erase tabletop gaming map (Fig-

ure 6.1). Characters have a well-defined set of capabilities that determine their compe-

tence at various tasks in the virtual world. The referee controls the actions of all other

entities in the virtual world (known as non-player characters). During a typical four hour

session, the referee poses a series of challenges—diplomatic negotiations, battles, and

puzzles—that the players must cooperatively solve. Success for the players enhances the

capabilities of their characters, giving them more abilities and resources. Failure can re-

sult in the death of characters or the loss of resources Thus, characters’ capabilities persist

over multiple gaming sessions which makes it different from other iterative games where

state is reset at the conclusion of each session.

Although tabletop gaming lacks the audio and visual special effects of its more pop-

ular computerized cousins, tabletop games typically have a stronger emphasis on team

tactics and character optimization. In battle, time becomes a limited resource and players

typically have to coordinate to overcome their foes before the foes defeat them. Since most

computer games are real-time rather than turn-based, they disproportionally reward fast

keyboard reflexes and manual dexterity over tactical and strategic battle planning.
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Figure 6.1: A tactical battle in the d20 System. Players control characters represented by plastic

miniatures in a discretized grid environment. Actions with stochastic outcomes are resolved using

dice, with probabilities of a successful outcome listed in rulebooks. A human referee (not shown)

adjudicates the legality of player actions and controls opponents, such as the dragon.
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6.1.1 Multi-Player Tactical Scenarios

Our experiments in policy recognition focus on the subset of the d20 system actions that

deal with tactical battles (as opposed to diplomatic negotiation or interpersonal interac-

tion). Each scenario features a single battle between a group of player characters and a

set of referee-controlled opponents. The players have limited knowledge of the world

state and limited knowledge about their opponents’ capabilities and current status; the

referee has complete knowledge of the entire game state. Players are allowed to commu-

nicate in order to facilitate coordination but the referee will usually disallow excessive

communication during battle and limit players to short verbal utterances.

Figure 6.2 shows a typical multi-player tactical scenario from Dungeons & Dragons.

The three players must cooperate to achieve one of two objectives: defeat the dragon, or

distract the dragon to rescue the prisoner in the corner of the room. Based on the capa-

bilities of their characters, the players select a goal and allocate functional roles for the

upcoming battle. Each of the three players was assigned a character originally developed

for the 2006 Dungeons and Dragons Open Championships [27]; their capabilities are sum-

marized in Table 6.1. Each character is capable of fulfilling multiple roles in a team but

each is poorly suited to at least one role. The roles are:

1. slayer who fights the dragon in close-combat;

2. blocker, a defensive character who shields more vulnerable characters;

3. sniper, who skirmishes the dragon at range;

4. medic who restores health to other characters;

5. scout, a stealthy character who can rescue the prisoner without being noticed by the

distracted dragon.
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Figure 6.2: Primary tactical scenario. The three human players select roles that enable them

to achieve one of two goals: (1) defeat the dragon in battle; (2) distract the dragon while one

character frees the prisoner.
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Table 6.1: Characters and summarized capabilities

Name Offensive Defensive Magic Stealth

A high medium low low

B medium high low low

C low medium medium low

D high low medium medium

E medium low low high

F medium low high medium

6.1.2 Game Mechanics

The battle sequence in each scenario is as follows:

1. The referee draws the terrain and places the opponents on the grid at the beginning

of the scenario. Then the players place their miniatures on the grid to indicate their

starting location.

2. At the start of the battle, each entity (players and opponents) rolls an initiative to

determine the order of action each round (time unit). This initiative is maintained

through the battle (with a few possible exceptions).

3. Each round is a complete cycle through the initiatives in which each entity can move

and take an action from a set of standard actions.

4. If a character’s health total goes below 0, it is dead or dying and can no longer take

any actions in the battle unless revived by another player’s actions.

Each character has the following attributes that affect combat actions: (1) hit points:

current health total; (2) armor class: a measure of how difficult a character is to hit with
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physical attacks; (3) attack bonus: a measure of how capable a character is at handling

weaponry. When a character attacks an opponent, the attack is resolved using the follow-

ing formula to determine whether the attack is successful:

d(20) + attack bonus + modifiers ≥ armor class + modifiers

where d(20) is the outcome of a twenty-sided die roll. If the expression is true, the attack

succeeds and the opponent’s hit points are reduced.1 Situational modifiers include the

effect of the spatial positioning of the characters. For instance, the defender’s armor class

improves if the attacker is partially occluded by an object that provides cover.

6.1.3 Problem Formulation

We define the problem of policy recognition in this domain as follows. Given a sequence

of input observationsO (including observable game state and player actions) and a set of

player policies P and team policies T , the goal is to identify the policies ρ ∈ P and τ ∈ T

that were employed during the scenario. A player policy is an individual’s preference

model for available actions given a particular game state. For instance, in the scenario

shown in Figure 6.1, the archer’s policy might be to preferentially shoot the dragon from

a distance rather than engaging in close combat with a sword, but he/she might do the

latter to protect a fallen teammate. In a team situation, these individual policies can be

used to describe a player’s role in the team (e.g., combat medic). A team policy is an allo-

cation of players to these tactical roles and is typically arranged prior to the scenario as a

locker-room agreement [89]. However, circumstances during the battle (such as the elim-

ination of a teammate or unexpected enemy reinforcements) can frequently force players

to take actions that were a priori lower in their individual preference model.
1For Dungeons and Dragons, which is based in a fantasy setting, a similar system details how different

characters can employ magic to attack opponents and how resistant characters are to the effects of magic.
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In particular, one difference between policy recognition in a tactical battle and typ-

ical plan recognition is that agents rarely have the luxury of performing a pre-planned

series of actions in the face of enemy threat. This means that methods that rely on tempo-

ral structure, such as Dynamic Bayesian Networks (DBNs) and Hidden Markov Models

are not necessarily be well-suited to this task. An additional challenge is that, over the

course of a single scenario, one only observes a small fraction of the possible game states,

which makes policy learning difficult. Similarly, some games involve situations where

the goal has failed and the most common actions for a policy are in fact rarely observed

(e.g., an enemy creates a smokescreen early in the battle, forcing the archer to pursue

lower-ranked options). The following sections present two complementary approaches

to policy recognition: (1) a model-based method for combining evidence from observed

events using Dempster-Shafer theory, and (2) a data-driven discriminative classifier using

support vector machines (SVMs).

6.2 Model-Based Policy Recognition

The model-based method assigns evidence from observed game events to sets of hypoth-

esized policies. These beliefs are aggregated using the Dempster-Shafer theory of eviden-

tial reasoning [88]. The primary benefit of this approach is that the model generalizes

easily to different initial starting states (scenario goals, agent capabilities, number and

composition of the team).

6.2.1 Dempster-Shafer Theory

This section presents a brief overview of the Dempster-Shafer theory of evidential reason-

ing [88]. Unlike traditional probability theory where evidence is associated with mutually-
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exclusive outcomes, the Dempster-Shafer theory quantifies belief over sets of events. The

three key notions of Dempster-Shafer theory are: (1) basic probability assignment func-

tions (m); (2) belief functions (Bel); (3) plausibility functions (Pl). We describe these below.

The basic probability assignment function assigns a number between 0 and 1 to every

combination of outcomes (the power set). Intuitively this represents the belief allocated

to this subset and to no smaller subset. For example, after observing an agent’s actions

over some time, one may assert that it is following either policy ρ1 or ρ2, without further

committing belief as to which of the two is more likely. This contrasts with the standard

Bayesian approach that would typically impose a symmetric, non-informative prior over

ρ1 and ρ2 (asserting that they were equally likely). More formally, given a finite set of

outcomes Θ whose power set is denoted by 2Θ, the basic probability assignment function,

m : 2Θ 7→ [0, 1] satisfies:

m(∅) = 0∑
A⊆Θ

m(A) = 1.

Following Shafer [88], the quantity m(A) measures the belief committed exactly to the

subset A, not the total belief committed to A. To obtain the measure of the total belief

committed to A, one must also include the belief assigned to all proper subsets of A.

Thus, we define the belief function Bel : 2Θ 7→ [0, 1] as

Bel(A) =
∑
B⊆A

m(B).

Intuitively the belief function quantifies the evidence that directly supports a subset of

outcomes. The non-informative belief function (initial state for our system) is obtained

by setting: m(Θ) = 1 and m(A) = 0 ∀A 6= Θ.

The plausibility function quantifies the evidence that does not directly contradict the
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outcomes of interest. We define the plausibility function Pl : 2Θ 7→ [0, 1] as

Pl(A) =
∑

B∩A6=∅

m(B).

The precise probability of an event is lower-bounded by its belief and upper-bounded by

its plausibility functions, respectively.

We employ Dempster-Shafer theory to model how observed evidence affects our be-

liefs about a character’s current policy. For instance, seeing a character moving on the

battlefield could indicate that the agent’s role is that of a sniper, a medic or a scout (rather

than a slayer or blocker). This can be expressed as:

m({sniper,medic,scout}) = 0.7 and m(Θ) = 0.3.

The belief that the agent is adopting one of these roles is 0.7, yet the belief that the agent

is specifically a sniper is 0 (although the plausibility for either of these is 1). Conversely,

while the belief that the agent is adopting a slayer policy is also 0, the plausibility is only

0.3.

Dempster-Shafer theory also prescribes how multiple, independent sources of evi-

dence should be combined. Dempster’s rule of combination [88] is a generalization of

Bayes’ rule and aggregates two basic probability assignments m1 and m2 using the fol-

lowing formula:

m12(∅) = 0

m12(C 6= ∅) =

∑
A∩B=C m1(A)m2(B)

1−
∑

A∩B=∅ m1(A)m2(B)
.

One potential issue with this rule is its treatment of conflicting evidence. The normaliz-

ing term in the denominator redistributes the probability mass associated with conflict-

ing evidence among the surviving hypotheses. Under certain conditions, this has the

undesirable property of generating counterintuitive beliefs. In the pathological case, an
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outcome judged as unlikely by both m1 and m2 can have a value of 1 in m12 if all other

subsets conflict. To address this problem, several other rules of combination have been

proposed [86].

Yager’s rule [110] is very similar to Dempster’s rule with the single exception that con-

flicting evidence is assigned to the universal set, m(Θ), rather than used as a normalizer.

The rule can be stated as follows:

m12(∅) = 0

m12(C 6= ∅) =
∑

A∩B=C

m1(A)m2(B)

m12(Θ) ← m12(Θ) +
∑

A∩B=∅

m1(A)m2(B).

Although this formulation is not associative, we implement Yager’s rule in a quasi-associative

manner to enable efficient online update [86]. In the absence of conflict, Yager’s rule gives

the same results as Dempster’s rule of combination.

Finally, we consider another quasi-associative rule: the intuitive idea of averaging

corresponding basic probability assignments [86]:

m1...n(A) =
1

n

n∑
i=1

mi(A).

Unfortunately it is impossible to know a priori which rule will perform well in a given

domain since no single rule has all of the desirable properties.

6.2.2 Empirical Evaluation

Based on domain knowledge, we identified a general set of observable events that occur

during a Dungeons and Dragons battle. Each of these events was associated with a basic

probability assignment function to assign beliefs over sets of individual policies. For

example, the observed event of a character being attacked by an opponent is associated
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with: m(Θ) = 0.1, m({scout}) = 0.4, m({blocker}) = 0.5. This rule assigns a large belief

(0.5) to the blocker policy, while reducing the plausibility of the scout policy to 0.1. Note

that the set {scout} also includes the blocker policy, thus the plausibility of blocker is 1.

The plausibility of the remaining three policies is 0.5.

Data from a series of Dungeons and Dragons games using the tactical scenario shown

in Figure 6.2 was recorded and annotated according to our list of observable events. The

m-functions for the set of events observed for each character was aggregated using the

three rules of combination described in Section 6.2.1.

We computed the average accuracy over the set of battles for each of the three rules

of combination. At the conclusion of each battle, the system made a forced choice, for

each player, among the set of policies (roles). Each player was classified into the singleton

policy with the highest belief. Comparing this against the ground truth and averaging

over battles produces the confusion matrices given in Tables 6.2, 6.3 and 6.4. We note

that, according to this forced-choice metric, all of the combination rules perform reason-

ably well, with Dempster’s Rule scoring the best. The largest source of confusion is that

the slayer policy is occasionally misclassified as blocker. This motivates the data-driven

method described in Section 6.3.1 where we specifically learn classifiers to discriminate

between these two similar policies.2

To illustrate how belief changes as evidence is aggregated using the different combi-

nation rules, we plot the belief for each policy for one battle from our dataset (Figure 6.3).

Since neither Yager nor averaging employ normalization, we plot their beliefs on a semi-

log scale. We note the following. Yager’s rule makes conflicting evidence explicit by

allocating significant mass to the unknown policy. In particular, this reveals the difficulty

2The blocker and slayer policies can generate very similar observable state since intelligent opponents

often target the slayer preferentially in order to eliminate their biggest threat.
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Table 6.2: Confusion matrix for model-based policy recognition (Dempster)

sniper slayer medic blocker scout

sniper 100% 0% 0% 0% 0%

slayer 0% 83% 0% 17% 0%

medic 0% 0% 100% 0% 0%

blocker 0% 0% 0% 100% 0%

scout 0% 0% 0% 0% 100%

Table 6.3: Confusion matrix for model-based policy recognition (Yager)

sniper slayer medic blocker scout

sniper 100% 0% 0% 0% 0%

slayer 0% 83% 0% 17% 0%

medic 0% 0% 100% 0% 0%

blocker 0% 0% 0% 100% 0%

scout 0% 0% 0% 0% 100%

Table 6.4: Confusion matrix for model-based policy recognition (Averaging)

sniper slayer medic blocker scout

sniper 88% 0% 0% 12% 0%

slayer 7% 40% 7% 39% 7%

medic 0% 0% 0% 100% 0%

blocker 0% 0% 0% 100% 0%

scout 0% 0% 0% 0% 100%
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of distinguishing between the blocker and slayer, even late in the battle. A concern with

Yager’s rule is that the belief for a policy decays over time, despite increasing evidence

because all of the rules leak some mass to the unknown set. Averaging corresponding

m-values performs the least well in our domain.

6.3 Data-Driven Policy Recognition

To discriminate between similar policies, we propose a data-driven classification method

that is trained using simulated battle data. By training the method on a specific scenario,

it can exploit subtle statistical differences between the observed outcomes of similar poli-

cies. For instance, characters following the slayer policy should both inflict more dam-

age on their opponents and receive more damage in return, whereas the more defensive

blocker policy occupies the enemy without resulting in substantial losses on either side.

This section describes the classifier that we employ, Support Vector Machines (SVM), and

evaluates the method on a second scenario (Figure 6.4).

6.3.1 Support Vector Machines

The goal of policy classification is to label an observed action sequence as a member of

one of k categories (e.g., blocker vs. slayer). We perform this classification using support

vector machines [105]. Support vector machines (SVM) are a supervised binary classi-

fication algorithm that have been demonstrated to perform well on a variety of pattern

classification tasks. Intuitively the support vector machine projects data points into a

higher dimensional space, specified by a kernel function, and computes a maximum-

margin hyperplane decision surface that separates the two classes. Support vectors are

those data points that lie closest to this decision surface; if these data points were removed
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Figure 6.3: Evolution of beliefs over the course of one battle from the scenario shown in Figure 6.2.

The beliefs for policies adopted by each of the three characters, according to the three rules

of combination, are shown. The three rows correspond to Dempster’s Rule, Yager’s Rule and

m-function averaging, respectively. The columns correspond to three characters A, C, E from

Table 6.1, adopting the ground-truth policies, slayer , medic and sniper , respectively.
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from the training data, the decision surface would change. Given a labeled training set

{(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ <N is a feature vector and yi ∈ {−1, +1} is its

binary class label, an SVM requires solving the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

constrained by:

yi(w
T φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

The function φ(.) that maps data points into the higher dimensional space is not explicitly

represented; rather, a kernel function, K(xi,xj) ≡ φ(xi)φ(xj), is used to implicitly specify

this mapping. In our application, we use the popular radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj||2), γ > 0.

Many efficient implementations of SVMs are publicly available; we use LIBSVM [19] be-

cause it includes good routines for automatic data scaling and model selection (appropri-

ate choice of C and γ using cross-validation). To use SVMs for k-class classification, we

train kC2 pair-wise binary classifiers and assign the most popular label.

6.3.2 Empirical Evaluation

The data-driven method takes as input a feature vector summarizing the observed infor-

mation about the battle and performs a forced classification into policies. We investigated

three choices for feature sets: (1) a histogram of the observed character actions over the

battle — this is similar to a bag of words model in information retrieval; (2) a vector with

character and enemy status at every time step; (3) a concatenation of these two vectors.
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Table 6.5: Confusion matrix for data-driven policy recognition on the scenario shown in Figure 6.4

using the three different feature sets.

action state combined

blocker slayer blocker slayer blocker slayer

blocker 96% 4% 82% 18% 98% 2%

slayer 0% 100% 16% 84% 0% 100%

To train the SVM, we generated training data by simulating a set of single player

battles in a simplified scenario, using the policies of interest (blocker and slayer). The

trained SVM was then evaluated on several other scenarios. Table 6.5 shows the confusion

matrices for battles on one of these scenarios. This scenario, shown in Figure 6.4, is a two-

player battle where the characters defend a bridge against multiple opponents; the goal is

to correctly classify the policy employed by the front-line character. We observe that the

data-driven method using the combined set of features can reliably discriminate between

the blocker and slayer policies. The other two matrices indicate that, in this case, the

classifier relies mainly on the histogram of observed actions. However, we note that such

data-driven methods require sufficient quantities of training data to avoid overfitting, and

that they generalize poorly to novel scenarios when such data has not been provided.

6.4 Discussion

One interesting aspect about battles in the d20 System is that a player’s action choices are

constrained by a complex interaction between the character’s capabilities, its location on

the map and its equipment (including consumable resources). Hence, different players

have different attack options, and each player has different choices over time, depending
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Figure 6.4: Tactical scenario where two players defend a bridge against multiple opponents.
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on the current state of the battle. Despite the stochastic nature of the domain, players

typically follow battle tactics that are identifiable to other humans. As the human referee

controlling the opponents recognizes the players’ tactics, he/she will often intelligently

adapt to the players’ tactics better than computer game engines that are relatively insensi-

tive to player actions. An application of our work would be the development of comput-

erized opponents that react realistically to player tactics to enhance both computer games

and military simulations. Despite its fantasy setting with dragons and magic, the d20

tabletop system exercises many of the tactical concepts that current military commanders

employ in decision-making games and situational awareness exercises [71].

Teamwork is an important aspect of tactics in the d20 system since the actions of other

players can significantly affect the difficulty level of various combat actions. Although

building a fully-specified team plan is typically impractical given the complexity of the

domain, players generally enter battle with a “locker-room agreement” specifying the

policy that the character will seek to use in the upcoming confrontation. There is not a

simple mapping between a character capabilities and this policy; an effective team role

must consider the capabilities of team members, the expected abilities of opponents and

the overall team goal. We believe that identifying each character’s policy is an important

first step towards predicting the character’s future actions, identifying the set of team

goals, and generating an automated higher-level commentary on the scenario.

The model-based and data-driven approaches are very complementary approaches to

battle analysis. The model-based approach generalizes well to other sets of characters,

different opponent types, and variations in scenario. The data-driven classifier is able to

detect subtle statistical differences in action and game state sequences to correctly clas-

sify externally-similar policies. The data-driven approach does not generalize as well to

different character capabilities since a character’s capabilities are implicitly incorporated
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into the training set; thus a testing set that is statistically-different cannot be classified

accurately. We believe that the two approaches should be combined into a hybrid system

where the model-based recognizer identifies high-belief policy sets and the data-driven

classifier discriminates between those specific policies. Such an approach is similar in

spirit to Carberry’s work on incorporating Dempster-Shafer beliefs to focus heuristics for

plan recognition [17].

This chapter explores two promising approaches for policy recognition: (1) a model-

based system for combining evidence from observed events using Dempster-Shafer the-

ory, and (2) a data-driven classification using support vector machines (SVMs). Evalu-

ation of our techniques on logs of real and simulated games demonstrate that we can

recognize player policies with a high degree of accuracy.

Using our game logging methodology and domain-generated m-functions, the model-

based approach performs extremely well over a broad range of initial conditions. Demp-

ster’s rule slightly outperforms the other two rules on the forced classification task. The

majority of errors involve confusion between the blocker and slayer policies, which ap-

pear similar at a coarse level. To address this issues, we trained a set of discriminative

classifiers using simulated battle logs and evaluated the effects of different feature vec-

tors. The resulting classifiers are highly accurate at classifying these policies, although

they do not generalize to characters’ with different capabilities. Thus, our two approaches

are complementary and could be combined into a hybrid policy recognition system to

provide detailed automated battle commentary of multi-player tactical scenarios.



Chapter 7

Activity Recognition from Human

Motion Capture

In this chapter, we examine the use of an alternate source of data, human motion capture,

for activity recognition. We describe our approach for predicting movements based on the

construction of a model of the subject’s physical capabilities from motion capture data.

Using the physical capability model and the assumption that the human is performing to

his/her maximum ability, we can predict opponents’ movements, as well as create agents

with more realistic motion models. We also discuss an offline approach for recognizing

sequences of the subject’s actions using cost minimization to select the most parsimonious

explanation for the subject’s movements. The two approaches are complimentary and

suited for different types of applications. In cooperative and competitive domains, it is

often important for agents to be able to reason about the future behavior of their fellow

agents in an online fashion; this knowledge can be incorporated into the agent’s planning

to guide its future actions. Offline recognition algorithms are better suited for training

environments where they can be utilized for logging and correcting user errors.

101
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7.1 Online Planning and Prediction using a Physical Capa-

bility Model

In many domains, our reasoning is constrained and influenced by an internal model of

our physical capabilities. For instance, when guarding an opponent in a basketball game,

our choice of action depends not only on tactical and strategic concerns, but also on what

we believe our abilities to be relative to our opponents’ physical speed, agility, and en-

durance. Here, we address the problem of modeling human physical skills and incorpo-

rating this model into the planning process of a humanoid agent, enabling it to predict the

effect of its actions and respond realistically to those of its teammates and opponents. We

believe that fine-grained modeling of an agent’s physical capabilities is an important as-

pect of planning in sports domains (e.g., basketball, football, hockey) as well as in certain

, such as small-unit urban operations. We focus on the following issues:

• modeling humanoid physical capabilities;

• incorporating knowledge of the agent’s physical aptitude into planning and oppo-

nent modeling;

• constructing agent simulations that enforce a realistic physical capability model.

We believe that these questions are as vital to creating human-like agents in active physi-

cal domains as cognitive modeling is for creating agents in more “cerebral” domains.

When selecting actions for agents, the following important question often arises: how

much time does it actually take the agent to accomplish each action? For instance, is

it faster for an agent to move to a point behind its current position by turning around

and running forward, or by moving backward without changing its direction? Either

sequence of actions will ultimately get the agent to the same (x, y) location so there is no
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reason for a naı̈ve planner lacking a model of human behavior to prefer one plan over the

other. A priori, the planner might assume that the plan requiring fewer discrete actions

(moving directly backward) should be preferred over the slightly “longer” plan (turning,

moving forward, turning again), even though for a real human that “shorter plan” would

take longer to execute. Human behavior is often asymmetric in a way that computer

generated plans are not. Humans have a dominant side (eye, hand, foot) that leads them

to perform actions such as manipulating objects, jumping, and kicking in different ways.

Similarly, in path planning, humans often exhibit the trait of taking one path from A to

B and a different (possibly longer) path from B to A, violating the predictions of typical

robot path planning algorithms.

We propose the following general framework for building a cost model of human

actions:

1. gather exemplars of domain-specific behavior (e.g., running, dribbling, sneaking)

using a human motion capture system;

2. construct a motion graph that enables rapid generation of animation sequences for

each behavior;

3. identify an appropriate cost function for scoring candidate animation sequences

based on elapsed time and distance criteria;

4. precompute a cost map that expresses the variation in cost for executing a particular

behavior;

5. given a set of equivalent goal-achieving behaviors, select the one that minimizes the

total cost.
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The basic assumption underlying our approach is that motion sequences of behaviors

that are implausible or difficult for humans to execute cannot be constructed without

incurring a substantial penalty in the cost function. Our method requires a fairly complete

basis set of data for every behavior that the agent is allowed to execute, otherwise the

cost function will falsely penalize behaviors possible for a human to perform but not well

represented in the data set. The remainder of this section presents details about each

aspect of the model construction.

Figure 7.1: A subject wearing a retro-reflective marker set in the CMU Motion Capture Laboratory.

7.1.1 Data Collection

We record human activity using a Vicon optical motion capture system with twelve cam-

eras, each capable of recording at 120Hz, with images of 1000×1000 resolution. We use

a marker set with 43 14mm markers that is an adaptation of a standard biomechanical
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marker set with additional markers to facilitate distinguishing the left side of the body

from the right side in an automatic fashion. The motions are captured in a working vol-

ume for the subject of approximately 8’×24’. A subject is shown in the motion capture

laboratory in Figure 7.1. The motion is generally captured in long clips (over a minute) to

allow the subjects to perform natural transitions between behaviors and is represented by

a skeleton that includes the subject’s limb lengths and joint range of motion (computed

automatically during a calibration phase). Each motion sequence contains trajectories for

the position and orientation of the root node (pelvis) as well as relative joint angles for

each body part.

We manually annotate the data to label individual domain-specific behaviors, such as

walking, probing, inspecting and covering. Because we aim to capture a full spanning

set of motion for a particular behavior, our manual labelling is made tractable with long

sessions where each take is aimed at capturing the full range of a single behavior. Of-

ten capturing multiple behaviors in one take is desirable for future synthesis of natural

transitions between behaviors or when a particular domain’s fine-grained behaviors are

difficult to capture individually. In these cases, semi-automated techniques have been

proposed [4] to assist in annotation that require a relatively small portion of the database

to be manually labelled.

During a motion capture session, the subject is instructed to perform a set of physical

behaviors such as moving around the room, performing a physical skill or manipulat-

ing objects. It is important to have the subject perform any variations on a behavior (e.g.,

picking up an object with the right hand and the left hand) that need to be incorporated in

the physical capability model. Directly capturing transitions between behaviors produces

higher quality motion data than interpolating motion segments between behaviors. As-

sessing the final quality of a motion dataset is a difficult problem; Reitsma and Pollard [75]
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Figure 7.2: The motion graph is constructed by finding the distance between each frame in the

database. Edges are added to the graph when D(f , t) is below a specified threshold. An edge

between two nodes indicates that a transition may be made to smoothly splice the corresponding

streams of data together.

describe an algorithm for embedding motion capture data into a target environment and

calculating path quality and environment coverage. In practice, it is possible for an ex-

perienced technician to evaluate the dataset by visually observing a synthetic character

animated using the data and noting dis continuities in the character’s motion.

7.1.2 Motion Capture Graphs

To explore the full physical capabilities of a human for a particular behavior in a domain-

appropriate, simulated environment, we must move beyond the raw motion data. The
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data alone merely allows playback of the subject’s performance from the capture session

in an environment that is fixed in size and layout. It would be desirable to adapt the cap-

tured behaviors to new, more complex environments, in which an animator or computer

simulation could intuitively direct the character’s actions.

Motion graphs were introduced [3, 56, 59] to provide a solution to this need for control

by automatically discovering the ways in which the original data could be reassembled

to produce visually smooth motion. Instead of being restricted to a linear playback of

the motion clips, the algorithm automatically produces choice points where streams of

motion can be smoothly spliced to create novel motion sequences. Individual animation

frames act as nodes in the graph, and the choice points act as directed arcs indicating

a possible transition between two frames. Next, we discuss (1) how to construct a mo-

tion graph and (2) how searching the graph structure enables us to compute a cost for

navigating between two points in a simulated environment.

Computing a Distance Metric

The key to building a motion graph is defining an appropriate distance metric between

pairs of frames in the database. The metric must ensure that the position and velocity

of each body part be sufficiently similar for two pieces of motion to be joined. Since the

data is captured in the global coordinate system of the capture area, some care needs to

be taken when comparing motion captured in different regions of the space. For many

behaviors, the data in the global coordinate system may be translated along the ground

and rotated about the human’s vertical axis without affecting any important qualities of

the motion. An alignment transformation can be computed to create a canonical frame of

reference for comparison of pose sequences.

Our distance metric is modeled most closely after the one introduced by [56]. The dis-
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tance metric, D(f, t), is computed between frame f and t in the database using the joint

positions of the poses in a small transition time window starting at f and t. The purpose

of computing the metric over a window of frames is to ensure that velocity mismatches

between the two frames are penalized in the calculated metric. A coordinate transforma-

tion, T (f, t), is computed to align f and t in the first frame of the window so each pose

has matching translation in the ground plane and vertical axis rotation. The metric is

computed as follows:

D(f, t) =
WS∑
i=0

J∑
j=0

wj

∥∥p(f + i, j)− (T (f, t)p(t + i, j))
∥∥2

, (7.1)

where WS is the size of the transition window, J is the number of joints in the character,

wj allows for weighting the importance of each joint, p(f, j) is the global position of joint

j at frame f in x,y,z coordinates, and T (f, t) is the coordinate transformation that maps

frame t to frame f .

An edge connecting two nodes (frames) in the motion graph is added whenever the

distance between the two frames is below a specified threshold. This threshold may be

varied to balance the transition smoothness with the size and versatility of the graph. Typ-

ically, it is empirically set so that transitions exhibit no visual discontinuities nor physical

anomalies. For rendering at runtime, transitions are blended over a small time window

using a sinusoidal “ease-in/ease-out” function to smooth the discontinuity between the

two motion streams.

Once the distance metric has been calculated between all frames, we employ a pruning

strategy adapted from [56, 59] to remove troublesome edges from the graph; this opera-

tion is to avoid the problem of generating paths through the motion graph that cause the

character to get stuck in a small subset of the motion database. We remove sinks and

dead-ends in the graph by keeping only the largest strongly-connected component (SCC)

of the graph, and this can be performed efficiently [101].
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Figure 7.3: The Monte Carlo sampling of paths through the motion graph iteratively approximates

the cost map. Light and dark color spheres indicate high and low physical cost according to our

metric. The first panel shows a single path through a motion graph while the subsequent panels

show how additional iterations contribute to convergence. As yet unexplored regions of the world

are indicated by smaller spheres.

7.1.3 Evaluating Actions

We now present a metric to score the cost for a human to move through an environment

while performing a particular behavior, where each path is generated by a motion graph.

The full set of paths is sampled using a stochastic algorithm that converges on a final cost

map for the space. An extension to the algorithm is also presented to handle obstacles

that may be present in a real environment.

Scoring Animation Sequences

Given a motion capture graph, we can generate candidate sequences of the character per-

forming each behavior that are visually smooth and lifelike. These sequences, or paths,

consist of a series of frames and transitions created by traversing the motion graph. Each

sequence represents a possible chain of motions that the human could have executed to

reach the goal position. To compute the cost of executing a sequence, we examine two

criteria: (1) time cost, which is directly proportional to the path length in frames; (2) goal
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achievement—how well the path achieves the desired goal state. The cost metric is

C = F + α‖r(x, y)− g(x, y)‖2, (7.2)

where C is cost, F is path frame length, r(x, y) is the character’s position, and g(x, y)

is desired goal position. The path cost is dominated by F which represents the time

cost required for the character to reach a given location; the second term penalizes paths

that terminate farther away from the desired goal. Increasing the discretization of the

environment reduces the magnitude of the penalty term since all paths that fall within

a grid cell are very close to the goal but increases the time required to generate the cost

map. The experiments described in this paper were run with α = 0. Note that this cost

is complementary to the distance metric that we use when assembling the motion graph;

because we know that every sequence is guaranteed to be smooth and human-like within

a certain threshold, we omit smoothness from our path scoring criterion.

Calculating the Cost Map

To extract the cost of performing a behavior for a given set of constraints, we “unroll”

the motion graph to create a cost map over the environment for a given behavior. The

map size should be large enough to accommodate the region over which the planner may

require cost estimates, and sampled at sufficient resolution to ensure that discretization

errors do not eliminate solutions. For example, a map covering a 50’×50’ area at a resolu-

tion of 10×10 corresponds to a grid with 100 equally-spaced cells, each 5’×5’ in size.

The algorithm stochastically samples the set of valid paths to move through the envi-

ronment using the selected behavior and annotates each cell with the cost of the best path

through that cell. Edges in the graph may optionally be disabled if the planner wishes to

enforce constraints such as a maximum velocity for the character. The basic steps of the

algorithm are as follows:
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• Disable edges in the graph according to constraints provided by the planner, elimi-

nating illegal actions.

• Estimate a reasonable maximum search depth of the graph (dependent on desired

map size) to bound the search. Paths greater than the estimated maximum depth

are not considered.

• Perform a Monte Carlo sampling of the motion path space, updating each cost map

cell’s score (according to the metric described in Section 7.1.3) along the candidate

paths. Random paths are repeatedly generated until the cost map converges to a

stable configuration.

We adopted this strategy due to the high branching factor of the motion graph and the

necessity to simultaneously evaluate every potential cell in the cost map’s space. Since

real human movement is highly variable, making early pruning decisions is difficult in

general. Exhaustively searching the graph using breadth-first search is prohibitively ex-

pensive, and more directed search strategies (e.g., A*) are inappropriate since a search

would need to be initiated for each cost map cell. If computation time is limited, the

Monte Carlo search also has the desirable property that it may be terminated early to

produce an approximation of the final cost map. Figure 7.3 shows a visualization of the

search process from within our simulator; Figure 7.4 shows the number of iterations re-

quired for cost value convergence.

Our previously computed cost maps are invariant to an agent’s position and orienta-

tion because they can be embedded with the agent anywhere in an environment. How-

ever, they do not reflect the true physical cost for the agent in the presence of obstacles.

In our solution, if there are obstacles in the environment, candidate paths that enter ob-

structed regions are pruned to eliminate physically impossible paths. For a complex en-

vironment, the simulator must enforce behavioral constraints to ensure that candidate
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Figure 7.4: Convergence of physical capability model. This graph shows the cost value from three

different cells in the cost map generated using the sneak motion graph. We see that the values

have converged after 8000 iterations.

paths do not violate the terrain requirements (e.g., chasms must be crossed with jumping

or crawlways traversed with crawling). These constraints are checked during the search

to eliminate invalid paths.

To perform the Monte Carlo sampling, we selected a reasonable maximum search

depth based on the average velocity of the subject. The cost maps used in this paper were

constructed with search depths of 500–2000 frames. The algorithm executes a random

walk of the motion graph, starting from the character’s current pose and orientation. At

every choice point in the motion graph, the algorithm stochastically selects a choice point

to follow after pruning physically impossible paths. Each grid cell in the cost map is ini-

tialized as having cost greater than the maximum search depth; if a cheaper path to that

location is discovered the cost of that cell is set to the cost of the path and that path is

saved for future use.
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7.1.4 Comparative Cost Models for Planning

An important application area for these models is the MOUT (Military Operations in

Urban Terrain) domain, where soldiers perform small-unit tactical maneuvers. For our

preliminary cost model of the MOUT soldier, we captured data from three human sub-

jects performing various behaviors required for the execution of team tactical maneuvers:

walking, running, sneaking, taking cover, rising from the ground, using communications

equipment, hand signaling team members, inspecting areas, and probing for booby-traps.

Using the human data and the algorithms described in Sections 7.1.3 and 7.1.3, we built a

motion capture graph that generates smooth animations of the MOUT soldier performing

various behaviors.

In the first scenario, we model the cost of the MOUT soldier running around an obsta-

cle, to determine the tradeoffs between having the soldier run around a hazardous area

vs. other plans of action (sneaking or probing for booby-traps). We restrict the anima-

tion system to using behaviors labeled with the “running” descriptor and represent the

hazardous area as an obstacle to prevent the system from simulating paths that cross the

area.

We compare our motion-capture based cost model to the popular distance-based cost

model used by grassfire robotic path planners. Figure 7.5 shows the distribution of costs

(time) as a function of distance traversed by the agent for the physical capability model.

Unlike grassfire, which would always predict that cost is proportional to traversed dis-

tance, we see that our model predicts a range of possible times, dependent on the relative

position of the goal with respect to the starting pose of the agent.

Figure 7.6 shows a cost map generated using grassfire path-planning [14] on a dis-

cretized version of the space, along with the “running” cost map created with the human

motion capture data and the cost map of the “sneaking” behavior. The cost map gener-
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Figure 7.5: Predictions of the physical capability model for running (left) and sneaking (right). The

graphs are displayed as distance (feet) vs. time (frames, 1/30 sec). Unlike grassfire, which would

predict that the time required to cover a particular distance is constant, we observe that the time

predicted by our physical capability model is path-dependent and highly variable.

ated by grassfire is shaded uniformly dark to light with distance from starting position.

This reflects a belief that moving in any direction is equally feasible. Unfortunately this

approximation is not consistent with human behavior, and agents that use this model are

easily anticipated by human opponents.

7.1.5 Opponent Prediction using Physical Capability Models

Not only can the agent improve its own plans with a more refined cost model, but it

can also anticipate its opponents’ actions using the cost model. We discuss how our

model could be applied in the basketball domain for a single agent attempting to bypass

a blocker and score. To generate our motion graphs, we captured data from a human sub-

ject (male college student) performing basketball maneuvers such as dribbling, pivoting,

spinning, and running. The offensive agent is required to use the dribbling behavior to

move the ball down the court, whereas the defender can use any form of non-dribbling
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Figure 7.6: Comparative predictions of different cost models in a region with one obstacle. S

denotes the character’s starting square; the obstructed region is white outlined in black. Costs

increase as squares change from dark to light. The left panel shows the simple distance-based

model of running generated with grassfire path-planning. The middle panel shows the cost model

of the running MOUT soldier generated with human motion capture data. The right panel shows

the cost map generated for the sneaking behavior using the motion capture data; the sneaking

behavior produces a lighter cost map due to the greater time cost associated from sneaking and

is not related to the running cost map in a strictly linear manner. Note the cost asymmetries in

the human data, compared the grassfire transform which predicts that moving the same absolute

distance in any direction should cost the same.
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movement. The offensive agent’s goal pose is the shooting stance; it can shoot from any

square with a varying chance of success, which we model as being inversely proportional

to the distance to the basket. Which location should the offensive agent shoot from?

Clearly shooting from its current position minimizes the chance of being blocked by the

opponent agent but also has the lowest chance of shooting success since the character’s

location is far away from the basket. The closer spots raise the chance of shooting success

but also increase the risk of being intercepted by the blocker. How can the shooting agent

balance the tradeoffs?

One solution to this problem is to have the offensive agent model the time cost for

the opponent to reach different potential shooting positions. By comparing this cost to

its own cost to reach the shooting position, the offensive agent can balance the risk and

reward of various locations. Combined with an estimate of the time required to make the

shot, the shooting agent should choose a square such that:

Co > Cd + Ts + ε, (7.3)

where Co is cost required for an opponent to reach the square, Cd is the agent’s dribbling

cost, Ts is the agent’s shooting time (constant for all locations), and ε is an error mar-

gin. Among the squares that fit this criterion, the offensive agent selects the square that

maximizes its shooting success. Cost maps for the offensive and defensive agents are pre-

computed; the decision can be performed at execution time in O(n) time, where n is the

number of squares under consideration.

7.1.6 Simulating Agents with Physical Capability Models

To demonstrate how physical capability modeling can be incorporated within a simu-

lation environment, we extended the Java-based TEAMBOTS [6] framework to enable



7.1. PHYSICAL CAPABILITY MODEL 117

Figure 7.7: By examining the difference between its cost map and the opponent’s, the agent can

determine which squares it can reach before the opponent. Without prior knowledge, the agent

simply models the opponent using the same cost map. This cost map was generated in 200,000

iterations considering paths of 50 frames or less (approximately 2 seconds).

agents to use cost maps in their movement planning process and precomputed motion

data paths to generate their locomotion. TEAMBOTS was originally developed as a simu-

lator and real-time robotic execution environment for simulating teams of soccer-playing

robots for the Robocup competition. In our experiments, we modified TEAMBOTS to

simulate a basketball game and implemented a two-player agent team.

Movement Generation

When an agent initiates a move to a new location, the modified TEAMBOTS simulator

uses precomputed paths from the human motion capture data to move the agent between

points, instead of the simple kinematic model included in the default TEAMBOTS imple-

mentation. Agents plan their moves by checking the precomputed cost maps to find the

least-cost goal achieving location. For each location in the cost map, there is a correspond-

ing clip of motion data that represents the shortest plausible motion that a human would

use to reach the given location.
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Some care is necessary to embed the motion data in the TEAMBOTS simulator for

2D visualization. The original data provides a three-dimensional global position, global

orientation, and then relative orientations for the hierarchy of joints that represent hu-

man’s skeleton. The position and orientations (represented as unit quaternions) are also

relative to the coordinate frame of the original motion capture studio. Since the TEAM-

BOTS simulator is 2D and allocates each agent its own coordinate system, the data must

be interpreted in the right way to get proper results. The data is exported from the 3D

simulator with all positions relative to the origin, but rotations are left in their original co-

ordinate frame;. To generate 2D motion paths, the data is projected into the ground plane.

Joint angles for the skeleton are ignored because they aren’t displayed in the TEAMBOTS

2D visualization. In order to render and execute the paths at runtime, the positions must

be scaled to fit the game units in TEAMBOTS and a coordinate transformation must be

applied to align the orientation with the steering angle of the agents. Each time an agent

selects a move action, the coordinate transformation is computed to rotate the original

motion data into the coordinate system of the moving agent. For playback, the Gamebots

global timer is used to enforce a playback speed of 30 frames per second to match the

original data. Figure 7.8 shows an example of a “spin” maneuver being simulated within

our modified TEAMBOTS implementation.

Agent Strategies

Using our modified TEAMBOTS simulator, we developed a simple basketball team con-

sisting of two offensive and one defensive players to illustrate the application of our phys-

ical capability model to planning and opponent modeling. Focus was given to providing

strategies for the offensive players; the defensive agent simply tries to move toward the

ball. The offensive agents can select from the following four actions:
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Figure 7.8: A “spin” maneuver executed within the TEAMBOTS simulator. The green pixels repre-

sent the full path taken by the agent. The blue vectors represent the agent’s current 2D coordinate

frame. A coordinate transformation is applied to the motion data to align it with the agent’s initial

steering angle.
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Figure 7.9: Conditional plan used by offensive agents. Maneuver Toward Goal and Pass To

Teammate have two options, depending on whether the agent is utilizing its physical capability

model.

Maneuver Toward Goal: The simpler model simply moves straight toward the goal with

a constant velocity while the cost map version uses cost map to calculate the cheap-

est heading and uses motion data to move.

Ready For Pass: Also moves toward goal but also actively tries to avoid the teammate to

remain open for a pass.

Shoot Ball: Shoots the ball at the basket.

Pass To Teammate: The simpler model passes when the defender is within a fixed radius

while the cost map version estimates the opponent’s arrival time using the tech-

nique described in Section 7.1.5.

Figure 7.9 displays the conditional plan followed by the offensive players.
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Discussion

We compare our framework to related approaches that have emerged from different re-

search communities:

• Many simulation agents use motion planning algorithms derived from the robotics

community to produce rapid, optimal paths. Unfortunately, the resulting motion is

not very human-like, and opponent agents created with this approach can be pre-

dictably outwitted in certain domains. Our method creates asymmetric cost models

that are less easily anticipated by human trainees.

• The computer game industry has developed simple methods for parameterizing the

behavior of AI bots using a small set of qualities such as speed and aggressiveness.

Although this is a useful way to quickly create a large population of bots, the bots

lack variability, since there are only a small number of attributes that can be tuned

to adjust behaviors.

• Biomechanical data has been collected for a limited set of endeavors but is not easily

incorporated into decision-making algorithms without a model that predicts how

changing low-level parameters affects high-level behaviors (dribbling, sneaking).

Our model is easily incorporated into planning or learning algorithms since we di-

rectly compute the effects of using the high-level behavior on the world.

Our technique requires collecting a complete set of basis behaviors for each domain to

be modeled, since data omissions can be interpreted as higher cost regions in the cost

map. Also our method does not model phenomena such as fatigue or injury unless the

modeler explicitly introduces them as separate behavior states. Like many exemplar-

based, non-parametric models, the data collection costs could be quite high; we envision

our framework only being used to model a small set of behaviors of high importance.
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The cost function used in this research is primarily based on minimizing behavior times;

other types of cost functions (e.g., smoothness) have also been used to model human

motor functions [103]. We believe that our algorithms could be adapted to different cost

functions; since our primary concern was to model time-stressed human behaviors, the

use of a minimum time criterion was appropriate for our simulation.

7.2 Cost Minimization Approach to Human Activity Recog-

nition

This section presents a offline approach to human activity recognition—instead of mod-

eling the physical capability of the subject, we attempt to classify the behaviors that a

human subject is performing from a set of known military maneuvers. Low-level mo-

tion classification is performed using a support vector machine (SVM); output from the

classifier is used as an input feature for the behavior recognizer. Given the dynamic and

highly reactive nature of the domain, our system must handle behavior sequences that are

frequently interrupted and often interleaved. To recognize such behavior sequences, we

employ dynamic programming in conjunction with a maneuver transition cost function

to efficiently select the most parsimonious explanation for the human’s actions.

We focus on the problem of recognizing the behavior of individual MOUT soldiers in

the context of physical actions and spatial environment features. MOUT soldier behaviors

include scouting, ambushing, retreating, searching for hazards, and clearing rooms; we

also model less structured behaviors appropriate for civilians in combat zones such as

fleeing and hiding. Our representation for single soldier behaviors in the MOUT domain

includes physical actions, environmental features, states, and state transitions. Behaviors

are described as directed acyclic graphs as shown in Figure 7.10.
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Figure 7.10: MOUT Behavior Representation: Surveillance. The surveillance behavior is used

when a soldier wants to examine a building from the outside in preparation for entering the building,

either as part of an attack or a building clearing operation. Any of the states listed in the diagram

are valid starting points for the behavior; there is no single state transition that must always occur

at the start of every surveillance behavior.
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• Physical actions { walk, run, sneak, probe, wounded movement, rise, crouch } are

physical movements (Figure 7.12) classified from human motion capture traces us-

ing a support vector machine (SVM) action classifier as described in Section 7.2.3.

Shoot and radio are special physical actions with auditory effects that are assumed

to be reliably detected without relying on the action classifier.

• Environmental features { NEAR HAZARD, BEHIND COVER INT, BEHIND COVER EXT,

NEAR CROSSING, NEAR INTERSECTION, IN CORRIDOR, IN STREET, IN ROOM, NEAR -

INT DOOR, NEAR EXT DOOR, IN BUILDING, OUTSIDE } are derived directly from the

simulator based on the human’s (x, y) location as described in Section 7.2.6 and are

assumed to be reliable.

• States are represented as a combination of the 9 recognized human actions with the

12 environment features (108 possible states).

• Observation traces are sequences of observed state transitions; since all of our states

are self-connecting, only transitions between different states are recorded in this

trace.

Human behaviors are represented as directed acyclic graphs of states, similar to the repre-

sentation commonly used for robotic behaviors. For constant time retrieval efficiency, this

is implemented as a hashtable that maps state transitions to the set of behaviors consistent

with the given observation. For the MOUT soldier domain, we created a library of 20 be-

haviors including ambush, bounding, scouting, and guarding. The behavior author need

not explicitly describe every state transition in the graph; the system will automatically

expand general feature descriptions into a complete set of legal state transitions for the

specification. For instance, the surveillance behavior (Figure 7.10) includes the descrip-

tion sneak OUTSIDE which could refer to many possible states (such as sneak IN STREET or
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sneak IN BUILDING). All of the transitions between these expanded states are automati-

cally generated when the behavior library is compiled.

7.2.1 Method

System Architecture

The purpose of our system is to recognize and produce an accurate description of phys-

ical behaviors performed by a single human subject engaged in a MOUT scenario. The

human’s physical actions are recorded using a motion capture system as described in Sec-

tion 7.1.1 and classified by our classifier (Section 7.2.3). These actions are used by an en-

vironment simulator (Section 7.2.6) to generate state transitions; these sequences of state

transitions, or observation traces, are used as the input to the behavior recognition system.

To better understand the effectiveness of the individual components we decompose the

process into two separate tasks, physical action classification and behavior recognition,

and evaluate them separately.

Procedure

The human subject is instructed to perform a sequence of physical actions in the motion

capture lab while wearing a retro-reflective marker set (see Figure 7.1). This produces a

stream of high dimensional data describing the human’s trajectory over time while per-

forming specified physical actions. This data is collected and processed offline to produce

training and test set for our action classifiers; to improve the classification performance

we reduce the dimensionality (Section 7.2.2). Pairs of reduced-dimension motion capture

frames are used as input for our action classifiers (Section 7.2.3).

To test our behavior recognition, we use a simulator (Section 7.2.6) that generates envi-
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Figure 7.11: System diagram. The purpose of our system is to recognize and produce an accu-

rate description of physical behaviors performed by a single human subject engaged in a MOUT

scenario. The human’s physical actions are recorded using a motion capture system as described

in Section 7.1.1 and classified by our classifier (Section 7.2.3). These actions are used by an

environment simulator (Section 7.2.6) to generate state transitions; these sequences of state tran-

sitions, or observation traces, are used as the input to the behavior recognition system.
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ronmental features such as NEAR BUILDING, NEAR DOORWAY to supplement the motion

capture data. Our assumption is that such features can be generated trivially from knowl-

edge of the subject’s (x, y) location (given by motion capture) and the simulated scenario

environment. We synthesize observation traces in the simulator which serve as input to

the behavior recognition (Section 7.2.5).

7.2.2 Dimensionality Reduction

To improve the robustness of action classification and prevent overfitting, we preprocess

the motion capture data as follows. First, in order to make our action classifier invariant

to global position, we transform the motion capture data to position the root node at the

origin. Second, we eliminate trajectories of the minor appendages (fingers, thumbs, and

toes) which are noisy and unimportant for the MOUT domain. Finally, we use Principal

Components Analysis (PCA) [28] to reduce the pose vector to a manageable size, as de-

scribed below. PCA has been employed in many applications, including the segmentation

of motion capture data sequences [8].

PCA, also known as the discrete Karhunen-Loève transform, is an optimal linear method

for reducing data redundancy in the least mean-squared reconstruction error sense. Us-

ing PCA, points in <d are projected into <m (where m < d, typically m � d). The in-

tuition is that many real-world high-dimensional data sets can be well-approximated by

lower dimensional manifolds embedded in the original space. We believe that the in-

trinsic dimensionality of poses relevant to our domain is much lower than the raw pose

vector generated by the motion capture system. Each raw motion capture frame can be

expressed as a pose vector, x ∈ <d, where d = 56. This high-dimensional vector can be

approximated by the low-dimensional feature vector, θ ∈ <m, using the linear projection:

θ = WT (x− µ), (7.4)
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walk run sneak wounded probe crouch rise

Figure 7.12: Representative poses for the subject’s physical actions.

where W is the principal components basis and µ is the average pose vector, µ = 1
N

∑N
i=1 xi.

The projection matrix, W, is learned from a training set of N = 16, 055 frames of motion

capture data, spanning the set of physical actions in our domain. W consists of the eigen-

vectors corresponding to the m largest eigenvalues of the training data covariance ma-

trix, which are extracted using singular value decomposition (SVD). This reconstruction

is theoretically perfect only when m = d; however, in our application, m = 20 produces

reconstructions that are visually indistinguishable from the raw data (these components

account for more than 95% of the energy in the data). The principal components are only

computed once, in an off-line phase; dimensionality reduction of incoming motion cap-

ture frames is achieved by the efficient linear projection described by Equation 7.4.

7.2.3 Physical Action Classification

The goal of physical action classification is to label a short sequence of frames as a member

of one of k categories (e.g., run, sneak, radio). We perform this classification using sup-

port vector machines [105] (see Section 6.3.1 for a description of SVMs). Many efficient

implementations of SVMs are publicly available; we use LIBSVM [19] because it includes

good routines for automatic data scaling and model selection (appropriate choice of C

and γ using cross-validation). To use SVMs for k-class classification, we train kC2 pair-

wise binary classifiers and assign the most popular label.
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After applying PCA to the raw motion capture data, the human’s pose in each frame

is represented by a 20-dimensional vector. To train our action classifier, we form 40-

dimensional vectors by concatenating two pose vectors separated by 1/3 second (10 frames).

Our accuracy using a single frame without concatenation is about 20% worse; intuitively

certain action classifications (e.g., walk vs. sneak) are much more difficult without infor-

mation about how the pose evolves over time.

To train and evaluate our action classifier, we collected motion capture data of the

subject performing the domain physical actions (Figure 7.12). We acquired 17 minutes of

motion capture data stored in 25 AMC files. From the 32,111 total data frames, we divided

the first half of the frames in each file to use as the training set and used the second

half for testing. Using LIBSVM, we ran cross-validation on the training set to determine

the best parameters C and γ for the RBF kernel. The confusion matrix for our action

classification on the test data is shown in Table 7.1. The left column shows the label of

the correct behavior, and the top row shows the assigned label. The average classification

accuracy over the testing dataset was 76.9%. For the locomotion actions (walk, run, etc.)

we achieved higher accuracies than on the non-locomotion actions (crouch, rise, probe).

To improve performance on these physical actions, we believe that we need to increase

our training set size since our initial motion clips of those actions were short compared to

the other actions (only about 2000 frames per action class rather than 6000).

7.2.4 Classification

For each canonically-transformed window in our trace, our goal is to select the best be-

havior model. We perform this classification task by developing a set of hidden Markov

models (HMMs), one for each behavior b, and selecting the model with the highest log-

likelihood of generating the observed data. Our models ({λb}) are parameterized by the
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Table 7.1: Confusion matrix for SVM action classification using pairs of concatenated frames with

a 1/3 second (10 frame) separation (40-dimensional vectors). The left column shows the label of

the correct behavior, and the top row shows the assigned label. High results down the diagonal

indicate good performance. The average classification accuracy over the testing dataset was

76.9%.

walk run sneak wound probe crouch rise

walk 85.4% 3.9% 7.8% 0.6% 1.8% 0.5% 0.0%

run 12.5% 75.8% 7.9% 0.5% 2.8% 0.5% 0.0%

sneak 6.4% 0.8% 81.9% 0.0% 1.7% 9.2% 0.0%

wound 1.3% 3.4% 0.8% 93.9% 0.4% 0.3% 0.0%

probe 8.8% 3.6% 8.7% 19.3% 56.5% 0.6% 2.5%

crouch 2.9% 18.0% 10.3% 20.0% 11.2% 35.7% 1.9%

rise 12.1% 3.7% 15.1% 32.2% 6.4% 16.3% 14.2%
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following:

• N , the number of hidden states for the behavior;

• A = {aij}, the matrix of state transition probabilities, where aij = Pr(qt+1 = j|qt =

i),∀i, j and qt denotes the state at frame t;

• B = {bi(ot)}, where bi(ot) = N (µi, Σi). The observation space is continuous and

approximated by a single multivariate Gaussian distribution with mean, µi and a

covariance matrix, Σi, for each state i.

• π = {πi}, the initial state distribution.

For our problem, given A agents in a team, the observations at time t and window w

are the tuple: ot = (x′1,w,t, v1,w,t, . . . ,x
′
A,w,t, vA,w,t). We determine the structure for each

behavior HMM based on our domain knowledge. For instance, the stacked behavior can

be described using only two states (N = 2), whereas we represent the more complicated

bounding overwatch behavior using six states connected in a ring. Each hidden state

captures an idealized snapshot of the team formation at some point in time, where the

observation tuple (in canonical coordinates) is well modeled by a single Gaussian. Rather

than initializing the HMMs with random parameters, we use reasonable starting values.

These can be polished using expectation-maximization (EM) [28] on labeled training data.

To determine the probability, Pr(o1...T |λb), of generating the observed data with the

model λb, we employ the forward algorithm [73] as implemented in the Hidden Markov

Model toolbox [67]. We classify each window segment with the label of the model that

generated the highest log-likelihood.
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7.2.5 Behavior Recognition

During the final behavior recognition phase, we assign behavior labels to observation

traces (sequences of state transitions). Observation traces are generated using the simu-

lator as described in Section 7.2.6. These state transitions are of the form (physical action1

LOCATION 1 physical action2 LOCATION 2) where some change has occurred such that

physical action1 6= physical action2 and LOCATION1 6= LOCATION2.

First we initialize the behavior recognition with a table that hashes state transitions

(about 11,000 entries) to sets of legal behaviors (hypothesis sets). The hash is compiled

directly from the behavior specifications to enable efficient searching; behaviors that in-

clude states with general features (e.g., outside) are expanded to include legal transitions

for more specific cases (e.g., NEAR BUILDING, NEAR INTERSECTION).

The domain author designates a cost function to be applied to each potential behavior

transition. A simple parsimonious cost function is to penalize any behavior transition by

a fixed amount; self-transitions (explaining the subsequent behavior with the same label)

are not penalized. This type of cost function delays as long as possible before assigning a

new behavior label to state transitions.

Using the behavior library and the cost function, we search for the minimum cost

explanation for the sequence of state-transitions; this is a shortest path problem which we

solve efficiently using dynamic programming.

Bq
t+1 = min

∀p
{Bp

t + Tp,q}

Tp,q =

 0 if p = q

1 if p 6= q

Bq
t+1 is the cost of explaining a state-transition with behavior label q at time t + 1; this

cost can be calculated by finding the minimum of over all previous behavior labels p of
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explaining a set with Bp
t combined with the cost transition function, Tp,q.

7.2.6 Environmental Simulator

To test new plan libraries and cost functions without the prohibitive expense of acquir-

ing human data in the motion capture lab, we implemented an environmental simulator

system capable of generating valid observation traces that correspond to a sequence of

known behaviors performed in a specific MOUT environment, composed of typical ur-

ban terrain features.

The simulator is equipped with behavior descriptions, either known ones taken from

the library used by the behavior recognizer or new ones written to represent cases in

which the human deviates from the correct military procedure. The input to the simu-

lator is a list of behaviors from which the simulator stochastically generates one run of

valid observation traces that could have occurred if the human performed those behav-

iors in that MOUT environment layout. Currently our stochastic model is very simple; all

possible state transitions exiting a state are equally likely.

Environmental feature descriptors (NEAR DOORWAY, NEAR INTERSECTION) are gen-

erated by selecting the location nearest to the soldier’s (x, y) location; there is a preference

order (e.g., NEAR HAZARD dominates features such as NEAR INTERSECTION) that dic-

tates which environmental feature is reported if the human is equally close to multiple

annotated map regions.

In the simple case, we assume that all state transitions are accurately detected; to

model the effects of imperfect state transition detection we use the confusion matrix (Ta-

ble 7.1) to stochastically model the likely output of our action classifier. For instance, the

true state transition might be (walk NEAR DOORWAY walk NEAR DOORWAY); consulting
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the top row of the confusion matrix we see that the walk physical action has an 85.4%

chance of being detected correctly as walk, 3.9% chance of being classified as a run, 7.8%

of being classified as a sneak, and a negligible chance of being detected as anything else.

Using the confusion matrix as our simulator noise model we can systematically generate

faulty data that realistically models the effects of imperfectly classified the motion capture

data. Also, as we improve our classification procedure, we can quickly assess the impact

on the behavior recognition.

7.2.7 Results

We examine our cost minimization approach to behavior recognition in the context of a

common MOUT scenario to assess the impact of the following factors:

behavior transition cost function: how does changing the transition cost function affect

the behavior explanation generated? Is there a good method for using domain

knowledge to author a function Tp,q that produces good recognition results?

noisy state transitions: how do noisy state transitions affect the behavior explanation

output? How can we minimize the effect of incorrectly detected state transitions?

MOUT Scenario: Building Clearing

Building clearing, the process of investigating a building and eliminating hostile occu-

pants and hazards within, is a common goal in MOUT operations. The standard followed

military procedure used to clear the building shown in Figure 7.13 would be to use the

following sequence of behaviors: traverse street, scout, enter building, enter room, tra-

verse corridor, enter room. Since the room marked by the star appears cluttered and
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Figure 7.13: MOUT Scenario: Building Clearing. An overhead view of the schematic used by our

simulator to generate observation traces for an example building clearing scenario. The standard

followed military procedure would be to use the following sequence of behaviors: traverse street ,

scout , enter building , enter room , traverse corridor , enter room . Since the room marked by

the star appears cluttered and might potentially contain booby-traps, the soldier should choose to

check the area for hazards (clear hazard ).
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might potentially contain booby-traps, the soldier should choose to check the area for

hazards (clear hazard). In the final state, the soldier remains to guard the building to

ensure that no one enters the building. If there are enemy forces in the area that fire on

the soldier during the traverse street behavior, the soldier should make a strategic with-

drawal and counterattack; this can be accomplished by executing the behavior sequence,

retaliate retreat fast bound and ambush, before returning to the original building clear-

ing operation. In the following subsections, we use the behavior sequences described

above to illustrate the effects of behavior transition cost functions, noisy state transitions,

and human behavior deviations on the behavior recognition process.

Impact of Cost on Behavior Recognition

The behavior transition cost function, Tp,q, directly affects the explanation generated by

the dynamic programming search process. Using the parsimonious cost function de-

scribed in Section 7.2.5, we analyze stochastically-generated state transition sequences

for the building clearing operation (traverse street, scout, enter building, enter room,

traverse corridor, enter room, clear hazard, guard). Typically, this behavior sequence

generates about 50 state transitions; in the absence of classification noise, the recognizer

with parsimonious cost function correctly labels between 90–100% of the state transitions.

Often it mislabels the final guard behavior as being part of a enter room behavior; be-

cause many of the same state transitions appear in both. However using our domain

knowledge we know that the soldier should guard an area after clearing it; to represent

that domain knowledge we decrease the cost of clear hazard followed by guard.

We believe that the cost function is closely related to the behavior application as well

as the domain. For instance if the agent is attempting to model an opponent, using a para-

noid cost function that is sensitive to the ambush behavior (allowing cheaper transitions
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from common behaviors to ambush) might be more useful, even at the expense of a slight

decrease in overall behavior recognition accuracy.

Handling Noisy State Transitions

Another question is whether this approach is robust in the face of noisy state transitions.

Based on frame-pair-level SVM classification results, the naive approach of proposing

action transitions whenever the SVM label changed would not be sufficiently accurate (if

each frame-pair were only classified with 76% accuracy, such a method would hallucinate

false action transitions at unacceptable rates). Fortunately, our motion capture stream

produces data at a rate (30 frames per second) that is much faster than the typical human

action transition frequency. This enables us to apply a median-based outlier rejection

scheme to the SVM output data that eliminates the majority of incorrect labels resulting

in far fewer incorrect action transitions.

7.3 Discussion

This chapter examined the use of an alternate source of data, human motion capture, for

activity recognition. We demonstrate a general framework for building a non-parametric

model of an agent’s physical capabilities using human motion capture data. By precom-

puting cost maps for actions and areas of interest, the algorithm provides the high-level

decision-making algorithm with a sound basis for selecting one behavior from a set of

equivalently goal-achieving actions. We also introduce an offline approach to the problem

of activity recognition and demonstrates how it can be used to recognize physical behav-

iors even with imperfect action classification. Human motion capture is very promising as

a data source for acquiring traces of single agent behaviors but is less useful as a means of
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capturing traces of team activities due to the increased likelihood of occlusion and marker

disambiguation problems.



Chapter 8

Conclusion and Future Directions

If I could solve all the problems myself, I would.

-Thomas Edison, when asked why he had a team of twenty-one assistants.

Developing software agents for virtual environments is an important research direc-

tion for the multi-agent systems community. Over the past ten years, the emergence of

the WWW created an enormous repository of text information in easily accessible elec-

tronic form and became an important global testbed for information agents. In the same

way, massively multi-user virtual environments will become a testbed for global commu-

nities of embodied agents that interact with humans for entertainment, education, and

telepresence applications. Currently, worldwide revenues for massively multi-player on-

line role-playing games (MMORPGs) exceed 1 billion dollars [69]. Second Life, a popular

Internet-based virtual world, is inhabited by over 7.8 million people, performing $600,000

of business transactions per day [55].

Education is an growing application area for virtual environments; Second Life hosts

virtual distance-learning classrooms for over 70 colleges and universities [85] and allows

users to access library materials at virtual reference desks. By merging cognitive tutor-

139
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ing programs and virtual environments, researchers have created innovative and fun

programs for individual training in language [98] and decision-making [96] skills; ad-

ditionally there has been work on designing pedagogical agents for team tasks, such as

naval casualty response, in virtual environments [77]. Tasks requiring multiple partic-

ipants should particularly benefit from the increased practice opportunities created by

the easy availability of simulation training. For instance, training one football quarter-

back requires an entire team of supporting players and opponents; typically second and

third string quarterbacks only receive limited practice time because of the training ex-

pense. Having software agent teammates (“virtual humans”) available to practice at the

trainee’s convenience could greatly reduce the cost of team training.

Research advances in displays, haptics, and user interfaces will make future virtual

environments more immersive than their current counterparts and enable the training of

real physical skills in virtual environments. Some current games, such as Dance, Dance,

Revolution [26], score the players on the speed and accuracy of gross physical motions

like foot tapping and hopping while they dance to music on a pressure-sensing pad.

The Wii remote for the Nintendo console uses accelerometers and infrared detectors to

track the user’s hand motions and allow the miming of game actions, such as swinging a

sword [107]. Recent advances in marker-less motion capture technology could potentially

be incorporated in games to provide full body sensing without a physical controller [68].

8.1 Contributions

Developing agents that intelligently cohabit this rich virtual world with humans will re-

quire effective activity/plan recognition. Creating shared understanding between human

and agent teammates is the biggest challenge facing developers of mixed-initiative hu-
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man/agent organizations. The limiting factor in most human-agent interactions is the

users ability and willingness to spend time communicating with the agent in a manner

that both humans and agents understand, rather than the agents computational power

and bandwidth [97]. Embedding activity recognition algorithms into multi-player virtual

environments will enable:

• the development of smarter opponents that can recognize and respond to the tactics

of human teams;

• the creation of better synthetic training partners that can predict their teammates’

intentions and coordinate without unnecessary communication;

• automated annotation of multi-player game logs;

• intelligent user correction in team training environments.

This thesis makes the following contributions towards the problem of activity recog-

nition for agent teams:

Formation identification: Many team behaviors in physical domains exhibit distinctive

spatial configurations among agents, and between agents and static objects. We

present an efficient method for recognizing such team formations. Our method is

robust to noise in agent position and high degree of clutter (other agents). Unlike

template matching methods that must search exhaustively over a discretized para-

meter space, our approach only considers those hypotheses that are consistent with

a minimal subset of agents, enabling it to scale easily to large agent teams in arbi-

trary spatial layouts.

Behavior recognition for dynamic agent teams: In complex scenarios, the membership

of agent teams changes over time: teams assemble to accomplish specific tasks, cre-
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ate subteams as needed, and disband into individuals. We present an approach for

simultaneously recovering agent-to-team assignment and team behavior for such

tasks. We efficiently hypothesize team assignments where the spatio-temporal traces

for those agents (over a limited time window) match models of known team behav-

ior.

Efficient plan recognition for dynamic agent teams: When team behaviors are generated

by higher-level plans, our goal is to match observed agent activity to specific trees

in a given plan library. Naive approaches to this problem can be extremely expen-

sive since the number of hypotheses grows combinatorially. A particular challenge

is that the actions of splitting and merging in dynamic teams are unobservable and

can only be inferred through indirect means. We present efficient pruning tech-

niques based on across-plan and within-plan action constraints generated by static

analysis of plan libraries. This enables us to perform plan recognition for large dy-

namic teams.

We examine the following specific applications:

Spatio-temporal analysis of team formations in MOUT: We apply formation recognition

in conjunction with HMM-based activity recognition to recognize behavior of small-

team maneuvers in the Military Operations in Urban Terrain (MOUT) domain. We

demonstrate our work on human subject traces collected using a modified version

of the Unreal Tournament game engine.

Policy recognition in domains with weak spatio-temporal cues: We explore both model-

based (Dempster-Shafer) and data-driven (SVM) approaches for recognizing player

policies in Dungeons & Dragons skirmish scenarios, a domain with weak spatio-

temporal cues.
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Recognition of human activity from motion capture traces: We present an approach for

constructing physical capability models of human activity from motion capture

data. At the lowest level, these models enable us to recognize physical actions such

as running and sneaking (in a MOUT context). At a higher level, we can employ

physical capability models to problems of opponent modeling in sports.

8.2 Future Work

The area of activity recognition for agent teams is relatively young and remains a fertile

research area. There are four areas that could clearly benefit from future work.

methods for acquiring plan/template libraries: One important question left unresolved

by this thesis is the origin of template and plan libraries. In this thesis we demon-

strate that it is possible to do some analysis without libraries (Chapter 6), but much

of the work in this thesis depends on access to plan and template libraries. An im-

portant area of future research is the creation of these libraries, either through elicit-

ing the information from subject matter experts [70] or through learning templates

and plan libraries from data.

enhancing teamwork with online behavior recognition Human-agent teams have been

demonstrated to be useful for diverse applications such as personal assistant agents [18],

military joint mission planning [31], and virtual training environments [77]. More-

over, human-robot teams are becoming increasingly important as robots become

more capable of functioning as equal partners. Mutual predictability between team

members has been shown to be an important predictor of human team perfor-

mance [97]. We believe that behavior recognition is one possible solution towards

the problem of creating mutual predictability in human-agent (or human-robot)
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teams. For human-agent teamwork applications, the two most important research

challenges are (1) making online predictions in a timely fashion, and (2) incorporat-

ing predictions into the agent’s decision-making process.

migrating from the virtual world to the real world The proliferation of wireless sensors,

cameras, and handheld devices in home and office environments will make the

same types of localization and tracking currently available for players within gam-

ing environments feasible in real-world environments. However, the problem of

combining this tracking information with high-level information about people’s

goals, schedules, and preferences remains; moreover the problem of human behav-

ior recognition for large groups of humans remains largely unexplored. The same

algorithms for multi-agent behavior recognition algorithms presented in this thesis

for simulation and gaming environments could also be applied to analyzing multi-

person activity in the real world.

combining communication and physical movement For some tasks, communication be-

tween team members is an important predictive cue of future action. By combining

information about team members’ communication patterns with physical move-

ment, it is quite likely that we could improve recognition performance. Appendix A

describes some preliminary results at analyzing the communication patterns of hu-

man teams performing collaborative search tasks in a virtual environment.



Appendix A

An Analysis of Communication and

Coverage Patterns in Human Teams

Performing Collaborative Search Tasks

Team decision making is a bundle of interdependent activities that involve gathering, in-

terpreting and exchanging information; creating and identifying alternative courses of ac-

tion; choosing among alternatives by integrating the often different perspectives of team

members; implementing a choice and monitoring its consequences. Software agents can

fill a critical need for (1) supporting human team members in accessing, filtering, and

synthesizing information from disparate sources; (2) increasing team situation aware-

ness; (3) aiding the formation of shared mental models; (4) supporting team coordination

in making decisions related to resources, tactics, and goals to meet the overall planning

objectives. Building effective human-agent teams requires overcoming several impor-

tant scientific challenges that to date have not been addressed: (1) the creation of mutual

understandability between humans and agents; (2) the development of coherent team
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interactions; (3) establishing human trust in agent judgments.

It is well-recognized that proficient teams achieve goals and accomplish tasks that oth-

erwise would not be achievable by groups of uncoordinated individuals. While previous

work in teamwork theory [82] has focused on describing ways in which humans coordi-

nate their activities, there has been little focus on which of those specific activities and

information flows can be enhanced by being performed by software agents. The focus

of our initial human team experimentation is to (a) establish a baseline of human-only

teamwork for a given task domain and (b) ascertain the relative importance of different

information flows for the team task in order to derive “insertion points” for agent assis-

tance of human teams. These insertion points are not merely limited to coordination and

information flows, but potentially include teamwork maintenance and task completion.

In this chapter, we describe our analysis of a collaborative search task, a team scavenger

hunt, performed by human subjects in a multi-player gaming environment. The results

of this analysis will inform the future development of software agents to assist human

teams performing search tasks.

A.1 Supporting Human Teamwork

Research in human team performance suggests that experienced teams develop a shared

understanding or shared mental model to coordinate behaviors by anticipating each other’s

needs and adapting to task demands [34]. Furthermore, for such teams, both tacit and

explicit coordination strategies are important in facilitating teamwork processes. Explicit

coordination occurs through external verbal and non-verbal communications, whereas

tacit coordination is thought to occur through the meta-cognitive activities of team mem-

bers who have shared mental models of what should be done, when, and by whom [29,
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33, 43]. A team’s shared mental model thus allows the team members to coordinate their

behavior and better communicate depending on situational demands. Initial theorizing

on training shared mental models suggests that for teams to successfully coordinate their

actions, they must possess commonly held knowledge structures, such as knowledge of

teammates’ roles and responsibilities along with team tasks and procedures.

Creating this shared cognition between human and agent teammates is the biggest

challenge facing developers of mixed-initiative human/agent organizations. The limit-

ing factor in most human-agent interactions is the human’s ability and willingness to

spend time communicating with agents in a manner that both humans and agents un-

derstand [97]. Horvitz [45] formulates this problem of mixed-initiative interaction as

a process of managing uncertainties: (1) managing uncertainties that agents may have

about the human’s goals and focus of attention, and (2) uncertainty that humans have

about agent plans and status. Creating agent understanding of human intent and mak-

ing agents’ results intelligible to a human are problems that must be addressed by any

mixed-initiative system, whether the agents reduce uncertainty through communication,

inference, or a mixture of the two.

A.1.1 Agent Roles in Human Teams

Sycara and Lewis [97] identify three primary roles played by agents interacting with hu-

man teams.

• Agents support individual team members in completion of their own tasks. These

agents often function as personal assistant agents and are assigned to specific team

members [18]. Task-specific agents utilized by multiple team members (e.g., [22])

also belong in this category.
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• Agents support the team as a whole. Rather than focusing on task-completion

activities, these agents directly facilitate teamwork by aiding communication and

coordination among humans and agents, as well as focus of attention. The exper-

imental results summarized in [97] indicate that this can be a very effective aiding

strategy for agents in hybrid teams.

• Agents assume the role of an equal team member. These agents are expected to

function as “virtual humans” within the organization, capable of the same reasoning

and tasks as their human teammates [104]. This is the hardest role for a software

agent to assume, since it is difficult to create a software agent that is as effective as a

human at both task performance and teamwork skills.

There are additional research challenges, specific to the team role assumed by the

agent. Agents that support individual human team members face the following chal-

lenges: (1) modeling user preferences; (2) determining optimal transfer-of-control poli-

cies [84]; (3) considering the status of user’s attention in timing services [45]. Agents

aiding teams [60–63], face a different set of problems: (1) identifying information that

needs to be passed to other team members before being asked; (2) automatically priori-

tizing tasks for the human team members; (3) maintaining shared task information in a

way that is useful for the human users. Agents assuming the role of equal team mem-

bers [31, 32, 104] must additionally be able to: (1) competently execute their role in the

team; (2) critique team errors; (3) independently suggest alternate courses of action. Per-

haps because of these challenges, there are very few prior results on human-agent team

aiding and teamwork. Examples of tasks that were investigated include target identifica-

tion [62, 63], achievement of a military rendezvous plan [60, 61] and delivery of supplies

to troops [31, 32]. All of this prior work has uniformly found that human-agent teams

exhibited superior performance over human-only teams not only in achievement of task
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objectives but also in performance stability.

A.1.2 Improving the Performance of Human Teams

We hypothesize that to improve the performance of human teams, agents must do some

combination of the following:

• reduce information processing costs;

• decrease uncertainty in the task;

• improve coordination between team members;

• directly accomplish part of the team task.

Galbraith observed that “the more uncertainty in a task, the more information process-

ing necessary to achieve a given level of performance” [38]. Hence, having the agents as-

sist either in information processing or decreasing uncertainty should improve the team’s

performance. Moreover, in cases where the task is time-stressed, having the agents simply

perform part of the task for the humans has the potential to improve team performance

as well, particularly in cases where the task reward is an increasing function rather than

a thresholded one. Based on experiments of student project teams, Kraut suggests that a

human team’s resultant state of coordination, defined as the degree to which interdepen-

dencies are managed well, is an important predictor of team performance [57]. This state

of coordination can be created by mechanisms such as communication, shared cognition,

and team history. If agents can improve the state of coordination between team members

or reduce the cost of achieving a good state of coordination, the team performance should

improve.



150 APPENDIX A. COMMUNICATION AND COVERAGE IN HUMAN TEAMS

A.2 Collaborative Search

For our initial set of experiments, we monitored teams of human subjects performing a

collaborative search task in simulation. Search and rescue is a challenging, time-stressed

team task with a potentially high payoff since inadequate team performance can result

in fatalities. By developing software agents capable of improving human team perfor-

mance on collaborative search tasks, we can positively impact coalition search and rescue

operations.

A.2.1 Wilderness Search and Rescue Operations

In this section we provide a task analysis of how civilian human teams perform wilder-

ness search and rescue operations summarized from [41, 87]. We assume that many as-

pects of the task analysis are also applicable to military search and rescue teams, although

military teams have access to different equipment and also often face the additional prob-

lem of rescuing victims from enemy territory. A goal-directed task analysis of wilderness

search and rescue operations identified the following list of operational goals and sub-

goals [41]. The italicized task elements are also applicable to our simulated collaborative

search task.

1. Stage preparation

(a) Reporting party call

(b) Activation call

(c) Assemble (prepare for search)

2. Acquire missing person description

(a) Gather missing person information



A.2. COLLABORATIVE SEARCH 151

(b) Determine missing person’s intent

3. Develop search plan

(a) Create a perimeter

(b) Assign priority to clues

(c) Update map information

(d) Create a priority pattern

(e) Organize resources for search execution

(f) Communicate search plan

4. Execute search plan

(a) Follow plan

(b) Find signs (or absence of)

(c) Keep searchers safe

(d) Communicate acquired information

5. Recover victims

(a) First aid for victims

(b) Rescue, extract, or recover the missing person

6. Debrief search team

(a) Determine what happened

(b) Evaluate how the team can improve
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When executing a wilderness search plan, the teams employ four distinct types of

search: hasty, constraining, high probability region, and exhaustive. During hasty search,

the searchers rapidly check high probability areas to determine the missing person’s loca-

tion or direction of travel. This type of search is often used in the initial part of the search

plan. During constraining search, the searchers attempt to build a perimeter bounding

the victim’s location; an example of constraining search would be having searchers check

a large snowy field for tracks to localize the victim to one side of the field. Hasty search

and constraining search are used by the incident commander to find clues and establish

search priorities. After search priorities have been established, the incident commander

divides the search area into regions and deploys search teams to search high probability

regions. Exhaustive search is done by having the searchers form a line and walk abreast

through an area; this type of search is used to find clues such as clothing or wrappers

after other forms of search have failed.

Wilderness search and rescue operations pose the following challenges to expert hu-

man teams: (1) information overload of the incident commander while assimilating in-

formation collected by the field teams; (2) the creation of accidental holes in the search

pattern due to poor execution of the search plan by the field teams; (3) poor priority

assignments in the search plan due to false clues and hunches. We believe that software

agent assistance can potentially reduce the information overload of the incident comman-

der and minimize errors during the execution of the search plan. In the next section, we

describe our experimental version of the collaborative search task, the team scavenger

hunt, which tests the ability of human subjects to collaborate to develop and execute a

team search plan in a simulated environment.
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A.2.2 Experimental Task: Team Scavenger Hunt

The collaborative search task that we designed for our experiments, the team scavenger

hunt, recreates some of the challenges faced by expert human teams during search and

rescue operations. To implement the task, we reconfigured a scenario in the multi-player

game and battlefield simulator, Operation Flashpoint (OFP version 1.96) [36], by cus-

tomizing the pre-game briefing, map, object triggers, and scoring mechanism.

In the team scavenger hunt, human subjects have to read a map, navigate a 3D simu-

lated environment and recover a collection of objects (bottles) within a bounded amount

of time (Figure A.1). The task is designed to evaluate the team’s ability to develop and

execute a search plan under time-stress. As an experimental task, the team scavenger

hunt offers several advantages: (1) it can be learned and executed within a short period

of time by novice subjects; (2) it can be simulated within a variety of testbeds; (3) it offers

a simple team performance metric: number of objects collected.

The team scavenger hunt task can be made arbitrarily complicated by adjusting the

following parameters: (1) task uncertainty, (2) reward function, (3) adversaries. Task un-

certainty is increased if subjects are not provided with maps and have to simultaneously

explore the area while searching for objects. Another way to increase task uncertainty

is to have subjects locate objects based on clues or probability distributions, rather than

precise locations. Varying reward functions can be used to elicit different types of team

behavior. Individual players can be awarded incentives for high performance vs. having

the rewards split equally among team members. A simple reward function is to have the

reward be a linear function of items acquired across all team members; another option

is to award points for portfolios of objects. A portfolio of objects is a collection that con-

tains a specified number of unique objects with desired characteristics, e.g., a portfolio

consisting of a table, a chair and a telephone, all of the same color. Having a portfolio
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based reward system makes a subject’s optimization problem harder because it penalizes

locally greedy acquisition strategies. Adding adversaries to the task forces the players

to replan to overcome unexpected obstacles. The game can be made more dynamic by

adding mobile objects, automated adversaries to hinder the searchers, or having teams

compete against each other.

In our initial version of the experimental task, the subjects have some uncertainty—

they are provided with a terrain map, but only objects within a certain visibility range

are revealed on the map. The current version of the game requires having the searchers

collect static objects; subjects are rewarded based on their total team score, rather than

their individual score, at collecting objects within an adversary-free environment.

A.2.3 Testbed

The experiments focused on the activity of three human players acting through virtual

characters in the Operation Flashpoint (OFP version 1.96) simulated physical environ-

ment to find and crush liquor bottles in a twenty minute period. OFP is distributed with

a simple but versatile scenario editor that greatly facilitates the creation of multi-player

military and civilian scenarios and missions.

Terrain around and including the village of Flers on the island of Normandie was cho-

sen as the focal point for the one practice and two experimental scenarios (Figure A.2).

The area is a tract of land that is 512 meters long in a north–south direction (N/S), and

768 meters long in an east–west direction (E/W); in all, 393,216 square meters. On the

2-dimensional (2D) Operation Flashpoint map, this area corresponds to 4 map squares

N/S, 6 map squares E/W, where each map square corresponds to 128 meters by 128

meters. Exploratory benchmarks determined that, depending on search technique and

ability, it could take a single OFP civilian virtual character from sixty to ninety minutes
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Figure A.1: Subject world view during bottle collection. This is a zoomed-in view that has an

increased density of bottles for illustrative purposes; the actual 3D environment is much larger and

contains a much lower bottle density.
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Figure A.2: The 2D terrain map available to players in the Operation Flashpoint simulation en-

vironment. In addition to the terrain map, the subjects are provided with simulated versions of

binoculars, compass, and watch.
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to explore all 24 map squares of this scenario. In twenty minutes, a civilian character can

thoroughly explore roughly ten map squares of the surrounding countryside. The village

of Flers occupies four map squares; part of the village is organized in a radial street plan

and another part has a N/S, E/W grid of streets and buildings. Given the area and lay-

out, we have observed that it requires from ten to twenty minutes for the virtual civilian

character to search the area.

A.3 Pilot Experiments

A.3.1 Procedure

Eight teams of three persons, each, were recruited to participate in the pilot study. Human

subjects self-assessed and reported their abilities to play first person video games in terms

of the following classification: novice, medium expertise, or expert. Combined expertise

of the teams varied from “two novices and a medium expert” to a team of “three experts”

(see Table A.2).

Each team member played the game through an assigned and dedicated laptop. All

three members of a team sat at the same large table arranged in such a way that they

could not look at each other’s screen. The human subjects were forbidden to share com-

puter screens, note sheets or other such aids — they could only describe their locations,

intentions and actions in the game by using verbal communications and the 2D OFP map

of Flers. All verbal communications, though face-to-face, were logged using TeamSpeak

[102].

Time was taken during a practice session to instruct the players on the key and mouse

commands for the game. Players were instructed on how to move their characters, find
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and crush bottles, query bottle counts, and how to use additional aids that are available to

their avatars. After sighting a bottle, a player must move their avatar to within a couple

of meters of it in order to crush it and get credit for the crush. When they are close enough

to crush the bottle, the command to crush that type of bottle, e.g. Crush Martini Bottle,

will appear in the player’s command menu at the bottom right corner of their screen.

Feedback to the player is given in multiple ways: (1) the sound of a vehicle crashing

into a wall, (2) puffs of oily black smoke emanating from the morphing bottle, (3) the

morphing of the bottle into a crumpled form. If the player queries their bottle count, they

will see that it has increased by one.

Once a player has crushed a bottle, the command to crush it is removed from their

menu, never to appear again for that bottle, even if they happen upon its crushed re-

mains at a later time. If a player encounters the remains of a bottle that was crushed by

a teammate, they can choose to invoke the command to crush it in order to avoid false

detection of that crushed bottle at a later time. No penalty was assessed for attempting to

crush an already crushed bottle.

The five ways of detecting a bottle are:

1. visual detection, in which the human player “sees” a bottle via the unmagnified vi-

sion of their avatar,

2. magnified visual detection, in which the human player slightly magnifies (roughly, 3X)

their avatar’s field of vision,

3. visual detection via binoculars, in which the avatar uses binoculars for a narrower but

more distant field of view,

4. non-visual proximity sensing, in which the player is notified of a bottle’s presence

whenever their avatar comes within “sensing range” of the bottle. A bottle is sensed
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based on the expertise of the OFP avatar and if the player is proximate to it. This

game effect is useful if the bottle is on the other side of a hedge or if the player

accidentally passes the bottle. It does not work if the bottle is in a terrain depression,

or more than a few meters away from the player. The notification consists of the

player’s command menu appearing in the bottom right corner of their screen, with

the added command, “Crush X Bottle”, where X indicates the type of bottle.

5. tool tip sensing of the bottles from the 2D map view of the world. OFP avatars can

navigate the environment in a 2-dimensional map view. When in 2D map view,

the player’s avatar is represented as two concentric red circles with a radial line

indicating the avatar’s bearing. If the human user moves the mouse cursor over the

area of the map in the vicinity of the avatar, they can detect any objects that they

could normally see in the visual detect mode. When an object is detected, a “tool

tip” label appears next to it, indicating the object’s type.

Each experimental session was composed of a twenty minute practice period and two

twenty minute search tasks. We evaluated the two experimental conditions: (1) # Bottles

Known in which the subjects knew how many total bottles they were trying to recover;

and (2) # Bottles Unknown in which they did not know how many bottles were hidden

in the search area. By knowing the total bottle count, we hypothesize that subjects have

a better sense of task progress and can assess their individual search performance. Com-

paring the team performance of subjects with the bottle count information vs. no bottle

count information might predict the benefits of introducing agents to teams for search

tasks.
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A.3.2 Analysis of Team Communication

To analyze the coordination demands of the collaborative search task, we logged all com-

munication between team members. We looked at the following categories of communi-

cation:

• increasing situation awareness (SA) This category includes all communications

that increase the team members’ situation awareness. Examples include communi-

cating one’s location, querying teammates for their positions, and discussions about

terrain features or object locations.

• sharing hints (Hints) Occasionally subjects shared personal search techniques with

their teammates, such as scanning large regions in a 2D map view or using binocu-

lars while standing on high terrain features.

• team planning This category includes any discussion proposing, accepting or declin-

ing team search strategies; for example, team members often took responsibility for

covering a certain region or suggested that other team members should redirect

their search to a different area. We separated team planning into two categories: (1)

planning before execution (Pre Plan) and (2) planning during execution (In Plan).

Within these categories we examined two types of communications: (1) role alloca-

tion and (2) division of execution space.

• monitoring task progress (Monitor) Often subjects exchanged information about

object counts, coverage progress, or time left remaining in the session.

• sharing world beliefs (Beliefs) Sometimes the subjects discussed their hypothe-

ses about the relative frequency distributions of the bottles in different regions and

speculated about the existence of bottle caches.
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A: okay do we want someone to stay in the courtyard and do those bottles?

B: I’ll do that and then head east.

C: I’ll do the same area that I did before.

B: I’ll clear the courtyard and then clear the road to the south.

A: I’ll work on the northern part and 64.

C: I think I’m going to stay closer to the town and circle around.

Figure A.3: Transcript of communication between subjects at the beginning of the search. This

group of utterances was categorized as an example of team planning before execution. The “64”

refers to a row on the map. There are significant pauses between the utterances; during one such

pause, one of the subjects changes their mind and decides to cover a different area.

• miscellaneous Some of the communication between team members was not directly

related to the experiment, such as social interaction or complaints over system issues

(e.g., unexpected key lockups or display slowdowns).

Most of the team planning discussions were related to the division of the execution

space: how to allocate the efforts of the team members to cover the entire map within

the 20 minute time period. Although some teams agreed on a division of labor at the

beginning of the task period, many teams modified their search strategies during execu-

tion based on their perceived task progress or their assessment of which areas contained

a higher bottle density. The transcript shown in Figure A.3 is a typical example of team

planning communication at the beginning of a search session. The three subjects quickly

develop a search strategy in which each subject assumes responsibility for covering a

certain region.

To assess the communication demands of the collaborative search task, we compiled

frequency counts of the different types of team communication (Figure A.4). We believe
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that the categories of increasing team situation awareness and monitoring task progress

are amenable to agent assistance. Our model of human-agent teamwork predicts im-

proved team performance if we can reduce the cost of information processing for the

team.

A.3.3 Team Search Patterns

During the experiments, we had the subjects report their search patterns and self-assess

their coverage of the area by annotating a hardcopy printout of the map; many subjects

used these notes to track their coverage progress. We observed a variety of search strate-

gies among the subjects: (1) scanning the map by quadrants; (2) following terrain features

such as roads or hedges; (3) focusing effort in regions with higher bottle counts. Fig-

ure A.5 shows an example of one subject’s search strategy. For each group of subjects, we

measured (1) number of quadrants covered per subject; (2) number of quadrants covered

per team (the union of each subject’s coverage areas). The number of quadrants cov-

ered per team is a good measure of team coordination. On average each subject was able

to cover 41.3% (mean of both conditions in Table A.1) of the region within 20 minutes;

therefore, all three team members were required to perfectly cover the region. Figure A.5

shows an example search pattern that was reported by a subject in Team 4. This anno-

tation was used to estimate the number of quadrants that the subject was able to cover;

team coverage was determined by examining the union of all team members’ individual

coverages at the quadrant level. Table A.1 contains the individual (Columns A, B, and C)

and team terrain coverage performance for all eight teams. Team scores are lower than

the sum of individual scores due to coverage area overlap. On average, team coverage

was 88% of the map for both the # Bottles Known and # Bottles Unknown conditions.

To be successful at covering the entire region, teams had to effectively divide the ex-
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Figure A.4: Communication frequency averaged across four teams of subjects. Subjects appear

to spend more time monitoring their task progress in # Bottles Known condition, whereas in the #

Bottles Unknown condition more communications are devoted to increasing the team’s situation

awareness. Also, the subjects appear to be spending more time planning prior to execution in the

# Bottles Unknown condition.
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Figure A.5: Map of search area annotated by one of the subjects in Team 4. The numbers and

letters at the edge of the map are the coordinates for quadrants. After each search, the subjects

were asked to report their search pattern by drawing on a printout. These annotations were used

to calculate the individual and team coverages (see Table A.1).
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Table A.1: Terrain Coverage

# Bottles Known # Bottles Unknown

Team # A B C Team A B C Team

1 25.0% 21.1% 50.0% 70.83% 41.6% 33.3% 41.6% 79.16%

2 25.0% 45.8% 20.8% 95.83% 58.3% 45.8% 20.8% 100.00%

3 20.8% 29.1% 50.0% 66.67% 33.3% 37.5% 37.5% 79.16%

4 33.3% 37.5% 37.5% 100.00% 33.3% 45.8% 41.6% 100.00%

5 37.5% 41.6% 54.1% 87.50% 45.8% 62.5% 37.5% 95.83%

6 45.8% 66.7% 37.5% 95.83% 66.7% 58.3% 37.5% 83.33%

7 75.0% 37.5% 25.0% 87.50% 58.3% 29.1% 33.3% 75.00%

8 75.0% 33.3% 45.8% 100.00% 25.0% 20.8% 66.7% 95.83%

mean 40.44% 88.01% 42.16% 88.54%

ecution space and be proactive at diagnosing and repairing accidental gaps in the search

pattern. Instead of attempting to cover the entire region, some teams hypothesized that

certain quadrants had a high bottle density and focused on thoroughly searching those

quadrants at the expense of less promising areas. The search patterns demonstrated by

the experimental subjects exhibited similar problems to the behavior of actual search and

rescue teams: (1) the creation of accidental holes in the search pattern due to poor execu-

tion of the search plan, and (2) poor priority assignments in the search plan due to false

clues and hunches. This is a promising area for agent assistance; by having agents track

individual team members’ coverage, gaps in the team coverage are exposed earlier in the

search process allowing repairs to be made in a more timely fashion. Our model predicts

that aiding the state of coordination between team members will result in task perfor-

mance improvement. Another potential assistance strategy would be to have agents help

the subjects form better priority assignments by noting the number of bottles found in

each quadrant and informing team members about quadrants with higher bottle densi-

ties.
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Table A.2: Bottles Retrieved

Team # Subject Expertise # Bottles Known # Bottles Unknown

1 novice, medium, expert 84.61% 78.57%

2 novice, expert, expert 73.33% 54.76%

3 novice, novice, expert 60.52% 66.66%

4 novice, novice, medium 77.27% 35.71%

5 medium, expert, expert 86.36% 73.80%

6 novice, medium, medium 59.52% 52.38%

7 expert, expert, expert 81.81% 76.19%

8 medium, expert, expert 94.00% 80.95%

mean — 77.17±12.24% 64.87 ± 15.88%

A.3.4 Team Performance

Table A.2 reports the performance of all the teams in our initial set of experiments, mea-

sured by percentage of bottles crushed by each team. We had each subject self-assess their

expertise at computer games; this information is reported in the second column. During

each session, we evaluated the performance of the teams on three search tasks: (1) an

initial practice session during which the subjects were learning the user interface (results

not shown), (2) a session in which the subjects knew the total number of bottles hidden

on the map (labeled in the table as # Bottles Known), (3) a session in which the subjects

did not know how many bottles they were trying to recover (# Bottles Unknown). Based

on these preliminary results, it appears that knowing the total bottle count improved the

performance, which indicates that this might be a promising area for agent assistance.

A.4 Discussion

This initial phase of experiments was designed to (1) create a baseline of expected team

performance and (2) determine where agent aiding is likely to have the greatest impact.
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From our preliminary results we noted a few trends:

• The categories with the highest communication traffic were situational awareness

(e.g., communicating one’s location to the team) and task monitoring (communicat-

ing bottle counts, time, and coverage). In the # Bottles Known condition, subjects

actually had fewer task monitoring communications, but more communications re-

lating to situational awareness. Pre-planning seemed to increase in the # Bottles

Unknown condition.

• The team coverage did not differ in the # Bottles Known or # Bottles Unknown

conditions; subjects reported that they were searching about the same amount of

the map, although their bottle retrieval performance was lower.

• Team performance, measured by number of bottles retrieved, was poorer in # Bot-

tles Unknown condition.

• Gaming expertise was predictive of individual bottle collecting performance, but

not of an individual’s terrain coverage.

Based on these results, we plan to focus our agent aiding on these areas:

• reducing the cost of communication between teammates by having agents assist

the subjects at increasing situational awareness and monitoring task progress. We

believe that this will free the humans’ time to communicate about other aspects of

the task, such as sharing search hints and team planning.

• improving the coordination between team members at dividing the execution

space Subjects were not accurately able to self-assess their team coverage and often

left holes in their search patterns. Helping teams accurately monitor team coverage

is a very promising future area for agent assistance.
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Listening to the recordings of the players was very valuable and gave us some insights.

All teams adopted the common sense strategy of forming a team plan and dividing the

search space. Most teams also replanned during execution when the following events

occurred: (a) subjects finished their assigned coverage areas, (b) when new bottles were

discovered, (c) as the deadline approached. Some teams evaluated themselves on terrain

coverage whereas others focused on total bottle count. Often subjects formed hypothe-

ses about areas with high bottle counts, similar to following false hunches in search and

rescue operations, and speculated about the existence of hidden bottle caches. Although

teams were allowed to self-organize, none of them elected a commander. Some players

voluntarily assumed roles such as timekeeping or tallying bottle counts.

In the future, we plan to evaluate agent aiding in a version of the task that requires

tighter coordination. By examining a task with more interdependencies, we believe that

we will observe more planning, especially during execution. In the new version of the

task, each subject has to retrieve a portfolio of seven bottles, one of each type (whiskey,

martini, etc.). We hypothesize that coordination confers a huge benefit to the subjects if

they pool information about bottle types that they have already acquired, the location

of bottles that they do not need, and their portfolio requirements. Without team coordi-

nation, it is hard for even expert gamers to collect a portfolio of bottles, since it is more

likely that they will collect a larger number of bottles without being able to find one of

each type.

A.5 Conclusion

Our ongoing research objectives include understanding how agent-based team support

affects team performance in critical, time-stressed situations and the impact of agents on
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the adaptive decision-action cycle of the team. To understand the effects of agent aiding

on team support, we designed a collaborative search task, the team scavenger hunt, that

recreates some of the challenges faced by expert human teams during search and rescue

operations. As an experimental task, the team scavenger hunt offers several advantages:

(1) it can be learned and executed within a short period of time by novice subjects; (2)

it can be simulated within a variety of testbeds; (3) it offers a simple team performance

metric (4) it can be extended in different ways to evaluate concepts like team trust and

adversarial reasoning. The team scavenger hunt problem touches on some interesting

problems in artificial intelligence such as the multi-agent traveling salesman problem and

preference satisfaction over sets of objects. We believe that it is a useful benchmark prob-

lem for other groups studying team behavior and agent assistance. This initial set of

pilot experiments has allowed us to create a baseline of non-assisted team performance

and also has given us some valuable clues as to where agent aiding is likely to have the

greatest impact.
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