Award Number: W81XWH-12-1-0382

TITLE: Biomarker Discovery in Gulf War Veterans: Development of a War Illness Diagnostic Panel

PRINCIPAL INVESTIGATOR: Lea Steele, Ph.D.

CONTRACTING ORGANIZATION: Baylor University
Waco, TX 76706-1003

REPORT DATE: October 2013

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Biomarker Discovery in Gulf War Veterans: Development of a War Illness Diagnostic Panel

Lea Steele, Ph.D

E-Mail: Lea_Steele@baylor.edu

Baylor University
Waco, TX 76706-1003

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

At least one in four of the nearly 700,000 U.S. veterans of the 1990-1991 Gulf War are affected by Gulf War illness (GWI), the chronic condition currently defined only by veterans’ self-reported symptoms. Previous studies have identified neurological, inflammatory, endocrine, and hematological measures that significantly distinguish groups of GWI cases from controls. Using state-of-the-art biodiscovery techniques, the present study is designed to identify a biological signature for GWI that can be used clinically as a diagnostic blood test. A multiphase case-control design is used to canvas a broad spectrum of blood analytes in three independent samples of Gulf War veterans. The multiplex assay platform includes a diverse array of cytokines, chemokines, growth factors, hormones, hematological measures, and neurotrophic factors, and provides highly replicable and accurate quantitative values for each analyte. The pattern of analytes whose values most reliably distinguish veterans with GWI from healthy controls in the first two “development” samples will be assembled, and tested in the third “validation” sample, to determine the test’s sensitivity and specificity for diagnosing GWI and/or identified GWI subgroups. If successful, the availability of an objective test for diagnosing GWI will be immensely beneficial to veterans and their healthcare providers, and provide an important tool for improving research to better understand and treat GWI.

Gulf War veterans, Gulf War illness, biomarkers, diagnostic test, multiplex assay
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>5</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
</tbody>
</table>
Introduction

Since their return from the 1990-1991 Gulf War, at least one in four of the nearly 700,000 U.S. veterans who served in that war have been affected by the condition known as Gulf War illness (GWI).\(^1\)\(^-\)\(^3\) Gulf War illness is characterized by a complex of multiple chronic symptoms, typically some combination of persistent headache, widespread pain, cognitive difficulties, unexplained fatigue, gastrointestinal problems and diverse other abnormalities. Although individual symptoms can vary, studies report a generally consistent pattern of chronic symptoms across different Gulf War veteran populations. Longitudinal studies indicate that few veterans have recovered, or substantially improved over time.\(^4\)\(^,\)\(^5\) Gulf War illness has, as a result, presented a difficult challenge for a large number of veterans for over 20 years.

For many ill veterans, the difficulty of living with chronic illness is accompanied by additional problems when seeking medical care. Physicians can be exceptionally challenged by veteran patients reporting this array of diverse symptoms—multiple, persistent symptoms not accounted for by established medical or psychiatric diagnoses and not explained by interpretable abnormalities on standard diagnostic tests.\(^6\) Although some physicians are knowledgeable about problems of this nature, many veterans continue to report frustrating experiences with healthcare providers who are not familiar with GWI or similar problems, and may even be dismissive of veterans’ illness as psychosomatic or malingering.

The pathobiology of GWI appears to be complex. Previous studies have identified neurological, immune, endocrine, and hematological measures that significantly distinguish groups of GWI cases from controls.\(^7\)\(^-\)\(^{21}\) None of these measures, however, provides sufficient sensitivity and specificity to diagnose GWI. GWI is currently identified clinically and in research studies only on the basis of veterans’ subjectively-reported symptoms. An objective test for use in diagnosing GWI would be immensely beneficial to veterans and their healthcare providers, and would also provide an important tool for improving research to better understand and treat GWI.

As has been described elsewhere,\(^1\)\(^,\)\(^{22}\) there is considerable evidence to suggest that the diverse symptoms and biological alterations associated with GWI reflect a persistent disruption in central nervous system (CNS) proinflammatory and neuroendocrine parameters. These processes can precipitate, sustain, and respond to peripheral changes in immune, hypothalamic-pituitary-adrenal (HPA), autonomic, and hematological parameters. Reported differences in these systems are more subtle than the frank “abnormalities” identified with standard diagnostic tests (e.g., measures indicating adrenal failure, clotting abnormalities, or defective immune competence). These more subtle differences have been detectable only by comparing group values between sick and healthy Gulf War veterans. No single measure provides values that are distinct enough, or “abnormal” enough to serve as a suitable diagnostic marker on its own. The multisystem nature of GWI suggests that the diagnostic test that can best identify individual veterans with GWI, in the near term, may require evaluation of more than one measure, whose values are considered together.

The present study utilizes state-of-the-art biodiscovery techniques that canvas a broad spectrum of blood analytes to develop a limited panel of assays that can be combined onto a single
multiplex platform specific to GWI for use as a GWI diagnostic tool. Blood levels of 190 proteins associated with immune, inflammatory, endocrine, and neurological processes that potentially underlie the symptoms of GWI are analyzed using a two-phase, case-control design. In the initial “development” phase, multiplex assay results from two independent samples of 75 veterans (each with 45 GWI cases and 30 controls) are used to determine the biomarker signature pattern or patterns that best distinguish GWI cases from controls. In the second, “validation” phase, this biomarker signature will be evaluated in a third sample (90 GWI cases, 60 controls) to assess its sensitivity and specificity for identifying GWI cases and/or GWI subgroups of importance. An important aspect of the multiplex laboratory methods used in both phases is the provision of highly accurate and replicable quantitative values for each assay. This approach holds particular appeal, since the subgroup of analytes that most reliably distinguishes GWI cases from controls can readily be developed for use as a diagnostic tool in the clinic setting that uses a small blood sample, at a relatively low cost.

This interdisciplinary research study is led by a team of experienced GWI investigators and statisticians at Baylor University, working with clinical researchers at Scott & White Healthcare and laboratory scientists at Myriad-Rules Based Medicine (M-RBM), the company at which the biomarker discovery process used by the project was developed. The M-RBM multiplexed assay platforms have been widely used by the pharmaceutical, biotechnological, medical, and basic research communities for discovery and validation of biomarker patterns indicative of specific diseases, subgroup differences in clinical drug effects, and other purposes. The M-RBM process utilizes a platform that couples the precision of Luminex technology with the accuracy of automated liquid handling. This platform provides quantitative Multi-Analyte Profiles, or MAPs, of blood proteins using very small sample volumes (10-20 µL) over a dynamic range of fg/mL to mg/mL and intra-assay imprecision rates typically below 10 percent. In addition, all assays in M-RBM multiplex platforms are validated to Clinical and Laboratory Standards Institute (CLSI) guidelines and are run using a calibration/control strategy required for clinical laboratories. This approach therefore standardizes both the multiplex assay technology and the methodologies by which it is applied. These capabilities represent an important step forward for translating an identified biomarker profile into a clinically useful test.

In conjunction with the biomarker discovery process, the project involves a two-phase analytic effort to both develop and test algorithms for identifying GWI cases and, potentially, GWI subgroups. A number of bioinformatics and biostatistical techniques will be utilized by two independent analytic teams, at Baylor and M-RBM, to characterize assay patterns that distinguish GWI cases from controls. This dual analytic approach maximizes the potential for the project to provide the most informative and usable GWI case profiles from the collected data. In addition, the Baylor analytic team will determine whether unique patterns are associated with GWI subgroups of interest.

If successful in developing a GWI-specific multiplex panel that identifies GWI with sufficient accuracy, the project will provide a major step forward for improving medical evaluation and care of veterans with GWI. It can also advance other aspects of GWI research, for example, by providing an objective measure for monitoring the effects of treatments evaluated in clinical trials.
Body

Task 1. Prepare and Submit Documents to Obtain Regulatory Approvals

This project requires review and approval by two Institutional Review Boards (Baylor and Scott & White IRBs) and by the USAMRMC’s Office of Human Research Protections (HRPO). We also initially understood, based on information provided by DOD officials, that the project would require review and approval by the federal Office of Management and Budget (OMB), under the federal Paperwork Reduction Act (PRA). We were informed that the OMB approval process typically requires a minimum of eight months. We therefore designed the project timeline to allow ten months for obtaining regulatory approvals, as indicated in the Statement of Work.

Our initial strategy was to begin the process and document submissions required for OMB review and approval prior to HRPO and IRB submissions. This was because we understood that OMB approval would be needed to obtain our initial sampling data from the Defense Manpower Data Center (DMDC), and because the OMB approval process typically takes much longer than the IRB process. However, in a concurrent study, we were experiencing extended delays and considerable difficulties in connection with the DOD offices responsible for reviewing and forwarding our PRA documentation to OMB. As of November 2012, these delays had extended the timeline anticipated for OMB review to a minimum of 15 months. We learned, in early 2013, after multiple requests, contacts, and discussions, that the DOD Information Management Office determined that our study would *not* be subject to the federal PRA and that OMB approval would not be required.

As shown in the Statement of Work, we also initially expected to submit human subjects’ documents for Army HRPO review and approval prior to obtaining approvals from Baylor and Westat IRBs. But our discussions with HRPO staff indicated they would review our submission only after IRB approvals were obtained. We submitted all required documentation to the Baylor IRB in June, 2013. The Baylor IRB did not meet in July, so project approvals were received from the Baylor IRB on August 22, 2013. Our human subjects’ proposal documents were then submitted for review by the Scott & White IRB on August 29, and an approval decision was provided on October 10, 2013. The approval also included several comments and suggestions which we are still clarifying before we resubmit minor modifications as an amendment to the Baylor IRB. Once approved, all required human subjects documents will be submitted to HRPO for final comments and approval.

Our original timeline anticipated that regulatory approvals could be obtained 10 months into the initial project year. While the delays described have resulted in our being several months behind this schedule, we anticipate that the required IRB and HRPO approvals will be obtained in a timely manner, allowing us to move forward with submitting our data request to DMDC by early 2014 to obtain information for our three samples, and begin recruitment for the study late in the first quarter of 2014. This is several months later than the timeline originally outlined in the Statement of Work, which scheduled CATI screening interviews to take place in months 13 – 22 of the project (Nov 2013 – July 2014).
Task 2. Identify and screen three stratified random samples of Gulf War era veterans for study participation

Data to assemble the three population samples cannot be provided by DMDC until human subjects’ approvals are obtained from HRPO. Therefore, the target samples have not yet been assembled, and no recruitment activities have been initiated.

All screening and data collection instruments have been finalized. The prototype program for the computer-assisted telephone interview (CATI) screening survey has been completed by Baylor’s Center for Community Research and Development (CCRD) and is ready for testing and edits.

Tasks 3 – 6.
No activities completed or underway at this time. No blood samples have been obtained, no analyses have been initiated, and no research results are yet available.
Key Research Accomplishments

Only regulatory submissions and work on finalizing study design and instruments has been accomplished to date. Data collection has not yet been initiated.

Reportable Outcomes

There are no manuscripts or other reportable outcomes at this time.

Conclusion

No research results are yet available; no conclusions can be drawn at this time.
References

5. Kang HK. Longitudinal health study of Gulf War era veterans. Presentation at: Meeting of the Research Advisory Committee on Gulf War Veterans’ Illnesses; Sep 16, 2008; Washington, D.C.

20. Bach RR, Slater B. Tissue Factor and Gulf War-Associated Chronic Coagulopathies. Presentation at: Meeting of the Research Advisory Committee on Gulf War Veterans' Illnesses; June 29, 2009; Boston, MA.
