Computational Analysis of High Enthalpy Effects on 2nd Mode Disturbances

Ross Wagnild, Joseph Jewell, Ivett Leyva, Graham Candler, Joseph Shepherd

This effort is focused on using linear stability analysis (PSE) and Navier-Stokes solvers to study the effect of non-equilibrium effects, present in high-enthalpy flows, on 2nd mode disturbances and transition. The effort is concentrated on flows over slender cones with air, CO₂, and mixtures of those two gases as the test gases.
Computational Analysis of High Enthalpy Effects on 2nd Mode Disturbances

Ross Wagnild, Sandia National Labs
Joseph Jewell, Caltech, Ivett Leyva, AFRL,
Graham Candler, University of Minnesota,
Joseph Shepherd, Caltech
Introduction

- Transition on slender, constant-angle cones
- Fujii and Hornung
 - Investigated acoustic damping in equilibrium mixtures
- Jewell et al.
 - Porous injection of CO_2 into a hypervelocity boundary layer on a sharp cone

Amplification and absorption over a range of frequencies in CO_2
Previous work

• Modeling T5 shock tunnel experiments
 – 5° half-angle sharp cone
 – Smooth and injection inserts
 – Air, N₂, and CO₂
 – $h_0 \sim 4 - 10.5\, MJ/kg$
 – $P_{res} \sim 30 - 85\, MPa$

Test cone used in T5 tunnel experiments
Computational Tools

• Tunnel Flow
 – Nozzle Code + STABL CFD solver
 • 2D and axi-symmetric, reacting Navier-Stokes
 • Second-order accurate fluxes
 • High-pressure, excluded-volume equation of state
 – US3D
 • Solves 3D, reacting Navier-Stokes Equations
 • Inviscid fluxes are formulated for low dissipation
 • Viscous fluxes are second-order accurate
 • Implicit time advancement up to second-order accurate
 • High-pressure, excluded-volume equation of state

• Stability Analysis
 – PSE-Chem
 • Solves the axi-symmetric linear PSE
 • Includes finite-rate chemistry and T-V energy exchange
Current Efforts:

• Freestream Mixtures
 – Air + CO₂
• Prediction Goals
 – Large transition delay in T5
 – Ensure effective application of damping
 • “Freezing” vibration in PSE stability analysis
Current Efforts:

- Freestream Mixtures
 - Air + CO$_2$
- Prediction Goals
 - Large transition delay in T5
 - Ensure effective application of damping
 - “Freezing” vibration in PSE stability analysis

Change in transition location due to vibrational damping
Current Efforts

- **Experiments**
 - Measured clear distinction in Re_tr^*
 - Observed transition delay

\[
\frac{T^*}{T_e} = \frac{1}{2} + \frac{\gamma - 1}{2} \frac{\sqrt{\text{Pr}}}{6} M_e^2 + \frac{1}{2} \frac{T_w}{T_e}
\]

\[
\text{Re}_\text{tr}^* = \frac{\rho^* u_e x_{\text{tr}}}{\mu^*}
\]

Transition Reynolds number from experiments
Current Efforts

• Computational Analysis
 – Decrease in amplification with increase of CO$_2$
 – Consistent $N_{tr} \sim 10$
 • Range of freestream compositions
 • Range of Enthalpy

Computed max N factor for various T5 experiments
Current Efforts

• Computational Analysis
 – Decrease in amplification with increase of CO₂
 – Consistent $N_{tr} \sim 10$
 • Range of freestream compositions
 • Range of Enthalpy

Computed transition N factor* for various T5 experiments

*Error Bars indicate ± 4 cm.
Future Interests

• Apply this computational method to other high-enthalpy facilities
 – Do we see the same trends?
 • Gain confidence in modeling tools
 • Opportunity to improve modeling deficiencies

• Open to other high-enthalpy transition research
Questions/Comments?

• Referenced Papers:

• Acknowledgements
 • Mr. Nick Parziale, Mr. Bahram Valiferdowsi Prof. Hans Hornung
 • Experimental portion -> Air Force Office of Scientific Research under award number FA9550-10-1-0491 and the NASA/AFOSR National Center for Hypersonic Research.
 • Computational work -> Air Force Office of Scientific Research grant FA9550-10-1-0352.
 • Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Vibrational Relaxation Effects on Acoustic Disturbances

- **Geometry**
 - 7° half-angle sharp cone
 - Nose radius $12.5 \ \mu m$
 - Length $0.5 \ m$

- **Conditions**
 - $h_0 = 4.6 \ M J/kg$
 - $Re = 2.6 \times 10^7 \ 1/m$
 - $Mach = 12.58$

Contours of density disturbance for the $1.4 \ MHz$, slow wave case