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INTRODUCTION: 
 
In this project, ―A Search for Gene Fusions/Translocations in Breast Cancer‖ we have 
undertaken a systematic evaluation of breast cancer to map disease-specific, recurrent 
chromosomal or transcriptional chimeras in breast cancer that can be further characterized to 
develop novel biomarkers and therapeutic targets. Over the entire grant period, we have made 
high-impact discoveries and tremendous progress towards our goal of identifying molecular 
drivers of breast cancer that have prognostics/diagnostic value as well as potential as therapeutic 
targets.  
 
During the early years of this grant, we reported the characterization of a subset of ER positive 
breast cancer patients characterized by the overexpression of AGTR1 who may be responsive to 
an available drug, losartan1 (Rhodes et al, 2009). We also provided a novel mechanistic 
framework for the overexpression of the polycomb group protein EZH2 in metastatic breast and 
prostate cancers, involving the genomic loss of its negative regulator, miR101 (Varambally et al, 
2008). Additionally, we reported the development of a high throughput sequencing pipeline for a 
directed search for gene fusions in cancers using next generation transcriptome sequencing 
platforms (Maher et al, 2009). From those efforts, we identified numerous gene fusions (70 in 
over 40 cancer samples) that mapped to loci of genomic amplifications. We shortlisted several 
fusion candidates that involved kinase genes and other genes of interest related to oncogenesis 
for further study.  
 
Subsequently we described the exciting discovery and characterization of two novel recurrent 
and actionable gene fusions in our breast cancer cohort involving MAST and Notch genes. Both 
MAST and Notch family gene fusions exerted significant phenotypic effects in breast epithelial 
cells (Robinson et al, 2011). We also reported the development of a novel bioinformatics tool 
designed to facilitate the discovery of gene fusions from next-generation sequencing data (Iyer et 
al, 2011); as well as a study that furthers our understanding of the role of microRNAs in cancer 
progression (Cao et al, 2011). 
 
We characterized amplicon-associated gene fusions in breast cancer and found that most of them 
were ―passengers‖ rather than ―driver‖ fusions even when fusions involved known oncogenic 
kinases (Kalyana-Sundaram et al, June, 2012). We also developed a novel bioinformatics 
methodology to discover processed pseudogenes in cancer including those specifically expressed 
in breast cancer (Kalyana-Sundaram et al, August, 2012-2). 
 
We analyzed transcriptome sequencing data from a compendium of 482 cancer and benign 
samples from 25 different tissue types to assess the complete landscape of a cancer‘s ―kinome‖ 
expression and determine which kinases are activated in specific tumor types. Here, we found 
frequent outlier kinase expression in breast cancer included therapeutic targets like ERBB2 and 
FGFR4 whereas MET, AKT2, and PLK2 were expressed in pancreatic cancer. The results of this 
study were published in Cancer Discovery (Kothari et al, 2013). 
 
Recently, through our clinical sequencing study, we identified gene rearrangements of FGFR 
across multiple cancer types, including patients with breast cancer. All FGFR fusions had intact 
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kinase domains and oligomerization capability. Importantly, two cell lines harboring FGFR 
fusions were sensitive to inhibitors in vitro and in vivo (Wu et al, 2013). In a separate study, we 
identified mutations in the estrogen receptor that is acquired after breast cancer patients take anti-
estrogen therapies. These mutations uncover the mechanism by which patients often become 
resistant to hormone therapy (Robinson et al, 2013). 
 
Overall, these discoveries contribute towards the understanding of the molecular and genetic 
etiology of breast cancer that will advance the development of targeted therapies. 
 
BODY: 
 
A detailed, itemized report of all major completed studies follows: 

 

1. Establishment of next generation transcriptome sequencing analysis  
 
Breast cancer cell lines, immortalized normal mammary epithelial cell lines and primary cultures 
of normal mammary epithelial cells were obtained from ATCC and collaborators at University of 
California, San Diego. A total of 40+ cell lines were cultured and DNA, RNA and protein 
extracted. Breast cancer tissue samples, representing various clinic-pathological stages of breast 
cancer, were obtained from the University of Michigan Breast Cancer Program, and processed 
for RNA, DNA and protein in batches. 
 
RNA isolated from experimental samples was assessed for quality and integrity through 
Bioanalyzer (Agilent). and 2 to 10 g total RNA with RNA Integrity Number ≥8 was used to 
prepare transcriptome 
sequencing libraries. 
Briefly, total RNA was 
passed over oligo-dT 
bearing magnetic 
beads to purify 
mRNA, fragmented 
and converted into 
double stranded cDNA 
by reverse 
transcription followed 
by DNA polymerase 
reaction. The cDNA 
ends were modified by 
ligating short adaptor 
sequences 
(complementary to the 
oligos on the 
sequencing flowcell). 
The cDNA library was size-fractionated by agarose gel electrophoresis and a 300 base-pair 
region was cut out of the gel, purified, and PCR amplified using adaptor specific PCR primer. 
The purified PCR product was assessed for quality and concentration using the Bioanalyzer and 

 
Figure 1. Discovery of gene fusions in MCF7 by Paired End Transcriptome 
Sequencing.  
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libraries with a clean, single peak (representing approximately 300bp) was applied on the 
flowcells for cluster generation. The experimental protocol for transcriptome sequencing was 
developed by Illumina scientists, and our group has served as the beta-test center for the fine-

tuning and subsequent assembly of the kit for paired-end sequencing library preparation.  

 
Utilizing the pipeline described above, we conducted a proof of concept study to nominate gene 
fusions from paired end transcriptome sequence data (Maher et al, 2009). Here, we 
―rediscovered‖ previously known gene fusions in the breast cancer cell line MCF7 including 
BCAS4-BCAS3 and ARGEF2-SUL2, as well as several novel gene fusions that were all 
nominated by sequence analysis and validated by fusion-specific real time PCR (Figure 1). This 
strategy was subsequently utilized in the discovery of gene fusions involving the MAST and 
NOTCH family members described below. 
 
2. AGTR as a COPA candidate in breast cancer 
 
In order to identify genes that display outlier expression in breast cancers, we employed our gene 
expression data compendium, Oncomine 3.0 (Rhodes et al, Jan-Feb, 2004, 2007) to perform 
Cancer Outlier Profile Analysis (COPA) previously used for the discovery of gene fusions in 
prostate cancer (Tomlins et al, 2005). Gene expression values obtained from microarray data-sets 
were median-centered, setting each gene‘s median expression value to zero and each gene 
expression value was divided by its median absolute deviation (MAD) to calculate COPA scores. 
Next, genes were rank-ordered by their COPA scores and outlier genes were defined as those 
that ranked in the top 
100 COPA scores at the 
75th, 90th or 95th 
percentile cutoffs. 
Genes showing outlier 
expression across 
multiple studies (meta-
outlier genes) were 
scored as outliers in a 
significant fraction 
(p<1E-5) of datasets 
using MetaCopa 
analysis, described 
earlier (Rhodes et al, 
June, 2004).  
 
Meta-Copa analysis of breast cancer datasets on 31 breast cancer profiling studies comprising 
3,157 microarray experiments led to the identification of a total of 159 significant meta outliers 
(P<1E-5). Among the top genes identified as outliers in a majority of datasets examined, the 
highest outlier in ERBB2-negative breast cancer samples was found to be AGTR1, the 
Angiotensin II Receptor Type I. Potential genomic rearrangement of AGTR1 locus was 
investigated as a likely mechanism for overexpression.  

 
Figure 2.  Copy number analysis of the AGTR1 locus. (A) A schematic of probes 
used for FISH analysis- Control (green) and AGTR1 (red). (B) Representative 
images from FISH analysis- left, representative negative case, middle and right, 
cases with copy number gains of AGTR1. (C) Association 
ofAGTR1overexpression with copy number gain.  Proc Natl Acad Sci U S A. 2009 
Jun 23;106(25):10284-9. 
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We performed FISH on 
tissue microarrays 
containing 311 cases of 
invasive breast cancer to test 
the AGTR1 locus for gene 
rearrangement or DNA copy 
number aberrations and 
observed an amplification of 
the AGTR1 locus rather 
than rearrangement 
associated with AGTR1 
overexpression in 7 of 112 
cases (6.25%) (Figure 2). 
This observation was 
confirmed by qRT-PCR 
analysis. Further analysis 
revealed that although copy 
number gain was always 
associated with overexpression, increased expression also occurred without copy number gain. 
 

 Ectopic overexpression of AGTR1 in primary 
mammary epithelial cells HMEC and H16N2 
combined with angiotensin II stimulation led 
to a highly invasive phenotype that was 
attenuated by the AGTR1 antagonist losartan 
(Figure 3).   
 
Similar to the observations of in vitro cell 
culture experiments, the AGTR inhibitor 
losartan exerted an inhibitory effect on 
AGTR1-positive breast cancer xenografts, 
reducing tumor growth by 30% (Figure 4).  
 
Both, in vitro and in vivo studies indicate that 
a subpopulation of ER-positive, ERBB2-
negative breast cancers that overexpress 
AGTR1 may benefit from targeted therapy 
with AGTR1 antagonists such as losartan. 

 

Figure 3. AGTR1 overexpression 
and effect on cell invasion. (A) 
Matrigel invasion assays of Human 
Mammary Epithelial Cells (HMEC) 
or immortalized normal mammary 
epithelial cells, H16N2 
overexpressing AGTR1 or LacZ. 
Cells cultured with and without 
agonist, angiotensin (AT) or 
antagonist, losartan. Similar results 
were observed for HME cells. (B) 
Colorimetric readout of invasion 
assays with LacZ- or AGTR1-
expressing H16N2 or HMEC cells 
treated with AT or losartan. (C) 
Colorimetric readout of invasion 
assays from a panel of 7 breast cancer 
cell lines and a prostate cancer cell 
line, DU145, after treatment with AT 
and/or losartan.  Proc Natl Acad Sci 

U S A. 2009 Jun 23;106(25):10284-9. 

 
Figure 4. Effect of losartan treatment on AGTR1 
expressing MCF7 cell xenografts. (A) Xenograft tumor 
size at 2 weeks. (B) Xenograft tumor size at 8 weeks.  
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10284-
9. 
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3. Loss of microRNA101 leads to overexpression of EZH2 
 

Enhancer of zeste homolog 2 (EZH2) 
is a mammalian histone 
methyltransferase that is 
overexpressed in aggressive solid 
tumors, including breast cancer (Kleer 
et al, 2003) and regulates the survival 
and metastasis of cancer cells through 
epigenetic silencing of target genes. 
We investigated the potential role of 
microRNAs in the regulation of 
expression of EZH2 following an 
integrative bioinformatic analysis of 
miRNA target prediction databases, 
and identified mir101 as a likely 
regulator of EZH2. Functional 
characterization of the association 
between EZH2 and mir101 expression 
led to the discovery of genomic loss of 
mir101 that led to increased expression 
of EZH2 in a cohort of aggressive 
prostate and breast cancers 
(Varambally,et al, 2008) (Figure 5). 
 
To investigate the role of mir101 in 
breast cancer, the EZH2 
overexpressing breast cancer cell line 

SKBR3 was used as a model system in various experiments. An inverse correlation between 
mir101 and EZH2 (and other polycomb group 2 genes) expression levels was observed (Figure 
6).  
 

To study the role mir101 in regulation of gene expression, we performed chromatin 
immunoprecipitation (ChIP) assays to evaluate promoter occupancy of the H3K27 histone mark, 
in SKBr3 cells and EZH2 siRNA–treated cells. We found considerable reduction in the trimethyl 
H3K27 histone mark at the promoter of known PRC2 target genes in (Figure 6A), and this 
resulted in increased gene expression of the target genes (Figure 6B). Gene-expression array 
analysis of SKBr3 cells transfected with either miR-101 or EZH2 siRNA duplexes showed 
significant overlap in gene expression. SKBr3 cells treated with precursor miR-101 or siRNA 
targeting EZH2 reduced proliferation, but ectopically overexpressing EZH2 lacking its 3‘UTR 
rescued the proliferation levels, further confirming the regulation of EZH2 by mir101. Use of 
miR-101 antagonists (antagomiRs to miR101) induced an invasive phenotype in benign 
immortalized H16N2 breast epithelial cells (Figure 7). 
 
The genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant 
dysregulation of epigenetic pathways, a key molecular event in cancer progression. 

 
Figure 5. miR-101 inhibits EZH2 transcript and protein 
expression in breast cancer cell line SKBR3. (A) Venn diagram 
displaying miRNAs computationally predicted to target EZH2 
using different target prediction programs. (B) Schematic of two 
predicted miR-101 binding sites in the EZH2 3‘UTR. (C) miR-
101 downregulates EZH2 transcript expression. qRT-PCR of 
EZH2 in SKBr3 cells transfected with precursor miR-101. (D), 
miR-101 downregulates Polycomb Group Complex 2 protein 
expression. miR-101 downregulates EZH2 protein as well as 
Polycomb members SUZ12 and EED in SKBr3 cells.  Science. 
2008 Dec 12;322(5908):1695-9 
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Figure 6. miR-101 regulation of the cancer epigenome through EZH2 and H3K27 tri-
methylation. (A) Chromatin immunoprecipitation (ChIP) assay of the trimethyl H3K27 
histone mark when miR-101 is overexpressed. Known PRC2 repression targets were 
examined in SKBr3 cells. ChIP was performed to test H3K27 trimethylation at the 
promoters of ADRB2, DAB2IP, CIITA, RUNX3, CDH1 and WNT1. GAPDH, KIAA0066 
and NUP214 gene promoters served as controls. (B) qRT-PCR of EZH2 target genes was 
performed using SKBr3 cells transfected with miR-101. The EZH2 transcript and its known 
targets including ADRB2, DAB2IP, CIITA, RUNX3 and E-cadherin (CDH1) were 
measured.  Science. 2008 Dec 12;322(5908):1695-9 

 
 
Figure 7. The role of miR-101 in regulating cell proliferation, invasion and tumor 
growth. (C) AntagomiRs to miR-101 induce invasion in benign immortalized H16N2 
breast epithelial cells. Science. 2008 Dec 12;322(5908):1695-9 
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4. Recurrent rearrangements of the MAST kinase and Notch gene families in breast 
cancer 

 
We employed paired-end transcriptome sequencing to explore the landscape of gene fusions on a 
panel of 89 breast cancer cell lines and tumors. We observed that individual breast cancers 
harbor an array of expressed gene fusions, most of which are likely ‗passenger‘ events. In this 
background of amplification- and rearrangement- induced complexity, we identified two classes 
of rare but recurrent gene rearrangements in breast cancer; we identified five instances of fusions 
of microtubule associated serine threonine kinase (MAST) family kinases (Figure 8) and eight 
instances of fusions of genes in the Notch family genes (Figure 10). Our analysis suggests that 
the MAST fusions were present in ~ 3-5% of breast cancers. Knockdown of MAST2 showed 
significant inhibitory effects on growth in MAST2-postive MDA-MB-468 cells but not in the 
fusion-negative cell line BT-483 or in benign TERT-HME1 breast cells (Figure 9a). We then 

cloned and overexpressed all 
five MAST1 and MAST2 
fusions in TERT-HME1 cells; 
cells overexpressing the 
MAST fusion genes 
displayed increased cell 
proliferation (Figure 9b). 
MDA-MB-468 cells treated 
with MAST2 silencing 
shRNA had a reduction in 
growth as assessed by colony 
formation assay (Figure 9c), 
and in the mouse xenograft 
model, MDA-MB-468 cells 
transiently transfected with 
MAST2 shRNA did not 
establish palpable tumors 
over a time course of 4 weeks 
after transfection (Figure 9d). 
Our studies show that the 
MAST gene fusions are a key 
driver of tumorigenesis in a 
sub-set of breast cancer. 
 
 

 

 
Figure 8. Schematic representation of functional domains retained in the 
putative chimeric proteins involving MAST1 and MAST2. Nat Med. 

2011 Nov 20;17(12):1646-51. 
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We identified eight Notch gene fusions (NOTCH 1 or NOTCH 2, Figure 10), all of which 
occurred in ER- carcinoma (one was found in a triple-negative carcinoma). All the fusion 
transcripts retained the exons that encode the Notch intracellular domain (NICD) that is 
responsible for inducing the transcriptional program following Notch activation. We co-
transfected three fusion alleles along with a Notch reporter plasmid and all three induced Notch-
responsive transcription that was equivalent to native NICD (Figure 11b). Furthermore, the 

 
Figure 10. Schematic presentation of the predicted protein structures of the aberrant Notch genes. Nat Med. 2011 
Nov 20;17(12):1646-51. 

a. b.

c. d.

 
Figure 9. (a) Cell count proliferation assay following MAST2 knockdown in MDA-MB-468 cells (left) and 
fusion-negative TERT-HME1 or BT-483 cells (right). (b) Cell count proliferation assay following 
overexpression of MAST chimera in TERT-HME1 cells. (c) A colony formation assay of MDA-MB-468 
cells treated with MAST2-specific shRNA or control scrambled shRNA. The inset shows crystal violet 
staining of cells treated with either scrambled or MAST2 shRNA. (d) Tumor volumes of MDA-MD-468 
xenografts with MAST2 knockdown. Error bars represent s.d. Nat Med. 2011 Nov 20;17(12):1646-51.  

 

 

 

 

Nature Medicine, 17:1646–1651 (2011) 
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fusion alleles markedly induced expression of the Notch target genes MYC, HES1 and HEY1 
(Figure 11a). 
 
The Notch fusions 
represent two functional 
classes with respect to 
dependence on the activity 
of γ-secretase. Fusions in 
BrCa10040, HCC2218 and 
HCC1599 cells are 
dependent on S3 cleavage 
for activity and are 
sensitive to γ-secretase 
inhibitors (GSIs). The 
fusion class in HCC1187 
cells is independent of S3 
cleavage. We established 
stable Notch reporter lines 
from each of the three 
Notch fusion index lines 
and treated them with the 
γ-secretase inhibitor N-
[(3,5-
difluorophenyl)acetyl]-L-
al anyl-2-phenyl]glycine-
1,1-dimethylethyl ester 
(DAPT). We saw a 
reduction of Notch 
reporter activity after 
treatment with DAPT in 
the HCC1599 and 
HCC2218 cells but not in HCC1187 cells (Figure 12a). Treatment with DAPT also repressed the 
expression of the Notch targets CCND1, MYC and HEY1 (Figure 12b). Finally, treatment with 

a.

c.

b.

 
Figure 12. (a) Luciferase assay of the Notch signaling pathway following 
DAPT treatment. Breast cancer cells were co-infected with a Notch reporter 
construct, lenti-RBPJ firefly luciferase, and the internal control lenti-Renilla 
luciferase. Twenty-four hours after treatment with DAPT, luciferase activities 
were measured. (d) Expression of Notch target genes after treatment with 
DAPT, as measured by qRT-PCR. (e) Xenograft tumor volume and body mass 
after treatment with the γ-secretase inhibitor DAPT. Mice xenografted with 
HCC1599 cells were treated daily after tumors formed, and the size of the 
tumors was monitored.  Nat Med. 2011 Nov 20;17(12):1646-51 

a. b.

 
Figure 11. (a) mRNA expression levels of three Notch target genes inTERT-HME1 cells stably expressing 
Notch fusions, measured by quantitative RT-PCR. (b) Notch reporter luciferase levels in 293T cells, assayed 
following transient Notch expression. Error bars represent s.d. Nat Med. 2011 Nov 20;17(12):1646-51. 
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DAPT significantly reduced tumor volume in a xenograft tumor model of HCC1599 cells but did 
not affect body weight (Figure 12c). 
 
The discovery of functionally recurrent MAST and Notch fusions in a subset of breast 
carcinomas is a promising path for future research and treatment in breast cancer and illustrates 
the power of next-generation sequencing as a tool in the development of personalized medicine.  
 
5. Next Generation Sequencing Analysis: ChimeraScan 

 
We previously used high-
throughput paired-end trans-
criptome sequencing (RNA-Seq) 
to detect aberrant, chimeric RNAs 
and uncovered recurrent classes 
of clinically relevant gene fusions 
such as those found in breast 
cancer described above. This 
discovery was facilitated by the 
development of an open-source 
software package, ChimeraScan, 
for the discovery of chimeric 
transcription between two 
independent transcripts in high-
throughput transcriptome seq-
uencing data (schematic shown in 
Figure 13). ChimeraScan 
includes features such as the 
ability to process long (>75 bp) 
paired-end reads, processing of 
ambiguously mapping reads, 
detection of reads spanning a 
fusion junction, integration with 
the popular Bowtie aligner, 
supports the standardized SAM 

format and generation of HTML reports for easy investigation of results. Overall, we believe that 
the ChimeraScan will facilitate the discovery of additional gene fusions that may serve as 
clinically relevant targets in cancer.  

a.

b.

 
 
Figure 13. ChimeraScan flowchart. (a) Paired-end reads failing an 
initial alignment step are segmented and realigned to detect 
discordant reads. Discordant reads that pass filter criteria are 
realigned across putative chimeric junctions. (b) Chimera with 
encompassing (blue) and spanning (red) segments detected during 
realignment. Bioinformatics. 2011 Oct 15;27(20):2903-4 
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MicroRNAs mediate coordinate PRC2 and PRC1 function 
 
Polycomb group (PcG) proteins form polycomb repressive complexes (PRC), PRC1 and PRC2. 
They play a critical role in normal development and when dysregulated, contribute to 
carcinogenesis. Earlier, we had identified EZH2, the methyltransferase subunit of the PRC2 
complex, as a biomarker that can be used to molecularly stratify breast and prostate cancers to 
aid in the identification of aggressive disease (Kleer et al, 2003). We further studied the role and 
mechanism of EZH2 in cancer and discovered that microRNA miR-101 can attenuate EZH2 
expression, and importantly miR-101 is 
significantly down-regulated in metastatic 
cancers (Varambally et al, 2008). Here, 
employing in vitro and in vivo cancer models and 
human tumor studies, we demonstrated for the 
first time that key microRNAs link PRC2 and 
PRC1 forming an integral regulatory axis of the 
epigenetic silencing machinery.  
 
Using miRNA target analysis 
(www.targetscan.org), we identified 14 miRNAs 
as top candidates with the following properties: 
(1) upregulated by EZH2 knockdown in DU145 
cancer cells which express high levels of PRC2; 
(2) higher in benign cell lines compared with 
DU145 cells, and (3) predicted to bind to the 3′ 
untranslated region (UTR) of target PRC1 
components based on TargetScan (Figure 14).  
 
We next overexpressed each of the EZH2-regulated miRNAs in BT-549 breast cancer cell line 
and found that miR-181a,b and miR-200b,c decreased RING2 transcript levels and miR-200b,c 
and miR-203 decreased BMI1 
transcript levels (Figure 15), RING2 
and BMI1 are both PRC1 proteins. 
We hypothesized that the EZH2-
regulated microRNAs act as tumor 
suppressors. Consistent with this 
notion, overexpression of either miR-
181a, miR-181b, miR-200a, miR-
200b, miR-200c, or miR-203 
markedly attenuated BT-549 cell 
proliferation to levels similar to that 
of cells transfected with EZH2 
silencing siRNA, or cells 
overexpressing miR-101 (Figure 
16a). Likewise, overexpression of 
either miR-181a, miR-181b, miR-
200a, miR-200b, miR-200c, or miR-203 inhibited the in vitro invasive potential of BT-549 and 

 
Figure 14. A Venn diagram depicting 14 
miRNAs that were upregulated by EZH2 
knockdown, had high endogenous levels in 
normal cells, and were predicted to target PRC1 
proteins. Cancer Cell. 2011 Aug 16;20(2):187-
99. 

 
Figure 15. Overexpression of indicated miRs in BT-549 cells 
and expression of PRC components, EZH2, BMI1 and RING2, 
transcript levels were by qPCR. Cancer Cell. 2011 Aug 
16;20(2):187-99. 
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DU145 (prostate cancer) cells through modified Boyden chambers coated with Matrigel (Figure 
16b). Thus this study furthers our insight on the molecular mechanisms by which EZH2 
mediates its oncogenic effects and the microRNA pathway may serve as potential therapeutic 
targets. 

 
6. Characterization of amplicon-associated gene fusions in breast cancer:  
 
Application of high-throughput transcriptome sequencing has spurred highly sensitive detection 
and discovery of gene fusions in cancer, but distinguishing potentially oncogenic fusions from 
random, ―passenger‖ aberrations has proven challenging. We examined a distinctive group of 
gene fusions that involve genes present in the loci of chromosomal amplifications—a class of 
oncogenic aberrations that are widely prevalent in breast cancers. Integrative analysis of a panel 
of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput 
transcriptome sequencing and genome-wide copy number aberrations assessed by array 
comparative genomic hybridization led to the identification of 77 gene fusions, of which more 
than 60% were localized to amplicons including 17q12, 17q23, 20q13, chr8q, among others. 
Many of these 
fusions appeared 
to be recurrent or 
involved highly 
expressed 
oncogenic drivers, 
frequently fused 
with multiple 
different partners, 
but sometimes 
displaying loss of 
functional 
domains.  
 
 

 
Figure 17. Distribution of gene fusions across breast cancer cell lines. Pie chart 
representation of the relative proportion of gene fusions associated with loci of genomic 
amplifications compared to unamplified loci (left) and bar graph representation of the 
relative distribution of gene fusions across different breast cancer cell lines (right). 
Neoplasia. 2012 Aug;14(8):702-8 

a.                                                                   b. 

 
Figure 16. (a) Overexpression of PRC2-regulated miRNAs, but not control miR-217 or miR-219, inhibited 
BT-549 cell proliferation. EZH2 siRNA and miR-101 overexpression were positive controls and miR-217 
and miR-219 overexpression were negative controls. (b) Overexpression of PRC2-regulated miRNAs 
decreased BT-549 and DU145 cell invasion in vitro.  Cancer Cell. 2011 Aug 16;20(2):187-99. 
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Here we carried out a systematic analysis of the 
association between gene fusions and genomic 
amplification by integrating RNA-Seq data with 
array comparative genomic hybridization 
(aCGH)–based whole genome copy number 
profiling from a panel of breast cancer cell lines. 
We examined a set of ―amplicon-associated 
gene fusions‖ that refer to all the fusions where 
one or both gene partners are localized to a site 
of chromosomal amplification. We found that as 
many as 62% of the total fusions were 
associated with regions of amplifications 
(Figure 17). 
 
We next assessed the functional relevance of 
two amplicon-associated fusion genes involving 
oncogenic kinases, EGFR and RPS6KB1, in the 
context of prioritizing fusion candidates 
important in tumorigenesis. In our transcriptome sequencing compendium of 89 breast cancer 
cell lines and tissues, the highest expression of EGFR is observed inMDA-MB-468, potentially 
resulting from a focal amplification at chr7p12. In addition, we detected an EGFR fusion 
transcript (EGFR-POLD1) in this cell line, encoding the N-terminal portion of EGFR, 

completely devoid of the tyrosine 
kinase domain. Considering that the 
MDA-MB-468 harbors both MAST2 
and EGFR fusions, we wanted to assess 
its relative ―dependence‖ on both the 
kinases. Surprisingly, a profound 
reduction in cell proliferation was 
observed on siRNA knockdown of 
MAST2, whereas EGFR knockdown 
showed little effect (Figure 18). Next, 
testing the possibility of EGFR 
amplicon potentially cooperating with 
MAST2, we found that the effect of 
combined knockdown of EGFR and 
MAST2 was comparable with that of 
MAST2 knockdown alone (Figure 18), 
further suggesting that EGFR 
amplification does not signify a driver 
aberration. 
 

Next, considering that BT-474 is an ERBB2-positive cell line, we tested potential dependence of 
these cells on the RPS6KB1 protein. Surprisingly, similar to our observations with EGFR 
knockdown in MDA-MB-468 cells, here we observed only a small effect on cell proliferation 
after shRNA knockdown of RPS6KB1, in dramatic contrast to the effect of ERBB2 knockdown 

 
Figure 18. Proliferation assay showing absolute cell 
count (y axis) over a time course (x axis) after 
knockdown with EGFR and/or MAST2 siRNAs in 
MDA-MB-468. QPCR assessment of knockdown 
efficiencies relative to nontargeted control (NTC; 
inset). Neoplasia. 2012 Aug;14(8):702-8 

 
Figure 19. Proliferation assay showing absolute cell count (y 
axis) over a time course (x axis) after knockdown with EGFR 
and/or MAST2 siRNAs in MDA-MB-468. QPCR assessment of 
knockdown efficiencies relative to nontargeted control (NTC; 
inset). Neoplasia. 2012 Aug;14(8):702-8 
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(Figure 19). Notably, the shRNA knockdown of RPS6KB1 led to a significant depletion of the 
full-length protein yet it did not affect cell proliferation compared with ERBB2 protein depletion 
(Figure 3, inset). Therefore, BT-474 cells do not display a dependence on RPS6KB1 protein, and 
considering that the RPS6KB1 fusion product is completely devoid of all functional domains of 
RPS6KB1, including the kinase domain, this fusion also likely represents a passenger event. 
 
Overall, our study suggests that amplicon-associated gene fusions in breast cancer primarily 
represent a by-product of chromosomal amplifications that constitutes a subset of passenger 
aberrations and should be factored accordingly during prioritization of gene fusion candidates.  
 
7. Next Generation Sequencing Analysis 
 
Pseudogenes are a class 
of non-coding RNA 
transcripts that are 
dysfunctional relatives of 
known functional genes 
that have lost their 
protein coding ability 
and often not expressed. 
Aberrant expression of 
several functional non-
coding RNA in cancer 
has been previously 
described, however 
genome-wide expression 
of pseudogenes had not 
been reported for any 
cancer type. We 
developed a pseudogene 
expression pipeline to 
analyze a large 
compendium of paired-
end next generation 
sequencing (RNASeq) 
data generated from 293 
samples, comprising 13 
different epithelial 
cancers. Our integrative 
approach provided 
evidence of expression 
for 2,082 distinct 
pseudogenes that 
displayed lineage-
specific, cancer-specific, as well as ubiquitous expression patterns. 
 

 

Figure 20. Cancer-Specific 
Pseudogene Expression 
Profiles(A) Heatmap of 
pseudogene expression sorted 
according to cancer-specific 
expression patterns displays 
pseudogene transcripts 
specific to individual cancers 
(top), common across 
multiple cancers (tissue-
enriched; middle), and 
nonspecific (bottom).(B) 
Zoomed-in version of the top 
panel displaying individual 
cancer-specific expressed 
pseudogenes. The columns 
represent different tissues 
with the number of samples 
in parentheses. The rows 
represent individual clusters 
mapping to specific 
pseudogenes. The color 
intensity represents the 
frequency (%) of samples in 
a tissue type showing 
expression of a given 
pseudogenes (according to 
the scale indicated at the 
bottom). Cell. 2012 Jun 
22;149(7):1622-34. 
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Though a majority of the pseudogenes examined were found in both cancer and benign samples, 
we observed 218 pseudogenes expressed only in cancer samples, of which 178 were observed in 
multiple cancers and 40 were found to have highly specific expression in a single cancer type 
only (Figure 20). 
 
Among the pseudogene candidates in breast cancer, we identified an unprocessed pseudogene 
cognate to ATP8A2, a LIM domain-containing protein speculated to be associated with stress 
response and proliferative activity. ATP8A2-Ψ expression found to be restricted to breast 
samples, the highest levels seen in a subset of breast cancer tissues and cell lines (Figure 18). By 
contrast, ATP8A2-WT expression was highly variable across different tissue types and showed 
no correlation with ATP8A2-Ψ expression. To investigate a potential role of ATP8A2-Ψ 
expression in breast cancer, first we carried out siRNA-based knockdown of both the wild-type 
and pseudogene RNA in two independent breast cancer cell lines that expressed both the 
transcripts. Knockdown of 
ATP8A2-Ψ with two 
independent siRNAs was 
found to specifically inhibit 
the proliferation of 
overexpressing cell lines 
Cama-1 and HCC1806 
(Figure 21A), but not the 
cell lines with no detectable 
levels of ATP8A2-Ψ, for 
example, the benign breast 
epithelial cell line H16N2 
(Figure 21A, right). 
Knockdown of ATP8A2-Ψ 
(but not ATP8A2-WT) also 
resulted in reduced cell 
migration and invasion seen 
in in vitro Boyden Chamber 
assays (Figure 21B) as well 
as in in vivo intravasation 
and metastasis in chicken 
chorioallantoic mem-brane 
xenograft assay (Figure 
21C). In contrast, 
knockdown of wild-type 
ATP8A2 had no effect on 
the proliferation of any of 
the cell lines tested, 
suggesting an un-expected 
growth reg-ulatory role for 
ATP8A2-Ψ. 
 

 

 
 
 

 

 

 
Figure 21. (A) Cell proliferation assays following siRNA knockdowns of 
ATP8A2-WT and -Ψ as indicated. NTC, nontargeting control; WT, siRNA 
against wild-type ATP8A2; Ψ, siRNA against ATP8A2-Ψ.(B) Boyden 
chamber assay showing cell migration (left) and invasion through matrigel 
(right). (C) chicken chorioallantoic membrane assay of HCC-1806 cells 
treated with nontargeting control siRNA, ATP8A2-WT, or ATPA2-Ψ siRNA 
showing relative number of cells intravasated in the lower CAM (left) and 
metastatic cells in chicken lung (right).Error bars represent means ± SE of the 
mean.  Cell. 2012 Jun 22;149(7):1622-34. 

A
. 

B. 

 
C. 
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This study is the first large-scale analysis of pseudogene expres-sion in human cancer using 
transcriptome sequencing data.  
 
9. RNA-Seq identifies targetable kinases in cancer: 
 
We analyzed transcriptome sequencing data from a compendium of 482 cancer and benign 
samples from 25 different tissue types to assess the complete landscape of a cancer‘s ―kinome‖ 
expression and determine which kinases are activated in specific tumor types. Protein kinases 
represent the most effective class of therapeutic targets in cancer; therefore, determination of 
kinase aberrations is a major focus of cancer genomic studies. Here, we found frequent outlier 
kinase expression in breast cancer included therapeutic targets like ERBB2 and FGFR4 whereas 
MET, AKT2, and PLK2 were expressed in pancreatic cancer. Outlier expression of polo-like 
kinases was observed in a subset of KRAS-dependent pancreatic cancer cell lines and conferred 
increased sensitivity to the pan-PLK inhibitor BI-6727. These results suggest that outlier kinases 
are effective therapeutic targets and can be readily identified through RNA sequencing of 
tumors.  
 
10. Identification of targetable 

FGFR gene fusions in diverse 
cancers 

 
Earlier, we established the Michigan 
Oncology Sequencing Center (MI-
ONCOSEQ) clinical sequencing program 
that prospectively enrolls patients with 
advanced cancers for comprehensive 
mutational analysis with the goal of 
identifying informative and/or actionable 
mutations. In four index MI-ONCOSEQ 
cases, we identified gene rearrangements 
of FGFR2, including patients with 
cholangiocarcinoma, breast cancer, and 
prostate cancer. We then extended the 
screening of FGFR rearrangements 
across multiple tumor cohorts and 
identified additional FGFR fusions with 
intact kinase domains in lung squamous 
cell cancer, bladder cancer, thyroid 
cancer, oral cancer, glioblastoma, and 
head and neck squamous cell cancer 
(Figure 22). Four FGFR gene fusions 
were found specifically in breast cancer, 
three involving FGFR2 and one with 
FGFR1 (Figure 23). 
 
 

 
Figure 22. Schematic representations of the predicted FGFR 
fusions identified by transcriptome sequencing of human 
cancers. Data used include RNA sequencing results from the 4 
index patients, our internal tumor cohort, and the TCGA 
compendium. Out of 4 FGFR receptor family members, 
FGFR1, FGFR2, and FGFR3 are involved in gene fusions 
with various partners located on several chromosomes. Eleven 
distinct fusion partners of FGFRs were identified. Cancer 

Discov. 2013 Jun;3(6):636-47 



Chinnaiyan, Arul M. 
DOD Era of Hope (W81XWH-08-1-0110) 

Final Progress Report 
 

17 

 
All FGFR fusion partners tested exhibited oligomerization capability, suggesting a shared mode 
of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation in 
TERT-HME cells, including FGFR2-CCDC6 discovered in breast cancer (Figure 24). 
 

 
Figure 24. Overexpression of FGFR fusions induces cell proliferation in TERT-HME 
cells. Cell proliferation assays were conducted by Incucyte live-cell imaging. Data 
shown are cell confluence versus time at 3-hour intervals. Each data point is the mean 
of quadruplicates. Cancer Discov. 2013 Jun;3(6):636-47. 

 
Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced 
susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial 
possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing 
approaches that incorporate transcriptome analysis for gene fusions have the potential to identify 
rare, targetable FGFR fusions across diverse cancer types. 
 
 
 
 

 

 
Figure 23. FGFR gene fusions found specifically in breast cancer. Cancer Discov. 2013 Jun;3(6):636-47. 
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11. Gene sequencing reveals mutations in estrogen receptor 
 
Through a prospective clinical sequencing program (MI-ONCOSEQ) for advanced cancers, we 
enrolled 9 ER-positive metastatic breast cancer patients. The samples are then subjected to 
integrative sequencing which includes whole exome and transcriptome analysis that allows a 
mutational landscape of coding genes including point mutations, indels, amplifications, 
deletions, gene fusions/translocations, and outlier gene expression.  
 
The most remarkable observation in the mutational landscape of these treated ER positive 
patients was the finding of nonsynonymous mutations in the ligand binding domain (LBD) of 
ESR1 (n=4). The four index patients MO_1031, MO_1051, MO_1069, and MO_1129 had LBD 
mutations in amino acids L536Q, Y537S, D538G, and Y537S, respectively. All had been treated 
with anti-estrogens and estrogen deprivation therapies. A survey of The Cancer Genome Atlas 
(TCGA) identified 4 endometrial cancers with similar mutations of ESR1. The 5 novel LBD 
mutations of ESR1 identified here (L536Q, Y537S, Y537C, Y537N, and D538G, Figure 25) 
were shown to be constitutively active and continue to be responsive to anti-estrogen therapies in 

vitro. Taken together, these studies suggest that activating mutations of ESR1 are an important 
mechanism of acquired endocrine resistance in breast cancer therapy.  
 

 
Figure 25: The structural domains of ESR1 are illustrated on top, including the transcription 
activation function-1 domain (AF-1), the DNA-binding domain (DBD), the hinge domain and the 
ligand-binding domain (LBD/AF-2). Altered residues identified in mutants are marked in red, 
and reference residues are shown in bold in the wild-type sequence. Endometrium p.Tyr537Cys 
and p.Tyr537Asn are two alterations discovered in endometrial cancer samples from the TCGA 
study. Inv-mut-AA2 represents a ligand activity inversion mutant of ESR1 that confers inverted 
responses to anti-estrogen and estrogen. H11, helix 11; H12, helix 12. Nat Genet. 2013 
Dec;45(12):1446-51. 

 
KEY RESEARCH ACCOMPLISHMENTS: 
 
 We provided a robust and high throughput pipeline for a directed search for gene fusions in 

cancers using next generation transcriptome sequencing platforms. The comprehensive 
coverage afforded by this approach would help unravel the chimeric landscape of breast 
cancer transcriptome- the primary aim of our current project. 
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 We report the characterization of a subset of ER positive breast cancer patients. This group is 
characterized by the overexpression of AGTR1, and this subset may be responsive to an 
available drug, losartan. Our study is expected to lead to follow-up clinical trials. 

 We succeeded in providing a novel mechanistic framework for the overexpression of the 
polycomb group protein EZH2 in metastatic breast and prostate cancers, involving the 
genomic loss of its negative regulator, mir101.  

 We analyzed and screened a shortlist of potentially functional and recurrent gene fusions 
from a total of 89 breast cancer cell lines and tumors. We discovered two rare but recurrent 
gene fusions involving MAST and Notch genes. Moreover, these fusions could potentially be 
targeted by their respective inhibitors. 

 We have developed a tool, ChimeraScan that facilitates the analysis of our transcriptome 
sequencing data and allows us to identify novel rare and common gene fusions in cancer. 

 We have further extended our earlier microRNA studies and have identified several miRNAs 
that are regulated by PRC2 protein, EZH2. In addition these miRNAs in turn regulate PRC1 
proteins. This is the first study to demonstrate a molecular link between PRC2 and PRC1 
network that is mediated by miRNAs. 

 We performed an integrated analysis combining RNASeq and aCGH to examine amplicon-
associated gene fusions across 14 breast cancer cell lines. We found that many of these 
fusions, even when they involve known oncogenes, are often ―passenger‖ events that do not 
display oncogenic potential. 

 We used a novel bioinformatics approach to analyze next generation sequencing data to 
discover novel expressed pseudogenes. Although many of the pseudogenes are ubiquitously 
expressed, we found a sub-set of them are expressed in a lineage and cancer-specific manner, 
including the breast cancer-specific pseudogene, ATP8A2Ψ. 

 Using transcriptome sequencing, we identified targetable kinases in cancer. 
 Through our clinical sequencing study, we identified FGFR gene rearrangements in various 

cancers including breast cancer; the fusion proteins express intact kinase domains that are 
potentially targetable. 

 We identified mutations in the estrogen receptor that is acquired after breast cancer patients 
take anti-estrogen therapies. These mutations uncover the mechanism by which patients often 
become resistant to hormone therapy. 
 

REPORTABLE OUTCOMES (papers included in Appendix): 
 
AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an 
AGTR1 antagonist. Rhodes DR, Ateeq B, Cao Q, Tomlins SA, Mehra R, Laxman B, Kalyana-
Sundaram S, Lonigro RJ, Helgeson BE, Bhojani MS, Rehemtulla A, Kleer CG, Hayes DF, Lucas 
PC, Varambally S, Chinnaiyan AM. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10284-9. 
Epub 2009 Jun 1. PMID: 19487683. 
 
Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in 
cancer. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing 
X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, 
Palanisamy N, Maher CA, Chinnaiyan AM. Science. 2008 Dec 12;322(5908):1695-9. Epub 2008 
Nov 13. PMID: 19008416. 
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Chimeric transcript discovery by paired-end transcriptome sequencing. Maher CA, Palanisamy 
N, Brenner JC, Cao X, Kalyana-Sundaram S, Luo S, Khrebtukova I, Barrette TR, Grasso C, Yu 
J, Lonigro RJ, Schroth G, Kumar-Sinha C, Chinnaiyan AM. Proc Natl Acad Sci U S A. 2009 Jul 
10. [Epub ahead of print]. PMID: 19592507. 
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Shankar S, Jing X, Iyer M, Hu M, Sam L, Grasso C, Maher CA, Palanisamy N, Mehra R, 
Kominsky HD, Siddiqui J, Yu J, Qin ZS, Chinnaiyan AM. Deep sequencing reveals distinct 
patterns of DNA methylation in prostate cancer. Genome Res. 2011 Jul;21(7):1028-41. PubMed 
PMID: 21724842; PubMed Central PMCID: PMC3129246. 
 
Iyer MK, Chinnaiyan AM, Maher CA. ChimeraScan: a tool for identifying chimeric transcription 
in sequencing data. Bioinformatics. 2011 Oct 15;27(20):2903-4. Epub 2011 Aug 11. PubMed 
PMID: 21840877; PubMed Central PMCID: PMC3187648. 
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MAST Kinase and Notch Gene Families in Breast Cancer. Nat Med. 2011 Nov 20;17(12):1646-
51. PMID: 22101766; PMCID: PMC3233654. 
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Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning 
Y, Hodges L, Gursky A, Siddiqui J, Tomlins SA, Roychowdhury S, Pienta KJ, Kim SY, Roberts 
JS, Rae JM, Van Poznak CH, Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan 
AM. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013 
Nov 3. doi: 10.1038/ng.2823. [Epub ahead of print] PubMed PMID: 24185510. 
 
CONCLUSION: 
 
We initiated a search for recurrent gene fusions in breast cancer, in the wake of our discovery 
and characterization of recurrent gene fusions in prostate cancer. While a majority prostate 
cancers harbor androgen-regulated Ets family gene fusions (predominantly TMPRSS2-ERG), we 
hypothesized that breast cancers might harbor estrogen regulated oncogenic gene fusions. Based 
on our first year‘s work, we have observed that breast cancers harbor multiple gene fusions in 
most of the samples examined, individual fusions likely do not recur as frequently as they do in 
prostate cancers. In this respect, breast cancer gene fusions appear closer to the scenario in lung 
cancer, where multiple gene fusions have been observed in much smaller cohorts of samples.  
“So what?”: Gene fusions represent exquisitely specific cancer biomarkers as well as 
therapeutic targets, and while most of the previous gene fusion discoveries have been 
serendipitous, the development of ultra-high throughput sequencing technologies has enabled us 
to actively seek out genomic and transcriptomic aberrations. Indeed, our group has successfully 
applied these techniques to discover gene fusions in cancers at an unprecedented depth of 
coverage. We identified two rare but recurrent gene fusions in breast cancer cell lines and tissues 
involving the MAST and Notch genes. The most exciting aspect of our findings is that both 
MAST and Notch fusions are potentially ―actionable‖ and patients positive for those gene 
fusions may benefit from MAST and Notch inhibitors respectively. Our results indicate that 
breast cancers (like many other solid tumors) are heterogeneous in nature consisting of many rare 
molecular sub-types. Our ultimate goal is to identify ALL the specific ―actionable‖ driving gene 
fusions in individual breast cancer patients. Therefore, the tools that we have developed to 
identify novel gene fusions along with the functional analysis  lays the framework for developing 
personalized breast cancer therapies based on driving fusion type.   
In addition to the discovery of the MAST and NOTCH gene fusions in breast cancer, we make a 
number of other significant discoveries that advance our understanding of the molecular 
mechanisms that drive cancer progression and metastasis. Our recent findings of mutations in the 
estrogen receptor in breast cancer patients that develop after anti-estrogen therapies is a major 
step in understanding resistance mechanisms.  
Overall, these discoveries made over the funding period contribute towards the understanding of 
the molecular and genetic etiology of breast cancer that will advance the development of targeted 
therapies. 
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Breast cancer patients have benefited from the use of targeted
therapies directed at specific molecular alterations. To identify
additional opportunities for targeted therapy, we searched for
genes with marked overexpression in subsets of tumors across a
panel of breast cancer profiling studies comprising 3,200 microar-
ray experiments. In addition to prioritizing ERBB2, we found
AGTR1, the angiotensin II receptor type I, to be markedly overex-
pressed in 10–20% of breast cancer cases across multiple indepen-
dent patient cohorts. Validation experiments confirmed that
AGTR1 is highly overexpressed, in several cases more than 100-
fold. AGTR1 overexpression was restricted to estrogen receptor-
positive tumors and was mutually exclusive with ERBB2 overex-
pression across all samples. Ectopic overexpression of AGTR1 in
primary mammary epithelial cells, combined with angiotensin II
stimulation, led to a highly invasive phenotype that was attenu-
ated by the AGTR1 antagonist losartan. Similarly, losartan reduced
tumor growth by 30% in AGTR1-positive breast cancer xenografts.
Taken together, these observations indicate that marked AGTR1
overexpression defines a subpopulation of ER-positive, ERBB2-
negative breast cancer that may benefit from targeted therapy
with AGTR1 antagonists, such as losartan.

A central aim in cancer research is to identify genetic
alterations involved in the pathogenesis of cancer, thereby

providing an opportunity to develop therapies that directly
target the alterations. In breast cancer research, this strategy has
been realized with the study of ERBB2, which is amplified and
overexpressed in 25–30% of breast tumors (1, 2), directly
contributing to tumorigenesis (3, 4). Targeting this genetic lesion
with trastuzumab, a humanized monoclonal antibody directed
against ERBB2, has significant clinical benefit in breast cancer
management (5–7). Cancer genes are activated or inactivated by
a variety of mechanisms, including those that alter the activity of
proteins (e.g., activating Ras mutation, BCR-ABL fusion pro-
tein) and those that change expression levels of proteins (e.g.,
ERBB2 gene amplification, Ig-Myc DNA translocation, or p53
homozygous deletion). It is likely that only a fraction of such
‘‘driver’’ alterations have been identified to date, and further-
more, many of the identified alterations are not thought to be
‘‘druggable’’ by conventional means.

DNA microarrays have been widely applied to the study of gene
expression in cancer. Although microarrays are not capable of
directly detecting alterations affecting the activity of proteins, they
are theoretically well suited to detect alterations that change the
expression of genes and proteins, although it can be difficult to
identify driver alterations directly related to tumorigenesis among
hundreds or thousands of differentially expressed genes. As a
strategy for using microarray data to identify genes directly related

to cancer pathogenesis that may thus serve as therapeutic targets,
we hypothesized that genes that show the most profound changes
in gene expression (10-fold to more than 100-fold increase relative
to baseline), termed ‘‘pathogenic overexpression,’’ even if in only a
small subset of cases, may play a direct role in cancer progression
and may serve as optimal therapeutic targets for the subpopulations
with overexpression. Because cancer is heterogeneous, distribution
statistics that compare average expression values between classes of
samples (e.g., cancer vs. normal) will often fail to identify these
profound changes in expression, especially if the alterations occur
in subsets of cases (e.g., Her2/neu amplification and overexpression
in 25% of breast cancer). We previously developed a simple
analytical method, termed ‘‘Cancer Outlier Profile Analysis’’
(COPA), to identify such gene expression profiles, nominating
ERG and ETV1 as novel cancer genes in prostate cancer, which
were shown to be activated by gene fusions with the androgen-
regulated gene TMPRSS2 (8). Here, we extend the COPA ap-
proach to include a meta-analysis strategy, combining the search for
profound changes in expression with multistudy validation. We
focus our analysis on breast cancer because this disease has been
most extensively analyzed by gene expression profiling. Interest-
ingly, the majority of such analyses have focused on disease
classification and prediction of patient outcome, rather than target
discovery. We present a large-scale analysis spanning 31 gene
expression profiling studies comprising nearly 3,200 microarray
experiments. In addition to objectively identifying the prototypical
breast cancer target, ERBB2, our analysis also nominates a number
of previously unidentified genes which, based on their profound
overexpression in subsets of tumors across independent cohorts,
may play a role in tumorigenesis and may serve as therapeutic
targets in their respective subpopulations.

Results
We hypothesized that genes directly involved in breast tumori-
genesis may be activated via pathological overexpression in
specific subsets of tumors. Thus, we developed a methodology to
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identify genes that display substantial changes in expression in
subpopulations of tumors across independent cancer microarray
datasets. The methodology, MetaCOPA, combines MetaAnaly-
sis and COPA, 2 approaches that we have applied previously but
separately to identify cancer genes (8, 9) (Fig. S1). We analyzed
31 breast cancer profiling datasets, comprising 3,157 microarrays
(Table S1). We defined per dataset ‘‘outliers’’ as genes with the
most dramatic overexpression in a subset of tumors, and‘‘meta-
outliers’’ as genes that were identified in a statistically significant
fraction of datasets. We identified 159 significant meta-outliers
(P � 1E-5) (Fig. 1A and Table S2), of which �20 genes were
identified as outliers in the majority of datasets examined (Fig.
1B and Table S3).

Notably, considering all human genes represented in the analysis,
ERBB2 was the most significant meta-outlier, identified in 21 of 29
independent datasets (72%; P � 3.6E-26), indicating that this
established therapeutic target shows the most substantial and
consistent overexpression in a fraction of breast tumors (Fig. S2A).
Although ERBB2 did not have a no.1 ranked outlier expression
profile in any individual dataset, it did score highest in the meta-
analysis. Several other top-scoring meta-outliers localize within 1
Mb of ERBB2 on chromosome 17q. As expected from the past
observation that ERBB2 and genomic neighbors are coamplified
and coexpressed in breast cancer (10, 11), we observed a clear
coexpression pattern of the 17q meta-outliers (Fig. S2B).

The next most consistently scoring outlier, excluding ERBB2 and
genomic neighbors, was AGTR1, the gene encoding angiotensin II
receptor type I, which is the target of the antihypertensive drug
losartan (12) and has previously been linked to cancer (12–17) and
cancer-related signaling pathways (18, 19). AGTR1 was called an
outlier in 15 of 22 datasets (68%; P � 2.0E-18). The microarray data
clearly indicated that AGTR1 is highly overexpressed in a subset of

tumors relative to normal tissue (Fig. 2A) and that high overex-
pression occurs exclusively in a subset of estrogen receptor-positive
(ER�) tumors (Fig. 2C). Furthermore, a coexpression analysis of
AGTR1 and ERBB2 revealed a mutually exclusive relationship,
with breast tumors overexpressing ERBB2 or AGTR1, but never
both (Fig. 2 B and D). Additional evidence for the marked
overexpression of AGTR1 in 10–20% of breast tumors, specifically
ER�, ERBB2� breast tumors, is presented in SI Materials and
Methods (Figs. S3 and S4). AGTR1 overexpression was not signif-
icantly associated with 5-year recurrence-free survival in ER�,
ERBB2� breast cancer across 2 independent datasets (Fig. S5). We
validated and quantified AGTR1 overexpression by quantitative
RT-PCR in formalin-fixed, paraffin-embedded tissue from normal
breast, primary breast cancer, and metastatic breast cancer. Con-
sistent with the microarray data, we found AGTR1 to be more than
20-fold overexpressed in 7 of 45 tumors (15.5%) and more than
100-fold overexpressed in 2 primary tumors and 1 metastatic tumor
(Fig. 2E).

Given the remarkable overexpression of AGTR1 in tumor
subsets, we investigated potential mechanisms by which AGTR1
becomes overexpressed. First, using Oncomine, we examined
AGTR1 coexpression data from 5 independent datasets, and in
each case we found no more than one additional gene correlated
with AGTR1 (R � 0.5), providing preliminary evidence that
AGTR1 is not regulated as part of a larger transcriptional program.
Second, we examined AGTR1 overexpression in the context of
genes that neighbor AGTR1 on chromosome 3q. Unlike ERBB2,
AGTR1 did not display any correlated expression with genomic
neighbors (Fig. S6).

Next, we performed FISH on tissue microarrays to test the
AGTR1 locus for gene rearrangement or DNA copy number
aberration. Using a split probe strategy (8), we found that 5� and 3�

Fig. 1. MetaCOPA analysis of breast can-
cer gene expression data. (A) MetaCOPA
map. Each column in the map represents a
breast cancer gene expression dataset. The
numbers at the base of the map correspond
to dataset details (Table S1). Each row indi-
cates a gene. A red cell indicates that the
gene was deemed to have an outlier ex-
pression profile in the respective dataset
because it scored in the top 1% of COPA
values at 1 of 3 percentile cutoffs. The line
graph along the y axis indicates the P value
for a gene based on the number of datasets
in which the gene was deemed an outlier. A
total of 158 genes were called outliers in a
significant fraction of datasets (P � 1E-5).
The bar graph indicates the number of sam-
ples in the respective datasets and the con-
tribution of the dataset to the meta-
analysis. The black bar on the left of the
map indicates the top 25 meta-outliers,
which are detailed in B for 3 datasets
marked with an asterisk. (B) Heatmaps of
COPA-normalized values for top-scoring
meta-outliers across 3 highly contributory
datasets: Miller et al. (26), Hess et al. (27),
and Wang et al. (28). Genes are ranked by
their MetaCOPA P values. For each gene,
samples are ordered from left to right by
their COPA-normalized expression values.
Highest intensity of red indicates a COPA-
normalized value of 6 or greater. White
indicates a value of zero or less.
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AGTR1 probes never demonstrated consistent split signals, and
thus concluded that rearrangement of the AGTR1 locus is not
involved in AGTR1 overexpression. AGTR1 copy number was also
evaluated in 112 breast carcinoma cases. Definitive copy number
gain [locus/control (L/C) � 1.5] was observed in 7 of 112 cases
(6.25%), of which 6 were invasive ductal carcinoma and 1 was ductal
carcinoma in situ (Fig. 3 A and B). To study the association between
DNA copy number and overexpression, we identified available
cases for qRT-PCR analysis, including 14 cases with no gain (L/C �
1.2), 3 cases with questionable gain (1.2 � L/C � 1.5), and 4 cases
with definitive DNA copy number gain (L/C � 1.5). We observed
a significant concordance between high AGTR1 expression and
definitive copy number gain (P � 0.006; Fig. 3C). All 4 cases tested
with definitive copy number gain also had high AGTR1 expression;
however, high expression was also observed in 3 of 17 cases without
definitive copy number gain. Thus, in this small sample set, copy
number gain was always associated with overexpression, but over-
expression also occurred without copy number gain.

To study the function of AGTR1 overexpression in breast
epithelial cells, we generated an adenovirus construct expressing
AGTR1. Human mammary epithelial cells (H16N2 and HME)
were infected with AGTR1-expressing virus or control LacZ-
expressing virus and cultured in serum-free media (Fig. S7). We
assayed AGTR1-overexpressing cells and control cells for cell
proliferation and invasion both in serum-free media and upon
stimulation with angiotensin II (AT), the ligand of AGTR1. Over-
expression of AGTR1 alone or in combination with AT did not

affect cell proliferation. However, in both cell lines, we did observe
that overexpression of AGTR1 with AT stimulation did signifi-
cantly promote cell invasion in a reconstituted basement membrane
invasion chamber assay (Fig. 4 A and B). The control experiment,
in which the LacZ gene was transfected, did not exhibit increased
invasion with AT stimulation. Importantly, AGTR1 and AT-
mediated invasion was attenuated in a dose-dependent manner
with inclusion of the AGTR1 blocker, losartan. Losartan had no
effect on the LacZ-transfected cells or the AGTR1-transfected cells
not stimulated with AT (Fig. 4B). To confirm that losartan inhi-
bition of invasion is specific to AGTR1 transfection, we also
infected H16N2 and HME cells with EZH2-expressing adenovirus,
a gene known to induce invasion and, as expected, found that
EZH2-mediated invasion was not attenuated by losartan treatment
(Fig. S8). Thus, in 2 benign breast epithelial cell lines, AGTR1
overexpression in the presence of AT led to a markedly invasive
tumorigenic phenotype, which is specifically reversed by treatment
with losartan. We also tested the AGTR1-overexpressing mam-
mary epithelial cells for activation of the MAPK and PI3K path-
ways, as measured by ERK phosphorylation and AKT phosphor-
ylation, respectively. We found that AGTR1 overexpression
combined with AT stimulation did increase ERK phosphorylation
but not AKT phosphorylation. Losartan treatment (10 �M) inhib-
ited the AT-stimulated increase in ERK phosphorylation (Fig. S9).

Next, we identified and tested a panel of breast cancer cell lines
with endogenous AGTR1 overexpression. By using Oncomine (20),
we identified 4 breast cancer cell lines with validated AGTR1
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overexpression and 3 breast cancer cell lines with little or no
expression of AGTR1 (Fig. S10). As an additional negative control,
we also included the highly invasive prostate cancer cell line DU145,
which has low expression of AGTR1. By using the reconstituted
basement membrane invasion chamber assay, we tested the cell line
panel with and without 1 �M AT and losartan. In each of the 4
AGTR1-overexpressing cell lines, we observed an increase in
invasion upon stimulation with 1 �M AT, which was reversible by
addition of losartan, whereas none of the 3 breast cancer cell lines
with low AGTR1 expression, nor DU145, showed an increase in
invasion upon 1 �M AT stimulation (Fig. 4C). Thus, we confirmed
that our ectopic AGTR1 overexpression results can be generalized
to breast cancer cells with endogenous overexpression but not those
with low expression, and that losartan-mediated decrease in inva-
sion is specific to invasion related to AT stimulation and AGTR1
overexpression.

Next, we stably transfected AGTR1 into MCF7 human breast
cancer cells and performed mouse xenograft studies. We implanted
MCF7-AGTR1 cells or MCF7-GUS control cells into the mam-
mary fat pad of nude mice and treated animals with 90 mg/kg
losartan per day or vehicle control. We studied the impact of
losartan on tumor growth at 2 weeks and 8 weeks. Ten mice were
studied in each group: MCF7-AGTR1 plus saline, MCF7-AGTR1
plus losartan, MCF7-GUS plus saline, and MCF7-GUS plus losar-
tan. MCF7-AGTR1 tumors did not display increased growth at 2
weeks or 8 weeks relative to MCF7-GUS control tumors. Losartan
treatment did, however, significantly reduce early and late tumor
growth in MCF7-AGTR1-implanted mice but had no effect on
tumor growth in MCF7-GUS control-implanted mice. At 2 weeks
after implantation, the median tumor size of MCF7-AGTR1 tu-
mors treated with losartan was 20% smaller than MCF7-AGTR1
tumors treated with vehicle control (P � 1.4E-4; Fig. 5A). On the
contrary, there was no significant change in tumor size at 2 weeks
in MCF7-GUS tumors treated with losartan relative to vehicle
control (P � 0.67). Similarly, at 8 weeks, median tumor size of
MCF7-AGTR1 tumors treated with losartan was 31% smaller than
those treated with control (P � 0.016; Fig. 5B). Again, no significant
change in median tumor size of MCF7-GUS tumors was observed
upon losartan treatment (P � 0.24). In summary, although AGTR1
transfection into MCF7 breast cancer cells did not increase tumor
size, it did significantly sensitize tumors to growth inhibition with
losartan treatment.

Discussion
In summary, we performed a large-scale meta-analysis of outlier
expression profiles across several large cohorts of breast tumors.
Our analysis prioritized genes with marked overexpression in
subsets of tumors. This approach correctly prioritized the pro-
totypical breast cancer oncogene and drug target ERBB2. In
addition, several new genes were identified, demonstrating con-
sistent and dramatic overexpression in tumor subsets. We sus-
pect that our analysis has uncovered a new crop of potentially
important breast cancer genes.

AGTR1, the angiotensin II receptor, was found to be one of the
most highly overexpressed genes in 10–20% of breast cancers across
independent breast cancer microarray studies. This has potential
clinical importance because AGTR1 is antagonized by commonly
prescribed antihypertensive agents (12), such as losartan, which
have been shown to have antitumorigenic effects in model systems
(12–17). Interestingly, AGTR1 always displayed high overexpres-
sion in ER-positive, ERBB2-negative tumors, potentially providing
insights into the selective pressures governing AGTR1 activation in
breast cancer. Contrary to expectation, ER in fact down-regulates
the AGTR1 transcript via cytosolic mRNA-binding proteins (21).
Thus, we hypothesize that the paradoxical marked overexpression
of AGTR1 in a subset of ER� breast tumors may be the result of
a genetic aberration that put the AGTR1 transcript under the
positive control of the ER. Based on the mutually exclusive
expression pattern with ERBB2 and the reported overlapping
downstream pathways affected by AGTR1 and ERBB2, we suspect
that AGTR1 activation and ERBB2 activation may represent
alternative but functionally related events in tumorigenesis. Our
AGTR1 transfection experiments in HME cells confirmed that
ERK phosphorylation, a MAPK pathway readout, increases upon
angiotensin stimulation.

We applied computational and experimental strategies to un-
cover mechanisms for AGTR1 overexpression. Coexpression anal-
ysis revealed that AGTR1 is not likely to be part of a larger
transcriptional program, because other genes were not found to be
highly coexpressed with AGTR1. FISH analysis demonstrated that
chromosomal rearrangements do not occur at the AGTR1 locus,
making gene fusions an unlikely cause of overexpression. DNA
copy number analysis did identify a small fraction (6.5%) of breast
tumors with increased copy number at the AGTR1 locus, and copy
number gain occurred only in cases with overexpression. However,
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some overexpressing cases did not have copy number gain, and the
level of copy number gain observed in positive cases was not
proportional to the degree of overexpression observed. Thus, we
suspect that copy number gain contributes to overexpression in
some cases but is not likely to be the predominant mechanism.
Future studies to investigate the mechanism of AGTR1 overex-
pression should include high-resolution array comparative genomic
hybridization and sequencing of the AGTR1 locus.

Regardless of the mechanism, AGTR1 undergoes profound
deregulation in a subset of breast cancers, and our in vitro and in
vivo studies demonstrate a functional role for AGTR1 overexpres-
sion in breast cancer and, more importantly, the potential for
targeting AGTR1� breast tumors with an available therapy. Past

work has shown that in breast cancer cell lines, angiotensin II
stimulation evokes an invasive phenotype, which is inhibited by
losartan treatment (22). Furthermore, it was demonstrated that the
increase in invasion is coincident with decreased expression of
integrins, possibly via protein kinase C signaling. Although these
observations were made in transformed breast cancer cells naturally
expressing AGTR1, our work shows that activated AGTR1 path-
way, by way of artificial AGTR1 overexpression, in normal breast
epithelial cells is sufficient to activate an invasive phenotype,
suggesting that this pathway may be especially important in breast
tumors with high overexpression. Furthermore, we studied a panel
of cell lines with either high or low levels of AGTR1 and showed
a clear correlation between AT-mediated invasion and level of
AGTR1 expression.

Our in vivo data provide further evidence that losartan may be
a viable therapy for women with AGTR1-overexpressing breast
tumors. Breast cancer xenografts overexpressing AGTR1 were
differentially sensitive to losartan treatment, demonstrating a 30%
reduction in growth at 8 weeks, whereas control xenografts had no
reductin in tumor size. It is interesting that MCF7-AGTR1 xeno-
grafts did not display increased growth relative to MCF7 control
xenografts, but they did display a significantly increased losartan
effect. This suggests that AGTR1 does not provide an additive
growth signal to MCF7 cells, which do harbor an activating PI3K
mutation. We suspect that the stable transfection of AGTR1
reprogrammed MCF7 cells to be at least partially dependent on
AGTR1 as a growth or survival signal; hence, the differential
response to losartan. We anticipate that de novo AGTR1-positive
primary tumors may be even more dependent on the AGTR1
signal, and thus more sensitive to inhibition.

Interestingly, past studies have linked polymorphisms in the
angiotensin pathway with breast cancer incidence (23, 24),
documenting a significant increase in breast cancer incidence in
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and were pretreated with and without AT and losartan. Similar results were
observed for HME cells. (B) Colorimetry readout of invasion assays from transfec-
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and HME immortalized mammary epithelial cells, and cells were treated with or
without 1 �M AT and losartan. Because of absent baseline invasion, the optical
density (OD) measurements were background subtracted, and values below 0.01
were set to 0.01. (C) Colorimetry readout of invasion assays from a panel of cancer
cell lines.Sevenbreastcancercell linesandaprostatecancercell line,DU145,were
examined for invasion after treatment with or without 1 �M AT and losartan.
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women with the D/D angiotensin-converting enzyme (ACE)
allele, which is associated with increased circulating ACE levels,
and thus increased levels of angiotensin II, the ligand for
AGTR1. Other studies have examined the relationship between
antihypertensive therapy (AHT), which often involves modula-
tion of the angiotensin axis, and breast cancer incidence. The
largest of such studies did not observe a significant relationship
(25); however, the study examined a variety of AHT modalities
and was likely not powered to detect a small change incidence
that might be expected from a response only in the AGTR1�

subpopulation.
In summary, this study provides a rationale for a clinical trial

that includes losartan in the treatment of breast cancer patients
with tumors positive for AGTR1. We demonstrated that AGTR1
transcript levels and DNA copy number can be effectively
measured from formalin-fixed, paraffin-embedded tissue spec-
imens, thus enabling the identification of the appropriate patient
population.

Materials and Methods
MetaCOPA Analysis. COPA analysis was performed on 31 breast cancer gene
expression datasets in Oncomine (www.oncomine.org) as described previously
(8). Genes scoring in the top 1% of COPA scores at any of the 3 percentile cutoffs
(75th, 90th, and 95th) were deemed outliers in their respective datasets. Meta-
outliers were defined as genes deemed outliers in a significant fraction (P � 1E-5)
of datasets as assessed by the binomial distribution. Analysis details are provided
in SI Materials and Methods.

Quantitative PCR (QPCR). QPCR was performed by using SYBR Green dye on an
Applied Biosystems 7300 Real Time PCR system (Applied Biosystems) essentially as

describedpreviously (8).Detailsandprimersequencesareavailable inSIMaterials
and Methods.

AGTR1 Transfection. The benign human mammary epithelial cells HME and
H16N2 were transfected with AGTR1-expressing adenovirus and assayed for
cell invasion with or without losartan and angiotensin II treatment. Details are
available in SI Materials and Methods.

Cell Invasion Assay. Breast cell lines BT-549, Hs578T, HME, H16N2, HCC1528,
HCC1500 and prostate carcinoma line DU145 were assayed for cell invasion
with or without losartan and angiotensin II treatment using Matrigel
invasion chambers. Details are available in SI Materials and Methods.

AGTR1 Amplification Assessment. A breast cancer tissue microarray containing
311 cases of invasive breast cancer was tested for AGTR1 locus amplification by
flourscence in situ hybridization. Details are available in SI Materials and
Methods.

Mammary Fat Pad Xenograft Model. Balb/C nu/nu mice were implanted with
MCF7 cells stably overexpressing AGTR1 or Gus and then treated daily with
losartan vehicle control. Details are available in SI Materials and Methods.
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This model makes the prediction that the stalk
is tilted (extending from the AAA+ ring toward
the minus end, as in Fig. 4B) at the time when a
productive power stroke occurs. TheMTBDmay
preferentially bind to the microtubule at such an
angle, as suggested by our cryo-EM map (Fig.
2B) and a recent reconstruction of a whole
axonemal dynein in its pre–power stroke state
(19). Alternatively, the MTBD may rebind to the
microtubule at various angles, but respond to a
power stroke differently depending on its angle
of attachment. A force-producing conformational
change would produce a productive, minus end–
directed displacement of the cargo if the stalk
were pointing toward the minus end (e.g., Fig.
4C), whereas theMTBDwould release if the stalk
were pointing in the opposite direction (18, 20).
Further work will be needed to define the orien-
tation of the stalk at different stages of the motility
cycle and to learn how dynein might be able to
reverse its direction ofmotion, as has been reported
for a mammalian dynein (21).

The model for dynein motility presented here
(Fig. 4) differs from the swinging lever arm
model developed for myosin and kinesin (22).
The dynein stalk does not serve as a rigid lever, as
proposed elsewhere (23), but rather acts as a
tether that allows the detached MTBD to explore
a range of potential microtubule-binding sites and
transmit tension between the AAA+ ring and the

MTBD. The large AAA+ ring and its associated
linker domain undergo ATP-dependent confor-
mational changes (8, 9) that pull along the stalk
axis. This is consistent with the known actions
of other AAA+ proteins (24) and the previous
proposal that dynein acts as a winch (8). And it
is the MTBD—one of the smallest elements of
the large dynein motor protein—that governs the
directionality of the motor.
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Genomic Loss of microRNA-101 Leads
to Overexpression of Histone
Methyltransferase EZH2 in Cancer
Sooryanarayana Varambally,1,2,3* Qi Cao,1,2* Ram-Shankar Mani,1,2 Sunita Shankar,1,2
Xiaosong Wang,1,2 Bushra Ateeq,1,2 Bharathi Laxman,1,2 Xuhong Cao,1,4 Xiaojun Jing,1,2
Kalpana Ramnarayanan,5 J. Chad Brenner,1,2,6 Jindan Yu,1,2 Jung H. Kim,1,3 Bo Han,1,2
Patrick Tan,5,7 Chandan Kumar-Sinha,1,2 Robert J. Lonigro,1,3 Nallasivam Palanisamy,1,2,5
Christopher A. Maher,1,2 Arul M. Chinnaiyan1,2,3,4,6,8†

Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that
contributes to the epigenetic silencing of target genes and regulates the survival and metastasis
of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain
unclear. Here we show that the expression and function of EZH2 in cancer cell lines are inhibited
by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101
expression decreases during cancer progression, paralleling an increase in EZH2 expression. One
or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically
localized prostate cancer cells (6 of 16) and 66.7% of metastatic disease cells (22 of 33). We
propose that the genomic loss of miR-101 in cancer leads to overexpression of EZH2 and
concomitant dysregulation of epigenetic pathways, resulting in cancer progression.

Polycomb group proteins, including en-
hancer of zeste homolog 2 (EZH2), play a
master regulatory role in controlling impor-

tant cellular process such as maintaining stem cell
pluripotency (1–3), cell proliferation (4, 5), early
embryogenesis (6), and X chromosome in-
activation (7). EZH2 functions in a multiprotein
complex called polycomb repressive complex 2

(PRC2), which includes SUZ12 (suppressor of
zeste 12) and EED (embryonic ectoderm develop-
ment) (8, 9). The primary activity of the EZH2
protein complex is to trimethylate histone H3 ly-
sine 27 (H3K27) at target gene promoters, leading
to epigenetic silencing (10, 11).Mounting evidence
suggests that EZH2 has properties consistent with
those of an oncogene because overexpression

promotes cell proliferation, colony formation, and
increased invasion of benign cells in vitro (4, 5, 12)
and induces xenograft tumor growth in vivo (13).
Likewise, knockdown of EZH2 in cancer cells re-
sults in growth arrest (4, 13) as well as diminished
tumor growth (10) and metastasis in vivo (14).

EZH2 was initially found to be elevated in a
subset of aggressive clinically localized prostate
cancers and almost all metastatic prostate cancers
(4). Subsequently, EZH2 has also been found to
be aberrantly overexpressed in breast cancer (12),
melanoma (15), bladder cancer (16), gastric can-
cer (17), and other cancers (5). Thus, although
EZH2 is broadly overexpressed in aggressive
solid tumors and has properties of an oncogene,
the genetic mechanism of EZH2 elevation in
cancer is unclear.
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Because microRNAs (miRNAs) have gained
considerable attention as regulators of gene ex-
pression (18) and play important roles in cellular
differentiation and embryonic stem cell develop-
ment (19), we postulated that they may play a
role in modulating EZH2 expression. To test
whether miRNAs play a role in controlling EZH2
expression, we computationally nominated those
that might contribute to EZH2 regulation. Be-
cause intersecting the results of multiple predic-
tion algorithms can increase specificity at the
cost of lower sensitivity (20), we integrated the
results of the prediction software programs
PicTar (21), TargetScan (22), miRanda (23), and
miRInspector (24). Overall, only 29miRNAswere
found by any program to target EZH2, whereas
only microRNA-101 (miR-101) and miR-217
were found by all four programs to be predicted
to regulate EZH2 (Fig. 1A and table S1) (25).
Furthermore, PicTar, miRanda, and TargetScan
predicted two miR-101–binding sites within the
EZH2 3′ untranslated region (3′UTR) (Fig. 1B),
whereas PicTar and TargetScan predicted two
miR-217 binding sites within the EZH2 3′UTR.
Of the 34 miRNAs predicted to regulate EZH2 by
at least one program (table S1), only miR-101 had
a strong negative association with prostate cancer
progression from benign to localized disease to
metastasis.

To examine whether miR-101 regulates the
3′UTR of EZH2, we generated luciferase report-
ers encoding the normal, antisense, and mutated
versions of the EZH2 3′UTR. Overexpression of
miR-101, but not miR-217 or control miRNA,
decreased the activity of the luciferase reporter
encoding the 3′UTR of EZH2 (fig. S1). Similarly,
the antisense and mutant EZH2 3′UTR activities
were not inhibited bymiR-101. To explorewheth-
er the 3′UTR binding by miR-101 results in
down-regulation of the EZH2 transcript, we trans-
fected SKBr3 breast cancer cells (which express
high levels of endogenous EZH2) with precursors
of miR-101, miR-217, and a control miRNA, as
well as several other unrelated miRNAs. Quanti-
tative reverse transcription polymerase chain
reaction (RT-PCR) demonstrated a reduction in
EZH2 transcript levels by miR-101 (Fig. 1C) but
not miR-217 or other control miRs.

To determine whether miR-101 represses
EZH2 protein expression, we performed immu-
noblot analysis using an EZH2-specific antibody
as well as antibodies to other PRC2 members,
including EED and SUZ12 (Fig. 1D). In addition
to miR-101, we included other miRNAs that were
predicted to regulate EZH2, including miR-217
and miR-26a. Control miR-495 was predicted by
TargetScan to target the PRC1 component BMI-1.
Only miR-101 and EZH2 small interfering RNA

(siRNA) attenuated EZH2 protein expression.
miR-101 overexpression also leads to repression
of EZH2’s tight binding partners in the PRC2
complex: EED and, to a lesser extent, SUZ12.
These proteins are thought to form a coregulated
functional complex, and altering the expression of
one affects the expression of the others (5, 26, 27).
In this particular case, upon further inspection of
the 3′UTRs of the PRC2 components, miR-101
binding sites were found in EED (fig. S2) but not
in SUZ12. Because miRNAs are known to reg-
ulate multiple target genes, and in some cases
hundreds of genes (18), we used the prediction
algorithm TargetScan to nominate targets of
miR-101. In addition to EZH2 and EED, we
tested four predicted targets of miR-101 (table
S2) that have been implicated in cancer pathways,
including n-Myc, c-Fos, AT-rich interactive
domain 1A (also called SWI-like and ARID1A),
and fibrillin 2 (FBN2). None of these putative
miR-101 targets were affected by overexpression
of miR-101 (Fig. 1D). To support the findings
from our miR-101–overexpression experiments,
we employed antagomiR technology (28) to spe-
cifically inhibit miR-101 expression in benign
immortalized breast epithelial cells (fig. S3). Two
independent antagomiRs to miR-101 (i and ii)
induced expression of EZH2 protein in benign
breast epithelial cells.

Fig. 1. miR-101 regu-
lates EZH2 transcript and
protein expression. (A)
Venn diagram displaying
miRNAs computationally
predicted to target EZH2
by PicTar (blue),miRanda
(red), TargetScan (green),
and MicroInspector (or-
ange). (B) Schematic of
two predicted miR-101–
binding sites in the EZH2
3′UTR. (C) miR-101 regu-
lates EZH2 transcript ex-
pression. Quantitative
RT-PCR of EZH2 in SKBr3
cells transfected with pre-
cursor miR-101 is shown.
ControlmiR andother pre-
cursor miRNAs (miR-26a,
miR-128a, and miR-217)
were also used for transfec-
tion. (D)miR-101 regulates
PRC2 protein expression.
miR-101 down-regulates
EZH2 protein as well as
PRC2members SUZ12 and
EED in SKBr3 cells. Control
miRs and EZH2-specific
siRNA were also used for
transfection. The experiment
was performed three inde-
pendent times and a repre-
sentative result is displayed.
GAPDH, glyceraldehyde-3-
phosphate dehydrogenase.
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To determine whether miR-101 affects EZH2
and PRC2 function, we evaluated cellular pro-
liferation, a property known to be regulated by
EZH2 (4, 5). miR-101 overexpression in SKBr3
and DU145 cells markedly attenuated cell pro-
liferation (Fig. 2A and fig. S4). Overexpression
of EZH2 (without an endogenous 3′UTR) rescued
the inhibition of cell growth by miR-101, which
suggests target specificity.

We previously showed that upon overexpres-
sion, EZH2 can induce cell invasion in matrigel-
coated basement membrane invasion assays (12).
Herewe show thatmiR-101 overexpressionmark-
edly inhibits the in vitro invasive potential of
DU145 prostate-cancer cells (Fig. 2B) and SKBr3
breast cancer cells (fig. S5). Similarly, stable
expression of miR-101 in DU145 cells showed a
reduction in EZH2 expression and reduced in-
vasion (fig. S6, A and B). Overexpression of

EZH2 rescued the inhibition that wasmediated by
miR-101. Another in vitro readout for tumorigen-
ic potential, increased cell migration, was also
inhibited by miR-101 (fig. S7). Because over-
expression ofmiR-101 attenuates cancer invasion,
inhibition of miR-101 should enhance this neo-
plastic phenotype. Two independent antagomiRs
targeting miR-101 (i and ii) induced an invasive
phenotype when transfected into benign immor-
talized breast epithelial cell lines H16N2 or HME
(Fig. 2C and fig. S8).

To assesswhethermiR-101 inhibits anchorage-
independent growth, we used a soft-agar assay.
DU145 prostate cancer cells stably overexpress-
ing miR-101 exhibited markedly reduced colony
formation relative to the parental cells or vector
controls (fig. S9). Furthermore, in vivo, DU145
cells expressingmiR-101 grew significantly slower
than the vector control xenografts (P = 0.0001)

(Fig. 2D), demonstrating that miR-101 has prop-
erties consistent with that of a tumor suppressor
in these particular assays.

Because EZH2 and PRC2 regulate gene ex-
pression by trimethylating H3K27, we hypothe-
sized thatmiR-101 overexpressionwould result in
decreased overall H3K27 trimethylation in cancer
cells. SKBr3 breast cancer and DU145 prostate
cancer cells transfected with miR-101 or EZH2
siRNA for 7 days displayed a global decrease in
trimethyl H3K27 levels (fig. S10A). The effect of
miR-101 on H3K27 methylation was negated by
overexpression of EZH2 (fig. S10B).

To test the level of promoter occupancy of the
H3K27 histone mark, we performed chromatin
immunoprecipitation (ChIP) assays in cancer
cells overexpressing miR-101. We found signif-
icant reduction in the trimethyl H3K27 histone
mark at the promoter of known PRC2 target genes

Fig. 2. The role of
miR-101 in regulating
cell proliferation, inva-
sion, and tumor growth.
(A) miR-101 overexpres-
sion reduces cell prolifer-
ation. A cell growth assay
of SKBr3 cells treated
with either precursor
miR-101 or siRNA tar-
geting EZH2 is shown.
Cell growth relative to
the control miRNA and
control siRNA duplex was
measured.Rescueexperi-
ments were performed
by overexpressing EZH2
(minus its endogenous
3′UTR)inmiR-101–treated
cells. (B)miR-101 expres-
sion decreases cell inva-
sion of DU145 prostate
carcinoma cells.We trans-
fected cells withmiR-101,
EZH2-specific siRNA, con-
trol miR, and nontarget-
ing siRNA. miR-101 was
also overexpressed in
those cells that overex-
pressed EZH2 by andeno-
viral infection. All cells
were subjected to amatri-
gel invasion assay. (C)
AntagomiRs to miR-101
induce the invasiveness
of benign immortalized
H16N2 breast epithelial
cells. Representative fields
of invaded and stained
cells are shown in the
inset. P values were cal-
culated between control
antagomiR, antagomiR-
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101i, and antagomiR-101ii. (D) Overexpression of miR-101 attenuates prostate
tumor growth. Overexpression of miR-101 reduces DU145 tumor growth in a
mouse xenograft model. Plot of mean tumor-volume trajectories over time for

the mice inoculated with (red) miR-101– and (green) vector-expressing DU145
cells. Error bars represent the SE of the mean at each time point. The inset
displays the decrease of EZH2 protein levels in miR-101–expressing cell lines.
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such as ADRB2, DAB2IP, CIITA, and WNT1 in
miR-101–overexpressing SKBr3 cells and EZH2
siRNA–treated cells (Fig. 3A and fig. S11). To
determine whether the reduced promoter occu-
pancy by H3K27 results in concomitant reduction
of gene expression, we performed quantitative
RT-PCR on the PRC2 targets tested by ChIP
assay. As expected, there was a significant in-
crease in target gene expression in both miR-101–
and EZH2 siRNA–treated cells (Fig. 3B). To
further explore miR-101 regulation of EZH2 and
its possible similarity with EZH2-specific RNA
interference (RNAi), we examined whether
miR-101 overexpression and EZH2 knockdown
generated similar gene expression profiles. To
assess this, we conducted gene-expression array
analysis of SKBr3 cells transfected with either
miR-101 or EZH2 siRNA duplexes. Genes that
were overexpressed at the twofold threshold
were significantly overlapping in both the miR-
101– and EZH2 siRNA–transfected cells (P =
6.08 × 10–17) (fig. S12). Similarly, those genes
that were repressed also had significant overlap
(P = 3.24 × 10–27).

We next investigated whether miR-101 ex-
pression inversely correlates with EZH2 levels in
human tumors. A meta-analysis of a majority of
the publicly available miRNA expression data
sets suggested that miR-101 is significantly un-
derexpressed in prostate, breast, ovarian, lung,
and colon cancers (table S3). Because EZH2 was
initially found to be overexpressed in a subset of
aggressive clinically localized prostate cancers
and almost universally elevated in metastatic
disease (4), we examined miR-101 in a similar
context of prostate cancer progression by doing
quantitative PCR analysis (Fig. 4A and fig. S13).

As expected, metastatic prostate cancers ex-
pressed significantly higher levels of EZH2 as
compared with those of clinically localized dis-
ease or benign adjacent prostate tissue (P <
0.0001). Consistent with a functional connection
between miR-101 and EZH2, miR-101 expres-
sion was significantly decreased in metastatic
prostate cancer relative to that in clinically lo-
calized disease or benign adjacent prostate tissue
(P < 0.0001). miR-217, which like miR-101 was
predicted to regulate EZH2, did not exhibit
significant differences betweenmetastatic disease
and clinically localized prostate cancer or benign
prostate tissue (P = 0.35 and 0.13, respectively).

To investigate the mechanism for miR-101
transcript loss in prostate cancer progression, we
performed quantitative genomic PCR for miR-101.
miR-101 has two genomic loci that are on
chromosome 1 (miR-101–1) and chromosome 9
(miR-101–2) (fig. S14, A and B). Based on
genomic PCR, 2 of 16 clinically localized pros-
tate cancer s and 17 of 33 metastatic prostate
cancers exhibited loss of the miR-101–1 locus
(Fig. 4B). Similarly, 4 of 16 clinically localized
prostate cancers and 8 of 33 metastatic prostate
cancers displayed loss of miR-101–2 (Fig. 4B).
Figure 4C displays a heat-map representation of
matched samples in which miR-101 transcript,
EZH2 transcript, miR-101–1 genomic loci, and
miR-101–2 genomic loci were monitored. EZH2
transcript levels were inversely associated with
miR-101 transcript levels across prostate cancer
progression to metastasis (P < 0.0001). EZH2
tended to be uniformly elevated in samples in
which the miR-101–1 or miR-101–2 genomic
loci exhibited a loss in copy number (P = 0.004,
permutation test).

To formally demonstrate that genomic loss of
miR-101 loci was somatic in nature, we identi-
fied nine metastatic prostate cancers that ex-
hibited loss of miR-101–1 and obtained DNA
from matched normal tissue. As expected, eight
of nine cases exhibited a marked decrease in
relative levels of miR-101–1 copy number in the
cancer as compared with that in matched normal
tissue (Fig. 4D). We also explored miR-101
genomic loss in other tumor types. Using a
number of experimental platforms, we demon-
strated focal loss (~20 kB) of miR-101–1 in a
subset of breast, gastric, and prostate cancers
(figs. S15 to S17). Furthermore, we explored
public-domain high-density array comparative
genomic hybridization and single-nucleotide
polymorphism array data sets and observed a
genomic loss of one or both miR-101 loci in a
subset of glioblastoma multiforme, lung adeno-
carcinoma, and acute lymphocytic leukemia (fig.
S18) (25).

miR-101, by virtue of its regulation of
EZH2, may have profound control over the
epigenetic pathways that are active not only in
cancer cells but in normal pluripotent embryon-
ic stem cells. Overexpression of miR-101 may
configure the histone code of cancer cells to that
associated with a more benign cellular pheno-
type. Because the loss of miR-101 and concom-
itant elevation of EZH2 are most pronounced in
metastatic cancer, we postulate that miR-101
loss may represent a progressive molecular
lesion in the development of more aggressive
disease. Approaches to reintroduce miR-101
into tumors may have therapeutic benefit by
reverting the epigenetic program of tumor cells
to a more normal state.

Fig. 3. miR-101 regu-
lation of the cancer epi-
genome through EZH2
and H3K27 trimethyla-
tion. (A) ChIP assay of
the trimethyl H3K27 his-
tone mark when miR-101
is overexpressed. Known
PRC2 repression targets
were examined in SKBr3
cells. ChIP was performed
to test H3K27 trimethyl-
ation at the promoters
of ADRB2, DAB2IP, CIITA,
RUNX3, CDH1, andWNT1.
GAPDH, KIAA0066, and
NUP214 gene promoters
served as controls. (B)
Quantitative RT-PCR of
EZH2 target genes was
performed with SKBr3
cells transfected with
miR-101. The EZH2 tran-
script and its known tar-
gets, including ADRB2,
DAB2IP, CIITA, RUNX3,
and E-cadherin (CDH1)
were measured.
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Fig. 4. Genomic loss of the miR-101 locus may explain overexpression of
EZH2 in solid tumors. (A) miR-101 transcript levels are inversely correlated
with EZH2 expression in prostate cancer progression. We performed
quantitative PCR for miR-101 and miR-217 by using total RNA from benign
adjacent prostate, prostate cancer (PCA), and metastatic (MET) prostate cancer
tissue. EZH2 expression was analyzed from the same RNA samples. (B)
Genomic PCR of miR-101–1 and miR-101–2 in prostate cancer progression.
Vertical axes represent log (base 2) relative quantification values; dashed lines
are shown at the deletion threshold of log2(0.7) ≈ –0.51. For clarity, points
have been horizontally displaced within each sample class. (C) Heat-map
representation of matched normal, tumor, and metastatic samples (from right
to left) in which miR-101 transcript, EZH2 transcript, and both miR-101–1 and

miR-101–2 relative copy number were assessed. miR-101 and EZH2 expression
is represented by a color scale highlighting down-regulation (green), no
alteration (black), and up-regulation (red) of transcripts. miR-101–1 and
miR-101–2 relative quantitation (RQ) of copy number are represented as
homozygous loss (<0.3; bright green), single-copy loss (<0.7; light green), no
copy number change (≥0.7 and ≤1.3; black), single-copy gain (>1.3; light
red), and double-copy gain (>1.7; bright red). (D) Evidence that the miR-101–1
locus is somatically lost in tumors samples relative to matched normal samples.
Nine metastatic prostate cancers were chosen that had copy number loss in the
miR-101–1 locus, and matched normal tissue was analyzed for comparison. Bar
heights represent differences in log2(RQ) values between metastatic and
matched normal tissues.
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Recurrent gene fusions are a prevalent class of mutations arising from
the juxtaposition of 2 distinct regions, which can generate novel
functional transcripts that could serve as valuable therapeutic targets
in cancer. Therefore, we aim to establish a sensitive, high-throughput
methodology to comprehensively catalog functional gene fusions in
cancer by evaluating a paired-end transcriptome sequencing strategy.
Not only did a paired-end approach provide a greater dynamic range
in comparison with single read based approaches, but it clearly
distinguished the high-level ‘‘driving’’ gene fusions, such as BCR-ABL1
and TMPRSS2-ERG, from potential lower level ‘‘passenger’’ gene
fusions. Also, the comprehensiveness of a paired-end approach en-
abled the discovery of 12 previously undescribed gene fusions in 4
commonly used cell lines that eluded previous approaches. Using the
paired-end transcriptome sequencing approach, we observed read-
through mRNA chimeras, tissue-type restricted chimeras, converging
transcripts, diverging transcripts, and overlapping mRNA transcripts.
Last, we successfully used paired-end transcriptome sequencing to
detect previously undescribed ETS gene fusions in prostate tumors.
Together, this study establishes a highly specific and sensitive ap-
proach for accurately and comprehensively cataloguing chimeras
within a sample using paired-end transcriptome sequencing.

bioinformatics � gene fusions � prostate cancer � breast cancer � RNA-Seq

One of the most common classes of genetic alterations is gene
fusions, resulting from chromosomal rearrangements (1).

Intriguingly, �80% of all known gene fusions are attributed to
leukemias, lymphomas, and bone and soft tissue sarcomas that
account for only 10% of all human cancers. In contrast, common
epithelial cancers, which account for 80% of cancer-related deaths,
can only be attributed to 10% of known recurrent gene fusions
(2–4). However, the recent discovery of a recurrent gene fusion,
TMPRSS2-ERG, in a majority of prostate cancers (5, 6), and
EML4-ALK in non-small-cell lung cancer (NSCLC) (7), has ex-
panded the realm of gene fusions as an oncogenic mechanism in
common solid cancers. Also, the restricted expression of gene
fusions to cancer cells makes them desirable therapeutic targets.
One successful example is imatinib mesylate, or Gleevec, that
targets BCR-ABL1 in chronic myeloid leukemia (CML) (8–10).
Therefore, the identification of novel gene fusions in a broad range
of cancers is of enormous therapeutic significance.

The lack of known gene fusions in epithelial cancers has been
attributed to their clonal heterogeneity and to the technical limi-
tations of cytogenetic analysis, spectral karyotyping, FISH, and
microarray-based comparative genomic hybridization (aCGH). Not
surprisingly, TMPRSS2-ERG was discovered by circumventing
these limitations through bioinformatics analysis of gene expression
data to nominate genes with marked overexpression, or outliers, a
signature of a fusion event (6). Building on this success, more recent
strategies have adopted unbiased high-throughput approaches, with
increased resolution, for genome-wide detection of chromosomal
rearrangements in cancer involving BAC end sequencing (11),
fosmid paired-end sequences (12), serial analysis of gene expression

(SAGE)-like sequencing (13), and next-generation DNA sequenc-
ing (14). Despite unveiling many novel genomic rearrangements,
solid tumors accumulate multiple nonspecific aberrations through-
out tumor progression; thus, making causal and driver aberrations
indistinguishable from secondary and insignificant mutations,
respectively.

The deep unbiased view of a cancer cell enabled by massively
parallel transcriptome sequencing has greatly facilitated gene fu-
sion discovery. As shown in our previous work, integrating long and
short read transcriptome sequencing technologies was an effective
approach for enriching ‘‘expressed’’ fusion transcripts (15). How-
ever, despite the success of this methodology, it required substantial
overhead to leverage 2 sequencing platforms. Therefore, in this
study, we adopted a single platform paired-end strategy to com-
prehensively elucidate novel chimeric events in cancer transcrip-
tomes. Not only was using this single platform more economical, but
it allowed us to more comprehensively map chimeric mRNA, hone
in on driver gene fusion products due to its quantitative nature, and
observe rare classes of transcripts that were overlapping, diverging,
or converging.

Results
Chimera Discovery via Paired-End Transcriptome Sequencing. Here,
we employ transcriptome sequencing to restrict chimera nomina-
tions to ‘‘expressed sequences,’’ thus, enriching for potentially
functional mutations. To evaluate massively parallel paired-end
transcriptome sequencing to identify novel gene fusions, we gen-
erated cDNA libraries from the prostate cancer cell line VCaP,
CML cell line K562, universal human reference total RNA (UHR;
Stratagene), and human brain reference (HBR) total RNA (Am-
bion). Using the Illumina Genome Analyzer II, we generated 16.9
million VCaP, 20.7 million K562, 25.5 million UHR, and 23.6
million HBR transcriptome mate pairs (2 � 50 nt). The mate pairs
were mapped against the transcriptome and categorized as (i)
mapping to same gene, (ii) mapping to different genes (chimera
candidates), (iii) nonmapping, (iv) mitochondrial, (v) quality con-
trol, or (vi) ribosomal (Table S1). Overall, the chimera candidates
represent a minor fraction of the mate pairs, comprising ��1% of
the reads for each sample.

We believe that a paired-end strategy offers multiple advantages
over single read based approaches such as alleviating the reliance
on sequencing the reads traversing the fusion junction, increased
coverage provided by sequencing reads from the ends of a tran-

Author contributions: C.A.M. and A.M.C. designed research; C.A.M., N.P., J.C.B., X.C., S.L.,
I.K., T.R.B., R.J.L., G.S., C.K.-S., and A.M.C. performed research; C.A.M., S.L., I.K., R.J.L., and
G.S. contributed new reagents/analytic tools; C.A.M., N.P., J.C.B., S.K.-S., C.G., J.Y., R.J.L.,
G.S., C.K.-S., and A.M.C. analyzed data; and C.A.M., N.P., X.C., C.K.-S., and A.M.C. wrote the
paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. E-mail: arul@umich.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0904720106/DCSupplemental.

www.pnas.org�cgi�doi�10.1073�pnas.0904720106 PNAS � July 28, 2009 � vol. 106 � no. 30 � 12353–12358

CE
LL

BI
O

LO
G

Y



scribed fragment, and the ability to resolve ambiguous mappings
(Fig. S1). Therefore, to nominate chimeras, we leveraged each of
these aspects in our bioinformatics analysis. We focused on both
mate pairs encompassing and/or spanning the fusion junction by
analyzing 2 main categories of sequence reads: chimera candidates
and nonmapping (Fig. S2A). The resulting chimera candidates from
the nonmapping category that span the fusion boundary were
merged with the chimeras found to encompass the fusion boundary
revealing 119, 144, 205, and 294 chimeras in VCaP, K562, HBR, and
UHR, respectively.

Comparison of a Paired-End Strategy Against Existing Single Read
Approaches. To assess the merit of adopting a paired-end transcrip-
tome approach, we compared the results against existing single read
approaches. Although current RNA sequencing (RNA-Seq) stud-
ies have been using 36-nt single reads (16, 17), we increased the
likelihood of spanning a fusion junction by generating 100-nt long
single reads using the Illumina Genome Analyzer II. Also, we chose
this length because it would facilitate a more comparable amount
of sequencing time as required for sequencing both 50-nt mate
pairs. In total, we generated 7.0, 59.4, and 53.0 million 100-nt
transcriptome reads for VCaP, UHR, and HBR, respectively, for
comparison against paired-end transcriptome reads from matched
samples.

Because the UHR is a mixture of cancer cell lines, we expected
to find numerous previously identified gene fusions. Therefore, we
first assessed the depth of coverage of a paired-end approach
against long single reads by directly comparing the normalized
frequency of sequence reads supporting 4 previously identified gene
fusions [TMPRSS2-ERG (5, 6), BCR-ABL1 (18), BCAS4-BCAS3
(19), and ARFGEF2-SULF2 (20)]. As shown in Fig. 1A, we ob-
served a marked enrichment of paired-end reads compared with
long single reads for each of these well characterized gene fusions.

We observed that TMPRSS2-ERG had a �10-fold enrichment
between paired-end and single read approaches. The schematic
representation in Fig. 1B indicates the distribution of reads con-
firming the TMPRSS2-ERG gene fusion from both paired-end and
single read sequencing. As expected, the longer reads improve the
number of reads spanning known gene fusions. For example, had
we sequenced a single 36-mer (shown in red text), 11 of the 17
chimeras, shown in the bottom portion of the long single reads,
would not have spanned the gene fusion boundary, but instead,
would have terminated before the junction and, therefore, only
aligned to TMPRSS2. However, despite the improved results only
17 chimeric reads were generated from 7.0 million long single read
sequences. In contrast, paired-end sequencing resulted in 552 reads
supporting the TMPRSS2-ERG gene fusion from �17 million
sequences.

Because we are using sequence based evidence to nominate a
chimera, we hypothesized that the approach providing the maxi-
mum nucleotide coverage is more likely to capture a fusion junc-
tion. We calculated an in silico insert size for each sample using
mate pairs aligning to the same gene, and found the mean insert size
of �200 nt. Then, we compared the total coverage from single reads
(coverage is equivalent to the total number of pass filter reads
against the read length) with the paired-end approach (coverage is
equivalent to the sum of the insert size with the length of each read)
(Fig. S2B). Overall, we observed an average coverage of 848.7 and
757.3 MB using single read technology, compared with 2,553.3 and
2,363 MB from paired-end in UHR and HBR, respectively. This
increase in �3-fold coverage in the paired-end samples compared
with the long read approach, per lane, could explain the increased
dynamic range we observed using a paired-end strategy.

Next we wanted to identify chimeras common to both strategies.
The long read approach nominated 1,375 and 1,228 chimeras,
whereas with a paired-end strategy, we only nominated 225 and 144
chimeras in UHR and HBR, respectively. As shown in the Venn
diagram (Fig. 1C), there were 32 and 31 candidates common to both

technologies for UHR and HBR, respectively. Within the common
UHR chimeric candidates, we observed previously identified gene
fusions BCAS4-BCAS3, BCR-ABL1, ARFGEF2-SULF2, and
RPS6KB1-TMEM49 (13). The remaining chimeras, nominated by
both approaches, represent a high fidelity set. Therefore, to further
assess whether a paired-end strategy has an increased dynamic
range, we compared the ratio of normalized mate pair reads against
single reads for the remaining chimeras common to both technol-
ogies. We observed that 93.5 and 93.9% of UHR and HBR
candidates, respectively, had a higher ratio of normalized mate pair
reads to single reads (Table S2), confirming the increased dynamic
range offered by a paired-end strategy. We hypothesize that the
greater number of nominated candidates specific to the long read
approach represents an enrichment of false positives, as observed
when using the 454 long read technology (15, 21).

Paired-End Approach Reveals Novel Gene Fusions. We were inter-
ested in determining whether the paired-end libraries could detect
novel gene fusions. Among the top chimeras nominated from
VCaP, HBR, UHR, and K562, many were already known, including
TMPRSS2-ERG, BCAS4-BCAS3, BCR-ABL1, USP10-ZDHHC7,
and ARFGEF2-SULF2. Also ranking among these well known gene
fusions in UHR was a fusion on chromosome 13 between GAS6 and
RASA3 (Fig. S3A and Table S2). The fact that GAS6-RASA3
ranked higher than BCR-ABL1 suggests that it may be a driving
fusion in one of the cancer cell lines in the RNA pool.

Another observation was that there were 2 candidates among the
top 10 found in both UHR and K562. This observation was
intriguing, because hematological malignancies are not considered
to have multiple gene fusion events. In addition to BCR-ABL1, we
were able to detect a previously undescribed interchromosomal
gene fusion between exon 23 of NUP214 located at chromosome
9q34.13 with exon 2 of XKR3 located at chromosome 22q11.1. Both
of these genes reside on chromosome 22 and 9 in close proximity
to BCR and ABL1, respectively (Fig. S3B). We confirmed the
presence of NUP214-XKR3 in K562 cells using qRT-PCR, but were
unable to detect it across an additional 5 CML cell lines tested
(SUP-B15, MEG-01, KU812, GDM-1, and Kasumi-4) (Fig. S3C).
These results suggest that NUP214-XKR3 is a ‘‘private’’ fusion that
originated from additional complex rearrangements after the trans-
location that generated BCR-ABL1 and a focal amplification of
both gene regions.

Although we were able to detect BCR-ABL1 and NUP214-
XKR3 in both UHR and K562, there was a marked reduction in
the mate pairs supporting these fusions in UHR. Although a
diluted signal is expected, because UHR is pooled samples, it
provides evidence that pooling samples can serve as a useful
approach for nominating top expressing chimeras, and poten-
tially enrich for ‘‘driver’’ chimeras.

Previously Undescribed Prostate Gene Fusions. Our previous work
using integrative transcriptome sequencing to detect gene fusions in
cancer revealed multiple gene fusions, demonstrating the complex-
ity of the prostate transcriptomes of VCaP and LNCaP (15). Here,
we exploit the comprehensiveness of a paired-end strategy on the
same cell lines to reveal novel chimeras. In the circular plot shown
in Fig. S4A, we displayed all experimentally validated paired-end
chimeras in the larger red circle. We found that all of the previously
discovered chimeras in VCaP and LNCaP comprised a subset of the
paired-end candidates, as displayed in the inner black circle.

As expected, TMPRSS2-ERG was the top VCaP candidate. In
addition to ‘‘rediscovering’’ the USP10-ZDHHC7, HJURP-INPP4A,
and EIF4E2-HJURP gene fusions, a paired-end approach revealed
several previously undescribed gene fusions in VCaP. One such
example was an interchromosomal gene fusion between ZDHHC7,
on chromosome 16, with ABCB9, residing on chromosome 12, that
was validated by qRT-PCR (Fig. S3D). Interestingly, the 5� partner,
ZDHHC7, had previously been validated as a complex intrachro-

12354 � www.pnas.org�cgi�doi�10.1073�pnas.0904720106 Maher et al.



mosomal gene fusion with USP10 (15). Both fusions have mate
pairs aligning to the same exon of ZDHHC7 (15), suggesting that
their breakpoints are in adjacent introns (Fig. S3D).

Another previously undescribed VCaP interchromosomal gene
fusion that we discovered was between exon 2 of TIA1, residing on
chromosome 2, with exon 3 of DIRC2, or disrupted in renal
carcinoma 2, located on chromosome 3. TIA1-DIRC2 was validated
by qRT-PCR and FISH (Fig. S5). In total, we confirmed an

additional 4 VCaP and 2 LNCaP chimeras (Fig. S6). Overall, these
fusions demonstrate that paired-end transcriptome sequencing can
nominate candidates that have eluded previous techniques, includ-
ing other massively parallel transcriptome sequencing approaches.

Distinguishing Causal Gene Fusions from Secondary Mutations. We
were next interested in determining whether the dynamic range
provided by paired-end sequencing can distinguish known high-
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Fig. 1. Dynamic range and sensitivity of the paired-end transcriptome analysis relative to single read approaches. (A) Comparison of paired-end (blue) and long single
transcriptome reads (black) supporting known gene fusions TMPRSS2-ERG, BCR-ABL1, BCAS4-BCAS3, and ARFGEF2-SULF2. (B) Schematic representation of TMPRSS2-
ERG in VCaP, comparing mate pairs with long single transcriptome reads. (Upper) Frequency of mate pairs, shown in log scale, are divided based on whether they
encompass or span the fusion boundary; (Lower) 100-mer single transcriptome reads spanning TMPRSS2-ERG fusion boundary. First 36 nt are highlighted in red. (C)
Venn diagram of chimera nominations from both a paired-end (orange) and long single read (blue) strategy for UHR and HBR.
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level ‘‘driving’’ gene fusions, such as known recurrent gene fusions
BCR-ABL1 and TMPRSS2-ERG, from lower level ‘‘passenger’’
fusions. Therefore, we plotted the normalized mate pair coverage
at the fusion boundary for all experimentally validated gene fusions
for the 2 cell lines that we sequenced harboring recurrent gene
fusions, VCaP and K562. As shown in Fig. S4B, we observed that
both driver fusions, TMPRSS2-ERG and BCR-ABL1, show the
highest expression among the validated chimeras in VCaP and
K562, respectively. This observation suggests a paired-end nomi-
nation strategy for selecting putative driver gene fusions among
private nonspecific gene fusions that lack detectable levels of
expression across a panel of samples (15).

Previously Undescribed Breast Cancer Gene Fusions. Our ability to
detect previously undescribed prostate gene fusions in VCaP and
LNCaP demonstrated the comprehensiveness of paired-end tran-
scriptome sequencing compared with an integrated approach, using
short and long transcriptome reads. Therefore, we extended our
paired-end analysis by using breast cancer cell line MCF-7, which
has been mined for fusions using numerous approaches such as
expressed sequence tags (ESTs) (22), array CGH (23), single
nucleotide polymorphism arrays (24), gene expression arrays (25),
end sequence profiling (20, 26), and paired-end diTag (PET) (13).

A histogram (Fig. S4C) of the top ranking MCF-7 candidates
highlights BCAS4-BCAS3 and ARFGEF-SULF2 as the top 2 rank-
ing candidates, whereas other previously reported candidates, such
as SULF2-PRICKLE, DEPDC1B-ELOVL7, RPS6KB1-TMEM49,
and CXorf15-SYAP1, were interspersed among a comprehensive list
of previously undescribed putative chimeras. To confirm that these
previously undescribed nominations were not false positives, we
experimentally validated 2 interchromosomal and 3 intrachromo-
somal candidates using qRT-PCR (Fig. S6). Overall, not only was

a paired-end approach able to detect gene fusions that have eluded
numerous existing technologies, it has revealed 5 previously unde-
scribed mutations in breast cancer.

RNA-Based Chimeras. Although many of the inter and intrachromo-
somal rearrangements that we nominated were found within a
single sample, we observed many chimeric events shared across
samples. We identified 11 chimeric events common to UHR, VCaP,
K562, and HBR (Table S3). Via heatmap representation (Fig. 2A)
of the normalized frequency of mate pairs supporting each chimeric
event, we can observe these events are broadly transcribed in
contrast to the top restricted chimeric events. Also, we found that
100% of the broadly expressed chimeras resided adjacent to one
another on the genome, whereas only 7.7% of the restricted
candidates were neighboring genes. This discrepancy can be ex-
plained by the enrichment of inter and intrachromosomal rear-
rangements in the restricted set.

Unlike, previously characterized restricted read-throughs, such
as SLC45A3-ELK4 (15), which are found adjacent to one another,
but in the same orientation, we found that the majority of the
broadly expressed chimera candidates resided adjacent to one
another in different orientations. Therefore, we have categorized
these events as (i) read-throughs, adjacent genes in the same
orientation, (ii) diverging genes, adjacent genes in opposite orien-
tation whose 5� ends are in close proximity, (iii) convergent genes,
adjacent genes in opposite orientation whose 3� ends are in close
proximity, and (iv) overlapping genes, adjacent genes who share
common exons (Fig. 2B). Based on this classification, we found 1
read-through, 2 convergent genes, 6 divergent genes, and 2 over-
lapping genes. Also, we found that �81.8% of these chimeras had
at least 1 supporting EST, providing independent confirmation of
the event (Table S3). In contrast to paired-end, single read ap-

Gene X Gene Y

Single Read Approach Paired-End Approach

Individual reads are associated 
with independent genes 

Chromosome 10q24.31

Read 2Read 1

Gene X Gene Y

Read 2Read 1

Mate pairs reveal a transcript spanning 
both Gene X and Gene Y

102,274,000

SEC31B NDUFB8

102,266,000

Gene X Gene Y

Single Read Approach Paired-End Approach

Chimeric reads span canonical 
exon-exon boundaries 

Read 1
Read 2Read 1

Mate pairs allow for mappings 
independent of annotation

Gene X Gene Y
Read-through transcripts

Chromosome 11q13.1

65,526,00065,524,000 65,528,000

EIF1AD BANF1

65,522,00065,520,000

Diverging transcripts

Broadly expressed 
chimeras

0% Inter-/Intra-
chromosomal chimeras
100% Adjacent genes

Top ranking restricted 
chimeras 

92.3% Inter-/Intra-
chromosomal chimeras

7.7% Adjacent genes

Chromosome 19q13.2

10,895,00010,894,000 10,896,000

CARM1 YIPF2

10,893,00010,892,000

Converging transcripts

Chromosome 1q22

154,479,000

PMF1

BGLAP
154,475,500154,472,000

Overlapping transcripts

102,270,000

300
VCaP HBR UHR K562

SLC4A1AP-SUPT7L
ERCC2-KLC3
C14orf21-CIDEB
CARM1-YIPF2 
ZNF511-TUBGCP2
ANKRD39-ANKRD23

THOC6-HCFC1R1
C14orf124-KIAA0323

MGC11102-BANF1
NDUFB8-SEC31L2
PMF1-BGLAP

TMPRSS2-ERG

GAS6-RASA3
USP10-ZDHHC7
ZDHHC7-ABCB9
ARFGEF-SULF2
AP3D1-JSRP1

RNF123-GMPPB
CALR-SRRM2
INPP5A-NKX6-2
MAGEC2-MAGEC1

NUP214-XKR3

BCR-ABL1
BCAS4-BCAS3

A

B

C

Fig. 2. RNA based chimeras. (A) Heatmaps showing the normalized number of reads supporting each read-through chimera across samples ranging from 0 (white)
to 30 (red). (Upper) The heatmap highlights broadly expressed chimeras in UHR, HBR, VCaP, and K562. (Lower) The heatmap highlights the expression of the top
ranking restricted gene fusions that are enriched with interchromosomal and intrachromosomal rearrangements. (B) Illustrative examples classifying RNA-based
chimeras into (i) read-throughs, (ii) converging transcripts, (iii) diverging transcripts, and (iv) overlapping transcripts. (C Upper) Paired-end approach links reads from
independent genes as belonging to the same transcriptional unit (Right), whereas a single read approach would assign these reads to independent genes (Left).
(Lower) The single read approach requires that a chimera span the fusion junction (Left), whereas a paired-end approach can link mate pairs independent of gene
annotation (Right).
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proaches would likely miss these instances as each mate would have
aligned to their respective genes based on the current annotations
(Fig. 2C). Also, these instances may represent extensions of a
transcriptional unit, which would not be detectable by a single read
approach that identifies chimeric reads that span exon boundaries
of independent genes. Overall, we believe that many of these
broadly expressed RNA chimeras represent instances where mate
pairs are revealing previously undescribed annotation for a tran-
scriptional unit.

Previously Undescribed ETS Gene Fusions in Clinically Localized Pros-
tate Cancer. Given the high prevalence of gene fusions involving
ETS oncogenic transcription factor family members in prostate
tumors, we applied paired-end transcriptome sequencing for gene
fusion discovery in prostate tumors lacking previously reported
ETS fusions. For 2 prostate tumors, aT52 and aT64, we generated
6.2 and 7.4 million transcriptome mate pairs, respectively. In aT64,
we found that HERPUD1, residing on chromosome 16, juxtaposed
in front of exon 4 of ERG (Fig. 3A), which was validated by
qRT-PCR (Fig. S6) and FISH (Fig. 3B), thus identifying a third 5�
fusion partner for ERG, after TMPRSS2 (6) and SLC45A3 (27), and
presumably, HERPUD1 also mediates the overexpression of ERG
in a subset of prostate cancer patients. Also, just as TMPRSS2 and
SLC45A3 have been shown to be androgen regulated by qRT-PCR
(5), we found HERPUD1 expression, via RNA-Seq, to be respon-
sive to androgen treatment (Fig. S7). Also, ChIP-Seq analysis
revealed androgen binding at the 5� end of HERPUD1 (Fig. S7).

Also, in the second prostate tumor sample (aT52), we discovered
an interchromosomal gene fusion between the 5� end of a prostate
cDNA clone, AX747630 (FLJ35294), residing on chromosome 17,
with exon 4 of ETV1, located on chromosome 7 (Fig. 3C), which was
validated via qRT-PCR (Fig. S6) and FISH (Fig. 3D). Interestingly,
this fusion has previously been reported in an independent sample
found by a fluorescence in situ hybridization screen (27); thus,
demonstrating that it is recurrent in a subset of prostate cancer
patients. As previously reported, gene expression via RNA-Seq
confirmed that AX747630 is an androgen-inducible gene (Fig. S7).
Also, ChIP-Seq revealed androgen occupancy at the 5� end of
AX747630 (Fig. S7).

Discussion
This study demonstrates the effectiveness of paired-end massively
parallel transcriptome sequencing for fusion gene discovery. By
using a paired-end approach, we were able to rediscover known
gene fusions, comprehensively discover previously undescribed
gene fusions, and hone in on causal gene fusions. The ability to
detect 12 previously undescribed gene fusions in 4 commonly used
cell lines that eluded any previous efforts conveys the superior
sensitivity of a paired-end RNA-Seq strategy compared with ex-
isting approaches. Also, it suggests that we may be able to unveil
previously undescribed chimeric events in previously characterized
samples believed to be devoid of any known driver gene fusions as
exemplified by the discovery of previously undescribed ETS gene
fusions in 2 clinically localized prostate tumor samples that lacked
known driver gene fusions.

By analyzing the transcriptome at unprecedented depth, we have
revealed numerous gene fusions, demonstrating the prevalence of
a relatively under-represented class of mutations. However, one of
the major goals remains to discover recurrent gene fusions and to
distinguish them from secondary, nonspecific chimeras. Although
quantifying expression levels is not proof of whether a gene fusion
is a driver or passenger, because a low-level gene fusion could still
be causative, it still of major significance that a paired-end strategy
clearly distinguished known high-level driving gene fusions, such as
BCR-ABL1 and TMPRSS2-ERG, from potential lower level pas-
senger chimeras. Overall, these fusions serve as a model for
employing a paired-end nomination strategy for prioritizing leads

likely to be high-level driving gene fusions, which would subse-
quently undergo further functional and experimental evaluation.
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Fig. 3. Discovery of previously undescribed ETS gene fusions in localized
prostate cancer. (A) Schematic representation of the interchromosomal gene
fusion between exon 1 of HERPUD1 (red), residing on chromosome 16, with exon
4 of ERG (blue), located on chromosome 21. (B) Schematic representation show-
ing genomic organization of HERPUD1 and ERG genes. Horizontal red and green
bars indicate the location of BAC clones. (Lower) FISH analysis using BAC clones
showingHERPUD1andERG inanormal tissue (Left),deletionof theERG5� region
in tumor (Center), and HERPUD1-ERG fusion in a tumor sample (Right). (C)
Schematic representation of the interchromosomal gene fusion between
FLJ35294 (green), residing on chromosome 17, with exon 4 of ETV1 (orange)
located on chromosome 21. (D Upper) Schematic representation of the genomic
organization of FLJ35294 and ETV1 genes. (Lower) FISH analysis using BAC clones
showing split of ETV1 in tumor sample (Left) and the colocalization of FLJ35294
and ETV1 in a tumor sample (Right).
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One of the major advantages of using a transcriptome approach
is that it enables us to identify rearrangements that are not
detectable at the DNA level. For example, conventional cytogenetic
methods would miss gene fusions produced by paracentric inver-
sions, or sub microscopic events, such as GAS6-RASA3. Also,
transcriptome sequencing can unveil RNA chimeras, lacking DNA
aberrations, as demonstrated by the discovery of a recurrent,
prostate specific, read-through of SLC45A3 with ELK4 in prostate
cancers. Further classification of RNA based events using paired-
end sequencing revealed numerous broadly expressed chimeras
between adjacent genes. Although these events were not necessarily
read-throughs events, because they typically had different orienta-
tions, we believe they represent extensions of transcriptional units
beyond their annotated boundaries. Unlike single read based
approaches, which require chimeras to span exon boundaries of
independent genes, we were able to detect these events using
paired-end sequencing, which could have significant impact for
improving how we annotate transcriptional units.

Overall, we have demonstrated the advantages of employing a
paired-end transcriptome strategy for chimera discovery, estab-
lished a methodology for mining chimeras, and extensively cata-
logued chimeras in a prostate and hematological cancer models. We
believe that the sensitivity of this approach will be of broad impact
and significance for revealing novel causative gene fusions in
various cancers while revealing additional private gene fusions that
may contribute to tumorigenesis or cooperate with driver gene
fusions.

Methods
Paired-End Gene Fusion Discovery Pipeline. Mate pair transcriptome reads were
mapped to the human genome (hg18) and Refseq transcripts, allowing up to 2
mismatches, using Efficient Alignment of Nucleotide Databases (ELAND) pair
within the Illumina Genome Analyzer Pipeline software. Illumina export output
fileswereparsedtocategorizepassingfiltermatepairsas (i)mappingtothesame
transcript, (ii) ribosomal, (iii) mitochondrial, (iv) quality control, (v) chimera can-
didates, and (vi) nonmapping. Chimera candidates and nonmapping categories
were used for gene fusion discovery. For the chimera candidates category, the
following criteria were used: (i) mate pairs must be of high mapping quality (best
unique match across genome), (ii) best unique mate pairs do not have a more
logical alternative combination (i.e., best mate pairs suggest an interchromo-
somal rearrangement, whereas the second best mapping for a mate reveals the
pair have a alignment within the expected insert size), (iii) the sum of the
distances between the most 5� and 3� mate on both partners of the gene fusion
must be �500 nt, and (iv) mate pairs supporting a chimera must be nonredun-
dant.

In addition to mining mate pairs encompassing a fusion boundary, the non-
mapping category was mined for mate pairs that had 1 read mapping to a gene,
whereas its corresponding read fails to align, because it spans the fusion bound-
ary. First, the annotated transcript that the ‘‘mapping’’ mate pair aligned against
was extracted, because this transcript represents one of the potential partners
involved in the gene fusion. The ‘‘nonmapping’’ mate pair was then aligned
againstallof theexonboundariesoftheknowngenepartnerto identifyaperfect
partial alignment. A partial alignment confirms that the nonmapping mate pair
maps to our expected gene partner while revealing the portion of the nonmap-
ping mate pair, or overhang, aligning to the unknown partner. The overhang is
then aligned against the exon boundaries of all known transcripts to identify the
fusion partner. This process is done using a Perl script that extracts all possible
University of California Santa Cruz (UCSC) and Refseq exon boundaries looking
for a single perfect best hit.

Mate pairs spanning the fusion boundary are merged with mate pairs encom-
passing the fusion boundary. At least 2 independent mate pairs are required to
support a chimera nomination, which can be achieved by (i) 2 or more nonre-
dundant mate pairs spanning the fusion boundary, (ii) 2 or more nonredundant
mate pairs encompassing a fusion boundary, or (iii) 1 or more mate pairs encom-
passing a fusion boundary and 1 or more mate pairs spanning the fusion bound-
ary. All chimera nominations were normalized based on the cumulative number
of mate pairs encompassing or spanning the fusion junction per million mate
pairs passing filter.

RNA Chimera Analysis. Chimeras found from UHR, HBR, VCaP, and K562 were
grouped based on whether they showed expression in all samples, ‘‘broadly
expressed,’’ or a single sample, ‘‘restricted expression.’’ Because UHR is comprised
of K562, chimeras found in only these 2 samples were also considered as re-
stricted. Heatmap visualization was conducted by using TIGR’s MultiExperiment
Viewer (TMeV) version 4.0 (www.tm4.org).

Additional Details. Additional details can be found in SI Text.
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Deep sequencing reveals distinct patterns of DNA
methylation in prostate cancer
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Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression.
We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex–next-gener-
ation sequencing (M-NGS). Hidden Markov model–based next-generation sequence analysis identified ~68,000 meth-
ylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and
cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and
21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 3 10–16). We found distinct patterns of promoter
methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking
regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially meth-
ylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2
promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and
normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for
alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the
same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene
fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This
comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.

[Supplemental material is available for this article. The next-generation sequencing and microarray data from this study
have been submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession nos.
GSE29155 and GSE27619, respectively.]

CpG residues, the targets of DNA methylation, have an asym-

metric distribution in mammalian genomes and are often found

in small clusters termed CpG islands (CGIs) (Bird 2002). Approxi-

mately 60% of all human gene promoters overlap with CGIs

(Illingworth and Bird 2009), and accumulation of promoter DNA

methylation is associated with gene silencing (Jones and Baylin

2007). Previously, DNA methylation studies in prostate cancer

have used methodologies of variable scale, focusing on either a few

promoters (Li et al. 2005) or several thousand genomic regions

with a CpG island array (Kron et al. 2009). Alternatively, functional

approaches that monitored gene expression changes after treat-

ment with the demethylating agent 5-aza-29-deoxycytidine

(5-Aza) have also been used (Yegnasubramanian et al. 2004, 2008).

However, to date, only 115 genes are reported as methylation

targets in prostate cancer, 85 of which are listed in the Pubmeth

database (http://www.pubmeth.org) (Ongenaert et al. 2008).

The advent of next-generation sequencing (NGS) now

presents a novel approach to assess genome-wide epigenetic

changes without the limitations of probe-based microarray plat-

forms. MethylC-seq, a bisulfite conversion approach, was pre-

viously used to analyze the methylome at single-base resolution

for Arabidopsis (Cokus et al. 2008) and recently for human H1

embryonic stem cells and fetal lung fibroblasts (Harris et al. 2010).

Meissner et al. (2008) produced methylation maps by reduced

representation bisulfite sequencing of MspI-digested, genomic
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DNA from pluripotent and differentiated cells, and the same

method was used by Gu et al. (2010) more recently on colon

cancer samples. Alternatively, several groups enriched methyl-

ated fragments based on their affinities to anti-59-methylcytosine

antibody (Weber et al. 2005; Down et al. 2008; Feber et al. 2011)

and methylated DNA binding protein Mbd2b (Rauch and Pfeifer

2009), susceptibility to methylation-sensitive restriction en-

zymes (Brunner et al. 2009), or capture technology (Weber et al.

2005; Hodges et al. 2009) before sequencing.

While the enrichment-based and bisulfite conversion

methods identified largely comparable methylation events, varia-

tion was observed in CpG coverage, resolution, quantitative ac-

curacy, and other measures (Bock et al. 2010; Harris et al. 2010). We

used a novel MethylPlex technology described here to enrich

methylated regions present in genomic DNA from LNCaP prostate

cancers, normal prostate epithelial cells (PrEC), and clinical pros-

tate specimens (n = 17). Massively parallel sequencing of the

enriched product identified differentially methylated regions

(DMRs) and revealed novel insights regarding the genomic place-

ment and functional consequences of DNA methylation in cancer.

Results

Characterization of DNA methylation by M-NGS
in prostate cells

To perform a genome-wide analysis of DNA methylation in pros-

tate cancer, we used MethylPlex–next generation sequencing

(M-NGS) methodology, which enriches methylated DNA using re-

striction enzymes and requires minimal input genomic DNA (i.e.,

50 ng). The ability of M-NGS to identify methylated genomic

regions was first evaluated in a prostate cancer cell line, LNCaP,

and normal PrEC cells. A schematic describing sequencing library

generation is provided in Supplemental Figure 1. Briefly, Methyl-

Plex libraries were constructed by digesting input genomic DNA

isolated from samples with a cocktail of methylation-sensitive re-

striction enzymes, followed by ligation of adaptors containing

universal primers sequences and PCR-based amplification. A second

round of enzymatic treatment depleted non-GC-rich sequences,

followed by an additional amplification step to ensure enrichment

of highly methylated DNA fragments. The amplification adaptors

were enzymatically removed prior to NGS library preparation

(Supplemental Fig. 1). The MethylPlex libraries described above

were constructed through the commercial service provided by

Rubicon Genomics Inc.

For initial standardization, we used two different concentra-

tions (1 and 5 mg) of each MethylPlex sample from LNCaP and

PrEC cells as input DNA to obtain single-read sequencing on the

Illumina Genome Analyzer II (for protocol details, see Methods).

For each cell type (LNCaP and PrEC), a total of four sequencing

libraries were prepared corresponding to 200- and 400-bp size se-

lections of 1 mg and 5 mg of MethylPlex product. We obtained an

average of 5 million mappable reads for each M-NGS sample

(Supplemental Table 1). CG dinucleotides were enriched by the

MethylPlex procedure up to threefold in mapped reads from

M-NGS compared to previously obtained control ChIP-sequencing

data, namely, pan-histone ChIP-seq (Supplemental Table 1; Yu

et al. 2010).

To demonstrate experimental consistency, a comparative

analysis of data from 1 and 5 mg of MethylPlex DNA exhibited high

correlation both for reads mapping to chromosome 21 and for

reads mapping to all CpG islands (Supplemental Fig. 2). Data from

400 bp–5 mg were most enriched for CG-rich sequences (Supple-

mental Table 1) and showed maximum overlap (;70%) with

methylation identified by hybridizing the MethylPlex product to

a CpG island array (Supplemental Fig. 3A; Supplemental Table 2).

We therefore selected these data for further analysis.

A hidden Markov model (HMM)–based algorithm previously

used for ChIP-seq data analysis (Qin et al. 2010) was used to locate

peaks from mapped reads obtained in each sequencing run (Sup-

plemental Table 1). We found a 70% overlap in methylated geno-

mic regions between LNCaP (56,727 regions) and PrEC (61,615

regions) cells (Fig. 1A). Methylation located in intergenic and

intronic regions of the genomes analyzed had a similar distribu-

tion (Fig. 1B); additionally, in LNCaP cells, we also used MeDIP-seq,

a methodology that uses 59-methylcytosine antibody to enrich

methylated regions, and we identified approximately 68,000

methylated regions in this cell line, which was comparable to the

M-NGS results. Moreover, there was an overall 62% concordance

between all the genomic regions (data not shown) and >83% in

CGIs identified by M-NGS and MeDIP-seq, thereby validating the

two methodologies (Supplemental Fig. 3B).

The cancer-derived LNCaP cells displayed frequent methyla-

tion among the 56 previously reported methylated promoter re-

gions in prostate cancer tissues (36/56 in LNCaP M-NGS and 40/56

in LNCaP MeDIP-seq) compared to PrEC cells (7/56 in PrEC

M-NGS) (Supplemental Table 10). However, this difference was

absent when we examined the promoters and gene body of known

imprinted genes (24/29 in PrEC M-NGS, 23/29 in LNCaP M-NGS,

and 26/29 in LNCaP MeDIP-seq) (Supplemental Table 10; Morison

et al. 2005).

Global differences in CGI methylation

Because hypermethylation in CpG-rich promoters is a common

feature of tumorigenesis (Issa 2004), we compared the extent of

CpG island methylation between LNCaP and PrEC cells. Of the

68,508 (72.74 Mb) CpG islands identified using Takai Jones criteria

(Takai and Jones 2002) in the human genome, 6865 (7.6 Mb) and

5767 (6.1 Mb) CpG islands were methylated in LNCaP and PrEC,

respectively. Globally, we observed a 1.7-fold increase in uniquely

methylated CpG islands between LNCaP and PrEC, and this ratio

increased to approximately sevenfold specifically in CpG islands

associated within gene promoters but not among CGIs located

elsewhere (Fig. 1C). In LNCaP cells, methylation in >88% of CpG

islands located within promoters and 83% of CGIs in non-

promoters detected by M-NGS were corroborated by the MeDIP-

seq data (Supplemental Fig. 3B).

Aberrant promoter methylation is thought to contribute to

tumorigenesis by repressing transcription of tumor-suppressor

genes (Jones and Baylin 2007). We next looked for methylation on

RefSeq gene promoters (61500 bp flanking the transcription start

site) and identified 3496 that were methylated in at least one

sample (Supplemental Fig. 4). Visualization of these methylation

marks in the context of promoter CGIs revealed the presence of

several distinct methylation patterns on gene promoters (Supple-

mental Fig. 4). Broadly, the promoters fell into two groups based on

the presence or absence of a CpG island within this specified re-

gion. Interestingly, although 35% of promoters (n = 1232) lacked

CpG islands, they exhibited methylation around the transcription

start site (TSS) (Supplemental Fig. 4; Supplemental Table 3). The

remaining 65% (n = 2264) had CpG islands spanning the TSS, and

three distinct methylation patterns were observed in this group:

(1) Methylation was mostly confined (39.6%, n = 1383) to the
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Figure 1. Characterization of genome-wide methylation patterns in prostate cells by M-NGS. (A) The Venn diagram represents a 70% overlap between
the regions methylated in LNCaP (blue) and PrEC (green) cells. (B) In LNCaP (blue) and PrEC (green), the majority of DNA methylation occurred in
intergenic and intronic regions, and the genomic distribution of methylation peaks was similar. (C ) Promoter-associated CpG islands displayed a sevenfold
difference in methylation between LNCaP (blue) and PrEC (green) cells. (D) DNA methylation in APC, CHMP4A, CALML3, CDKN2A, KCTD1, LAMC2,
RASSF1, SHC1, TINAGL1, and TSPAN1 gene promoters in LNCaP (L) cells. SPON2 in PrEC (P) cells and a negative control region in MYC were validated by
bisulfite sequencing. The methylation status of each CG residue from 10 clones sequenced on both strands was analyzed using the BIQ Analyzer (Bock et al.
2005) program, where the height of the blue bar indicates the percent methylation at a given position, yellow indicates no methylation, and the numbers
indicate the distance between analyzed CG dinucleotides. *CpG islands were absent in these promoters. Additional details are provided in Supplemental
Figures 5–7 and Supplemental Table 5. Validation of additional candidates, including NAP1L5, C9orf125, AOX1, AMT, NTN4, and PPP1R3C, are presented
in Supplemental Figure 8.
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island, and interestingly with much higher frequency (greater than

sixfold difference) in LNCaP (n = 952) compared to PrEC (n = 147)

cells (Supplemental Fig. 4); (2) methylation was positioned 59 to

the CpG island (11.8%, n = 412); and (3) methylation was posi-

tioned 39 to the CpG island (13.4%, n = 469). In total, methylation

flanking 59 or 39 of promoter CpG islands accounted for 25.2% of

all methylation observed (n = 881). To explore the role of these

methylation patterns in prostate cancer pathogenesis, we identi-

fied 812 out of 1171 unique gene promoters to be methylated only

in LNCaP (Supplemental Table 4) and were considered for further

analysis. The remaining 359 promoters were methylated in both

LNCaP and PrEC cells.

Validation of DMRs

We next selected 18 regions based on M-NGS data and validated

their methylation status using a standard bisulfite sequencing

technique in LNCaP and PrEC cells. This included 15 DMRs in

LNCaP (RASSF1, KCTD1, CHMP4A, APC, CDKN2A, SHC1, LAMC2,

TSPAN1, CALML3, AOX1, AMT, C9orf125, and TINAGL1), one gene

in PrEC cells (SPON2), one region methylated in both LNCaP and

PrEC cells (NAP1L5), and a control MYC promoter region that was

unmethylated in both cell types. The UCSC Genome Browser view

of methylation in the two samples by M-NGS and methylation

in LNCaP by MeDIP-seq, along with gene schematic, primer se-

quences, and bisulfite sequence amplicon locations, are presented

in Supplemental Figures 5–7 and Supplemental Table 5. Notably,

the results for all 18 regions confirmed the data generated by

M-NGS (Fig. 1D; Supplemental Fig. 8).

In addition, we observed overexpression of a significant

number of LNCaP methylated genes following 5-Aza treatment of

cells in a functional validation strategy using gene expression ar-

rays. A total of 973 out of 1171 methylated genes in LNCaP were

present in gene expression array data. Significance Analysis of

Microarray (SAM) results showed up-regulation of 246 out of 973

methylated genes at a 5% false discovery rate (Supplemental Fig. 9;

Supplemental Table 6), supporting epigenetic regulation of these

genes.

To identify molecular concepts enriched in our DMRs, we

analyzed our data set using the Molecular Concept Map (MCM)

analysis derived from the Oncomine database (Rhodes et al.

2007a; Tomlins et al. 2007b). MCM analysis of 789 out of 813 genes

methylated only in LNCaP that mapped to the Oncomine database

(Supplemental Fig. 10; Supplemental Tables 4, 7) revealed prefer-

ential enrichment with underexpressed gene signatures from lo-

calized and metastatic PCa samples (lowest P-value < 1.90310�14)

from several independent studies. Furthermore, the signatures,

‘‘genes previously known to be methylated in prostate cancer’’

(P-value < 1.40310�6) (Ongenaert et al. 2008), and ‘‘Gene Ontology-

tumor suppressor genes’’ (P-value < 0.009) were significantly

enriched (Supplemental Fig. 10A; Supplemental Table 7). In con-

trast, PrEC cells did not share this enrichment, and MCM analysis

of PrEC-only methylated regions revealed only concepts pertain-

ing to histone modifications and that were common to both PrEC

and LNCaP MCM analysis (Supplemental Fig. 10B). Finally, in-

tegration with RNA-seq data revealed an association between gene

repression and promoter methylation, globally by Gene Set En-

richment Analysis (GSEA) (Supplemental Fig. 11) and upon

specific evaluation of select genes (Supplemental Fig. 12). For

example, TIG1, GSTP1, CALML3, TASCTD2, and KCTD1 were

methylated and repressed specifically in LNCaP, compared to

SPON2 and GAGE genes, which were methylated and repressed

only in PrEC cells. HIC1 showed basal transcript expression and

was methylated in both cell types.

Characterization of DNA methylation in prostate
cancer tissues

Having established the robustness of M-NGS to identify highly

methylated regions in cell line models, we next characterized 17

prostate tissues (six benign adjacent, two normal, five localized

prostate cancer, and four metastatic prostate cancer specimens)

(Supplemental Table 8). A genome-wide assessment of both benign

adjacent and cancer tissues showed a similar number of methyla-

tion events within intergenic and intronic regions (Fig. 2A). Of the

total 68,508 CGIs present genome-wide, 18.5%, 19.7%, and 20.2%

of all CGIs were methylated in benign, localized, and metastatic

cancer samples, respectively (Fig. 2B). Importantly, a significant

increase in promoter-associated CGI methylation (Pearson’s x2

test, P-value < 2 3 10�16) paralleled prostate cancer progression

(benign 12.6%, localized PCa 19.3%, and metastatic PCa 21.8%),

Figure 2. DNA methylation pattern in prostate tissues. (A) Genome-
wide distribution of DNA methylation in various prostate sample groups
analyzed. The majority of methylation peaks are confined to intergenic
and intronic regions similar to cell lines. (Yellow) Normal prostate; (green)
benign adjacent; (blue) localized PCa; (red) metastatic PCa. (B) A gradual
increase in percent methylation, with cancer progression among promoter
CGIs compared with CGIs located in other genomic regions, was observed.
(*) Pearson’s x2 test, P-value < 2 3 10�16.
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whereas methylation of intragenic CGIs remained essentially

unchanged (;26.5%) among the three groups (Fig. 2B).

Next, we identified 6619 promoter methylation events

(within 61500 bp flanking the transcriptional start site) present in

either normal, benign adjacent, localized, or metastatic prostate

cancer samples (Fig. 3; Supplemental Table 9). Of 6619 total

methylation events, 2737 were found in all samples, and 1401 of

the remaining 3882 were absent in normal prostate samples and

PrEC cells but present in benign adjacent prostates. This left 2481

cancer-specific methylation events that may warrant further

characterization (Fig. 3). Nearly all of the 56 previously reported

prostate cancer methylated regions from pubmeth.org and a recent

study (Kron et al. 2009) showed increased methylation in cancer

tissues (Supplemental Table 10).

To identify DMRs with functional significance, we next ex-

amined promoter methylation events associated with tran-

scriptional changes. Promoters methylated in cancer were sig-

nificantly associated with gene repression regardless of whether

that promoter contained (p < 0.001) or

lacked (p < 0.001) a CpG island by GSEA,

while genes that displayed coding exon

methylation tended to be overexpressed

(p < 0.024) (Fig. 4). Oncomine meta-

analysis with a data set of 13 different

prostate cancer genes’ expression further

supported methylated candidates’ associ-

ation with gene repression (Supplemen-

tal Table 11). Several previously charac-

terized methylation targets (GSTM2,

GSTM1, S100A6, PYCARD, and RARRES1)

were present among this list, thereby

validating the approach.

We next used MethylProfiler PCR

( Jaspers et al. 2010) as an independent

evaluation of the methylation status of

a novel target region in WFDC2 (WAP

four-disulphide core domain protein

2, previously called HE4), the recently

reported prostate methylation target

TACSTD2 (Ibragimova et al. 2010), and

the well-characterized GSTP1, all iden-

tified in this M-NGS study. WFDC2,

which ranked 25th in Oncomine meta-

analysis, was methylated in 100% (6/6) of

transformed prostate cell lines and 77%

(17/22) of cancer tissues but not in benign

tissues or PrEC (Fig. 5A). In addition,

WFDC2 methylation in select samples

was independently confirmed by bisulfite

sequencing (Supplemental Fig. 13). In

comparison, the TACSTD2 promoter was

less frequently methylated, with 21% (5/23)

of cancer tissues and 9% (1/11) of benign

tissues showing hypermethylation, and

prostate cell lines similarly exhibited

variable levels of methylation (Fig. 5B).

In contrast, the well-characterized GSTP1

promoter showed frequent methylation

in cancer tissues (86%) and in all trans-

formed cell lines (100%), similar to WFDC2

(Fig. 5C).

Regulation of transcript variant
expression by DNA methylation

We also observed that a subset of genes

displayed selective promoter methylation

in a transcript isoform-specific manner,

suggesting a mechanism for regulating

transcript variant expression in cancer. A

well-known example, RASSF1, frequently

Figure 3. Promoter DNA methylation during prostate cancer progression. A total of 6619 gene
promoters from 6077 unique RefSeq genes harbored DNA methylation (yellow) among the various
sample groups analyzed (normal, benign adjacent, PCa, or MET). Promoter methylation percentage in
sample groups is represented by varying shades of yellow. Each row represents a unique promoter
region at 100-bp window size, covering 61500 bp flanking the transcription start site, indicated by the
white dotted line. The location of a CpG island (red) in methylated gene promoters is shown in the first
column. Promoters in group IV (n = 2737) are methylated in all sample groups analyzed, promoters in
group III (n = 1401) are methylated in all sample groups except normal tissues, while promoters in
groups II (n = 1436) and I (n = 1045) are methylated specifically in cancer samples. Promoters are
ordered by the location of methylation on a CpG island, adjacent to the island (shores) or on promoters
that lacked CpG islands as represented with different shades of brown on the left for groups I to IV.
Methylation patterns in prostate cells PrEC and LNCaP are presented alongside for comparison.
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inactivated by epigenetic alteration in human cancers (Dammann

et al. 2005), is composed of three distinct variants. In LNCaP, we

observed DNA methylation–mediated silencing of the longer

transcript of RASSF1, variant 1, while the smaller isoform, variant

3, that codes for an N-terminal variant protein expressed in mul-

tiple cancer cell lines and tissues including PCa, retains high

expression (Fig. 6A,B; Dammann et al. 2000; Kuzmin et al. 2002).

Active transcription of variant 3 in LNCaP cells is supported by

histone 3 lysine 4 trimethylation (H3K4me3) as observed in pre-

viously obtained ChIP-seq data (Yu et al. 2010), and 59 rapid

amplification of cDNA ends (59-RACE) showed the presence of

shorter transcripts but not variant 1 in LNCaP (Fig. 6A). Isoform-

specific methylation of variant 1 was confirmed by preferential

reexpression of this transcript upon 5-Aza treatment of LNCaP cells

(Fig. 6B). Interestingly, we found segregation of epigenetic marks

into distinct genomic regions in promoters containing CpG

islands when we superimposed the promoter methylation and

H3K4me3 ChIP-seq data from LNCaP cells (Fig. 7; Supplemental

Table 12; Yu et al. 2010). While integration of other epigenetic

marks is necessary for a full analysis, these data further suggest that

multiple epigenetic modifications may co-occur in distinct pat-

terns to regulate transcript expression in cancer.

Since our M-NGS methodology accurately detected DNA

methylation events of RASSF1, we queried our data for differential

methylation of transcript variants compared to H3K4me3 marks

and identified 34 genes in LNCaP that exhibit isoform-specific

promoter methylation (Supplemental Table 13). We validated two

genes from this list, namely, NDRG2 and APC (Fig. 6D; Supple-

mental Fig. 14A). In both of these candidates, the transcript vari-

ants (variants 1–4 in NDRG2 and variants 2 and 3 in APC) showing

DNA methylation were confirmed to be underexpressed in LNCaP

cells compared to PrEC cells by qRT-PCR and 59-RACE (Fig. 6E;

Supplemental Fig. 11A). Furthermore, these variants were prefer-

entially reexpressed upon 5-Aza treatment of LNCaP cells. To

determine whether patient tissues demonstrated similar isoform-

specific expression patterns, we tested NDRG2 isoforms in two

normals, three adjacent normals, five localized PCas, and two

metastatic samples by qRT-PCR. Similar to LNCaP cells, variants 1–4

were significantly underexpressed compared to variants 5–8 in

localized PCa (P-value = 0.034) and adjacent benign prostate

(P-value = 0.012), but not in normal (non–prostate cancer) tissues

(Supplemental Fig. 14B). In addition,

previously obtained RNA-seq data from

LNCaP cells supported the above obser-

vation for RASSF1 and NDRG2 genes (Fig.

6C,F).

Methylation differences between
ETS-positive and ETS-negative tissues

Transcription factor occupancy is sug-

gested to have a protective role in limiting

the spread of DNA methylation into

affected CpG islands (Gebhard et al.

2010). In prostate cancer, gene fusions

involving ETS transcription factors (most

commonly ERG and ETV1) occur in

;40%–50% of patients and serve as the

most frequent genetic aberration in this

disease (Kumar-Sinha et al. 2008). DNA

methylation differences between patients

harboring or lacking an ETS gene fusion

might therefore provide insights into the transcriptional program

of ERG in prostate cancer. We compared the five ERG fusion-pos-

itive (ETS-positive) patients and four fusion-negative (ETS-nega-

tive) patients in our cohort and observed more than 40 Mb of

DMRs specifically associated with ETS-positive samples. In-

terestingly, the majority of DMRs in ETS-negative samples were

also shared with benign samples (Fig. 8A). ETS-positive samples

also contained higher repeat-element methylation compared to

ETS-negative samples (Fig. 8B). In particular, assessment of global

LINE-1 methylation by an independent pyrosequencing analysis

on a prostate tissue cohort (n = 20) revealed a significant decrease

in LINE-1 element methylation (P-value < 0.0001) in ETS-negative

compared to ETS-positive samples (Fig. 8C). These data suggest

that previous studies documenting global hypomethylation of

LINE-1 elements in prostate cancer may miss subtleties present in

different molecular subtypes of this disease.

Discussion
In this study, we characterized genome-wide methylation patterns

in prostate tissues and cell lines using a novel M-NGS methodol-

ogy. Compared to the bisulfite-based MethylC-seq and enrich-

ment-based MeDIP-seq and MBD-seq, which require microgram

quantities of genomic DNA, M-NGS and the reduced representa-

tion bisulfite sequencing (Gu et al. 2010) need only nanogram

quantities of input DNA and are promising options to characterize

clinical samples with limited material availability. Using MeDIP-

seq, bisulfite sequencing, and 5-Aza treatments as validation, we

demonstrate the accuracy and utility of M-NGS to detect genome-

wide methylated regions. A recent study using MeDIP-seq reported

methylation in 16% (;4428/27,679) of all CGIs in the human

brain (Maunakea et al. 2010), which is comparable to our MeDIP-

seq data (20%) and M-NGS data (up to 20%). The high overlap

(>83%) in the methylated CGIs identified by MeDIP-seq and

M-NGS in LNCaP cells suggests a comparable performance of these

two methodologies. However, a comparative analysis similar to

those by Bock et al. (2010) and Harris et al. (2010) may further

characterize the advantages and limitations of M-NGS compared

to other existing technologies.

This study reveals important DMRs and methylation patterns

in both intragenic and intergenic regions in prostate cancer. While

Figure 4. Promoter methylation and gene repression. Promoter methylation is associated with gene
repression. Gene Set Enrichment Analysis (GSEA) of promoters methylated in prostate cancer was
performed on microarray expression data from corresponding samples. Significant correlation was
observed between gene repression and promoter methylation among both promoters with (P-value <
0.001) or without (P-value < 0.001) CpG islands. Overexpressed transcripts were enriched among genes
with gene body methylation (P-value < 0.024).
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globally the total number of genomic re-

gions methylated in all samples was

comparable, several thousand DMRs ap-

pear to be specific to either the benign or

cancer samples. Consistent with prior

studies, we found an increasing number

of promoter CGIs to accumulate DNA

methylation and that this phenomenon

correlated with target gene repression

(Perry et al. 2010).

We noted patterns of promoter meth-

ylation spanning the CGI, but also in

the 59 and 39 regions flanking the CGI.

For these latter categories, Irizarry et al.

(2009) have used microarrays to demon-

strate ;70% methylation in regions up to

2 kb away from CpG islands, which were

termed ‘‘shores’’ in colon cancer samples.

Methylation also occurred on promoters

that lacked CGIs, which may also have

functional significance. A previous study

by Eckhardt et al. (2006) determined that

repression of the Oncostatin (OSM) gene

occurs by promoter methylation despite

the absence of a CGI in the OSM promoter

region. Hence the promoter DMRs iden-

tified here (including promoter CGI/

shores methylation and methylation in

promoters that lack CGI) will likely reg-

ulate the cancer transcriptome.

Using Gene Set Enrichment Analysis

(GSEA) of M-NGS and an expression

array data set for promoters methylated

in cancer, we revealed enrichment for

gene repression regardless of whether the

promoter contained a CGI. A similar as-

sociation between promoter methylation

and gene repression was found in mul-

tiple public expression data sets using

Oncomine meta-analysis. This analysis

nominated a novel methylation target,

WFDC2, previously shown to be re-

pressed in prostate cancer, starting with

the prostatic intraepithelial neoplasia

(PIN) stage (Ashida et al. 2004). Methyl-

profiler PCR analysis showed WFDC2

promoter methylation specifically in

>77% cancer but not in benign speci-

mens, indicating that WFDC2 repression

is mediated by this epigenetic modifica-

tion (Fig. 5A). Interestingly, in ovarian

cancer, WFDC2 is up-regulated and serves

as a biomarker, suggesting that this gene

may have different functions in differ-

ent malignancies (Schummer et al. 1999;

Bouchard et al. 2006). In comparison,

Ibragimova et al. (2010) recently reported

that 17% of prostate cancers con-

tain TACSTD2 gene promoter methyla-

tion, while we observed methylation of

26% of cancer specimens in our panel

(Fig. 5B). Given the probe limitations

Figure 5. WFDC2, TACSTD2 and GSTP1 methylation in prostate tissue panel. MethylProfiler qPCR was
used to determine DNA methylation of the WFDC2 (A), TACSTD2 and GSTP1 (B) genes. 17/22 prostate
cancer tissues and 6/6 transformed prostate cell lines showed methylation of the WFDC2 promoter,
whereas there was no detectable methylation in normal (0/3), benign adjacent tissues (0/7), or the
normal PrEC cells. In each sample, the height of the yellow bars indicates no methylation; light blue bars
indicate moderate methylation levels; and dark blue bars indicate heavy levels of DNA methylation.
Select samples were independently validated by bisulfite sequencing of the corresponding region
(Supplemental Fig. 10). (B) Methylation of the TACSTD2 promoter in prostate tissues and cell lines was
assessed by MethylProfiler qPCR. Twenty-one percent cancer tissues (5/23) and prostate cancer cell
lines, VCaP, LNCaP, and PC3, were methylated. (C ) Methylprofiler qPCR analysis of GSTP1. 20/22
prostate cancer tissues, 1/7 benign adjacent tissues, and 6/6 transformed prostate cell lines showed
methylation of the GSTP1 promoter, whereas there was no detectable methylation in normal tissues
(0/3) or the normal PrEC cells.
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of the microarray platforms upon which our analyses are based,

we expect that an integrative analysis with NGS transcriptome

data will expand our understanding of the role of DNA methyla-

tion in cancer further. In addition to WFDC2, several other novel

DMRs (MAGI2, MEIS2, NTN4, GPRC5B, C9orf125, FGFR2, AOX1,

VAMP5, C14orf159, PPP1R3C, S100A16, and AMT genes) ranked

among the top 30 in the meta-analysis (Supplemental Table 11)

and merit further examination. Of particular interest, a recent

prostate cancer genome sequencing study revealed inactivating

deletions in the PTEN-interacting protein MAGI2 (Berger et al.

2011). We observe a DMR in the MAGI2 promoter, thereby sug-

gesting additional regulatory mechanisms

to inactivate this gene and indicating that

this gene may shave a role in suppressing

prostate cancer progression.

While gene silencing mediated by

DNA methylation in prostate cancer has

been well described (Nelson et al. 2009),

a growing body of evidence now sup-

ports a role for epigenetic modification in

alternate transcription start site utiliza-

tion. Regulation of alternate transcrip-

tion by DNA methylation for the PIP5KIA

gene in colon cancer (Irizarry et al. 2009)

and PARP12 in human B-cells (Rauch

et al. 2009) was identified using micro-

array experiments. More recently, tissue-

specific DNA methylation regulating in-

tragenic promoter activity in the SHANK3

locus was demonstrated using MeDIP-

seq (Maunakea et al. 2010). Our integra-

tive analysis of DNA methylation and

H3K4me3 data nominated candidates

for alternate transcription start site uti-

lization as demonstrated in RASSF1,

NDRG2, and APC genes. Our analysis fur-

ther demonstrates that, when present

on the same promoter, H3K4me3 mod-

ifications and DNA methylation have

mutually exclusive boundaries. A similar

pattern was observed in mouse neural

stem cells, where the GBX2 locus har-

bors proximal promoter regions contain-

ing H3K4me3 marks that are flanked

by DNMT3a-bound CpG rich regions

containing DNA methylation marks

(Wu et al. 2010). Interestingly, H3K4me3,

previously considered an active histone

mark, is now known to occupy promoters

of transcriptionally inactive genes, albeit

at threefold lower levels compared to

active promoters (Bernstein et al. 2006;

Guenther et al. 2007). More recently, bind-

ing of CFP1 protein to CpG-rich regions

and a 98% overlap between H3K4me3-

modified regions and CFP1-binding sites

were shown (Thomson et al. 2010). Thus,

while the regulation of transcription by

DNA methylation and H3K4me3 is well

explored, the role for adjacent H3K4me3

and DNA methylation marks in some

promoters needs further investigation.

Finally, molecular classification based on ETS gene fusions

has enabled subtype-specific analyses of prostate cancer showing

distinct copy number aberrations and gene expression patterns in

this subtype (Kim et al. 2007; Tomlins et al. 2007b). Here, we define

DNA methylation patterns unique to ETS-positive and ETS-

negative samples. Specifically, we observed a decrease in repeat-

element methylation in ETS-negative compared to ETS-positive

samples. Previous work has shown pronounced reduction in both

global 59 methyl cytosine content and LINE-1 hypomethylation in

metastatic samples compared to localized PCa (Yegnasubramanian

et al. 2008). However, all previous reported assessments of LINE-1

Figure 6. Regulation of alternate transcription start site utilization by DNA methylation. (A,D) Cancer-
specific DNA methylation enables switching of alternative transcriptional start sites (TSS) leading to
transcript isoform regulation. Next-generation sequencing for DNA methylation and histone 3 lysine 4
trimethylation (H3K4me3) in LNCaP cells reveals genome-wide patterning that couples CpG methyla-
tion with H3K4 marks to repress or activate specific transcript variants. Independent epigenetic modifi-
cations mark specific alternative TSS. In RASSF1 (A) and NDRG2 (D), CpG methylation occurs at the TSS of
the longer variants, with H3K4me3 marks positioned on the TSS of the shorter variants. (B,E) Preferential
silencing and 5-Aza-induced re-expression of CpG-methylated variants in LNCaP cells. Variants exhib-
iting CpG methylation on their TSSs show preferential silencing compared to variants with H3K4me3
marks in LNCaP cells. These variants show preferential reexpression upon treatment of LNCaP cells with 6
mM 5-Aza for 48 h. qRT-PCR data are normalized to variant expression levels in PrEC prostate primary
epithelial cells or DMSO-treated LNCaP cells in the respective panels. (B,D) 59-RACE results validated
RASSF1 variant-3 and NDRG2 variants 5–8 expression in LNCaP cells. (C,F ) Exon expression values from
LNCaP RNA-seq data support the corresponding variant transcription of RASSF1 and NDRG2 genes.
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or repeat elements have been global measurements that did not

distinguish between specific genomic locations contributing to

these measurements. In contrast, next-generation sequencing,

including M-NGS, is able to resolve individual repeat elements at

certain locations in the genome using uniquely mapped reads.

Recent identification of methylation changes in repeat elements at

specific genomic locations using MeDIP-seq in malignant nerve

sheath tumors demonstrated this potential (Feber et al. 2011). On

this basis, we find that ETS-negative prostate cancers show de-

creased levels of LINE-1 methylation when compared to ETS-pos-

itive cancers. Subsequent pyrosequencing validation in a prostate

tissue cohort confirmed this difference in LINE-1 methylation,

thereby corroborating our M-NGS results. While the mechanism of

LINE1 hypomethylation in ETS-negative prostate cancers is un-

known, it is interesting to note that previous studies identified

TDRD1 (Tudor domain containing protein 1) as a gene that is

overexpressed in ERG-positive prostate cancers (Jhavar et al. 2008).

Recent data by Reuter et al. (2009) showed derepression of L1

transposons accompanied by a loss of DNA methylation at their 59

regulatory region in TDRD1 knockout mice, suggesting that TDRD1

may have a role in ETS-specific repeat-element methylation.

Aberrant DNA methylation in prostate cancer is believed to

occur in two waves, where epigenetic alteration of some genes, such

as GSTP1, can be detected in early disease stages, whereas other genes,

such as ESR1, are frequently subject to aberrant DNA methylation in

metastatic disease and are considered late events (Nelson et al. 2009).

Drug therapies aiming to reverse epigenetic changes, especially those

found in castration-resistant prostate cancers, are currently being

investigated (Perry et al. 2010). By analyzing both localized and

metastatic prostate cancer tissues by M-NGS, we have now identi-

fied several hundred differentially methylated regions (DMRs), and

Figure 7. Mutually exclusive patterns of promoter DNA methylation
and histone H3K4me3 marks in LNCaP cells. Integration of M-NGS DNA
methylation data with H3K4me3 ChIP-seq data indicates that DNA
methylation and H3K4me3 may be present on the same gene promoter
but remain nonoverlapping, adjacent modifications in these promoters.
Each row represents a unique promoter region, 61500 bp flanking the
transcription start site (white dotted line) at 100-bp window size. The CpG
island location is indicated in red in the first column. The second column
represents histone H3K4me3 marks (blue), and the third column (yellow)
depicts DNA methylation observed in the corresponding location in
LNCaP. Superimposed data are displayed in the fourth column.

Figure 8. Differentially methylated regions between ETS-positive and
ETS-negative samples. (A) Venn diagram displays the methylation overlap
observed between ETS-positive (blue), ETS-negative (red), and benign
(green) prostate tissue samples. The inset numbers represent the coverage
in each section. (B) The coverage for various repeat elements was higher in
ETS-positive compared to ETS-negative samples, indicating higher meth-
ylation in the former. The fold difference for methylation in each class of
repeat element is indicated by the line plot above. (C ) Percent methylation
was assessed independently by pyro-sequencing assays for LINE-1 elements
and GSTP1 gene promoter methylation in prostate tissue panel (benign n =
5, ETS-positive cancers n = 10, and ETS-negative cancers n = 4). LINE-1
methylation was significantly lower (P-value < 0.0001) in ETS-negative
samples compared to ETS-positive tissues, while the GSTP1 gene promoter
was highly methylated in both cancer subgroups and not in benign.
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because our sample cohort spans the stages of disease progression, we

can identify the specific epigenetic alterations associated with early-

and late-phase disease (Yegnasubramanian et al. 2004). Ultimately,

this information may be used to elucidate epigenetic diagnostic and

prognosis markers; a primary example of this is GSTP1, a gene fre-

quently methylated in prostate cancer that may also be detected

from clinical samples obtained in a noninvasive fashion (Nelson

et al. 2009). The present study thus provides vital information on

genomic locations of cancer-specific DMRs that may now facilitate

high-throughput screening analyses for prostate cancer disease

markers. Moreover, future genome-wide analyses of DNA methyla-

tion may improve with larger patient sample sets and with the in-

corporation of multiple NGS methodologies, such as MeDIP-seq and

others, to completely chart an epigenetic landscape (Laird 2010).

In summary, we used a high-throughput M-NGS strategy to

characterize the DNA methylome map of prostate cancer tissues

and cells using a minimal amount of input DNA. We observe dis-

tinct patterns of DNA methylation around TSSs that frequently

occur on promoters either containing or lacking a CpG island. This

study has uncovered several hundred novel cancer-specific DMRs,

similar to the region we characterized in WFDC2, and this in-

formation will be used in a future high-throughput screen. We also

found additional evidence in prostate that selective regional DNA

methylation regulates expression of specific transcript isoforms

between normal and cancer cells. Finally, we identified genome-

wide differences in DNA methylation between ETS-positive and

ETS fusion-negative prostate cancer specimens, along with differ-

ences in repeat-element methylation. The comprehensive prostate

methylome map generated here provides the precise genomic lo-

cations that undergo methylation changes, which will be a highly

valuable public resource for investigations aimed at understanding

epigenetic regulation of the prostate cancer genome.

Methods

Reagents, cell lines, and prostate tissue samples
Human primary prostate epithelial cells were purchased from
Lonza, and the prostate cancer cell line LNCaP was obtained from
ATCC. The PrEC and LNCaP cells were grown in PrEGM media
(Lonza) and RPMI 1640 containing 10% FBS (Life Technologies),
respectively. Human prostate tissue samples were obtained from the
University of Michigan SPORE program (Supplemental Table 8). All
samples were collected with informed consent of the patients and
prior institutional review board approval. CpG island microarrays
were purchased from Agilent Technologies. Genomic DNA was
isolated from cultured cells and tissue using the DNeasy Blood and
Tissue kit (QIAGEN) according to the manufacturer’s instructions.
5-Aza-29-deoxycytidine (5-Aza) was purchased from Sigma-Aldrich
and used at 6 mM final concentration dissolved in DMSO.

M-NGS library generation

MethylPlex library synthesis and GC enrichment were ob-
tained through a commercial service at Rubicon Genomics, Inc.
(Supplemental Fig. 1). Briefly, 50 ng of gDNA from tissues or cells
was digested with methylation-sensitive restriction enzymes 1
and 2 (MSRE1 and MSRE2; Rubicon Genomics) in a 100-mL re-
action volume for 12 h at 37°C followed by incubation for 2 h at
60°C. The samples were precipitated with two volumes of ethanol
in the presence of sodium acetate (pH 5.2) and pellet paint
(VWR). DNA pellets were washed with 70% ethanol, air dried, and
suspended in 20 mL of TE buffer (pH 8.0). To prepare MethylPlex
libraries, 10 mL of the samples from the previous step was dena-

tured for 4 min at 95°C, cooled to 4°C, and mixed with 4 mL of
library synthesis mix (Rubicon Genomics). The tubes were in-
cubated for 2 min at 95°C and returned to 4°C before adding 1 mL
of library synthesis enzyme (Rubicon Genomics). The reaction
was carried in a thermocycler under the following conditions: 20
min at 16°C, 20 min at 24°C, 20 min at 37°C, and 10 min at 75°C,
then returned to 4°C. Subsequently, 15 mL of the MethylPlex li-
brary was amplified in a Bio-Rad iCycler real-time PCR machine
after mixing with 60 mL of library amplification mix (Rubicon
Genomics), under the following cycle conditions, 2 min at 95°C
(1 cycle), followed by 9 to 13 cycles of 20 sec at 96°C, 2 min at 65°C,
and 1 min at 75°C. The amplified DNA was purified using the
QIAquick PCR purification kit (QIAGEN), eluted in a 50-mL volume
and subjected to GC enrichment following the manufacturer’s pro-
tocol (Rubicon Genomics). The GC-enriched DNA was purified us-
ing the DNA Clean and Concentrator kit (Zymo Research) and eluted
in 35 mL of Tris-EDTA buffer (pH 8.0). One and five micrograms of
the purified products from each cell line were directly incorpo-
rated into the genomic DNA sequencing sample preparation kit
procedure from Illumina at the end repair step, skipping the nebu-
lization process. An adenine base was then added to the purified end
repaired products using Klenow exo (39-to-59 exo minus) enzyme.
The reaction product was purified, ligated to Illumina adaptors with
DNA ligase, and resolved on an agarose gel. For LNCaP and PrEC
libraries, gel pieces were excised at 200-bp and 400-bp positions, and
the DNA was extracted using a gel extraction kit (QIAGEN). Sub-
sequently for all tissue samples, a 350–450-bp gel cut was used. One
microliter of this eluate was used as a template in a PCR amplifica-
tion reaction with Phusion DNA polymerase (Finnzymes) to enrich
for the adapter-modified DNA fragments. The PCR product was
purified and analyzed by Bioanalyzer (Agilent Technologies) before
using it for flow cell generation, where 10 nM library was used to
prepare flowcells with approximately 30,000 clusters per lane. The
raw sequencing image data were analyzed by the Illumina analysis
pipeline and aligned to the unmasked human reference genome
(NCBI v36, hg18) using the ELAND software (Illumina) to generate
sequence reads of 25–32 bp. Additional information on sequencing
runs for all cells and tissue sample runs can be found in Supple-
mental Tables 1 and 8. The M-NGS data have been deposited under
accession number GSE27619 in the GEO database.

Total RNA isolation and quantitative real-time PCR (QPCR)

Total RNA was isolated from cells using the RNeasy mini kit
(QIAGEN) according to the manufacturer’s instructions. A DNase
I treatment step was included during the total RNA isolation
procedure to remove genomic DNA from the samples. One
microgram of total RNA was used in cDNA synthesis using Super-
script III reverse transcriptase (Invitrogen). Quantitative real-time
PCR (QPCR) was performed on prostate-cell-line cDNA samples
using SYBR Green Mastermix (Applied Biosystems) on an Applied
Biosystems 7900 Real Time PCR system as described (Tomlins et al.
2007b). All oligonucleotide primers were synthesized by Integrated
DNA Technologies and are listed in Supplemental Table 5. GAPDH
primer sequences were as described (Vandesompele et al. 2002).
The amount of target transcript and GAPDH in each sample was
normalized by standard ddCt methodology, and then to the ref-
erence PrEC or DMSO-treated LNCaP samples accordingly.

CpG island annotation

The genomic coordinates for human CGIs were downloaded from
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.36.1/
mapview/seq_cpg_islands.md.gz. Only islands annotated as strict
CpGs were used in this study.
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RNA-seq library preparation

Poly(A) RNA from LNCaP and PrEC cells (200 ng) was isolated from
total RNA using SeraMag Magnetic Oligo(dT) Beads (Thermo Fisher
Scientific). RNA was fragmented for 5 min at 70°C in a fragmenta-
tion buffer (Ambion) and converted to first-strand cDNA using
SuperscriptII (Life Technologies). Second-strand cDNA synthesis was
performed with Escherichia coli DNA Pol I (Life Technologies). The
double-stranded cDNA library was further processed following the
Illumina Genomic DNA sample preparation protocol, which in-
volved end repair using T4 DNA polymerase, Klenow DNA poly-
merase, and T4 Polynucleotide kinase followed by a single ‘‘A’’ base
addition using Klenow 39-to-59 exo� polymerase. Illumina’s adaptor
oligo was ligated using T4 DNA ligase. The adaptor-ligated library
was size-selected by separating on a 4% agarose gel and cutting
out the library smear at 200 bp. The library was PCR-amplified by
Phusion polymerase (Finnzymes) and purified by a PCR purification
kit (QIAGEN). The library was quantified with a Bio-Analyzer (Agilent
Technologies), and 10 nM each library was used to prepare flowcells
with approximately 30,000 clusters per lane. The GEO accession
number for the LNCaP and PrEC RNA-seq libraries is GSE29155.

Statistical analysis

HMM analysis of M-NGS data

Hidden Markov model (HMM)–based next-generation sequencing
analysis is conducted in a two-step process that takes in raw reads
and outputs refined boundaries of enriched chromosomal regions
(Qin et al. 2010). The first step includes the formation of hypo-
thetical DNA fragments (HDFs) from uniquely mapped reads, where
the coverage of HDFs is determined by the specified DNA fragment
size, and overlapped HDFs are merged to represent one consecutive
genomic region. The second step is designed to refine the bound-
aries of the enriched region using HMM with a bin size of 25 bp (by
default). Under the null hypothesis, raw reads are assumed to land
on the genome following a Poisson distribution with the background
rate of r0, and enriched regions are expected to have more HDFs with
statistical significance. The rate of the Poisson distributions in a
given sample is assumed to be r1, and the transition probabilities are
estimated empirically, based on the inferred enriched regions de-
fined in the first step. The output from HMM is selected based on the
posterior probability of being in the enriched regions and then fur-
ther filtered using maximum read counts. The threshold for maxi-
mum read counts is determined from a Bonferroni-corrected P-value
of 0.001 calculated using a Poisson distribution with background
rate r0. The output is provided in BED format as well as Wiggle format
for UCSC Genome Browser visualization. The output file annotation
field contains information such as enriched genomic position and
length, maximum height, GC content, repeated sequencing ge-
nomic position and length, mean and standard deviation of con-
servative scores for the enriched region, relationship with nearest
genes including whether the enriched region is located within
the gene or between genes, gene name, GB accession number,
strand, and distance to the gene transcription start site.

Calculating gene expression from RNA-seq data

Gene expression levels of passing filter reads from RNA-seq data
that mapped by ELAND to exons (March 2006 assembly of UCSC
KnownGene table) in LNCaP and PrEC cell lines are quantified as
described (Maher et al. 2009).

One-class SAM analysis

Significance analysis of microarray (SAM) (Tusher et al. 2001)
(http://www-stat.stanford.edu/;tibs/SAM/) was performed on the

gene expression data set obtained from 5-Aza and DMSO-treated
LNCaP cells by selecting genes that were methylated in LNCaP.
From 1171 methylated genes from LNCaP M-NGS (Supplemental
Table 4), a total of 973 genes was mapped to Agilent expression
profiling data. One-class SAM analysis was done using default
settings, and significant genes were calculated with a false dis-
covery rate (FDR) of 0.05.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) is a computational method
that assesses whether a defined set of genes shows statistically sig-
nificant, concordant differences between any two given conditions.
The fold change between the raw counts from RNA-seq NGS data on
LNCaP and PrEC (representing 24,167 unique genes) was calculated,
and genes were ranked by the order of expression in LNCaP. This list
was uploaded as a pre-ranked gene list to GSEA v2.04 (Broad In-
stitute, Cambridge, MA), and using respective gene lists of methyl-
ated targets in LNCaP and PrEC cell lines, GSEAwas performed using
a weighted enrichment statistic and default normalization mode.
Similarly, the fold change between the average expression value
from normal/benign (n = 4) and cancer samples (n = 9) profiled on
the Agilent Human GE 44K microarray was calculated and pre-
ranked (representing 27,928 unique probes). This list was uploaded
to GSEA, and enrichment analysis was performed using methyla-
tion target gene lists (the methylation present in promoters with
CGIs and without CGIs, and in the gene body) in tumor samples.

Oncomine meta-analysis

A complete description of meta-analysis performed in Oncomine is
available (Rhodes et al. 2007a). In brief, a genelist of interest is
uploaded to the Oncomine database, and the built-in meta-anal-
ysis tool rank-orders the genelist by the P-value, which is de-
termined by a Student’s t-test for comparisons made within each
available data set (e.g., cancer vs. normal). The ranked genes were
visualized with pink and green shades (top-ranked ones with
darker shades, pink for overexpression, and green for repression) in
heatmap format, with each row representing genes and each col-
umn representing the data set. The final order of the genes is
determined by averaging ranks across the data sets.

Molecular Concepts Map analysis

A complete description of the methods used to identify biological
concept signatures in Molecular Concepts Map (MCM) is available
(Rhodes et al. 2007b). In addition to more than 15,000 biological
concepts from Oncomine, which include manual curation of the
literature, target gene sets from genome-scale regulatory motif
analyses, and reference gene sets from several gene and protein
annotation databases, we have uploaded a gene list from differ-
entially methylated regions identified from an independent Dif-
ferential Methylation Hybridization profiling (concept named
‘‘DMH-Tissue Methylated in PCa’’) (data not shown), as well as
known methylated genes in cancers provided from the Pubmeth
database. In brief, MCM analysis uses a Fisher’s exact test to find
various significantly enriched concepts in an uploaded gene list
and provides visual interaction networks.

Repeat-element methylation analysis

The list of repeat elements predicted by the RepeatMasker
(RepeatMasker Open-3.0; http://www.repeatmasker.org) pro-
gram was downloaded from the UCSC Genome Browser. The
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MethylPlex-NGS data from localized and metastatic prostate tissue
samples were divided into two groups based on their ETS gene
fusion status (ETS-positive and ETS-negative). The samples in each
group were pooled together for HMM analysis, and the regions
identified were mapped to repeat-element location.

ChIP-sequencing

LNCaP cells’ ChIP-seq data obtained using the H3K4me3 antibody
(Abcam) and PanH3 (Abcam) were reported previously by Yu et al.
(2010); the GEO accession number for the data set is GSE14097.
ChIP samples were prepared for sequencing using the Genomic
DNA sample prep kit (Illumina) following the manufacturer’s pro-
tocols. To facilitate ChIP-seq data analysis, a hidden Markov model
(HMM)–based enriched region identifying algorithm (described in
the Methods section under ‘‘Statistical Analysis’’) was used.

MeDIP-sequencing

Six micrograms of genomic DNA isolated from LNCaP cells was
sonicated to an ;100–500-bp range and purified using the QIAGEN
PCR purification kit. Using standard Illumina protocol/reagents,
we end-repaired, A-tailed, and added adaptors to the fragmented
DNA. The DNA was then heat-denatured for 10 min at 95°C and
snap-cooled on ice. The DNA was incubated with 6 mg of anti-
methyl cytosine antibody in IP buffer (10 mM sodium phosphate
buffer containing 140 mM sodium chloride and 0.05% Triton
X-100) overnight at 4°C in a shaker. The methylated fragments
were collected by incubating with 100 mL of protein A beads (In-
vitrogen) for 2 h at 4°C. The beads were washed four times at 4°C
in IP buffer and resuspended in 200 mL of TE buffer containing
0.25% SDS and 5 mg of proteinase K and incubated for 2 h at
55°C. The samples were purified using a DNA Clean and Con-
centrator-5 kit (Zymo Research), and the libraries were prepared
following Illumina ChIP-seq protocol. The library was quantified
with a Bio-Analyzer (Agilent Technologies), and 10 nM each li-
brary was used to prepare flowcells with approximately 30,000
clusters per lane.

Methyl-Profiler

Methyl-Profiler (SABiosciences) is a restriction enzyme digestion–
based novel technology for CGI methylation profiling, requiring
<500 ng of input genomic DNA (Jaspers et al. 2010). The samples
were first digested with methylation-sensitive (Ms) and/or meth-
ylation-dependent (Md) restriction enzymes along with mock di-
gestion according to the manufacturer’s instruction. PCR reactions
were performed with an ABI StepOne qPCR machine (Applied
Biosystems) with RT2 SYBR Green/ROX qPCR Master Mix (SABio-
sciences) and primers targeting the region of interest. The PCR
reactions were carried out with the following conditions: 10 min at
95°C, followed by 40 cycles of 15 min at 97°C and 1 min at 72°C, as
described in the manufacturer’s protocol. Using delta-Ct values,
the relative amounts of methylation are calculated using an
automated Excel-based data analysis template provided by the
manufacturer. The mock-digested template is used for initial
DNA input quantification, the Ms enzyme is used for hyper-
methylation quantification, and the Md enzyme is used for quan-
tifying unmethylated DNA. A mixture of these two enzymes
(Msd) is used to quantify the undigested amount of DNA. A
methylation rate below 5% is considered not significant. While
the calculated methylation percentage between 10% and 60% is
considered intermediate, the values above 60% are taken as
heavy methylation.

Bisulfite sequencing

Bisulfite conversion was carried out using an EZ DNA methylation
gold kit (Zymo Research) according to the manufacturer’s in-
structions. Briefly, 500 ng of genomic DNA from either LNCaP or
PrEC cells in a 20-mL volume was mixed with 130 mL of CT con-
version reagent and was initially incubated for 10 min at 98°C
followed by incubation for 2.5 h at 64°C. M-biding buffer (600 mL)
was added to the above reaction and DNA was purified using
a Zymo spin column. Sequential washes were performed with 100
mL of M-Wash buffer, 200 mL of M-sulphonation buffer, and 200 mL
of M-wash buffer was carried out before eluting the DNA in 30 mL
of M-elution buffer. Purified DNA (2 mL) was used as template for
PCR reactions with primers (Integrated DNA Technologies) and
synthesized according to bisulfite-converted DNA sequences for
the regions of interest using the Methprimer software (Li and
Dahiya 2002). The PCR product was gel-purified and cloned into
the pCR4 TOPO TA sequencing vector (Life Technologies). Plasmid
DNA isolated from 10 colonies from each sample was sequenced by
conventional Sanger Sequencing (University of Michigan DNA
Sequencing Core). The ‘‘BIQ Analyzer’’ (Bock et al. 2005) online
tool was used to calculate the methylation percentage and to
generate the bar graphs.

Microarray profiling

Expression profiling of 5-Aza-treated LNCaP cells

For 5-Aza stimulation experiments, LNCaP cells cultured in RPMI
1640 were treated with vehicle, dimethyl sulfoxide (DMSO), or 6
mM 5-Aza for 4 or 6 d in duplicates. Total RNA was isolated with
TRIzol (Life Technologies) and further purified using the RNAeasy
Micro Kit (QIAGEN) according to the manufacturer’s instructions.
Expression profiling was performed using the Agilent 44K ex-
pression array. One microgram of total RNA was converted to
cRNA and then labeled according to the manufacturer’s protocol
(Agilent). Hybridizations were performed for 16 h at 65°C. Scanned
images from an Agilent microarray scanner were analyzed and
extracted using Agilent Feature Extraction Software 9.1.3.1 with
linear and lowess normalization performed for each array. A total
of four hybridizations were performed including two 4-d and two
6-d 5-Aza-treated samples (Cy5) against control DMSO-treated
samples (Cy3). The accession number for the gene expression data
set in the GEO database is GSE27619.

Expression profiling of prostate tissues

Prostate tissues characterized by M-NGS, normal/benign (n = 4)
and cancer (n = 9), were profiled on an Agilent Human GE 44K
microarray as described for LNCaP cells above. Total RNA from
pooled normal prostate tissues obtained from a commercial source
(Clontech Laboratories) was used as the reference. This microarray
data set was used in GSEA analysis to study the association between
DNA methylation and gene expression. The data set has been de-
posited in the GEO database.

MethylPlex library Agilent CpG array hybridization

Two micrograms of the purified products from each PrEC and
LNCaP MethylPlex DNA were labeled following the mammalian
ChIP-on-chip protocol (Agilent Technologies) starting at the
sample labeling stage, which uses a random primed, Klenow-based
extension protocol. The samples were hybridized to an Agilent
Human CpG 244K array (Cat# G4492A; Agilent Technologies),
where LNCaP sample was coupled with Cy5 and PrEC to Cy3. The
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slides were washed according to the manufacturer’s instructions. A
dye-flip experiment was also performed. The scanned images were
analyzed and extracted using Agilent Feature Extraction Software
9.1.3.1. Methylated regions identified by the array data were
compared to M-NGS targets; their overlap is presented in Supple-
mental Figure 3, and the data are provided in Supplemental Table
2. This data set has been deposited in GEO under accession number
GSE27619.

59 rapid amplification of cDNA ends (59-RACE)

59-RACE was performed as previously described (Han et al. 2008).
First-strand cDNA was amplified with gene-specific reverse primers
RASSF1, APC, and NDRG2 (Supplemental Table 5) and 59 GeneRacer
primers (Life Technologies) using Platinum Taq High Fidelity
enzyme (Life Technologies) after the touchdown PCR protocol
according to the manufacturer’s instructions. PCR amplification
products were cloned into a pCR4-TOPO TA vector (Life Tech-
nologies) and sequenced bidirectionally using vector primers as
described (Tomlins et al. 2007a).

Pyrosequencing

LINE-1 element methylation was estimated using the PyroMark
Q24 LINE-1 methylation assay (QIAGEN) according to the man-
ufacturer’s instructions. Briefly, bisulfite-converted gDNA (described
above), LINE-1 primers, and components of Hotstart Master Mix
(QIAGEN) were used in a PCR reaction to amplify LINE regions
from the sample. The amplification was obtained from 45 cycles of
20 sec at 95°C, 20 sec at 50°C, and 20 sec at 72°C, after an initial
denaturation/enzyme activation for 15 min at 95°C, and final
elongation of 5 min at 72°C. The PCR products were captured on
Streptavidin Sepharose beads (GE Healthcare), denatured to pro-
duce single strands, washed, and annealed to sequencing primer,
and the sequence was determined using the PyroMark Q24 system
(QIAGEN). The mean methylation of three individual positions
within the PCR product is considered in this assay.
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ABSTRACT

Summary: Next generation sequencing (NGS) technologies have
enabled de novo gene fusion discovery that could reveal candidates
with therapeutic significance in cancer. Here we present an open-
source software package, ChimeraScan, for the discovery of
chimeric transcription between two independent transcripts in high-
throughput transcriptome sequencing data.
Availability: http://chimerascan.googlecode.com
Contact: cmaher@dom.wustl.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
High-throughput transcriptome sequencing (RNA-Seq) facilitates
detection of aberrant, chimeric RNAs (Maher et al., 2009a;
Maher et al., 2009b). Methods for chimera detection have already
uncovered recurrent classes of clinically relevant gene fusions in
prostate (Palanisamy et al., 2010) and lymphoid cancers (Steidl
et al. 2011). Therefore, the continued development of accurate and
efficient software tools for chimera discovery is of major clinical
significance. To this end, we have developed a chimera discovery
methodology, or ChimeraScan, and offer it as open-source software
package for the community to utilize for their own sequencing
efforts. ChimeraScan includes features such as the ability to process
long (>75 bp) paired-end reads, processing of ambiguously mapping
reads, detection of reads spanning a fusion junction, integration with
the popular Bowtie aligner (Langmead et al., 2009), supports the
standardized SAM format and generation of HTML reports for easy
investigation of results. Overall, we believe that the ChimeraScan
will facilitate the discovery of additional gene fusions that may serve
as clinically relevant targets in cancer.

2 METHODS
Initial paired-end alignment: ChimeraScan uses Bowtie to align paired-end
reads to a combined genome-transcriptome reference. An indexing program
creates the combined index from genomic sequences (FASTA format) and
transcript features (UCSC GenePred format). Paired alignments within
the fragment size range (default: 0–1000) are referred to as concordantly
mapping reads (Fig. 1A). ChimeraScan uses these alignments to estimate the

∗To whom correspondence should be addressed.

A

B

Fig. 1. ChimeraScan flowchart. (A) Paired-end reads failing an initial
alignment step are segmented and realigned to detect discordant reads.
Discordant reads that pass filter criteria are realigned across putative
chimeric junctions. (B) Chimera with encompassing (blue) and spanning
(red) segments detected during realignment.

insert size distribution of the library, which will later be used to filter out
likely false positive chimeras.

Trimmed paired-end alignment: read pairs that could not be aligned
concordantly are trimmed into smaller segments (default = 25 bp) and
realigned. Trimming increases the chance that neither read alignment spans
a chimeric junction, thereby improving sensitivity for nominating chimeras.

Nomination of chimera candidates: the trimmed alignments are scanned
for evidence of discordant read pairs, or reads that align to distinct references
or distant genomic locations (as determined by the fragment size range) of the
same reference. Reads aligning to overlapping transcripts are not considered
discordant. ChimeraScan clusters the discordant reads and produces a list of
putative 5′–3′ transcript pairs that serve as chimera candidates.

Detection of reads spanning the chimeric junction: ChimeraScan builds
a new reference index from the set of putative chimeric junction sequences,
and realigns candidate junction-spanning reads to this index. Candidate
spanning reads are either (i) discordant reads with trimmed alignments
bordering a junction or (ii) unmapped reads whose mates align to a predicted
chimera (Fig. 1B). A read that spans a junction by more than a minimum
‘anchor’ length is denoted as a ‘spanning’ read. We compute the required
‘anchor’ length separately for each chimera by insisting that the number of
bases overlapping its junction be greater than number of homologous bases
between the 5′ and 3′ genes at the breakpoint plus the number of mismatches
allowed.
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Filtering false-positive chimeras: after spanning reads are incorporated,
ChimeraScan filters chimeras with few supporting reads (default is <3 reads)
and chimeras with fragment sizes far outside the range of the distribution
(default is >99% of all fragment sizes). When isoforms of the same gene
support a fusion ChimeraScan only retains the isoform(s) with highest
coverage.

Reporting chimeras: ChimeraScan produces a tabular text file describing
each chimera, and optionally generates a user-friendly HTML page with links
to detailed descriptions of the chimeric genes.

3 RESULTS
To evaluate the results from ChimeraScan, we applied it to three
well-characterized cancer cell lines known to harbor multiple
chimeric transcripts: VCaP (prostate cancer, 2×53 bp) (Tomlins
et al., 2005), LNCaP (prostate cancer, 2×34 bp) and MCF7 (breast
cancer, 2×35 bp) (Hampton et al., 2009; Volik et al., 2006).
Sequence data are deposited in GenBank under the accession
number GSE29098. We aligned to human genome (VR-hg19) and
UCSC known transcripts (December 2010), allowing for up to
two mismatches and no >100 alignments per read. The trimmed
alignment step was performed with 25 bp segments.

As our initial benchmark, we confirmed that ChimeraScan
was able to recapitulate experimentally validated candidates, our
‘gold standard’ (Supplementary Table 1) (Maher et al., 2009b).
ChimeraScan was able to detect 9/10, 4/4 and 12/13 chimeras from
VCaP, LNCaP and MCF-7, respectively.

In addition to recapitulating previously reported results, we
have identified novel candidates that demonstrate ChimeraScan’s
ability to identify and prioritize high-quality chimeras. Overall,
ChimeraScan nominated 335 novel chimeras (78 in VCaP,
105 in LNCaP and 152 in MCF7) from the three cell
lines (Supplementary Table 2–4). Interestingly, we detected an
interchromosomal rearrangement TBL1XR1-RGS17 detected in the
MCF-7 cell line. While not originally reported within NGS data
(Maher et al., 2009b), TBL1XR1-RGS17 was previously detected by
a paired-end diTag approach and experimentally confirmed (Ruan
et al., 2007). Another novel candidate was the intrachromosomal
rearrangement, NDUFAF2-MAST4, in VCaP that is supported by
just two encompassing reads and one spanning reads. The ability
to identify a high-quality spanning read that uniquely confirms the
fusion junction (Supplementary Table 2), thereby increasing our
confidence in NDUFAF2-MAST4, demonstrates the sensitivity of
ChimeraScan.

We next compared ChimeraScan with publicly available tools
deFuse (McPherson et al., 2011), shortFuse (Kinsella et al., 2011)
and MapSplice (Wang et al., 2010) using the 10 experimentally
validated VCaP chimeras (Supplementary Table 5). While deFuse
nominated the fewest chimeras, it only detected 60% of the true
positives. In comparison, ChimeraScan detected 90% of the true
positives from 78 predicted chimeras. Of the remaining programs,

MapSplice nominated 400 chimeras while detecting 60% of the true
positives and ShortFuse nominated 245 chimeras while confirming
70% of the true positives. Overall, these results suggest that
ChimeraScan is among the more stringent programs while enriching
for true positives.

4 CONCLUSION
Here, we present an optimized publicly available chimera discovery
methodology for identifying novel therapeutically targetable gene
fusions in human cancers. Our results suggest that ChimeraScan
produces a stringent list of predictions that are enriched with
true positives. Furthermore, due to its trimmed alignment steps
we believe ChimeraScan will be scalable when longer reads are
available to provide increased coverage of fusion junctions. Overall,
we feel that with the existing features ChimeraScan is a user-friendly
tool that will enable other research groups to make discoveries within
their own RNA-Seq data collections.
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Breast cancer is a heterogeneous disease that has a wide 
range of molecular aberrations and clinical outcomes. Here 
we used paired-end transcriptome sequencing to explore the 
landscape of gene fusions in a panel of breast cancer cell lines 
and tissues. We observed that individual breast cancers have 
a variety of expressed gene fusions. We identified two classes 
of recurrent gene rearrangements involving genes encoding 
microtubule-associated serine-threonine kinase (MAST) and 
members of the Notch family. Both MAST and Notch-family 
gene fusions have substantial phenotypic effects in breast 
epithelial cells. Breast cancer cell lines harboring Notch gene 
rearrangements are uniquely sensitive to inhibition of Notch 
signaling, and overexpression of MAST1 or MAST2 gene 
fusions has a proliferative effect both in vitro and in vivo.  
These findings show that recurrent gene rearrangements 
have key roles in subsets of carcinomas and suggest that 
transcriptome sequencing could identify individuals with rare, 
targetable gene fusions.

Recurrent gene fusions and translocations have long been associated 
with hematologic malignancies and rare soft-tissue tumors as being 
‘driving’ genetic lesions1–3. Over the last few years, it has become 
apparent that these genetic rearrangements are also present in com-
mon solid tumors, including a large subset of prostate cancers4,5 
and smaller subsets of lung cancer, among other types of tumors6. 
Secretory breast cancer, a rare subtype of breast cancer, is character-
ized by recurrent gene fusions of ETV6 and NTRK3 (ref. 7). Although 
multiple breast cancer genomes have been sequenced8,9, and complex 
somatic rearrangements have been observed10, the driving recurrent 
gene fusions have not been identified.

We used paired-end transcriptome sequencing on a panel of 89 
breast cancer cell lines and tumors (Supplementary Fig. 1) and then 

applied our previously developed chimera discovery pipeline11,12. This 
panel represented a spectrum of breast carcinoma and included 42 
estrogen receptor (ER)-positive, 21 v-erb-b2 erythroblastic leukemia  
viral oncogene homolog 2, neuro/glioblastoma derived oncogene 
homolog (ERBB2)-positive and 27 triple negative (ER−, progester-
one receptor–negative (PR−) and ERBB2−) samples (Supplementary 
Table 1). Investigation of fusion transcripts led to the identification 
of 384 expressed gene fusions at an average of nearly five fusions per 
breast cancer sample, with a slightly higher number of gene fusions 
in the cell lines compared to the primary tumors (Supplementary 
Fig. 1b and Supplementary Table 2). Notably, we found that only 
SEC16A-NOTCH1 was recurrent in our compendium, even though 
several fusion genes appeared in combination with different fusion 
partners. Overall, we found 24 genes to be recurrent fusion partners 
(Supplementary Table 2). To focus on potentially tumorigenic driver 
fusions, we prioritized the gene fusions based on the known cancer- 
associated functions of component genes. Although there were 
many singleton fusions in our compendium that met these criteria, 
we identified five instances of fusions of MAST family kinases and 
eight instances of fusions of genes in the Notch family (Fig. 1 and 
Supplementary Fig. 2).

The genes encoding members of the MAST kinase family are 
characterized by the presence of a serine-threonine kinase domain,  
a second 3′ MAST domain with some similarity to kinase domains and 
a PDZ domain13. Little is known about the biological role of MAST 
kinases, and somatic alterations have not previously been described in 
cancer. Initially, we identified three independent instances of MAST 
gene fusions using transcriptome analyses: fusions of ARID1A and 
MAST2, ZNF700 and MAST1, and NFIX and MAST1 (Fig. 1a). We 
devised a targeted sequencing approach to screen additional samples 
for MAST gene fusions. We generated and captured a transcriptome 
library of 74 pooled breast carcinoma RNAs with baits encompassing 
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MAST1 and MAST2. After sequencing, we discovered two new MAST 
gene fusions: TADA2A-MAST1 and GPBP1L1-MAST2 (Fig. 1a). The 
samples with MAST gene fusions are distinct from those with Notch 
family gene fusions (Fig. 1b).

We investigated the function of the MAST fusions (Fig. 2) and con-
firmed the fusions using fusion-specific PCR (Fig. 2a). All five MAST 
fusions encoded contiguous open reading frames (ORFs), some of 
which retained the canonical serine-threonine kinase domain and 
all of which retained the PDZ domain and the 3′ kinase-like domain 
(Fig. 2b). Therefore, in total, we discovered five new gene fusions encod-
ing MAST1 and MAST2 in a cohort of approximately 100 breast cancer 
samples and more than 40 cell lines, suggesting that the newly identified 
MAST gene fusions are present in a subset of 3–5% of breast cancers.

The ZNF700-MAST1 fusion transcript encodes a truncated MAST1 
protein that retains the 3′ kinase-like and PDZ domains. We cloned the 
ORF of the ZNF700-MAST1 fusion gene to test its phenotypic effects and 
used a full-length MAST2 expression construct to mimic the function of 
ARID1A-MAST2 overexpression. To assess the potential oncogenic func-
tions of genes encoding MAST, we ectopically overexpressed epitope-
tagged truncated MAST1 and full-length MAST2 in the benign breast 
cell line TERT-HME1 (Supplementary Fig. 3a–h). We then cloned 
and expressed all five MAST1 and MAST2 fusions. Consistent with the 
earlier observations, TERT-HME1 cells overexpressing the five MAST 
fusions (Fig. 2c) had greater cell proliferation (Fig. 2e). Overall, these 
results suggest that ectopic expression of the MAST fusions results in 
growth and a proliferative advantage in benign breast epithelial cells.
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Because the endogenous ARID1A-MAST2 fusion is present in the 
breast cancer cell line MDA-MB-468, we used multiple independent 
siRNAs specific to MAST2 or the ARID1A-MAST2 fusion to achieve 
knockdown of the ARID1A-MAST2 fusion protein (Supplementary 
Fig. 3i–s). Knockdown of MAST2 showed significant inhibitory 
effects on growth in MDA-MB-468 cells but not in the fusion-negative 
cell line BT-483 or in benign TERT-HME1 breast cells (Fig. 2d). To 
further characterize the effects of the ARID1A-MAST2 fusion in 
MDA-MB-468 cells, we used shRNA targeting MAST2, which showed 
efficient knockdown of ARID1A-MAST2 fusion transcript and protein 
(Supplementary Fig. 3k,l). MDA-MB-468 cells treated with MAST2 
shRNA had a reduction in growth, as shown in a colony formation 

assay (Fig. 2f), and showed increased apoptosis and S-phase arrest 
(Supplementary Fig. 3m,n). In the mouse xenograft model, MDA-
MB-468 cells transiently transfected with MAST2 shRNA did not 
establish palpable tumors over a time course of 4 weeks after trans-
fection (Fig. 2g). Our knockdown studies showed that the ARID1A-
MAST2 fusion is a key driver fusion in MDA-MB-468 cells.

In addition to MAST fusions, we found a total of eight 
rearrangements involving either NOTCH1 or NOTCH2 (Fig. 1b 
and Supplementary Fig. 2). We found all of these rearrangements 
in ER− breast carcinomas (P = 0.008) and all but one rearrangement 
in triple-negative breast carcinomas. We focused on one ER− tumor 
and three ER− breast cancer cell lines with 3′ NOTCH1 or NOTCH2 
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Notch gene aberrations in breast carcinomas.  
(a) Detection of new Notch transcripts by quantitative  
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fusion transcripts in our functional studies. 
The Notch fusion transcripts were abun-
dantly expressed and were specific to the 
samples with DNA rearrangements (Fig. 3a). 
All the fusion transcripts retained the exons 
that encode the Notch intracellular domain 
(NICD), which is responsible for induc-
ing the transcriptional program following 
Notch activation (Fig. 3b). We character-
ized the DNA breakpoints associated with 
Notch fusions by mate-pair genomic library 
sequencing or by long-range genomic PCR 
(Supplementary Fig. 4a,b).

We categorized the predicted ORFs for the NOTCH1 and NOTCH2 
fusion transcripts into two classes (Fig. 3b). For both the SEC16A-
NOTCH1 fusions and the intragenic NOTCH1 fusion in the HCC1599 
cell line, the predicted ORFs initiated after the S2 cleavage site but 
before the S3 γ-secretase cleavage site, similar to that seen in the TCRB-
NOTCH1 fusion in the adult lymphocytic leukemia T cell line CUTLL1 
(ref. 14). In contrast, we predicted the SEC22B-NOTCH2 fusion ORF to 
initiate just after the γ-secretase S3 cleavage site. The resulting protein 
would be nearly identical to NICD, and we predict that it would be 
highly active and independent of cleavage by γ-secretase (Fig. 3b).

We saw substantially higher Notch responsive transcriptional acti
vity in the three cell lines with Notch fusions compared to the other 
breast cell lines using a Notch luciferase reporter (Fig. 3c). Therefore, 
each of the three Notch fusions is capable of activating the expres-
sion of Notch-responsive genes. Using an antibody specific to the  
γ-secretase cleaved active form of the NOTCH1 NICD, both HCC1599 
and HCC2218 showed high concentrations of NICD, consistent with 
the fusion protein acting as a substrate for activation by γ-secretase 
(Fig. 3d). The HCC1187 cell line, which has a NOTCH2 fusion gene, 
contains little NOTCH1 NICD. Most breast cancer lines express wild-
type NOTCH1 (Fig. 3d, middle); however, only the two cell lines 
with NOTCH1 fusion alleles showed high concentrations of activated 
NICD. Each of the three fusion alleles, which we co-transfected with 
a Notch reporter plasmid, induced Notch-responsive transcription 
that was equivalent to NICD (Fig. 3e).

The three breast cell lines containing the Notch fusions showed 
decreased cell-matrix adhesion and grew in suspension or as weakly 

adherent clusters, which was in contrast to the majority of breast 
carcinoma cell lines. When we transduced NOTCH1 and NOTCH2 
fusion alleles to create stable pools of TERT-HME1 cells, we observed 
notable morphological changes (Fig. 3f). TERT-HME1 cells had 
adherent epithelial properties, whereas cells expressing Notch fusion 
lost adherence and propagated as weakly attached clusters, similar to 
the index lines with Notch fusions and consistent with the previously 
reported effects of NICD expression in MCF10A cells15. Furthermore, 
the fusion alleles markedly induced expression of the Notch target 
genes MYC, HES1 and HEY1 (Fig. 3g).

The Notch fusions represent two functional classes with respect 
to dependence on the activity of γ-secretase. Fusions in BrCa10040, 
HCC2218 and HCC1599 cells are dependent on S3 cleavage for 
activity and are sensitive to γ-secretase inhibitors (GSIs). The fusion 
class in HCC1187 cells is independent of S3 cleavage. We established 
stable Notch reporter lines from each of the three Notch fusion 
index lines and treated them with the γ-secretase inhibitor N-[(3,5-
difluorophenyl)acetyl]-L-al anyl-2-phenyl]glycine-1,1-dimethylethyl 
ester (DAPT)16. We saw a reduction of Notch reporter activity after 
treatment with DAPT in the HCC1599 and HCC2218 fusion alleles 
(Fig. 4a). However, Notch reporter activity was only slightly dimin-
ished by treatment with DAPT in HCC1187 cells, which express a 
γ-secretase–independent Notch fusion allele that is capable of acti-
vating Notch reporter activity. DAPT treatment also substantially 
reduced NICD protein concentrations in both of the γ-secretase  
inhibitor–sensitive cell lines (Fig. 4b). Furthermore, the index cell lines 
showed dependence on Notch signaling for proliferation and survival  
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signaling pathway following DAPT treatment. 
Breast cancer cells were co-infected with 
a Notch reporter construct, lenti-RBPJ 
(recombination signal binding protein for 
immunoglobulin κJ) firefly luciferase, and the 
internal control lenti-Renilla luciferase. Twenty-
four hours after treatment with DAPT, luciferase 
activities were measured. (b) NICD levels after 
treatment with DAPT detected using an antibody 
specific to active NOTCH1-NICD after cleavage 
by γ-secretase. (c) WST-1 cell proliferation 
assays of six breast cell lines after DAPT 
treatment. (d) Expression of Notch target genes 
after treatment with DAPT, as measured by qRT-
PCR. (e) Xenograft tumor volume and body mass 
after treatment with the γ-secretase inhibitor 
DAPT. Mice xenografted with HCC1599 cells 
were treated daily after tumors formed, and the 
size of the tumors was monitored. *P < 0.005.
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(Fig. 4c). The HCC1599 and HCC2218 cell lines showed marked 
reductions in proliferation after treatment with DAPT. The HCC1187 
cell line, which expresses GSI-independent NOTCH2 fusion, had no 
reduction in proliferation after DAPT treatment, which is also the 
case in breast cell lines not expressing Notch fusion alleles.

Treatment with DAPT repressed the expression of the Notch  
targets MYC and CCND1 (Fig. 4d), two genes that have a key role in 
mouse mammary tumorigenesis induced by Notch17,18, which further 
supports the idea GSIs could be useful in treating cancers that have 
activated Notch alleles. Consistent with this, treatment with DAPT 
significantly reduced tumor volume in a xenograft tumor model of 
HCC1599 cells (Fig. 4e).

Since the discovery of the TMPRSS2-ERG gene fusion in approxi-
mately 50% of prostate cancers, emerging evidence has suggested 
that recurrent gene fusions have a more substantial role in common 
solid tumors than was previously known. The MAST and Notch 
aberrations in breast cancer are new classes of rare but functionally 
recurrent gene fusions with therapeutic implications (similar to the 
anaplastic lymphoma receptor tyrosine kinase (ALK) fusions in lung 
cancer). MAST kinase and Notch gene rearrangements were mutually 
exclusive aberrations in the samples we tested, and, together, may be 
present in up to 5–7% of breast cancers. The discovery of functionally 
recurrent MAST and Notch fusions in a subset of breast carcinomas 
is a promising path for future research and treatment in breast cancer 
and illustrates the power of next-generation sequencing as a tool in 
the development of personalized medicine.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemedicine/.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Cell lines and specimen collection. Breast cancer cell lines were purchased 
from the American Type Culture Collection. The tissue was collected under 
approval of the University of Michigan Institutional Review Board IRBMED 
under approved protocol HUM00041989, and breast cancer samples were 
obtained with informed consent at the University of Michigan and the 
Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 
(London, UK).

Paired-end transcriptome sequencing. Total RNA was extracted from healthy 
and cancer breast cell lines and breast tumor tissues, and the quality of the 
RNA was assessed with the Agilent Bioanalyzer. Transcriptome libraries 
from the mRNA fractions were generated following the RNA-Seq protocol 
(Illumina). Each sample was sequenced in a single lane with the Illumina 
Genome Analyzer II (with a 40- to 80-nt read length) or with the Illumina 
HiSeq 2000 (with a 100-nt read length). Paired-end transcriptome reads pass-
ing our filters were mapped to the human reference genome (hg18) and to 
UCSC genes using Illumina Efficient Alignment of Nucleotide Databases 
(ELAND) software. Sequence alignments were then processed to nominate 
gene fusions using a previously described method11,12.

qRT-PCR and long-range PCR. qRT-PCR assays using SYBR Green Master 
Mix (Applied Biosystems) were carried out with the StepOne Real-Time PCR 
System (Applied Biosystems). Relative mRNA levels of each chimera were 
normalized to the expression of GAPDH. To detect the genomic fusion junc-
tion in HCC1187 cells, primers were designed that flanked the predicted fusion 
position, and PCR reactions were performed to amplify the fusion fragments. 
Oligonucleotide primer sequences are listed in  Supplementary Table 3.

Immunoblot detection of the MAST2 fusion protein and NOTCH1. An 
immunoblot analysis of MAST2 was performed using an antibody to MAST2 
obtained from Novus Biologicals. Antibody to human β-actin (Sigma-Aldrich) 
was used as a loading control. For the detection of NOTCH1, cells were lysed in 
radioimmunoprecipitation assay buffer containing protease inhibitor cocktail 
(Pierce). Proteins were separated by SDS-PAGE, transferred to nitrocellulose 
membranes and probed with antibodies recognizing total NOTCH1 (Cell 
Signaling), γ-secretase–cleaved NOTCH1 (NICD; Cell Signaling) or β-actin 
(Santa Cruz).

Constructs used for overexpression studies. The ZNF700-MAST1 fusion 
ORFs from the BrCa00001 cell line were cloned into a Gateway pcDNA-
DEST40 mammalian expression vector (Invitrogen) using LR Clonase II.  
A plasmid with a C-terminus V5 tag was generated and tested for protein 
expression after transfection into HEK293 cells. A full-length expression con-
struct of MAST2 with a DDK tag was obtained from OriGene.

Establishment of stable pools of TERT-HME1 cells. The five MAST fusion 
alleles were cloned with an N-terminal Flag epitope tag into the lentiviral vector 
pCDH510-B (SABiosciences). The lentivirus was produced by cotransfecting 
each of the MAST plasmids using the ViraPower packaging mix (Invitrogen) 
into 293T cells using FuGENE HD transfection reagent (Roche). Thirty-six 
hours after transfection, the viral supernatants were collected, centrifuged 
and then filtered through a 0.45-µm Steriflip filter unit (Millipore). TERT-
HME1 cells were infected at a multiplicity of infection of 20 with polybrene at  
8 µg ml−1. Forty-eight hours after infection, the cells were split and placed into 
puromycin-selective medium. Stable pools of TERT-HME1 cells expressing 
the NOTCH fusion alleles as well as a control NOTCH1 intracellular domain 
were generated using the same procedures.

Knockdown assay. For siRNA knockdown experiments, multiple independent  
MAST2 siRNAs from Thermo were used (J-004633-06, J-004633-07 and  
J-004633-08). All siRNA transfections were performed using Oligofectamine  
reagent (Life Sciences). Similar experiments were performed with multiple 
custom siRNA sequences targeting the ARID1A-MAST2 fusion (Thermo). 
Lentiviral particles expressing the MAST2 shRNA (Sigma, TRCN0000001733) 
were transduced using polybrene according to the manufacturer’s instructions.

Colony formation assay. MDA-MB-468 cells transduced with scrambled or 
MAST2 shRNA lentivirus particles were plated and selected using puromycin. 
After 7–8 d, the plates were stained with crystal violet to visualize the number 
of colonies formed. For quantification of the differential staining, the plates 
were treated with 10% acetic acid, and absorbance was read at a wavelength 
of 750 nm.

Mouse xenograft models. Four-week-old female severe compromised immuno
deficiency C.B17 mice were procured from a breeding colony at University 
of Michigan that is maintained by K. Pienta. Mice were anesthetized using a 
cocktail of xylazine (80 mg per kg of body weight intraperitoneally (i.p.)) and 
ketamine (10 mg per kg of body weight i.p.) for chemical restraint. Breast  
cancer cells with MAST2 shRNA or scrambled shRNA knockdown (n = 4 million)  
or the HCC1599 breast cancer cell line positive for the NOTCH1 fusion allele 
(n = 5 million) were resuspended in 100 µl of 1× PBS with 20% Matrigel 
(BD Biosciences) and implanted into the right and left abdominal inguinal 
mammary fat pads of the mice. Ten mice were included in each group. Two 
weeks after tumor implantation, HCC1599 xenografted mice were treated daily 
with the γ-secretase inhibitor DAPT, which was dissolved in 5% ethanol and 
corn oil (i.p.). All procedures involving mice were approved by the University 
Committee on Use and Care of Animals of the University of Michigan.

Additional methods. Detailed methodology is described in the Supplementary 
Methods.
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SUMMARY

Pseudogene transcripts can provide a novel tier
of gene regulation through generation of endoge-
nous siRNAs or miRNA-binding sites. Characteriza-
tion of pseudogene expression, however, has re-
mained confined to anecdotal observations due to
analytical challenges posed by the extremely close
sequence similarity with their counterpart coding
genes. Here, we describe a systematic analysis
of pseudogene ‘‘transcription’’ from an RNA-Seq
resource of 293 samples, representing 13 cancer
and normal tissue types, and observe a surprisingly
prevalent, genome-wide expression of pseudogenes
that could be categorized as ubiquitously expressed
or lineage and/or cancer specific. Further, we explore
disease subtype specificity and functions of selected
expressed pseudogenes. Taken together, we pro-
vide evidence that transcribed pseudogenes are
a significant contributor to the transcriptional land-
scape of cells and are positioned to play significant
roles in cellular differentiation and cancer progres-
sion, especially in light of the recently described
ceRNA networks. Our work provides a transcriptome
resource that enables high-throughput analyses of
pseudogene expression.
INTRODUCTION

Pseudogenes are ancestral copies of protein-coding genes

that arise from genomic duplication or retrotransposition of

mRNA sequences into the genome followed by accumulation
1622 Cell 149, 1622–1634, June 22, 2012 ª2012 Elsevier Inc.
of deleterious mutations due to loss of selection pressure,

degenerating eventually into so-called genetic fossils (Sasid-

haran and Gerstein, 2008). Pseudogenes pervade the genome,

representing virtually every coding gene, and due to their

extremely close sequence similarity with their cognate genes,

complicate whole-genome sequencing and gene expression

analyses. A growing body of evidence strongly suggests their

potential roles in regulating cognate wild-type gene expres-

sion/function by serving as a source of endogenous siRNA

(Tam et al., 2008; Watanabe et al., 2008), antisense transcripts

(Zhou et al., 1992), competitive inhibitors of translation of

wild-type transcripts (Kandouz et al., 2004), and perhaps domi-

nant-negative peptides (Katoh and Katoh, 2003). Pseudogene

transcription has also been shown to regulate cognate wild-

type gene expression by sequestering miRNAs (Poliseno

et al., 2010). The recently described competing endogenous

RNA (ceRNA) networks comprising sets of coordinately ex-

pressed genes with shared miRNA response elements (MREs)

provide an additional dimension of (post-) transcriptional regu-

lation in which the role of pseudogenes might overlap with

those of protein-coding genes (Salmena et al., 2011; Sumazin

et al., 2011).

Previous genome-wide studies of pseudogenes focused on

the identification of their chromosomal coordinates and annota-

tions based on diverse computational approaches (Karro et al.,

2007; Zhang and Gerstein, 2004), including PseudoPipe (Zhang

et al., 2006), HAVANA (Solovyev et al., 2006), PseudoFinder (Lu

and Haussler, 2006, ASHG, conference), and Retrofinder (Zheng

and Gerstein, 2006). These individual pipelines were subse-

quently consolidated into an integrated consensus platform,

ENCyclopedia Of DNA Elements (ENCODE), which now serves

as the definitive database of manually curated and annotated

pseudogenes as well as pseudogene transcripts (Zheng et al.,

2007). By contrast, genome-wide analyses of pseudogene

expression have been somewhat arbitrary, mainly relying upon
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Figure 1. Pseudogene Expression Analysis

Pipeline

The bioinformatics pipeline for analyzing pseudo-

gene transcription involved the following steps: (1)

Paired-end transcriptome sequencing reads were

mapped to the human genome and UCSC Genes

using ELAND. (2) Passed purity (PF) filter reads

were assigned into three sequence bins as indi-

cated. (3) Paired reads with one or both partners

mapping to unannotated genomic regions were

clustered based on overlapping alignments. (4)

Clusters were filtered to remove singleton,

stacked, and duplicate reads. (5) To determine

a consensus pseudogene annotation, clusters

were scanned through the Yale and ENCODE

pseudogene databases as well as analyzed with

a BLAT-based custom homology search. Data

from individual samples were then compared to

generate pseudogene expression signatures.

Clusters not assigned at this stage were cat-

egorized as other potentially nonpseudogene

transcripts.

See also Figures S1, S2, and S3 and Tables S1

and S2.
evidence of pseudogene transcripts obtained from disparate

gene expression platforms, including public mRNA and EST

databases, cap analysis gene expression (CAGE) studies, and

gene identification signature-paired end tags (GIS-PET) (Ruan

et al., 2007). Given the essentially anecdotal observations of

pseudogene expression, only 160 expressed human pseudo-

genes are currently documented in ENCODE. Though this could

be due to a general lack of transcription of pseudogenes, as

generally presumed, it may also be reflective of an insufficient

and uneven depth of coverage afforded by early gene expression

analysis tools.
Cell 149, 1622–163
In this context, the recent maturation

of next-generation high-throughput se-

quencing platforms provides unprece-

dented access to genome-wide expres-

sion analyses previously not achievable

(Han et al., 2011a; Morozova et al.,

2009). Here, we analyzed a compendium

of RNA-Seq transcriptome data specifi-

cally focusing on pseudogene transcripts

from a total of 293 samples encompass-

ing 13 different tissue types, including

248 cancer and 45 benign samples. In

order to carry out a systematic analysis

of pseudogene expression, we devel-

oped a bioinformatics pipeline focused

on detecting pseudogene transcription.

This integrative approach provided

evidence of expression for 2,082 distinct

pseudogenes, which displayed lineage-

specific, cancer-specific, as well as

ubiquitous expression patterns. Taken

together, this Resource nominates a

multitude of expressed pseudogenes
that merit further investigation to determine their roles in biology

and in human disease.

RESULTS

Development of a Bioinformatics Platform
for the Analysis of Pseudogene Transcription
Paired-end RNA-Seq data from a compendium of 293 samples,

representing both cancer and benign samples from 13 different

tissue types recently generated in our laboratory, was utilized

to build a pseudogene analysis pipeline (Figure 1 and Figure S1
4, June 22, 2012 ª2012 Elsevier Inc. 1623



and Table S1 available online). Sequencing reads were mapped

to the human genome (hg18) and University of California Santa

Cruz (UCSC) Genes using Efficient Alignment of Nucleotide

Databases (ELAND) software of the Illumina Genome Analyzer

Pipeline (Table S2). Reads showing mismatches to the reference

genes but mapping perfectly to unannotated regions elsewhere

in the genome were used as the primary data for pseudogene

expression analysis. Two or more unique, high-quality overlap-

ping reads nucleating at the loci of differences between wild-

type genes and pseudogenes were used to define de novo

‘‘clusters’’ (ranging from 40 to 5,000 bp). These clusters were

employed for gene expression analyses in a way analogous to

the ‘‘probes’’ used in microarray gene expression studies,

though unlike predesigned and fixed probes used in microar-

rays, the sequence clusters used here were formed de novo,

solely based on the presence (and levels) of transcripts. Thus,

one or more clusters (like one or more probes in microarrays)

represented a transcript, whereas the number of reads mapping

to a cluster (analogous to fluorescence intensity due to probe

hybridization on microarrays) provided a measure of expression

of the corresponding (pseudo)genes. For example, Figure 2

shows a schematic representation of the cluster alignments for

two representative pseudogenes, ATP8A2-J (Figure 2A) and

CXADR-J (Figure 2B). As can be seen, mutation-dense regions

in the reference sequence provide foci of pseudogene-specific

cluster formation. Naturally, pseudogenes with sparse and

dispersed mutations nucleate fewer clusters and require higher

depth of coverage for reliable detection.

Overall, 2,156 unique pseudogene transcript clusters were

identified, and their genomic coordinates (start and end points)

were compared with the coordinates of pseudogenes annotated

in the ENCODE (Zheng et al., 2007) and Yale pseudogene

resources (http://www.pseudogene.org) (Karro et al., 2007),

the two most comprehensive pseudogene annotation data-

bases. Genomic coordinates of 934 unique pseudogene

transcript clusters in our data set were found to overlap with

the pseudogene coordinates annotated in both Yale and

ENCODE databases. In addition, 585 clusters overlapped with

Yale and 92 with ENCODE databases, displaying a high degree

of overall concordance between our data and the authentic

resources and highlighting a level of difference between the

two reference databases (that necessitated our consideration

of both resources). Further, as multiple clusters can sometimes

represent one distinct pseudogene transcript, the 2,156

transcript clusters provided evidence for 2,082 distinct tran-

scripts. Of these, 1,506 transcripts overlap with the genomic

coordinates of pseudogenes in Yale and/or ENCODE, and up

to 576 transcripts are potentially novel (described below)

(Figure S2A). The 2,082 pseudogene transcripts, in turn, corre-

spond to 1,437 wild-type genes, clearly indicating that the

transcripts of multiple pseudogenes arisen from the same wild-

type genes are also detected in our compendium. Taken

together, our study provides evidence of widespread transcrip-

tion of pseudogenes unraveled by high-throughput transcrip-

tome sequencing (Table S3).

Pseudogene clusters across the sample-wise compendium

reveal that pseudogenes of housekeeping genes such as

ribosomal proteins are widely expressed across tissue types.
1624 Cell 149, 1622–1634, June 22, 2012 ª2012 Elsevier Inc.
Additionally, pseudogene transcripts corresponding to CALM2

(calmodulin 2 phosphorylase kinase, delta), TOMM40 (translo-

case of outer mitochondrial membrane 40), NONO (non-POU

domain-containing, octamer-binding), DUSP8 (dual-specificity

phosphatase 8), PERP (TP53 apoptosis effector), and YES

(v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1), etc.

were observed inmore than 50 samples each, whichwere further

validated by pseudogene-specific RT-PCR followed by Sanger

sequencing (Table S4).

Further, because our RNA-Seq compendium comprises 35- to

45-mer short sequence reads that largely generated short

sequence clusters not optimal for available pseudogene analysis

tools such as Pseudopipe (Zhang et al., 2006) and Pseudofam

(Lam et al., 2009) used in generating ENCODE and Yale data-

bases, we carried out a direct query of individual clusters against

the human genome (hg18) using the BLAT tool from UCSC,

which is ideally suited for short sequence alignment searches

(Kent, 2002). Based on this ‘‘custom’’ analysis, or simply BLAT

(Figure S2A), we were able to independently assign 1,888

clusters representing 1,820 unique pseudogenes to unique

genomic locations.

Detection of Potentially Novel Pseudogene Transcripts
Comparing the genomic locations of the pseudogene clusters

identified by BLAT analysis to those identified by Yale and

ENCODE databases (Figure S2A), 762 clusters were found to

be common to all three resources, but a remarkably large set

of 585 clusters was uniquely defined by BLAT analysis alone.

Some of the pseudogene transcripts thus identified included

BAT1, BTBD1, COX7A2L, CTNND1, EIF5, PAPOLA, PARP11,

SYT, ZBTB12, and others (n = 25) and were validated by Sanger

sequencing (Table S4). Thus, analysis of RNA-Seq data provided

a reliable assessment of expressed pseudogenes.

Though designating the BLAT-based pseudogene clusters

as novel pseudogenes must await further sequence character-

ization (such as analysis of ORF structure and potential genesis

of novel protein-coding gene family members, etc.), a small

subset of clusters was seen to be localized in the vicinity of

known pseudogenes. Thus, we found 92 clusters that resided

adjacent (within 5 kb) to previously annotated pseudogenes

(Figure S2B, left), and we hypothesize that these may represent

pseudogenes with inaccurate annotations in the current

databases. For example, the chromosomal coordinates of

CENTG2-J (OTTHUMT00000085288, Havana processed

pseudogene) are defined in ENCODE as Chr1:177822463-

177824935. As expected, we observed a cluster mapping to

this locus; however, interestingly, we also observed a distinct

cluster (Chr1:177825028-177826295) less than 100 base pairs

away. Although unannotated in the current databases, the

sequence of this adjacent locus shows a high degree of

homology to the CENTG2 parental gene (Figure S2B, right),

strongly suggesting that this cluster represents an extension of

the existing genomic coordinates of CENTG2-J annotation.

Similar observations were made with HNRNPA1 and the

HNRNPA1-J on Chr6q27 (Figure S2B, right). 493 BLAT derived

clusters that were not in close proximity to annotated pseudo-

genes likely represent putative pseudogenes currently missing

in the database annotations (Table S3B).
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Figure 2. Schematic Representation of Cluster Alignments with Pseudogene Transcripts

(A and B) The relative genomic structures of the parental genes are shown aligned to the respective pseudogenes, with their chromosomal locations indicated on

the sides, (A) ATP8A2-J and (B) CXADR-J. The sequencing alterations distinguishing the pseudogene from the parental gene are indicated in red. The

pseudogene transcripts are illustrated as black bars with red hatches, which indicate divergence from the parental sequence, and the length of the transcript in

base pairs is shown on the side. These representations are then overlaid with schematics of paired-end reads used to form pseudogene clusters (in blue),

followed by overlapping sequences in a zoomed-in region of the cluster. A comparative representation of the parental (WT) and pseudogene (J) sequences for

the specified region is shown on top.

See also Figure S4.
Next, we assessed the technical and analytical factors influ-

encing the yield of pseudogene transcripts. Asmay be expected,

a positive correlation was observed between the sequencing

depth and total number of pseudogene transcripts (correlation

coefficient, +0.65) (Figure S3A). However, no significant correla-

tion was observed between the absolute measure of percent

similarity between pseudogene-WT pairs and pseudogene yield.

Importantly, the metric of overall percent similarity accounts for

gap penalty and mismatches in BLAT search, but it is the ‘‘distri-
bution’’ of the mismatches that is critical in resolving pseudo-

genes from nearly identical wild-type sequences; for example,

a few mismatches, accumulated in a small stretch, are more

effective in confidently distinguishing pseudogene expression

from wild-types as compared to a higher number of mismatches

that are scattered over long stretches of sequence (Figure 2).

Thus, three primary factors determine the detection of pseudo-

gene transcription by RNA-Seq: (1) the level of expression of

the pseudogenes (i.e., the higher the level of expression, the
Cell 149, 1622–1634, June 22, 2012 ª2012 Elsevier Inc. 1625



higher the likelihood of detection), (2) the depth of RNA

sequencing, and (3) overall distribution of mismatches with

respect to the wild-type.

To explore the loci of transcription regulatory elements associ-

ated with pseudogene transcription, we carried out ChIP-Seq

analysis of a breast cancer cell line MCF7 probed with

H3K4me3, a histone mark associated with transcriptionally

active chromosomal loci, and integrated the results with the

MCF7 pseudogene transcript data. Interestingly, we observed

a statistically significant enrichment of H3K4me3 peaks at

expressed pseudogene loci as compared to nonexpressed

pseudogenes (p = 0.0054) (Figure S3B), suggesting that the

pseudogene transcripts observed by RNA-Seq are associated

with transcriptionally active genomic loci. Interestingly, the pseu-

dogene transcripts associated with H3K4me3 peaks encom-

pass both unprocessed and processed pseudogenes, with no

discernible differences in the pattern of expression. Considering

the role of 30 UTRs with MREs in ceRNA regulatory networks, we

also looked at the frequency of 30 UTR sequences retained in our

set of pseudogene transcripts and observed that at least 71% of

all pseudogene transcripts retain distinct 30 UTR sequences

similar to their cognate wild-type genes (Figure S3C). Interest-

ingly, comparing the pseudogene transcripts with a list of genes

implicated in ceRNA networks (Han et al., 2011b; Tay et al.,

2011), we observed more than 400 overlapping transcripts

(Table S5). The presence of noncoding pseudogene transcripts

with similar 30 UTRs (and MREs) adds a further level of

complexity to ceRNA regulatory networks.

Next, we assessed a potential correlation between the expres-

sion of pseudogenes present within the introns of unrelated,

expressed genes with their ‘‘host’’ genes. Interestingly, no signif-

icant association was observed, suggesting that pseudogenes

are likely subject to independent regulatory mechanisms even

when residing within other transcriptionally active genes.

Further, our observations with the breast-specific unprocessed

pseudogene ATP8A2 (likely arisen from duplication of wild-

type ATP8A2, thus likely harboring similar promoter elements)

also indicate that there is no apparent correlation between

the pseudogene expression with the wild-type gene that is

expressed ubiquitously (described later). Thus, in summary,

although it is tempting to speculate that pseudogene expression

may be regulated by the promoter elements from the cognate

gene or the host genes, our data suggest that more complex/

indirect factors may be at play. Next, we assessed a possible

correlation between the expression of pseudogenes with that

of cognate wild-type genes, and intriguingly, no significant

pattern of correlation was observed (Figure S3D).

Focusing on the pseudogenes whose genomic coordinates

are annotated in the reference databases, we next analyzed

the expression profiles of the 1,056 unique transcripts.

Patterns of Pseudogene Expression in Human Tissues
Analyzing the expression data from 248 cancer and 45 benign

samples from 13 different tissue types (total 293 samples), we

observed broad patterns of pseudogene expression, including

1,056 pseudogenes that were detected in multiple samples

(Table S6), which supports the hypothesis that transcribed pseu-

dogenes contribute to the typical transcriptional repertoire of
1626 Cell 149, 1622–1634, June 22, 2012 ª2012 Elsevier Inc.
cells. In addition, we identified distinct patterns of pseudogene

expression, akin to that of protein-coding genes, including 154

highly tissue/lineage-specific and 848 moderately tissue/

lineage-specific (or enriched) pseudogenes (Figure 3A). More-

over, we found 165 pseudogenes exhibiting expression in

more than 10 of the 13 tissue types examined, and these we

classified as ubiquitous pseudogenes whose transcription is

characteristic of most cell types (Figure 3A, bottom).

Of the 165 ubiquitous pseudogenes, a majority belonged to

housekeeping genes, such as glyceraldehyde 3-phosphate

dehydrogenase (GAPDH), ribosomal proteins, several cytokera-

tins, and other genes widely expressed in most cell types. This is

expected, as these genes are known to have numerous pseudo-

genes, and it is likely that several of these pseudogenes retain

the capacity for widespread transcription, mimicking their

protein-coding counterparts.

A second set of pseudogenes exhibited near ubiquitous

expression but were frequently transcribed at lower levels in

most tissues and robustly transcribed in one or two tissues.

These pseudogenes were termed ‘‘nonspecific,’’ and this group

harbors more than 870 pseudogenes, comprising a large portion

of our data set (Figure 3A, middle). Many of the pseudogenes

previously shown to be expressed were found in this category,

including some pseudogenes reported as tissue specific,

such as CYP4Z2P, a pseudogene previously reported to be ex-

pressed only in breast cancer tissues (Rieger et al., 2004). Other

candidates observed in this category include pseudogenes

derived from Oct-4 (Kastler et al., 2010), Connexin-43 (Bier

et al., 2009; Kandouz et al., 2004), and BRAF (Zou et al., 2009),

among others (Table S6).

Though powerful, our approach is nevertheless limited to

pseudogene transcripts that are expressed above the current

threshold of detection by RNA-Seq and possess distinct

stretches of sequence mismatches compared with their

protein-coding parental genes. Thus, for example, PTENP1,

a pseudogene of PTEN recently implicated in the biology of the

phosphatidylinositol 3-kinase (PI3K) signaling pathway, was

not detected in our compendium possibly due to the preponder-

ance of cancer samples in our cohort, which tend to show low

expression or deletion of this pseudogene (Poliseno et al., 2010).

Lineage- and Cancer-Specific Pseudogene Expression
Signatures
Lineage-specific pseudogene transcripts may have the potential

for lineage-specific functions and may represent novel elements

that facilitate biological characteristics that are unique to distinct

tissue types. In this regard, we observed 154 pseudogenes with

highly specific expression patterns, including pseudogenes

derived from AURKA (kidney samples), RHOB (colon samples),

and HMGB1 (myeloproliferative neoplasms [MPNs]) (Figure 3A,

top). Interestingly, however, lineage-specific pseudogenes

tended to represent a small fraction of all pseudogenes ex-

pressed in a given tissue type, and the total number of lineage-

specific pseudogenes observed in a tissue type did not show

a correlation with the total number of samples analyzed. For

example, B-lymphocyte cells (n = 19) and MPNs (n = 9) showed

more lineage-specific pseudogenes than breast (n = 64) or pros-

tate (n = 89). Conversely, we did observe more pseudogene



Sample Frequency (%)0 100

B
la

d
d

er
 (n

=
17

)
B

re
as

t 
(n

=
64

)
C

er
vi

ca
l (

n
=

8)
C

o
lo

n
 (n

=
6)

G
as

tr
ic

 (n
=

25
)

K
id

n
ey

 (n
=

12
)

B
 L

ym
p

h
o

id
 (n

=
19

)
M

el
an

o
m

a 
(n

=
10

)
M

PN
 (n

=
9)

O
ra

l (
n

=
2)

Pa
n

cr
ea

s 
(n

=
28

)
Pr

o
st

at
e 

(n
=

89
)

Sa
liv

ar
y 

(n
=

4)

Li
n

ea
g

e 
Sp

ec
ifi

c
N

o
n

-S
p

ec
ifi

c
U

b
iq

u
it

o
u

s

Li
n

ea
g

e 
Sp

ec
ifi

c

EIF3F Y

ATP8A2 Y
PGK1 Y
CRIP1 Y
DPP3 Y

FCF1 Y
RHOB Y
MORF4L1 Y
FKBP3 Y

PSME2 Y
NUDC Y

CXADR Y
CES7 Y
MRPL37 Y
MTCH1 Y

NF1 Y
SLC35A4 Y

HADHA Y
MARCKSL Y

UTP18 Y

TALD01 Y

CNN2 Y

UBE2D3 Y

IFITM2 Y

HMGB1 Y

CCT7 Y

AURKA Y
CSRP2 Y
SCYL2 Y
FAM36A Y
EIF4B Y
RAB5C Y
PES1 Y

B
la

d
d

er
 (n

=
17

)
B

re
as

t 
(n

=
64

)
C

er
vi

ca
l (

n
=

8)
C

o
lo

n
 (n

=
6)

G
as

tr
ic

 (n
=

25
)

K
id

n
ey

 (n
=

12
)

B
 L

ym
p

h
o

id
 (n

=
19

)
M

el
an

o
m

a 
(n

=
10

)
M

PN
 (n

=
9)

O
ra

l (
n

=
2)

Pa
n

cr
ea

s 
(n

=
28

)
Pr

o
st

at
e 

(n
=

89
)

Sa
liv

ar
y 

(n
=

4)

A B

Figure 3. Tissue/Lineage-Specific Pseudogene Expression Profiles

(A) Heatmap of pseudogene expression sorted on the basis of tissue-

specific expression displays tissue-specific (top), tissue-enriched/nonspecific

(middle), and ubiquitously expressed pseudogenes (bottom).

(B) Zoomed-in version of the top panel displaying tissue-specific expressed

pseudogenes. The columns represent different tissues, with the number of

samples in parentheses. The rows represent individual clusters mapping to

specific pseudogenes. The color intensity represents the frequency (%) of

samples in a tissue type showing expression of a given pseudogenes

(according to the scale indicated at the bottom). The key clusters are labeled

with their corresponding parental gene symbols. MPN, myeloproliferative

neoplasms.

See also Table S6.
transcripts in samples with longer read lengths and deeper

coverage, as expected. Together, these data both confirm and

formalize previous anecdotal observations of lineage-specific

pseudogene expression patterns by exploiting the power of

RNA-Seq to resolve individual transcripts (Figure 3B) (Bier

et al., 2009; Lu et al., 2006; Rieger et al., 2004; Zou et al., 2009).

Because our sample compendium has a substantial number of

cancer samples, we next focused on pseudogenes with cancer-

specific expression. Though a majority of the pseudogenes

examined were found in both cancer and benign samples, we

observed 218 pseudogenes expressed only in cancer samples,

of which 178 were observed in multiple cancers and 40 were

found to have highly specific expression in a single cancer

type only (Figure 4A and Table S7). Consistent with our previous

results (Figure 3), we found that the number of cancer-type-

specific pseudogenes did not correlate with the number of

samples sequenced in a given cancer type. These results

suggest that cancer samples harbor transcriptional patterns of

pseudogenes that are both lineage and cancer specific.

Among the cancer-specific pseudogenes, a few noteworthy

examples included pseudogenes derived from the eukaryotic

translation initiation factors EIF4A1 and EIF4H, the heteroge-

neous nuclear ribonucleoproteinHNRPH2, and the small nuclear

ribonucleoprotein SNRPG (Figure 4B). Moreover, we observed

pseudogenes corresponding to known cancer-associated

genes, including RAB-1, a Ras-related protein; VDAC1,

a type-1 voltage-dependent anion-selective channel/porin;

RCC2, a regulator of chromosome condensation 2; and PTMA,

prothymosin alpha. Interestingly, the parental protein-coding

PTMA gene has given rise to five processed pseudogenes that

retain consensus TATA elements, individual transcriptional start

sites, and intact open reading frames that may potentially code

for proteins closely related to the parental PTMA protein. Impor-

tantly, we find expression of PTMA-derived pseudogenes in

more than 30 cancer samples, but not in any benign cells, and

these data suggest that PTMA-derived pseudogenes may not

only contribute transcripts to cancer cell biology but potentially

proteins as well, warranting further study of these pseudogenes

in tumorigenesis.

Prostate Cancer Pseudogenes
To investigate individual pseudogenes in greater detail, we

focused on pseudogenes associated with prostate and breast

cancer, as our compendium has a substantial number of these

two cancer types represented. Analysis of lineage-specific pseu-

dogenes restricted to prostate cancers identified numerous

pseudogenes, including several derived from parental genes

known to be altered or dysregulated in cancer; for example,

NDUFA9, which encodes an NADH oxidoreductase component

of mitochondrial complex I that is reported to be upregulated in

testicular germ cell tumors (Dormeyer et al., 2008); EPCAM, an

epithelial cell adhesion molecule involved in cancer and stem

cells signaling (Munz et al., 2009); and CES7, known to be ex-

pressed only in the male reproductive tract (Gang et al., 2011)

(Figure 3B and Table S6). Among the prostate cancer specific

pseudogenes,CXADR-J, a processed pseudogene on chromo-

some 15, was of immediate interest, as the parental CXADR

protein demonstrates putative tumor suppressor functions and
Cell 149, 1622–1634, June 22, 2012 ª2012 Elsevier Inc. 1627



B
re

as
t 

C
an

ce
r (

n
=

53
)

G
as

tr
ic

 C
an

ce
r (

n
=

21
)

Pa
n

cr
ea

ti
c 

C
an

ce
r (

n
=

25
)

Pr
o

st
at

e 
C

an
ce

r  
(n

=
71

)

B
re

as
t 

B
en

ig
n

 (n
=

11
)

G
as

tr
ic

 B
en

ig
n

 (n
=

4)
Ly

m
p

h
o

b
la

st
o

id
 (n

=
8)

Pa
n

cr
ea

ti
c 

B
en

ig
n

 (n
=

3)
Pr

o
st

at
e 

B
en

ig
n

 (n
=

18
)

C
an

ce
r S

p
ec

ifi
c

Sample Frequency (%)0 100

N
o

n
-S

p
ec

ifi
c

C
an

ce
r S

p
ec

ifi
c

ATP8A2 Y
PGK1 Y
CRIP1 Y
DPP3 Y
IFITM1 Y
EIF4A1 Y

CCNYL1 Y
H2AFZ Y
VCAC1 Y
CHMP5 Y
SCYL2 Y
DNAJC7 Y

CXADR Y
RAN Y
MTCH1 Y
MARCKSL1 Y
PPP4R2 Y
NDUFB8 Y
ELF2 Y
EXOSC3 Y

HMGB1 Y
CFL1 Y

ETF1 Y
RNF14 Y
ASB9 Y
PTPN2 Y

SSNA1 Y

RCC2 Y
SNRPG Y

PCNP Y
RAB1A Y
ASL Y
RAD17 Y

MPRIP Y

PTMA Y
OTUD4 Y

CDV3 Y
FAM36A Y
SHC1 Y
DEF8 Y

STIP1 Y

PHF10 Y
HK2 Y
TTC4 Y
ACTN4 Y

C
LL

 (n
=

9)

B
re

as
t 

C
an

ce
r (

n
=

53
)

G
as

tr
ic

 C
an

ce
r (

n
=

21
)

Pa
n

cr
ea

ti
c 

C
an

ce
r (

n
=

25
)

Pr
o

st
at

e 
C

an
ce

r  
(n

=
71

)

B
re

as
t 

B
en

ig
n

 (n
=

11
)

G
as

tr
ic

 B
en

ig
n

 (n
=

4)
Ly

m
p

h
o

b
la

st
o

id
 (n

=
8)

Pa
n

cr
ea

ti
c 

B
en

ig
n

 (n
=

3)
Pr

o
st

at
e 

B
en

ig
n

 (n
=

18
)

C
LL

 (n
=

9)

A B

Figure 4. Cancer-Specific Pseudogene Expression Profiles

(A) Heatmap of pseudogene expression sorted according to cancer-specific

expression patterns displays pseudogene transcripts specific to individual

cancers (top), common across multiple cancers (tissue-enriched; middle), and

nonspecific (bottom).

(B) Zoomed-in version of the top panel displaying individual cancer-specific

expressed pseudogenes. The columns represent different tissues with the

number of samples in parentheses. The rows represent individual clusters

mapping to specific pseudogenes. The color intensity represents the

frequency (%) of samples in a tissue type showing expression of a given

pseudogenes (according to the scale indicated at the bottom). The key clus-

ters are labeled with their corresponding parental gene symbols.

See also Figure S6 and Table S7.
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its loss is implicated in a-catenin silencing (Pong et al., 2003). We

therefore selected this pseudogene for further study in prostate

cancer and first evaluated custom Taqman assays that could

distinguish CXADR-J from parental CXADR. The expression

levels showed strong correlation with the RNA-Seq data (Fig-

ure S3E). CXADR-J expression was found to be upregulated

in �25% of prostate cancer tissues, with minimal expression

seen in benign prostate samples and nonprostate tissues (Fig-

ure 5A). No correlation was observed between CXADR-J and

parental CXADR expression, although parental CXADR also

had some proclivity for prostate cancer-specific expression (Fig-

ure 5B). Interestingly, CXADR-J expression was nearly

restricted to prostate cancers lacking an ETS gene fusion, with

few ETS-positive samples exhibiting expression of this pseudo-

gene. By contrast, parental CXADR gene expression was found

in both ETS-positive and ETS-negative samples (Figure 5C).

Finally, we interrogated CXADR-J and CXADR parental gene

expression in a set of six prostate patients with matched cancer

and benign tissues (including four ETS-negative and two ETS-

positive pairs). Again, ETS-negative prostate cancer samples

displayed marked upregulation of CXADR-J compared to the

ETS-positive patients, with parental CXADR expression being

fairly constant between this set of patients (Figure 5D). To estab-

lish the expression of CXADR-J transcript, we were able to

clone CXADR-J cDNA from two RNA-Seq-positive prostate

cancer samples (Figure S5A), and as predicted, these clones

showed perfect sequence similarity to the pseudogene

CXADR-J and only 84% toCXADRwild-type gene (Figure S5B).

In the course of these analyses, we also identified a prostate-

cancer-specific readthrough transcript involving KLK4, an

androgen-induced gene, and KLKP1, an adjacent pseudogene.

This chimeric RNA transcript KLK4-KLKP1, combining the first

two exons of KLK4 with the last two exons of KLKP1, retains

an open reading frame incorporating 54 amino acids encoded

by the KLKP1 pseudogene in the putative chimeric protein (Fig-

ure S6A). Curiously, this readthrough was recently described in

the prostate cancer cell line LNCaP as a cis sense-antisense

chimeric transcript (Lai et al., 2010). Intriguingly, the KLK4-

KLKP1 transcript was highly expressed in 30%–50% of prostate

cancer tissues, and this expression was lineage and cancer

specific, with minimal expression seen in benign prostate and

other tissues (Figure S6B). These data suggest that the KLK4-

KLKP1 may warrant further study as a potential biomarker of

prostate cancer as well as a candidate protein implicated in

the biological complexity of this disease.

Breast Cancer Pseudogenes
Among the pseudogene candidates in breast cancer, we identi-

fied a unprocessed pseudogene cognate to ATP8A2, a LIM

domain-containing protein speculated to be associated with

stress response and proliferative activity (Khoo et al., 1997)

(Figure 3A, top, and Table S3). Because ATP8A2-J on chromo-

some 10 displays substantial sequence divergence from the

cognate ATP8A2-WT gene on chromosome 13, it lends high

confidence to our computational identification, and we selected

this candidate for further validation. Taqman assays distinguish-

ing ATP8A2-WT transcripts from ATP8A2-J showed a strong

correlation (r2 = 0.98) with the expression pattern obtained



0

20

40

60

80

100

120

140

160 CXADR-Y

ETS Negative
Tissues

ETS Positive
Tissues

Normal ETS Negative
Cell lines

ETS Positive
Cell lInes

PROSTATE

Gastric Lung Melanoma

NON-PROSTATE

RQ
- C

X
A

D
R

-Y
/G

A
PD

H

0

20

40

60

80

100

120

140

160
CXADR-WT

ETS Negative
Tissues

ETS Positive
Tissues

Normal ETS Negative
Cell lines

ETS Positive
Cell lInes

PROSTATE

Gastric Lung Melanoma

NON-PROSTATE

RQ
- C

X
A

D
R

-W
T/

G
A

PD
H

A

B

0

20

40

60

80

100

120

ET
S N

ega
�ve

(n=26)
ET

S P
osi�

ve

(n=11)

NON-Pro
sta

te

(n=32) 

CXADR-YCXADR-WT

RQ
- C

X
A

D
R

/G
A

PD
H

C

0
1
2
3
4
5
6
7
8
9

10

T T T T T TB B B B B B
Pa�ent 1 Pa�ent 2 Pa�ent 3 Pa�ent 4 Pa�ent 5 Pa�ent 6

CXADR-YCXADR-WT

RQ
- C

XA
DR

/G
AP

DH

ETS NEGATIVE ETS POSITIVE

D

Figure 5. Expression of CXADR-J in Prostate Cancer

(A and B) Histogram of expression values (y axis) ofCXADR-J (A) andCXADR-WT (B) across a panel of tissue samples (x axis). The order of samples on the x axis

is identical in both graphs to facilitate a visual comparison.

(C) A summary histogram of the expression values of CXADR-J and CXADR-WT in prostate cancers either harboring or lacking an ETS transcription factor gene

fusion or in nonprostate samples.

(D) Expression of CXADR-J and CXADR-WT in matched pairs of tumor and benign samples from prostate cancer patients. The patients’ ETS status is indicated

by the bar below.

T, prostate cancer; B, matched benign adjacent prostate. The expression values were normalized againstGAPDH. Error bars represent means ± SE of the mean.

See also Figure S5.
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Figure 6. Expression of ATP8A2-J in Breast Cancer

(A and B) Histogram of expression values (y axis) of ATP8A2-J (A) and ATP8A2-WT (B) across a panel of tissue samples (x axis). The order of samples on the x

axis is identical in both graphs to facilitate a visual comparison. (Inset) A summary histogram of the expression values of ATP8A2-J and ATP8A2-WT in breast

cancer samples relative to benign breast and other tissues (left) and luminal versus basal breast cancer subtypes (right). The expression values were normalized

against GAPDH.

(C) Cell proliferation assays following siRNA knockdowns of ATP8A2-WT and -J as indicated. NTC, nontargeting control; WT, siRNA against wild-type

ATP8A2; J, siRNA against ATP8A2-J.
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by RNA-Seq (Figure S3E), with ATP8A2-J expression found to

be restricted to breast samples, the highest levels seen in

a subset of breast cancer tissues and cell lines (Figures 6A and

6B). By contrast, ATP8A2-WT expression was highly variable

across different tissue types and showed no correlation with

ATP8A2-J expression (Figure 6B).

We were further intrigued by the pattern of ATP8A2-J expres-

sion within breast tumors, where �25% of tumors demonstrate

extremely high levels of this pseudogene, suggesting that

ATP8A2-J may contribute to a particular subtype of breast

cancer. We therefore analyzed ATP8A2-J expression with

respect to luminal and basal breast subtypes, two prominent

categories of breast cancer with distinct molecular and clinical

characteristics. Unexpectedly, we found that ATP8A2-J

expression was restricted to tumors with luminal histology,

whereas basal tumors showed minimal expression of this pseu-

dogene (Figure 6A, right). The wild-type ATP8A2 transcript did

not display this pattern of expression.

To investigate a potential role of ATP8A2-J expression in

breast cancer, first we carried out siRNA-based knockdown of

both the wild-type and pseudogene RNA in two independent

breast cancer cell lines that expressed both the transcripts (Fig-

ure S7A). Knockdown of ATP8A2-J with two independent

siRNAs was found to specifically inhibit the proliferation of over-

expressing cell lines Cama-1 and HCC1806 (Figure 6C), but not

the cell lineswith nodetectable levels ofATP8A2-J, for example,

the benign breast epithelial cell line H16N2 (Figure 6C, right) and

a pancreatic cancer cell line, BXPC3 (Figure S7D). Knockdown of

ATP8A2-J (but not ATP8A2-WT) also resulted in reduced cell

migration and invasion seen in in vitro Boyden Chamber assays

(Figure 6D) as well as in in vivo intravasation and metastasis in

chicken chorioallantoic membrane xenograft assay (Figure 6F).

In contrast, knockdown of wild-type ATP8A2 had no effect on

the proliferation of any of the cell lines tested, suggesting an

unexpected growth regulatory role for ATP8A2-J (Figure 6C).

Surprisingly, though the knockdown of wild-type ATP8A2 had

a minimal effect on the pseudogene transcript levels, ATP8A2-

J-specific siRNAs, apart from reducing the ATP8A2-J tran-

script, also reduced the wild-type protein levels (Figures S7C

and S7E). Thus clearly, unlike Oct4 and BRAF pseudogene tran-

scripts having an inverse correlation with the wild-type transcript

levels, ATP8A2-J and wild-type ATP8A2 transcripts (Figures 6A

and 6B) and protein (Figure S7E) do not seem to be regulated in

this manner. Subsequently, to assess the phenotypic effect of

ATP8A2-J overexpression in benign cells, we cloned and over-

expressed the full-length ATP8A2 pseudogene cDNA in benign

breast epithelial cell line TERT-HMEC. Two independent pooled

populations of ATP8A2-J-overexpressing TERT-HMEC cells

were found to undergo increased proliferation and migration

(Figure 6E), indicating the potential oncogenic nature of this

breast-specific pseudogene transcript.
(D) Boyden chamber assay showing cell migration (left) and invasion through ma

(E and F) (E) The effect of ATP8A2-J overexpression in TERT-HMEC cells on cell p

(right) and (F) chicken chorioallantoic membrane assay of HCC-1806 cells treate

relative number of cells intravasated in the lower CAM (left) and metastatic cells

Error bars represent means ± SE of the mean.
DISCUSSION

The recent advances in high-throughput transcriptome se-

quencing have revealed widespread expression of noncoding

RNAs in the context of development and differentiation (Kha-

chane and Harrison, 2010; Nagalakshmi et al., 2008; Pickrell

et al., 2010; Prensner et al., 2011; Wilhelm et al., 2008). These

studies, however, do not include pseudogene expression anal-

yses in their purview, likely due to the challenge of extremely

close sequence similarity with wild-type cognate genes. Here,

we interrogated the potential of RNA-Seq data to unambiguously

detect pseudogene transcripts and to assess whether pseudo-

gene expression is more common in the transcriptome than

previously realized. Surprisingly, we found evidence of a wide-

spread expression of pseudogenes in our cancer transcriptome

resource, including 1,500 pseudogenes annotated in the Yale

and ENCODE databases, redefined the genomic coordinates

of �100 pseudogenes in existing databases, and nominated

more than 400 potentially novel pseudogenes. In aggregate,

our analysis considerably expands the spectrum of expressed

pseudogenes documented previously (Harrison et al., 2005;

Yao et al., 2006; Zheng et al., 2007).

The extreme sequence similarity between pseudogenes and

cognate wild-type genes suggests a functional role for pseudo-

gene transcripts; indeed, pseudogene expression has been

associated with both downregulation of cognate wild-type

gene, such as eNOS in ovary, as well as a positive effect on

the expression of the wild-type gene, as demonstrated recently,

wherein PTENP1 expression upregulates PTEN expression in

prostate cells (Poliseno et al., 2010). Interestingly, a class of

pseudogenes called ‘‘unitary pseudogenes’’ does not have

extant cognate wild-type genes (Zhang et al., 2010). Neverthe-

less, as most pseudogenes do have distinct cognate wild-type

genes, we assessed the correlation between expressed pseudo-

genes and their cognate wild-type genes across multiple

samples (of the same tissue type or across diverse tissue types)

and did not observe a statistically significant correlation. This is

not surprising, partly because our data set is comprised of

a heterogeneous set of samples representing diverse tissue

types. Further, the sensitivity of detection of individual pseudo-

gene transcripts is limited by the degree and distribution of

dissimilarity with the wild-type gene that determines the ‘‘effec-

tive’’ depth of coverage; this limits the number of samples

showing measurable expression of individual pseudogene-

wild-type pairs, making it difficult to conduct robust statistical

analyses. Future studies involving larger sample sets with higher

depth of coverage and longer read length may be better able

to resolve this question.

Taken together, our study provides a systematic approach to

analyze expressed pseudogenes using RNA-Seq data, enabling

comparisons of cancer versus benign tissues in multiple solid
trigel (right).

roliferation (left) and cell migration based on Incucyte wound confluency assay

d with nontargeting control siRNA, ATP8A2-WT, or ATPA2-J siRNA showing

in chicken lung (right).
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tumors. Our efforts lend additional credence to the capacity of

RNA-Seq to ‘‘re-define’’ the functional elements of the genome

and ‘‘re-annotate’’ the population of pseudogenes implicated

in human cell biology. Our approach overcomes the limitations

of previous analyses of pseudogene expression, which were

primarily anecdotal and heterogeneous in nature, and our meth-

odologies suggest avenues to reconcile the difficulty in distin-

guishing pseudogene expression from parental protein-coding

gene expression—a facet that is important for all RNA-Seq

studies aiming to provide an accurate picture of gene expres-

sion. Finally, we describe ATP8A2-J and CXADR-J pseudo-

genes preferentially associated with distinct subsets of breast

cancer and prostate cancer patients, respectively.

The recent description of intricate regulatory networks of

protein-coding transcripts called competitive endogenous

RNAs (ceRNAs) defined on the basis of coordinated regulation

by common sets of microRNA response elements (MREs)—first

intimated by Salmena et al. (Salmena et al., 2011) and sub-

sequently supported by experimental results from multiple

groups(Cesana et al., 2011; Han et al., 2011b; Karreth et al.,

2011; Tay et al., 2011)—implicates potential noncoding func-

tions for many protein-coding transcripts. In this context,

pseudogene transcripts could provide an additional layer of

complexity in conjunction with their cognate wild-type genes

or independently.

The cancer/tissue-specific pseudogene expression signa-

tures described here highlight the need to factor in pseudogene

expression in all high-throughput gene expression studies and

also show that pseudogene expression merits further explora-

tion in its own right as an additional layer of transcriptional

complexity. To facilitate further analyses, we provide here an

extensive resource of RNA-Seq data of human cancer-related

tissues and cell lines.
EXPERIMENTAL PROCEDURES

Data Set

Paired-end transcriptome sequence reads (2 3 40 and 2 3 80 base pairs)

were obtained from a total of more than 293 samples from 13 tissue types (Fig-

ure S1 and Table S1). Each sample was sequenced on an Illumina Genome

Analyzer I or II according to protocols provided by Illumina as described earlier

(Palanisamy et al., 2010).

Pseudogene Analysis Pipeline

Paired-end transcriptome reads were mapped to the human genome

(NCBI36/hg18) and University of California Santa Cruz (UCSC) Genes using

Efficient Alignment of Nucleotide Databases (ELAND) software of the Illumina

Genome Analyzer Pipeline, using 32 bp seed length and allowing up to two

mismatches; detailed mapping status is represented in Table S2. Passed

purity filter reads obtained from Illumina export and extended output files (as

described before) were parsed and binned into three major categories: (1)

both of the paired reads map to annotated genes; (2) one or both of the paired

reads map to unannotated regions in the genome; and (3) neither of the reads

map (these include viral, bacterial, and other contaminant reads, as well as

sequencing errors). The paired reads with one or both partners mapping to

an unannotated region were clustered based on overlaps of aligned

sequences using the chromosomal coordinates of the clusters. Singleton

reads that did not cluster or stacked\duplicated reads with the same start

and stop genomic coordinates (potential PCR artifacts) were filtered out.

Passed filter clusters were defined as units of transcript expression (analogous

to a ‘‘probe’’ on microarray platforms). These clusters were screened against
1632 Cell 149, 1622–1634, June 22, 2012 ª2012 Elsevier Inc.
two human pseudogene resources, Yale human pseudogene (Build 53, http://

pseudogene.org/) (Karro et al., 2007) and Gencode (October 2009, http://

genome.ucsc.edu/ENCODE/) (Zheng et al., 2007), to identify and annotate

pseudogene clusters. The processed, duplicated, and fragmented categories

of pseudogene entries from Yale and the entries corresponding to Level 1+2

(Manual Gene Annotations) and Level 3 (Automated Gene Annotations) from

Gencode were used. The clusters were also subjected to homology search

using the alignment tool BLAT (http://www.soe.ucsc.edu/�kent) (Kent, 2002)
for an independent annotation. Sequence reads from individual samples

were queried against the resultant clusters defined by the union of Yale,

ENCODE, andBLAT output to assess the expression of pseudogenes (Figure 1

and Table S3). The cutoff value for pseudogene expression in a sample was set

at five or more reads mapping to at least one cluster in a putative pseudogene

transcript. Pseudogene transcripts (one or more probes overlapping with

either Yale or ENCODE) detected in two or more samples in a tissue type

and absent in all other tissue types were defined as tissue/lineage specific.

Pseudogene probes detected in 10 out of 13 samples were designated as

ubiquitous. All other cases were described as an intermediate category. Pseu-

dogene transcripts detected in three or more cancer samples and absent in all

benign samples were designated as cancer specific.

We carried out multiple correlation analyses (Figure S3), including: (1)

passed filter reads (sequence yield) with total number of pseudogene tran-

scripts observed per sequencing run (pseudogene transcript coverage); (2)

expression of genes and pseudogenes carried out using 173 gene-pseudo-

gene pairs in 64 samples that each show nonzero expression in at least ten

samples across the data set; (3) expression levels of ATP8A2 and CXADR

pseudogenes obtained from RNA-Seq and qPCR; (4) ChIP-Seq analysis of

a breast cancer cell line MCF7 that was probed with H3K4me3 and compared

withMCF7 pseudogene transcript data; and (5) pseudogene transcripts with 30

UTR sequences (± 2 kb) that were compared with 30 UTR sequences of their

cognate genes using BLAT.

Pseudogene transcripts showing an overlap with transcripts involved in

ceRNA network genes reported previously were tabulated (Sumazin et al.,

2011 and Tay et al., 2011) (Table S5). The entire sequence data set will be

submitted to dbGAP after securing requisite approvals.

RNA Isolation and cDNA Synthesis

Total RNAwas isolated using Trizol and anRNeasy Kit (Invitrogen) with DNase I

digestion according to the manufacturer’s instructions. RNA integrity was

verified on an Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA).

cDNA was synthesized from total RNA using Superscript III (Invitrogen) and

random primers (Invitrogen).

Quantitative Real-Time PCR

Quantitative real-time PCR (qPCR) was performed using Taqman or SYBR

green-based assays (Applied Biosystems, Foster City, CA) on an Applied

Biosystems 7900HTReal-Time PCRSystem, according to standard protocols.

The Taqman assays for CXADR and ATP8A2 assays were custom designed

based on regions of differences between the wild-type and pseudogene

sequences (Figure S4). Oligonucleotide primers for SYBR green assays were

obtained from Integrated DNA Technologies (Coralville, IA). The housekeeping

gene GAPDH was used as a loading control. Fold changes were calculated

relative to GAPDH and normalized to the median value of the benign samples.

CXADR-J_F CGGTTTCAGTGCTCTATGTTGTTTG; CXADR-J_R TAAATT

TAGGATTACATGTTTCTAGAACA; CXADR-J_M 6FAM ATGCCATCCAA

AACCA; ATP8A2-J_F CTGGTGTTCTTTGGCATCTACTCA; ATP8A2-J_R

CAGCTCAGGATCACAGTTGCT; ATP8A2-J_M 6FAM CTGGTCCACCATT

CTC; ATP8A2-WT_F ATCCTATTGAAGGAGGACTCTTTGGA; ATP8A2-WT_R

CCAGCAAATTCCCAAGGTCAGT; ATP8A2-WT_M 6FAM AAGGGCAGCCAT

TACT; KLK4-KLKP1_F ATGGAAAACGAATTGTTCTG; and KLK4-KLKP1_R

CAGTGTTCCGGGTGATGCAG.

Additionally, inventoried Taqman assays for CXADR-WT (Hs00154661_m1)

and ATP8A2-WT (assay ID hs00185259_m1) were used.

RT-PCR and Sanger Sequencing

Sequence stretches unique to pseudogene transcripts were identified by

aligning the candidate pseudogene sequences with their corresponding



wild-type genes. PCR primers specific to pseudogene transcripts (Table S4)

were used to amplify pseudogene cDNAs from index samples followed by

Sanger sequencing of the PCR products. The resultant sequences were

analyzed using ClustalW to compare the identity between pseudogene and

cognate wild-type sequences.

Cell Proliferation Assays

Experimental cells were transfected with siRNAs using oligofectamine reagent

(Life Sciences), and 3 days posttransfection, the cells were plated for prolifer-

ation assays. At the indicated times, cell numbers were measured using

Coulter Counter.

Wound Healing Assay Using Incucyte

For the wound healing assay, vector control or ATP8A2 pseudogene-

overexpressing cells were plated at high density, and 6 hr later, uniform

scratch wounds were made using Woundmaker (Incucyte). Relative migration

potential of the cells was assessed by confluence measurements at regular

time intervals as indicated over the wound area.

ATP8A2 Pseudogene Overexpression Studies

The ATP8A2 pseudogene cDNA from breast cancer cell line HCC1806 was

cloned into pENTR-D-TOPO entry vector (Invitrogen) following manufacturer’s

instructions. Sequence-confirmed entry clones in correct orientation were

recombined into Gateway pcDNA-DEST26 mammalian expression vector

(Invitrogen) by LR Clonase II enzyme reaction following manufacturer’s

instructions. HMEC-TERT cells were transfected using Fugene 6, and poly-

clonal populations of cells expressing ATP8A2 pseudogene cDNA or empty

vector constructs were selected using geneticin. At the indicated times, cell

numbers were measured using Coulter Counter.

Chicken Chorioallantoic Membrane Assay

Chicken chorioallantoic membrane (CAM) assay for tumor growth was carried

out as follows. Fertilized eggswere incubated in a humidified incubator at 38�C

for 10 days, and then CAM was dropped by drilling two holes: a small hole

through the eggshell into the air sac and a second hole near the allantoic

vein that penetrates the eggshell membrane but not the CAM. Subsequently,

a cutoff wheel (Dremel) was used to cut a 1 cm2 window encompassing the

second hole near the allantoic vein to expose the underlying CAM. When

ready, CAM was gently abraded with a sterile cotton swab to provide access

to the mesenchyme, and 23 106 cells in 50 ml volume were implanted on top.

The windows were subsequently sealed and the eggs returned to the incu-

bator. After 7 days, extraembryonic tumors were isolated and weighed. Five

to ten eggs per group were used in each experiment.
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Abstract
Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of
gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, “passenger” aberrations
has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the
loci of chromosomal amplifications—a class of oncogenic aberrations that are widely prevalent in breast cancers.
Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput
transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic
hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons
including 17q12, 17q23, 20q13, chr8q, and others. Many of these fusions appeared to be recurrent or involved
highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying
loss of functional domains. As illustrative examples of the “amplicon-associated” gene fusions, we examined
here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB1 kinase
in BT-474, and the therapeutically important receptor tyrosine kinase EGFR in MDA-MB-468 breast cancer cell line.
These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and
encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study
suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal
amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during
prioritization of gene fusion candidates.
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Introduction
Chromosomal amplifications and translocations are among the most
common somatic aberrations in cancers [1,2]. Gene amplification is
an important mechanism for oncogene overexpression and activation.
Numerous recurrent loci of chromosomal amplifications have been
characterized in breast cancer, which result in gain of copy number
and overexpression of oncogenes such as ERBB2 on 17q12 (the defin-
itive molecular aberration in 20%-30% of all breast cancers) [3,4], as
well as many other oncogenic drivers including Myc [5], EGFR [6],
FGFR1 [7], CyclinD1 [8], RPS6KB1 [9], and others [10]. Chromo-
somal translocations leading to generation of gene fusions represent
another prevalent mechanism for the expression of oncogenes in epi-
thelial cancers [11]. Recently, we described the discovery and charac-
terization of recurrent gene fusions in breast cancer involving MAST
family serine threonine kinases andNotch family of transcription factors
[12]. Interestingly, we also observed a large number of gene fusions,
including some recurrent fusions involving known oncogenes localized
at loci of chromosomal amplifications.
Here we carried out a systematic analysis of the association between

gene fusions and genomic amplification by integrating RNA-Seq data
with array comparative genomic hybridization (aCGH)–based whole-
genome copy number profiling from a panel of breast cancer cell lines.
We examined a set of “amplicon-associated gene fusions” that refer to
all the fusions where one or both gene partners are localized to a site of
chromosomal amplification. Specifically, we assessed the functional rel-
evance of two amplicon-associated fusion genes involving oncogenic
kinases EGFR and RPS6KB1 in the context of prioritizing fusion can-
didates important in tumorigenesis. Our results suggest that recurrent
gene fusions localized to recurrent amplicons, displaying allelic imbal-
ance between the fusion partners, may represent an epiphenomenon of
genomic amplification cycles not essential for cancer development.

Materials and Methods

Gene Fusion Data Set
Chimeric transcript candidates were primarily obtained from

paired-end transcriptome sequencing of breast cancer from a total
of more than 49 cell lines and 40 tissue samples described previously
[12]. aCGH data were generated using Agilent Human Genome
244A CGH Microarrays (Agilent Technologies, Santa Clara, CA)
according to the manufacturer’s instructions, and data were analyzed
using CGHAnalytics (Agilent Technologies). Copy number alterations
were assessed using ADM-2, with the threshold a setting of 6.0 and
a bin size of 10.

RNA Isolation and Complementary DNA Synthesis
Total RNA was isolated using TRIzol and RNeasy Kit (Invitrogen,

Carlsbad, CA) with DNase I digestion according to the manufacturer’s
instructions. RNA integrity was verified on an Agilent Bioanalyzer 2100
(Agilent Technologies). Complementary DNAwas synthesized from total
RNA using Superscript III (Invitrogen) and random primers (Invitrogen).

Quantitative Real-time Polymerase Chain Reaction
Primers for validation of candidate gene fusions were designed using

the National Center for Biotechnology Information Primer Blast
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), with primer pairs
spanning exon junctions amplifying 70- to 110-bp products for every
chimera tested. Quantitative polymerase chain reaction (QPCR) was per-
formed using SYBR Green MasterMix (Applied Biosystems, Carlsbad,
CA) on an Applied Biosystems StepOne Plus Real-Time PCR System.
All oligonucleotide primers were obtained from Integrated DNA Tech-
nologies and are listed in Table W1. GAPDH was used as endogenous
control. All assays were performed twice, and results were plotted as
average fold change relative to GAPDH.

Cell Proliferation Assays
Cells were transfected with small interfering RNAs (siRNAs) using

Oligofectamine reagent (Life Sciences, Carlsbad, CA), and 3 days
after transfection, the cells were plated for proliferation assays. At the
indicated times, cell numbers were counted using Coulter Counter
(Indianapolis, IN).

Western Blot
Cell pellets were sonicated in NP-40 lysis buffer (50 mM Tris-

HCl, 1% NP-40, pH 7.4; Sigma, St. Louis, MO), complete protease
inhibitor mixture (Roche, Indianapolis, IN), and phosphatase in-
hibitor (EMD Bioscience, San Diego, CA). Immunoblot analysis was
carried out using antibodies for ERBB2 (MS-730-PABX; Thermo
Scientific, Fremont, CA) and RPS6KB1 (2708S; Cell Signaling, Danvers,
MA). Human β-actin antibody (Sigma, St. Louis, MO) was used as a
loading control.

Knockdown Assays
Short hairpin RNAs (shRNAs; Table W1) were transduced in

presence of 1 μg/ml polybrene. All siRNA transfections were performed
using Oligofectamine reagent (Life Sciences). For siRNA knockdown
experiments, multiple custom siRNA sequences targeting the ARID1A-
MAST2 fusion (Thermo, Lafayette, CO) were used [12].
Results
Paired-end transcriptome sequencing of breast cancer cell lines and
tissues led to the identification of an average of more than four gene
fusions per breast cancer sample [12]. Interestingly, we observed that
some of the cell lines with the largest number of gene fusions also
harbored many well-known chromosomal amplifications, prompting
us to examine a likely association between genomic amplifications
and gene fusions. To assess copy number alterations at the chromo-
somal coordinates of the fusion genes, we analyzed aCGH (244K
Agilent array) data in a set of 14 cell lines (Table W2) and observed
that as many as 62% of the total number of fusions were associated
with regions of amplifications (Figure 1A). The genes involved in
fusions were found to be significantly associated with their genomic
amplification status based on Fisher exact t test (P < .0004), in four
of six cell lines with the maximum number of fusions, including BT-
474, MCF7, HCC2218, and UACC893 (Figure 1B ).

Examining the distribution of fusion genes in individual samples
revealed that a majority of the gene fusions were associated with
17q12 amplicon harboring ERBB2 and 17q23 amplicon that includes
genes such as BCAS3, RPS6KB1, and TMEM49, 20q13 amplicon with
BCAS4 and the chr8q amplicon commonly found amplified in breast
cancer (Table W2 and Figures 2 and W1). Interestingly, the breast
cancer cell line BT-474 that harbors both the chr17 amplicons and
the chr20 amplicon and MCF7 with prominent amplifications in
chr17, chr20, and chr8q showed the maximum number of gene fusions
observed in a sample, accounting for as many as 26 gene fusions asso-
ciated with amplicons compared against only 9 in unamplified loci
(Figures 1 and 2 and Table W2).



Figure 1. Distribution of gene fusions across breast cancer cell lines. (A) Pie chart representation of the relative proportion of gene fusions
associated with loci of genomic amplifications compared to unamplified loci (left) and bar graph representation of the relative distribution
of gene fusions across different breast cancer cell lines (right). (B) Table summarizing the statistical significance of association between
gene fusions and chromosomal amplifications in breast cancer cell lines with the highest number of gene fusions in A (using Fisher exact
t test, sorted by P value).
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In the backdrop of a large number of somatic aberrations seen in
cancers, any “recurrent” events observed across samples are generally
regarded as potentially “driving” tumorigenesis. Interestingly, among
the more than 380 gene fusions reported in our compendium of breast
cancer fusions [12], as many as 62 genes were found to be recurrent
partners (appear at least twice). Among these, whereas the MAST
and Notch fusions were shown to be functionally recurrent and poten-
tially driving aberrations in up to 5% to 7% of breast cancers, 33 of
other recurrent gene fusions were found to be associated with known
frequent amplicons, including ERBB2, BCAS3/4, and chr8q. Among
these, three fusions each involved the ikaros family zinc finger protein
3 transcription factor (IKZF3 on chr17q12 amplicon) and breast
carcinoma amplified sequence 3 (BCAS3 on chr17q23 amplicon) as
3′ partners—all with different 5′ partners. Similarly, tripartite motif
containing 37 (TRIM37 on chr17q23) was a common 5′ partner in three
distinct gene fusions with different 3′ partners (Table W2). To further
expand our integrative analysis of copy number aberrations and gene
fusions, next we used the breast cancer aCGH data [13,14] and ob-
served gene fusion–associated amplicons in MCF7, BT-474, and MDA-
MB-468, HCC-1187 as seen in our data as well as in an additional
panel of cell lines, including ZR-75-30, SUM190, MDA-MB-361,
HCC-1428, and HCC-1569 (Figure W2). Clearly, apart from trig-
gering overexpression of constituent genes, our observations strongly
suggest that the loci of chromosomal amplifications also serve as “hot-
spots” for the generation of recurrent gene fusions.

Next, to assess whether amplicon-associated gene fusions impart
oncogenic phenotypes on the cells, we examined the open reading
frames (ORFs), functional domains/motifs, and conservation of fu-
sion architecture across different samples. Among recurrent fusion
candidates within amplicons, we focused on known cancer-associated
partner genes such as kinases, oncogenes, tumor suppressors, or known
fusion partners in the Mitelman Database of chromosomal aberrations
in cancer [15] and observed several functionally plausible gene fusions.
Here we describe our observations with two specific examples of gene
fusions involving oncogenic kinases.

The triple-negative breast cancer cell line MDA-MB-468 is known
to show an overexpression of epidermal growth factor receptor (EGFR)
[16]. In our transcriptome sequencing compendium of 89 breast cancer
cell lines and tissues, the highest expression of EGFR is observed in
MDA-MB-468 (Figure 3A), potentially resulting from a focal amplifi-
cation at chr7p12 (Figure 2). In addition, we detected an EGFR fusion
transcript (EGFR-POLD1) in this cell line, encoding the N-terminal
portion of EGFR, completely devoid of the tyrosine kinase domain
(Figure 3A, inset). However, the uniform read-coverage observed across
the full length of the EGFR transcript in this sample (Figure 3B), pre-
cluded the existence of any exon imbalance, suggesting that even as the
kinase domain is lost in the fusion, the full-length EGFR protein is
expressed in this cell line. Further, we observed a remarkable mismatch
between the copy numbers of EGFR and its fusion partner POLD1
(Figure 3C ) that supports a predominant expression of full-length
EGFR compared with the EGFR-POLD1 chimera. This is unlike the
observation in case of MAST kinase fusions in breast cancer charac-
terized in our previous study [12], in which case a marked exon im-
balance in coverage was observed (Figure W3). Considering that the
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MDA-MB-468 harbors both MAST2 and EGFR fusions, we were in-
trigued to assess its relative “dependence” on both the kinases. Surpris-
ingly, a profound reduction in cell proliferation was observed on siRNA
knockdown ofMAST2, whereas EGFR knockdown showed little effect
(Figure 3D). Next, testing the possibility of EGFR amplicon potentially
cooperating with MAST2, we found that the effect of combined
knockdown of EGFR and MAST2 was comparable with that of
MAST2 knockdown alone (Figure 3D), further suggesting that EGFR
amplification does not signify a driver aberration. In this context, the
EGFR fusion transcript that represents a miniscule fraction of overall
EGFR expression and encodes only the N-terminal portion lacking the
kinase domain was reckoned to be inconsequential.
Next, we looked at recurrent gene fusions involving oncogenic

serine threonine kinase ribosomal protein S6 kinase on chr17q23 fre-
quently amplified in breast cancers [17–20] identified in BT-474
Figure 2. Graphical representation of integrative analysis of gene fus
distribution of gene fusions along with status of copy number alterat
purple and cyan lines represent the fusions associated with amplicon
fusions identified.
(RPS6KB1-SNF8) and MCF7 (RPS6KB1-VMP1). Both of these cell
lines harbor amplifications at the RPS6KB1 locus and express the high-
est levels of RPS6KB1 among all the samples examined (Figure 4A).
Both the chimeric transcripts retain only the first exon of RPS6KB1
and the respective open reading frames show a complete loss of the
kinase domain (Figure 4A, inset). We also observed an even read cov-
erage across the RPS6KB1 transcript in both fusion-positive cell lines,
similar to a representative benign mammary epithelial cell line, albeit
at a much higher level, indicating that full-length RPS6KB1 protein
is encoded in these samples (Figures 4B and W4A). Further, the differ-
ence between the copy number observed between the fusion partners in
both the RPS6KB1 fusions (Figures 4C and W4B) indicates an allelic
imbalance between the full-length and the putative fusion genes. Next,
considering that BT-474 is an ERBB2-positive cell line, we tested po-
tential dependence of these cells on the RPS6KB1 protein. Surprisingly,
ions with copy number analysis. Circos plots of the genome-wide
ions. Red and green peaks represent amplifications and deletions;
s and nonamplicons, respectively. “n” refers to the total number of



Figure 3. (A) Normalized expression (RPKM) of EGFR in descending order of expression in a panel of breast cancer samples obtained
from RNA-Seq. Schematic representation of wild-type EGFR and POLD1 proteins with putative breakpoints indicated by red arrows and
the domain structure of the putative fusion protein (inset). (B) Plot of normalized coverage of EGFR transcript in MDA-MB-468 cell line
showing the location of the breakpoint (indicated by red arrow). (C) Bar graph representing the copy number of EGFR and POLD1 in
MDA-MB-468. (D) Proliferation assay showing absolute cell count (y axis) over a time course (x axis) after knockdown with EGFR and/or
MAST2 siRNAs in MDA-MB-468. QPCR assessment of knockdown efficiencies relative to nontargeted control (NTC; inset).
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similar to our observations with EGFR knockdown in MDA-MB-468
cells, here we observed only a small effect on cell proliferation after
shRNA knockdown of RPS6KB1, in dramatic contrast to the effect of
ERBB2 knockdown (Figure 4D). Notably, the shRNA knockdown of
RPS6KB1 led to a significant depletion of the full-length protein yet it
did not affect cell proliferation compared with ERBB2 protein deple-
tion (Figure 4D, inset). Therefore, BT-474 cells do not display a depen-
dence on RPS6KB1 protein, and considering that the RPS6KB1 fusion
product is completely devoid of all functional domains of RPS6KB1,
including the kinase domain, this fusion also likely represents a pas-
senger event.
Discussion
In our systematic search for gene fusions in breast cancer using high-
throughput transcriptome sequencing, we observed a notably large num-
ber of fusion genes associated with many well characterized recurrent
amplicons, including 17q12, 17q23, 20q13, and 8q, among others.
Amplicon-associated gene fusions were found to involve complex and
cryptic rearrangements, involving one or both partners within the am-
plicon site, with the chimeric transcript expression apparently concealed
in the backdrop of highly expressed wild-type genes. The gene fusions
considered here include only “expressed” chimeric transcripts derived
from known/annotated fusion partners. Chromosomal rearrangements
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that do not express chimeric transcripts or that involve unannotated
fusion partners are excluded from this analysis. This likely accounts
for the variability observed in the number of gene fusions scored across
multiple samples with known amplicons. Because many of the fusions
at the amplicons appeared to be recurrent, although frequently fused
with multiple different partners, it led us to examine whether the recur-
rence was incidentally associated with recurrent amplicons or signified
functionally important aberrations.
MDA-MB-468 represents a prototype triple-negative breast cancer

cell line with a “basal-like” gene expression profile that shows an
Figure 4. (A) Normalized expression (RPKM) of RPS6KB1 in descendin
from RNA-Seq. Schematic representation of wild-type RPS6KB1, TME
arrows and the domain structure of the putative fusion proteins in BT
transcript in BT-474 cell line showing the location of the breakpoint (in
of RPS6KB1 and SNF8 in BT-474 (D) Proliferation assay showing abso
with RPS6KB1 and/or ERBB2 shRNAs in BT-474. Western blot asses
(NTC). Actin was used as a loading control (inset).
overexpression of the oncogenic kinase EGFR due to a focal ampli-
fication at chr7p12. Here we discovered a chimeric transcript involv-
ing EGFR. However, careful examination of this transcript revealed
that the fusion encodes N-terminal EGFR protein, without the kinase
domain. Transcriptome sequencing did not show evidence of fusion-
associated exon imbalance in EGFR expression, suggesting that full-
length EGFR is expressed in this cell line. In addition, the significantly
higher genomic copy number of EGFR compared to its fusion partner
POLD1 suggests that a minor allelic fraction of the EGFR is involved
in fusion with POLD1, whereas other amplified copies of the gene
g order of expression in a panel of breast cancer samples obtained
M49, and SNF8 proteins with putative breakpoints indicated by red
-474 and MCF7 (inset). (B) Plot of normalized coverage of RPS6KB1
dicated by red arrow). (C) Bar graph representing the copy number
lute cell count (y axis) over a time course (x axis) after knockdown
sment of the knockdown efficiency relative to nontargeted control
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express the full-length molecule. Technically, the detection and mon-
itoring of the EGFR fusion transcript in the backdrop of extremely
high levels of wild-type EGFR transcript is challenging; therefore,
we chose to assess the dependency imparted by full-length EGFR.
Interestingly, the knockdown of EGFR had only a slight effect on
the proliferation of MDA-MB-468 cells, whereas a profound reduction
in cell proliferation was observed on the knockdown the fusion gene
MAST2. Combined knockdown of MAST2 and EGFR produced the
same effect as that by MAST2 alone, further calling into question the
credentials of EGFR as a driver aberration in MDA-MB-468 cells.
Interestingly, MDA-MB-468 is known to be insensitive to EGFR
inhibitors like erlotinib [21] and gefitinib [22].

Similarly, the recurrent gene fusions involving RPS6KB1 retain
only the first exon, and the chimeric ORFs show a complete loss of
the kinase domain in breast cancer cell lines BT-474 andMCF7. Sim-
ilar to the EGFR fusion, DNA copy number analysis and RNA-Seq
data provided the evidence that full-length RPS6KB1 protein is en-
coded in both these cell lines. Notably, both BT-474 and MCF7 have
been shown to express high levels of full-length RPS6KB1 protein [23],
suggesting that these cells exhibit elevated activity of RPS6KB1 as
a result of amplification, independent of the fusion. Again, similar
to EGFR knockdown in MDA-MB-468, RPS6KB1 knockdown in
BT-474 (an ERBB2-positive cell line) showed an insignificant effect
on cell proliferation compared to ERBB2 knockdown. Interestingly,
in a previous study, knockdown of RPS6KB1 was found to have no
effect on apoptosis in both BT-474 and MCF7 breast cancer cells [24].

In the light of our observations, we surmise that repeated breaks
and rejoining of chromosomes during chromosomal amplifications
led to the generation of amplicon-associated gene fusions. Loci of re-
current genomic amplifications thus engender “pseudo” recurrent gene
fusions that may largely represent passenger aberrations involving ran-
dom breakpoints. The two cell lines with established drivers—ERBB2
in BT-474 andMAST2 in MDA-MB-468—made it possible for us to
assess the relative importance of amplicon fusions involving RPS6KB1
and EGFR, respectively. In cases where a driver is not clearly apparent,
a more careful examination of all plausible fusion candidates will be
required. Importantly, even as our study primarily pertains to breast
cancers based on available data and a well-documented preponderance
of copy number aberrations in breast cancers [10], we expect the asso-
ciation between amplicons and gene fusions to be consistent in other
cancers as well. We argue here for a measure of caution in considering
the functional implications of recurrent gene fusions associated with
amplifications because these may be simply a result of massive chromo-
somal upheaval at the amplicons, not representing clonally selected
oncogenic events.
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Table W1. Primer Sequences and siRNA/shRNA Clone Details.
Gene Symbol
 Clone ID
EGFR
 LU-003114-00-0002

ERBB2
 SHCLNV-NM_004448

RPS6KB1
 SHCLNV-NM_003161
Primer
 Sequence
EGFR-f1
 GGGCCAGGTCTTGAAGGCTGT

EGFR-r1
 ATCCCCAGGGCCACCACCAG

EGFR-f2
 ACACCCTGGTCTGGAAGTACGCA

EGFR-r2
 AGTGGGAGACTAAAGTCAGACAGTGAA

EGFR-f3
 CCGAGGCAGGGAATGCGTGG

EGFR-r3
 TGGCCTGAGGCAGGCACTCT

ERBB2-f1
 TGCGCAGGCAGTGATGAGAGT

ERBB2-r1
 TCTCGGGACTGGCAGGGAGC

ERBB2-f2
 TCCTCCTCGCCCTCTTGCCC

ERBB2-r2
 TCTCGGGACTGGCAGGGAGC

RPS6KB1-f1
 TGCTGACTGGAGCACCCCCA

RPS6KB1-r1
 GCTTCTTGTGTGAGGTAGGGAGGC

GAPDH-f1
 GGCTGAGAACGGGAAGCTTGTCA

GAPDH-r1
 TCTCCATGGTGGTGAAGACGCCA

MAST2_f1
 GAAGTGAGTGAGGATGGCTGCCTT

MAST2_r1
 GAGCCGCTCCATGCTGCTGTAC

MAST2_f2
 ATTGAGGGCCATGGGGCATCT

MAST2_r2
 CCCCATAGGCGCCATTGCTGATG
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Figure W1. UCSC tracks displaying the ERRB2 and RPS6KB1 amplicons, with fusion genes highlighted in yellow.



Figure W2. Graphical representation of integrative analysis of gene fusions with copy number analysis. Circos plots of the genome-wide
distribution of gene fusions alongwith status of copy number alterations. Red and green peaks represent amplifications and deletions; purple
line represents the fusions associated with amplicons and nonamplicons, respectively. “n” refers to the total number of fusions identified.
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Figure W3. Plot of normalized coverage ofMAST1 andMAST2 transcripts inMAST fusion-positive samples (breakpoint indicated by arrow).



Figure W4. (A) Plot of normalized coverage of RPS6KB1 transcript in BT-474, MCF7, and H16N2 cell lines. (B) Bar graph representing the
copy number of RPS6KB1 and TMEM49 in MCF7.
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 ABSTRACT     Protein kinases represent the most effective class of therapeutic targets in cancer; 
therefore, determination of kinase aberrations is a major focus of cancer genomic 

studies. Here, we analyzed transcriptome sequencing data from a compendium of 482 cancer and 
benign samples from 25 different tissue types, and defi ned distinct “outlier kinases” in individual 
breast and pancreatic cancer samples, based on highest levels of absolute and differential expression. 
Frequent outlier kinases in breast cancer included therapeutic targets like  ERBB2  and  FGFR4 , distinct 
from  MET ,  AKT2 , and  PLK2  in pancreatic cancer. Outlier kinases imparted sample-specifi c depend-
encies in various cell lines, as tested by siRNA knockdown and/or pharmacologic inhibition. Outlier 
expression of polo-like kinases was observed in a subset of  KRAS -dependent pancreatic cancer cell 
lines, and conferred increased sensitivity to the pan-PLK inhibitor BI-6727. Our results suggest that 
outlier kinases represent effective precision therapeutic targets that are readily identifi able through 
RNA sequencing of tumors. 

  SIGNIFICANCE:  Various breast and pancreatic cancer cell lines display sensitivity to knockdown or 
pharmacologic inhibition of sample-specifi c outlier kinases identifi ed by high-throughput transcrip-
tome sequencing. Outlier kinases represent personalized therapeutic targets that could improve com-
binatorial therapy options.  Cancer Discov; 3(3); 280–93. ©2013 AACR. 
See related commentary by Yegnasubramanian and Maitra, p. 252.
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 INTRODUCTION 

 The dependence of cancers on a primary driver, most often 
a kinase ( 1, 2 ), forms the guiding principle of targeted therapy 
that has had some notable clinical successes, such as imatinib 
for  BCR - ABL –positive chronic myeloid leukemia, trastuzumab 
and lapatinib for  ERBB2 -positive breast cancers, gefi tinib for 
lung cancers with kinase domain mutations in  EGFR  ( 3, 4 ), 
and, more recently, crizotinib for lung cancers with  ALK  gene 
fusions ( 5 ). Thus, protein kinases are the mainstay of a major-
ity of the current targeted therapeutic strategies for cancers, 
and inhibitors of several oncogenic kinases such as AKT, 
BRAF, CDKs, KIT, RET, SRC, MAPKs, MET, PIK3CA, PLKs, 
AURKs, S6Ks, and VEGFR are in various stages of clinical use, 
trials, or development ( 4 ,  6 ). While activating somatic muta-
tions are associated with a few of these genes, overexpression 
of kinases (resulting from genomic amplifi cation or other 
underlying somatic aberrations) is often a strong indicator of 
aberrant activity that may impart dependence of cancer cells. 

 Pancreatic cancer is the fourth leading cause of cancer-
related deaths in the United States, with the worst prognosis 
(5-year survival <3%) of all major malignancies ( 7 ), due to  
diagnosis of the disease at an advanced, unresectable stage 
and poor responsiveness to chemo-/radiotherapy ( 8, 9 ). The 
overarching oncogenic driver of pancreatic cancer is mutant 
 KRAS , which has eluded therapeutic interventions ( 10, 11 ), 
spurring the search for alternative targets ( 11 ). The identifi ca-
tion of distinct kinases in independent screens for synthetic 
lethal interactors of  KRAS  ( 12–14 ) led us to systematically 
explore the expression profi les of all 468 human kinases (the 

kinome) to identify and test “personalized kinase targets” in 
a panel of pancreatic cancer cell lines. 

 Next-generation sequencing of transcriptomes offers sig-
nifi cant advantages over microarrays in terms of throughput, 
elimination of probe bias, and simultaneous monitoring of 
diverse components of transcriptome biology ( 15 ), including 
gene expression ( 15–18 ), alternative splicing ( 19, 20 ), chimeric/
read-through transcripts ( 21, 22 ), and noncoding transcripts 
( 23, 24 ). Furthermore, transcriptome sequencing affords a 
direct and quantitative readout of transcript abundance, facili-
tating sample-wise gene expression analyses using a digital 
metric of normalized fragment reads, which are not possible 
using microarrays. Here, we set out to use transcriptome data 
from a compendium of 482 cancer and benign samples from 25 
different tissue types to carry out gene expression profi ling of 
the complete complement of kinases in the human genome, the 
kinome, to identify “individual sample-specifi c outlier kinases” 
inspired by the concept of cancer outlier profi le analysis (COPA; 
refs.  25, 26 ). Importantly, while COPA analysis was used to iden-
tify subsets of “samples displaying outlier expression of candi-
date genes,” here, we interrogated subsets of “outlier genes in 
individual samples,” focusing on kinases that display the high-
est levels of absolute expression among all the kinases in a sam-
ple and the highest levels of differential expression compared 
with the median level of expression of the respective gene(s) 
across the compendium. As proof-of-concept, we observed out-
lier expression of the therapeutic target  ERBB2  specifi cally in all 
the breast cancer cell lines analyzed that are known to be  ERBB2  
positive. Thus, we hypothesized that  specifi c outlier kinases in 
other samples may also impart “dependence” owing to clonal 
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outlier expression across multiple pancreatic cancer samples 
included  EPHA2 ,  MET ,  PLK2 ,  MST1R , and  AKT2 . Interest-
ingly,  AXL  and  EGFR  showed outlier expression in both pan-
creatic and breast cancer samples. 

 Before proceeding to test outlier kinase–specifi c dependen-
cies in individual cell lines, we validated the gene expression 
readout provided by the RNA-Seq data. First, comparing the 
gene expression profi les of a prostate cancer cell line DU145 
across 4 independent RNA-Seq runs, we observed a robust 
correlation ( R 2   > 0.96) between the technical replicates (Sup-
plementary Fig.  S1A). Next, we analyzed the variance across 
RNA-Seq data from a breast cancer cell line, MCF-7, treated 
with estrogen (0, 3, and 6 hours) as biologic quasi-repli-
cates. Interestingly, we observed an overall high correlation 
( R 2   > 0.91) here also, albeit less than the technical replicates (Sup-
plementary Fig. S1B). Next , we validated the expression profi les 
of kinase genes derived from RNA-Seq by quantitative reverse-
transcription PCR (qRT-PCR) and Western blot analyses. As an 
example, a strong correlation ( R 2   > 0.88) was observed between 
the levels of  MET  expression by RNA-Seq and qRT-PCR, over a 
range of expression values across a panel of samples ( Fig. 2A ). 
In addition, individual samples showing outlier expression 
of  MET  by RNA-Seq showed distinctly higher expression by 
qRT-PCR, compared with nonoutlier samples ( Fig.  2B ). Simi-
larly, we conducted qRT-PCR validation of RNA-Seq data from 
multiple samples for 8 additional kinases, again showing strong, 
statistically signifi cant correlations with overall gene expression 
levels (Supplementary Fig. S2) as well as outlier calls (Supple-
mentary Fig.  S3). Furthermore, extending the correlation of 
outlier expression to protein levels, cell lines with outlier expres-
sion of  MET  were found to display higher levels of total as well 
as phosphorylated MET, compared with cells without outlier 
expression of  MET  ( Fig. 2C ). Finally, to assess the feasibility of 
identifying outlier kinases in cancer tissue samples in the back-
drop of underlying benign stromal, vascular, and immune cells, 
we observed a strong correlation between the RNA-Seq data 
and outlier calls between a primary tumor-derived xenograft 
tissue, DS-08-947, and its derivative cell line (Supplementary 
Fig. S4A and Supplementary Table S4). Similar correlation was 
observed between BxPC-3 and PANC-1 cell lines and xenograft 
tissues derived from them (Supplementary Fig. S4B).    

 A Subset of  ERBB2 -Positive Breast Cancer Cell 
Lines Display Outlier Expression of  FGFR4  

 Among the  ERBB2 -positive breast cancer cell lines analyzed 
by RNA-Seq, ZR-75-30 exhibited singular outlier kinase expres-
sion of  ERBB2 , whose knockdown resulted in a strong growth 
inhibition ( Fig. 3 ). However, knockdown of  RPS6KB1 , another 
oncogenic kinase on chromosome 17 located near the  ERBB2  
amplicon and overexpressed in 40% to 50% of breast cancers, 
did not affect the proliferation rate of ZR-75-30 cells, which do 
not show outlier expression of  RPS6KB1  ( Fig.  3 ). Many other 
 ERBB2 -positive cell lines, however, displayed outlier expres-
sion of additional kinases, frequently including  FGFR4 , such 
as MDA-MB-361 and MDA-MB-453 ( Fig. 3 ), as well as MDA-
MB-330, HCC202, and HCC1419 (Supplementary Table S2). To 
assess the dependence on the outlier expression of  FGFR4  in the 
backdrop of  ERBB2  overexpression, multiple shRNA-encoding 
lentiviral constructs were used to knock down  FGFR4  in MDA-
MB-361 and MDA-MB-453 cells exhibiting outlier expression 

selection for extremely high expression and may thereby repre-
sent personalized therapeutic targets. 

 Here, we analyzed kinome expression profi les of breast and 
pancreatic cancer samples to identify sample-specifi c outlier 
kinases. Next, focusing on cell lines displaying outlier expres-
sion of kinases with available therapeutics or pharmacologic 
inhibitors, we tested their dependence on specifi c outlier 
kinases compared with nonspecifi c targets using short hairpin 
RNA (shRNA) or siRNA and/or small-molecule inhibitors to 
assess their effects on cell proliferation. Using this approach, 
we identifi ed several cell line–specifi c dependencies as well as 
kinase targets showing enhanced effects with  ERBB2  inhibi-
tion in breast and  KRAS  knockdown in pancreatic cancer cells.   

 RESULTS  
 Delineation of Cancer-Specifi c Kinome Outlier 
Profi les Using Transcriptome Sequencing Data 

 Taking advantage of the direct and unbiased readout of gene 
expression in terms of defi ned RNA sequencing (RNA-Seq) reads, 
we carried out a systematic analysis of the human kinome expres-
sion in cancer. RNA-Seq–based, normalized read-counts of all 
468 kinases available in our transcriptome compendium, com-
posed of 482 samples from 25 different tissue types, revealed dis-
tinct kinases expressed at very high levels—both in absolute terms 
and in the context of their typical range of expression levels—in 
virtually all the samples examined (Supplementary Table S1). 

 Querying individual breast cancer samples (43 cell lines 
and 67 tissues) for kinases that display the highest levels of 
absolute expression [>20 reads per kb transcript per million 
total reads in the given sequencing run (RPKM)] among all the 
kinases in an individual sample and the highest levels of dif-
ferential expression compared with the median level of expres-
sion of the respective gene across the compendium (>5-fold), 
we identifi ed outlier kinases across the cohort of breast cancer 
samples ( Fig.  1A  and Supplementary Table S2). In addition, 
each of the outliers was assessed for signifi cant Mahalano-
bis distance from the center of the scatter plot distribution 
(χ 2  test,  P  < 0.05) to prioritize sample-specifi c kinase outliers. 
For example, in the breast cancer cell line BT-474,  ERBB2  is 
the predominant outlier kinase ( Fig. 1A , inset). Remarkably, 
with this approach, all breast cancer cell lines known to be 
 ERBB2 -positive were scored as displaying an outlier expres-
sion of  ERBB2 . Interestingly, many  ERBB2 -positive cell lines 
also displayed outlier expression of additional kinase genes 
like  CDK12  ( Fig. 1A , inset),  FGFR4 , and/or  RET , among others 
(Supplementary Table S2). Similar to the well-known case of 
 ERBB2 , we hypothesized that, in general, outlier kinases spe-
cifi c to individual cancer samples could represent additional 
therapeutic avenues and were thus explored further.  

 Likewise, kinome expression data from 22 pancreatic can-
cer cell lines and 13 pancreatic tissue samples also revealed a 
set of outlier kinases specifi cally overexpressed in pancreatic 
cancers ( Fig.  1B  and Supplementary Table S3), with the 
outlier kinase profi le of a representative pancreatic cancer 
cell line AsPC-1 depicted in the inset ( Fig.  1B ). Assessment 
of outlier kinases in pancreatic and breast cancer cohorts 
revealed distinct outlier kinase profi les between the 2 dis-
eases. For example, common outlier kinases in breast cancer 
included  ERBB2 ,  FGFR4 , and  RET , whereas kinases displaying 
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 Figure 1.      Scatter  plot representation of outlier kinases in (A) breast and (B) pancreatic cancer samples. Kinases displaying an absolute expression >20 
RPKM and differential expression >5-fold (versus median value across the compendium) were designated as outliers. The colored circles represent sali-
ent kinases displaying outlier expression in multiple samples. Examples of sample-specifi c kinome profi les are shown in the insets (BT-474 breast cancer 
and AsPC-1 pancreatic cancer cell lines); kinases with statistically signifi cant outlier expression (absolute expression >20 RPKM, differential expression 
>5 fold, and  P  < 0.05) are highlighted in red.   
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of both  ERBB2  and  FGFR4 , as well as in CAMA-1, with outlier 
expression of  FGFR4  but not  ERBB2 . Target knockdown for 
all siRNA and shRNA experiments were assessed by qRT-PCR 
and/or Western blot analysis (Supplementary Fig.  S5A–S5H). 
Remarkably, knockdown of  FGFR4  resulted in decreased cell 
proliferation in all 3 cell lines with  FGFR4  outlier expression 
( Fig. 3 ), whereas treatment of these cells with ERBB2-targeting 

trastuzumab had no effect on the proliferation of CAMA-1 and 
MDA-MB-361 cells. In contrast, MDA-MB-453 cells showed 
diminished cell proliferation rates independently upon  FGFR4  
knockdown as well as trastuzumab treatment and showed an 
additive effect upon combined treatment.  

 To further examine the dependence of a subset of  ERBB2 -
positive cells on  FGFR4 , we generated trastuzumab-resistant 
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 Figure 2.      Validation of RNA-Seq reads and outlier calls for  MET.  A, log-transformed 
RNA-Seq expression for  MET , measured as RPKM, is plotted against log-transformed gene 
expression, measured as relative quantity (RQ) by qRT-PCR. Each point represents a unique 
sample. Dashed black line represents linear regression.  R 2  , correlation coeffi cient. B, RNA-
Seq reads (blue) and qRT-PCR gene expression (purple) for  MET  are plotted for 20 different 
samples. C, Western blot analysis for phospho-MET and total MET is shown for 5 samples. 
Samples with predicted  MET  outlier expression by RNA-Seq are highlighted by the red bars. 
Samples with predicted nonoutlier expression are highlighted by the green bars.   
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sublines of MDA-MB-453 and BT-474, an  ERBB2 -positive 
breast cancer cell line that does not exhibit  FGFR4  outlier 
expression ( Fig. 4A ). Consistent with the experiments involv-
ing trastuzumab and shRNA-mediated knockdown of  FGFR4  
( Fig.  3 ), MDA-MB-453 cells were found to be independently 
responsive to both trastuzumab and PD173074, a small-
molecule inhibitor of FGFR, whereas a combined treatment 
with both of these reagents provided the strongest effect on 
cell proliferation ( Fig.  4B , left). Interestingly, MDA-MB-453 
cells, grown to be resistant to trastuzumab, continued to dis-
play responsiveness to PD173074 ( Fig.  4B , right), suggesting 
that  FGFR4  represents an independent therapeutic target in 
a subset of  ERBB2 -positive breast cancer cells. Similar results 
were obtained with another FGFR inhibitor, dovitinib, which 
signifi cantly decreased cell proliferation in both the MDA-
MB-453 parental and trastuzumab-resistant subline ( Fig. 4C , 
left) but did not affect the BT-474 parental or trastuzumab-
resistant subline, neither of which displays  FGFR4  outlier 
expression ( Fig. 4C , right). Next, we carried out dose–response 
experiments using specifi c pharmacologic inhibitors against 
outlier kinases (Supplementary Fig. S6A–S6C). Cell lines exhib-
iting outlier expression of  FGFR s displayed a dose-dependent 
response to PD173074 and dovitinib, with signifi cantly lower 
IC 50  values, as compared with cell lines without outlier expres-
sion (Supplementary Fig. S6A and S6B). Taken together, these 
results suggest that a subset of  ERBB2 -positive breast can-
cers that display outlier expression of  FGFR4  may specifi cally 
respond to combined treatment with ERBB2 and FGFR inhibi-
tors more effectively than to  ERBB2 -directed therapy alone.    

 Pancreatic Cancer Cell Lines Are Sensitive to 
Knockdown of Cell-Specifi c Outlier Kinases 

 We next extended our kinome outlier analysis to pan-
creatic cancer, a tumor type critically lacking in rational 
therapeutic options, particularly in the realm of actionable 
kinases. Kinome expression profi les of individual pancreatic 

cancer cell lines were used to identify sample-specifi c outlier 
kinases ( Fig. 5 , left). The pancreatic cancer cell lines were then 
tested for effects on cell proliferation following siRNA-based 
knockdown of sample-specifi c outlier and nonoutlier kinases. 
Knockdown of the sample-specifi c outlier kinases—for exam-
ple,  EGFR  in L3.3,  PLK2  in MIA-PaCa-2,  MET  in BxPC-3, and 
 AKT2  in PANC-1 cells—inhibited the proliferation of respec-
tive cells ( Fig.  5 , middle). A similar growth inhibition was 
observed following knockdown of  MET  in HPAC and  AXL  
in Panc-08.13 and PL45 cells (Supplementary Fig. S7). Con-
versely, knockdown of the nonoutlier kinases  AXL  in L3.3, 
 MET  in MIA-Paca-2,  PLK2  in BxPC-3, and PANC-1 cells did 
not signifi cantly affect cell growth ( Fig.  5 , right). Also, L3.3 
cells remained unaffected by knockdown of the nonoutlier 
 PLK2  (Supplementary Fig.  S7). These observations strongly 
support the notion that outlier kinases represent specifi c 
therapeutic targets in individual cancer samples.  

 Notably, knockdown of the outlier kinase  PLK2  in MIA-
PaCa-2 cells did not have as profound an effect on cell prolifer-
ation as outlier kinase targeting in many other samples ( Fig. 5 , 
middle). We hypothesized that this could be due to a pervasive 
infl uence of oncogenic  KRAS  activity in these cells. To test this 
idea next, we analyzed the effect of  KRAS  knockdown in pan-
creatic cancer cell lines with  PLK  outlier expression.   

 Outlier Expression of Polo-Like Kinases Marks a 
Subset of  KRAS -Dependent Pancreatic Cancer Cells 

 A panel of pancreatic cancer cell lines with and without 
 PLK  outlier expression was stably transduced with 2 inde-
pendent inducible shRNAs against  KRAS  and assessed for 
sensitivity to  KRAS  knockdown and/or the PLK inhibitor 
BI-6727 ( Fig. 6 ). Following induction by doxycycline, the cells 
expressing  KRAS  shRNAs were distinguished by red fl uores-
cence, resulting from the red fl uorescence protein (RFP) tag 
coexpressed with the shRNA ( Fig.  6 , middle).  KRAS  
knockdown effi ciency of approximately 50% or more was 
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 Figure 3.      Sample-wise outlier kinases in  ERBB2 -positive breast cancer cell lines. Left, the scatter plots display kinome expression profi les of individual 
breast cancer cell lines. Kinases with (red/pink) and without (green) outlier expression that were targeted for knockdown are shown in color. Labels in black 
denote additional kinases with outlier expression. Right, growth curves show the effect of targeting outlier ( ERBB2 ) versus nonoutlier ( RPS6KB1 ) kinases in 
ZR-75-30 cells and the effects of trastuzumab and/or knockdown of the outlier  FGFR4  in CAMA-1, MDA-MB-361, and MDA-MB-453 cells. Values represent 
mean ± SD. **,  P  < 0.01; ****,  P  < 0.0001.   
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obtained in all the cells tested (Supplementary Fig. S5H). Of 
the cell lines tested, knockdown of  KRAS  signifi cantly inhib-
ited the proliferation of L3.3, MIA-PaCa-2, and Panc-03.27, 
which all harbor oncogenic mutations in  KRAS  and were 
therefore designated as  KRAS  dependent ( Fig.  6A ). BxPC-3 
cells, which have wild-type  KRAS , as well as HPAC and 
PANC-1 cells, which have mutant  KRAS , were not affected 

by  KRAS  knockdown and were therefore categorized as  KRAS  
independent ( Fig. 6B ). Incidentally, all 3  PLK  outlier cell lines 
tested here—L3.3, MIA-PaCa-2, and Panc-03.27—were found 
to be in the  KRAS -dependent category based on their reduced 
proliferation upon  KRAS  knockdown ( Fig. 6A ). Furthermore, 
treatment with the PLK inhibitor BI-6727 signifi cantly inhib-
ited proliferation in cell lines with  PLK  outlier expression 
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 Figure 4.      Trastuzumab-resistant cell lines 
respond to targeting of the outlier kinase 
 FGFR4 . A, the growth curves show the effect 
of trastuzumab treatment on MDA-MB-453 
and BT-474 (left) and their trastuzumab-
resistant sublines (right). B, the bar graphs 
show the individual and combined effects 
of trastuzumab and the FGFR inhibitor 
PD173074 on cell proliferation in MDA-
MB-453 (left) and its trastuzumab-resistant 
subline (right). C, the bar graphs display the 
effect of the FGFR inhibitor dovitinib on 
parental and trastuzumab-resistant sublines 
of MDA-MB-453 (with  FGFR4  outlier expres-
sion) and BT-474 (without  FGFR4  outlier 
expression) on day 5. Values represent mean 
± SD. ***,  P  < 0.001; ****,  P  < 0.0001.   
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( Fig.  6A , right) but had no effect in cell lines without  PLK  
outlier expression ( Fig.  6B , right). The decrease in cell pro-
liferation following BI-6727 treatment was associated with 
increased apoptosis, as measured by the fl ow cytometry of 
Annexin V/propidium iodide–stained cells (Supplementary 
Fig.  S8A). Finally, treatment with BI-6727 in combination 
with knockdown of  KRAS  enhanced the inhibition of cell pro-
liferation in the  KRAS -dependent,  PLK  outlier cells ( Fig. 6A , 
right) but had no effect in the  KRAS -independent cells with-
out  PLK  outlier expression ( Fig. 6B , right). Investigating the 
likely reason for the lack of sensitivity to  KRAS  knockdown 
in a subset of pancreatic cancer cells harboring oncogenic 
 KRAS , we observed that following  KRAS  knockdown, the 
levels of phospho-ERK, one of the major downstream effec-
tor proteins in the  RAS  signaling pathway, were reduced in 

the  KRAS -dependent cell lines L3.3 and MIA-PaCa-2, but 
not in the  KRAS -independent cell line PANC-1 (Supplemen-
tary Fig. S8B), suggesting that ERK activity in PANC-1 cells 
may be sustained by other convergent pathways. Notably, 
the  KRAS -independent cell lines BxPC-3 and PANC-1 did 
respond to inhibition of their respective outlier kinases, both 
 in vitro  ( Fig. 5 , middle) and  in vivo , as described below.    

 Inhibition of Outlier Kinases Inhibits the Growth 
of Pancreatic Cancer Cell Line Xenografts 

 To test the effect of inhibiting sample-specifi c outlier 
kinases  in vivo , we treated orthotopic tumor xenografts of 2 
 KRAS -independent pancreatic cancer cell lines, BxPC-3 and 
PANC-1, established in nonobese diabetic/severe combined 
immunodefi cient (NOD/SCID) mice, with the MET inhibitor 
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 Figure 5.      Pancreatic cancer cell lines are sensitive to knockdown of outlier kinases. Left, scatter plots display kinome profi les of select pancreatic 
cancer cell lines; kinases targeted for knockdown are shown in color (red, outliers; green, nonoutliers). Labels in black denote additional kinases with 
outlier expression. The growth curves display the effects of siRNA-mediated knockdown of sample-specifi c outliers (middle) and nonoutliers (right) for 
each cell line. Values represent mean ± SD. ****,  P  < 0.0001.   
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XL184. BxPC-3 cells and, to a lesser but signifi cant degree, 
PANC-1 cells, were found to have  MET  outlier expression 
by RNA-Seq, which was validated by qRT-PCR and Western 
blot analyses ( Fig.  2 ). Notably, both of these cell lines also 
displayed a dose-dependent response to XL184  in vitro , with 
signifi cantly lower IC 50  values compared with the L3.3 cell 
line that does not have outlier expression of  MET  (Sup-
plementary Fig.  S6C). Consistent with our hypothesis of 
dependence on outlier kinases, growth of both BxPC-3 and 
PANC-1 xenografts was also signifi cantly inhibited by treat-
ment with XL184, as measured by tumor volume and weight 

( Fig. 7A–C ). Of note, no signifi cant difference was found in 
the body weight of XL184-treated and untreated mice, sug-
gesting that the effective dose of the inhibitor caused no 
measurable toxicity  in vivo  ( Fig. 7D ).  

 The specifi city of response to the MET inhibitor XL184 
was analyzed by Western blot analysis, which showed a 
sharp decrease in phospho-MET levels in BxPC-3 and to a 
relatively lesser extent in PANC-1 cells following treatment 
with XL184 ( Fig. 7E ). Considering that  AKT2  represents the 
predominant outlier kinase in PANC-1 cells (Mahalanobis 
distance 217.6,  P  ∼ 0; Supplementary Table S3), lending 
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 Figure 6.      Knockdown of  KRAS  combined with PLK inhibition reduces cell proliferation in indicated  KRAS -dependent cell lines (A) but not in 
 KRAS -independent cell lines (B). (continued on following page)
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signifi cant dependence on  AKT2  ( Fig. 5 ), we queried whether 
the profound inhibitory effect of XL184 on PANC-1 xenografts 
was also mediated through nonspecifi c targeting of AKT. 
Western blot analysis of PANC-1 xenograft tumor lysates 
revealed a markedly decreased level phospho-AKT following 
XL184 treatment ( Fig.  7F ). This supports the notion that 
XL184 suppresses PANC-1 proliferation through inhibition 
of both AKT and MET signaling. Thus, PANC-1 represents an 
example of a cancer sample showing dependency on multiple 
actionable outliers that may respond to a combinatorial thera-
peutic option or appropriate pan-kinase inhibitors.    

 DISCUSSION 
 The advent of high-throughput sequencing enables a com-

prehensive characterization of the genomic and transcrip-
tomic landscape of individual cancer samples, inexorably 
leading to the challenge of defi ning and prioritizing clinically 
relevant fi ndings to translate into improved diagnostic and 
therapeutic options ( 27, 28 ). Clinical sequencing of cancers 
aims to identify actionable genomic aberrations and match 
patients with available therapies. Protein kinases, being cen-
tral to biologic and disease processes, including cancer, and 
being therapeutically targetable, constitute a large propor-

tion of available and potential targets; thus, any novel dis-
ease-specifi c kinase aberrations are of great clinical interest. 
This study proposes and tests the hypothesis that specifi c 
kinases showing outlier expression in individual cancer sam-
ples impart “dependence” on the cells, which may be targeted 
in combination with existing treatment modalities. Impor-
tantly, a case is made for considering the entire profi le of 
kinome aberrations to prioritize potentially effective targets. 

 The “sample-centric” analysis of kinome expression revealed 
unique profi les of outlier kinases that were tested for depend-
ency. The receptor tyrosine kinase ERBB2 overexpressed in 20% 
to 30% of breast cancers confers a more aggressive phenotype, 
increased metastasis, and worse patient prognosis ( 29, 30 ). 
In our outlier kinase analysis, several well-known “ ERBB2 -
positive” breast cancer cell lines, including MDA-MB-361 and 
MDA-MB-453, were found to display outlier expression of 
 ERBB2 , as expected, but frequently also an outlier expression of 
the therapeutic target  FGFR4 . Notably, a survey of microarray-
based gene expression data in Oncomine ( 31, 32 ) also displayed 
a subset of  ERBB2 -positive primary breast cancer samples with 
outlier expression of  FGFR4  (data not shown), emphasizing 
the clinical relevance of our observations. Targeting outlier 
 FGFR4  in  ERBB2 -positive breast cancer samples was found 
to confer independent as well as additive inhibitory effects 
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Figure 6. (Continued) The scatter plots show the absolute and differential expressions of  PLK1  and  PLK2  for each cell line (left). The fl ow cytometric 
profi les of doxycycline-induced cells expressing  KRAS  shRNA with RFP expression (red) versus uninduced cells (gray) are displayed (middle).The growth 
curves show the individual and combined effects of  KRAS  shRNA and the PLK inhibitor BI-6727, using WST-1 assay measured at 440 nm absorbance 
(right). Values represent mean ± SD. ****,  P  < 0.0001.   

upon their combined knockdown ( Fig.  3 ), highlighting the 
potential of combining 2 or more outlier kinase targets in 
treating cancer, even in cases with a predominant driver such as 
 ERBB2 . Interestingly, we also observed that the  ERBB2 -positive 
MDA-MB-453 cells grown resistant to trastuzumab treatment 
continued to remain dependent on  FGFR4  and responded to 
FGFR inhibitors ( Fig.  4 ). In clinical trials with  ERBB2 -posi-
tive metastatic breast cancer, 50% to 74% patients have been 
reported as not responsive to trastuzumab monotherapy or in 
combination with chemotherapy ( 33, 34 ). Our results suggest 
that the  ERBB2 -positive breast cancers may be partly depend-
ent on additional drivers, such as FGFR4, RET, EGFR, and 
MET, which may sustain these cancers following therapeutic 
abrogation of ERBB2 activity. Another important corollary 
to our observations is that combinatorial targeting of ERBB2 
and additional outlier kinases at the outset may be much more 
effective than approaching a single target at a time, a concept 
that warrants further study. Furthermore, each cancer sample 
needs to be investigated individually to rationally determine 
patient-specifi c unique target combinations. 

 Next, we extended the approach of nominating sample-
specifi c outlier kinases to pancreatic cancer, which is character-

ized by a bleak prognosis due to presentation at an advanced 
stage and resistance to traditional chemotherapy and radiation 
in the setting of its pancreatic cancer sanctuary, encompassing 
tumor stroma, extracellular matrix, tumor-infi ltrating immune 
cells, and cancer stem cells. Given the paucity of effective targets 
in pancreatic cancer, the strong response of pancreatic cancer 
cell lines to knockdown or inhibition of  a priori  designated out-
lier kinases is a promising lead. Our results also underscore the 
importance of matching sample-specifi c actionable targets with 
the appropriate therapeutics. For example, targeting MET was 
found to be more effective in pancreatic cancer cell lines with 
 MET  outlier expression than in nonoutlier samples. Notably, 
many of our experimental results are consistent with several 
anecdotal studies using kinase inhibitors against EGFR, MET, 
and AKT2 (35–39). 

 We also examined the effect of targeting sample-specifi c 
outlier kinases in conjunction with the oncogenic  KRAS  
mutation that is present in virtually all cases of pancre-
atic cancer. Consistent with previous reports ( 40–42 ), we 
observed that only a subset of  KRAS- mutant cells display 
 KRAS  dependency. Using tetracycline (tet)–sh KRAS  stable cell 
lines, we determined L3.3, MIA-PaCa-2, and Panc-03.27 cells 
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 Figure 7.      XL184 treatment suppresses tumor growth in BxPC-3 and PANC-1 pancreatic cancer xenografts. A, The growth curves show the effect of 
the MET inhibitor XL184 on tumor growth in BxPC-3 and PANC-1 xenografts. B, BxPC-3 and PANC-1 xenograft tumors after 3 weeks of XL184 treatment 
are shown, as compared with the controls. The bar graphs display tumor weight (C) and total body weight (D) after 3 weeks of XL184 treatment. Values 
represent mean ± SE. **,  P  < 0.01; ***,  P  < 0.001; ****,  P  < 0.0001. E, immunoblot results showing the effect of XL184 treatment on phospho-MET (pMET) in 
BxPC-3 and PANC-1 cells. F, immunoblot results showing the effect of XL184 treatment on phospho-AKT (pAKT) level in the PANC-1 orthotopic xenograft.   
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to be  KRAS  dependent, whereas BxPC-3 cells (the only pancre-
atic cancer cell line in our panel with wild-type  KRAS ) as well 
as PANC-1 and HPAC were  KRAS  independent. Interestingly, 
comparing our results with the published literature, we noted 
a general lack of consensus in the “ KRAS  dependence” status 
of pancreatic cancer cell lines ( 10 ,  14 ,  40–45 ). For example, 
whereas 2 prior studies using siRNA-mediated knockdown of 
 KRAS  in the  KRAS -mutant cell line MIA-PaCa-2 designated it 
as  KRAS  dependent, based on reduced cellular proliferation, 
invasion, and colony formation assays ( 10 ,  44 ), more recently, 
Collisson and colleagues ( 40 ) observed no signifi cant effect 
on proliferation in MIA-PaCa-2 cells transduced with sh KRAS  

lentivirus. Similarly, PANC-1 was identifi ed as  KRAS  depend-
ent in 4 different studies by both siRNA- and shRNA-mediated 
knockdowns, as assessed by cellular proliferation, colony 
formation, invasion, and xenograft tumor growth ( 10 ,  14 ,  43, 
44 ), whereas 3 studies found PANC-1 to be  KRAS  independ-
ent by shRNA-mediated knockdown and farnesyl transferase 
inhibitor treatment using similar  in vitro  assays ( 40–42 ). Con-
versely, the  KRAS  wild-type cell line BxPC-3 has been con-
sistently reported to be  KRAS  independent ( 14 ,  44 ), similar 
to our fi ndings. Interestingly, HPAC was described as  KRAS  
dependent by Collisson and colleagues ( 40 ) but was found to 
be  KRAS  independent in our assays. No published references 
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were found for L3.3 and Panc-03.27, which we report as  KRAS  
dependent. 

 Several  KRAS  synthetic lethal screens and DNA microarray 
analyses have been used to describe genes and gene signatures 
associated with  KRAS  dependence ( 12–14 ,  40, 41 ,  46 ) and 
include kinase genes such as  PLK1 ,  MST1R , and  SYK  ( 12 ,  40 , 
 41 ). Interestingly, we observed outlier expression of  PLK  to 
be restricted to  KRAS -dependent cells, and these cells showed 
higher sensitivity to the pan-PLK inhibitor BI-6727 both alone 
and in combination with  KRAS  knockdown, as compared 
with  KRAS -independent cells. Previously , Luo and colleagues 
identifi ed  PLK1  as a  RAS  synthetic lethal interactor in a lung 
and a colorectal cancer cell line, although they did not test any 
pancreatic cancer cell lines (12). Our results additionally show 
that cells respond to the pan-PLK inhibitor BI-6727 only if they 
have outlier expression of either  PLK1  or  PLK2  ( Fig. 6A and B ). 
This fi nding highlights the importance of using therapeutic 
targets in a sample-specifi c manner. 

 Overall, our study provides a generalizable metric to defi ne 
and prioritize personalized target spectra specifi c to individual 
tumors. The recent report of a remarkably successful treatment 
of a patient with acute lymphoblastic leukemia with sunitinib 
targeting “wildly active” expression of  FLT3  kinase identifi ed 
by RNA-Seq when whole-genome sequencing failed to identify 
any actionable aberrations ( 47 ), provides an anecdotal yet pow-
erful illustration of the potential application of the systematic 
identifi cation of outlier kinases proposed in our study.   

 METHODS  
 Kinome Analysis 

 Transcriptome sequencing data from 482 cancer and benign sam-
ples from 25 different tissue types previously generated on Illumina 
GA and GAII platforms were mapped using Bowtie ( 48 ) against Uni-
versity of California Santa Cruz (Santa Cruz, CA) Genome Browser 
genes in the hg18 human genome assembly ( 49 ). Unique best-match 
hit sequences normalized for the number of RPKM ( 16 ) were used to 
generate a gene expression data matrix for the entire compendium 
( 24 ). The expression data for the complete list of kinase genes ( 50 ) 
were used to identify “outlier kinases” in individual samples based on 
their absolute expression within the sample and differential expression 
(defi ned as absolute expression divided by median expression level of 
that gene across the compendium). GraphPad Prism software was used 
to generate kinome expression profi les for each sample, plotting abso-
lute expression versus differential expression for all kinases. 

 Statistical signifi cance of outlier expression was quantifi ed using a 
Mahalanobis distance metric [ D  2  = ( x  −  μ )′Σ −1 ( x  −  μ ); Σ = covariance 
matrix,  D  = Mahalanobis distance of the point  x  to the mean  μ ; refs. 
 51, 52 ), to measure the “distance” of each kinase’s absolute and dif-
ferential expression from the center of the scatter plot distribution.  P  
values were calculated assuming a χ 2  distribution, with 2 degrees of 
freedom. Kinases with absolute expression of more than 20 RPKM, 
differential expression of more than 5-fold, and  P  < 0.05 were nomi-
nated as having “outlier expression.” R language ( 53 ) was used to 
conduct statistical analysis.   

 Cell Culture 
 All human breast and pancreatic cancer and benign epithelial cell lines 

were purchased from the American Type Culture Collection (ATCC), 
except the benign immortalized pancreatic epithelial cell line HPDE 
and the xenograft cell lines derived from primary pancreatic adenocar-
cinoma tissues, which were provided by D.M. Simeone  (University of 

Michigan, Ann Arbor, MI). The pancreatic adenocarcinoma cell line L3.3 
was obtained from the University of Texas MD Anderson Character-
ized Cell Line Core (Houston, TX). All cell lines were grown in recom-
mended culture media and maintained at 37°C in 5% CO 2 . To ensure 
cellular identities, a panel of cell lines was genotyped at the University of 
Michigan Sequencing Core using Profi ler Plus (Applied Biosystems) and 
compared with the short tandem repeat (STR) profi les of respective cell 
lines available in the STR Profi le Database (ATCC).   

 Transcript Knockdowns and Cell Proliferation Assays 
 ON-TARGETplus siRNA against  AKT2 ,  AXL ,  EGFR ,  MET , and  PLK2 , 

and nontargeting control (siNTC) from Dharmacon (Supplementary 
Table S5A) were used at 100 nmol/L. Cells were transfected in 6-well 
plates at a density of 50,000 cells per well using Oligofectamine (Inv-
itrogen), according to the manufacturer’s protocol. Transfection was 
repeated 24 hours later; the cells were grown for an additional 48 hours 
and replated at a density of 5,000 cells per well in 24-well plates. Cells 
were counted over a period of 1 to 6 days using a Beckman Coulter cell 
counter. Transient transductions with shRNA against  ERBB2 ,  RPS6KB1 , 
and  FGFR4 , or nontargeting control (shNTC), were carried out in 6-well 
plates in the presence of 8 μg/mL hexadimethrine bromide (Polybrene; 
Sigma). For trastuzumab (Herceptin; Roche) experiments, cells were 
grown for 3 days in 24-well plates with and without trastuzumab 
(100 μg/mL), in combination with the FGFR inhibitor PD173074 (TOC-
RIS Bioscience) at 1 μmol/L or TKI-258 (dovitinib; Selleck Chemicals) at 
0.1 μmol/L. Trastuzumab-resistant cell lines were generated from MDA-
MB-453 and BT-474 by maintaining the cells in the continuous presence 
of 100 μg/mL trastuzumab over 1 month. Cell proliferation assays were 
carried out over a period of 1 to 7 days, using a Beckman Coulter cell 
counter, and growth curves were plotted using GraphPad Prism soft-
ware. Statistical comparisons were conducted using one-way ANOVA.   

 Generation of Stable Cell Lines with Doxycycline-Inducible 
KRAS-shRNA Lentiviral Constructs 

 Doxycycline-inducible shRNAmir-TRIPZ lentiviral constructs tar-
geting  KRAS  or nontargeting control (Open Biosystems) tagged with 
RFP were used to transduce a panel of pancreatic cell lines in the pres-
ence of 8 μg/mL Polybrene (Supplementary Table S5A). Forty-eight 
hours after transduction, cells were selected in medium containing 1 
μg/mL puromycin (Invitrogen) for 4 days. The shRNA expression was 
induced by growing cells in medium containing 1 μg/mL doxycycline 
(Sigma) for 72 hours. The enrichment of stable cells and effi ciency of 
shRNA induction were assessed by measuring the percentage of cells 
displaying red fl uorescence by fl ow cytometry (FACSAria Cell Sorter; 
BD Biosciences). Experiments with stable cell lines were carried out in 
the presence of 1 μg/mL doxycycline, refreshed daily. Experiments with 
the PLK inhibitor BI-6727 (volasertib; Selleck Chemicals) were carried 
out with cells plated in 96-well culture plates at a density of 3,000 to 
4,000 cells per well and treated with 10 nmol/L BI-6727 or dimethyl 
sulfoxide (DMSO). This concentration was selected on the basis of IC 50  
values calculated from prior proliferation assays using 1 to 500 nmol/L 
BI-6727 (data not shown). At 0, 1, 3, and 5 days following drug treat-
ment, viable cells were quantifi ed using WST-1 reagent (Roche) and 
absorbance was measured at 440 nm, per the manufacturer’s protocol. 
Growth curves were plotted using GraphPad Prism software. Statisti-
cal comparisons were conducted using one-way ANOVA.   

 Western Blot Analysis 
 Cell or tissue lysates were separated on 4% to 12% SDS polyacry-

lamide gels (Novex) and blotted on polyvinylidene difl uoride mem-
branes (Amersham) by semi-dry transfer. Antibodies to FGFR4 (Santa 
Cruz), phospho-AKT, total AKT, phospho-ERK, total ERK, phospho-
MET, and total MET (Cell Signaling Technology) were used at 1:1,000 
dilutions for standard immunoblotting and detection by enhanced 
chemiluminescence (ECL Prime), per the manufacturer’s protocol. 
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For  phospho-MET blots, cells treated with 10 μmol/L XL184 for 
12 hours were stimulated with 100 ng/mL human recombinant 
hepatocyte growth factor (Invitrogen) for 1 hour before harvesting in 
radioimmunoprecipitation assay RIPA buffer.   

 Quantitative RT-PCR Assay 
 RNA was isolated from cell lysates by the RNeasy Micro Kit 

(Qiagen), and cDNA was synthesized from 1 μg RNA using Super-
Script III (Invitrogen) and Random Primers (Invitrogen), per the 
manufacturer’s protocol. qRT-PCR was carried out on the StepOne 
Real-Time PCR system (Applied Biosystems) using gene-specifi c 
primers designed with Primer-BLAST (Supplementary Table S5B 
and S5C) and synthesized by IDT Technologies. Validation of RNA-
Seq results was carried out using TaqMan Universal PCR Master 
Mix II with uracil- N -glycosylase (Applied Biosystems) and Universal 
ProbeLibrary System probes (Roche), following the manufacturer’s 
protocol. Validation of siRNA- and shRNA-mediated knockdown 
was carried out using Fast SYBR Green Master Mix (Invitrogen), per 
the manufacturer’s protocol. qRT-PCR data were analyzed using the 
relative quantifi cation method and plotted as average fold-change 
compared with the control.  Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH)  was used as an internal reference. For qRT-PCR validation 
studies, GraphPad Prism software was used to conduct linear regres-
sion and calculate  R 2   correlation coeffi cients.   

 Dose Response 
 Experiments with the FGFR inhibitors PD173074 and dovitinib 

and the MET inhibitor XL184 were carried out with cells seeded at 
a density of 3,000 to 4,000 cells per well, plated in 96-well culture 
plates, and treated with concentrations from 100 to 0.1 μmol/L. 
WST-1 assay (Roche) was conducted after 72 hours, and readings 
were recorded at 440 nm. GraphPad Prism software was used to gen-
erate nonlinear regression curves and calculate IC 50  values.   

 Apoptosis Assay 
 The apoptosis assay was carried out using ApoScreen Annexin 

V Apoptosis Kit (Southern Biotech), per the manufacturer’s pro-
tocol. Briefl y, cells treated for 48 hours with DMSO or increasing 
concentrations of BI-6727 were washed with cold PBS, suspended 
in cold 1× binding buffer, stained with Annexin V and propidium 
iodide, and subjected to fl ow cytometry by FACSAria Cell Sorter 
(BD  Biosciences). Results were analyzed and plotted using Summit 
6.0 Software (Beckman Coulter).   

 In Vivo Tumorigenicity Assay 
 Six-week-old male NOD/SCID mice (Taconic) were housed under 

pathogen-free conditions approved by the American Association for 
Accreditation of Laboratory Animal Care in accordance with current 
regulations and standards of the U.S. Department of Agriculture 
and Department of Health and Human Services. Animal experi-
ments were approved by the University of Michigan Animal Care 
and Use Committee and carried out in accordance with established 
guidelines. Mice anesthetized with an intraperitoneal injection of 
xylazine (9 mg/kg) and ketamine (100 mg/kg body weight) were 
implanted with 1 × 10 6  BxPC-3 or PANC-1 cells suspended in 50 μL 
1:1 mixture of Media 199 and Matrigel (BD Biosciences) injected sub-
cutaneously into their fl anks using a 30-gauge needle. When tumor 
size reached 0.4 mm, mice were randomized into control and treat-
ment groups ( n  = 8 per group). The MET inhibitor XL184 (Exelixis 
Chemicals) was orally administered at 30 mg/kg body weight twice 
per week for 3 weeks. Tumor growth was monitored weekly. Tumor 
caliper measurements were converted into tumor volumes using the 
formula ½[length × (width) 2 ] mm 3  and plotted using GraphPad 
Prism software. At 3 weeks of treatment, mice were weighed and 

euthanized and the tumors harvested. Statistical comparisons were 
conducted using one-way ANOVA.    
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   ABSTRACT     Through a prospective clinical sequencing program for advanced cancers, four 
index cases were identifi ed which harbor gene rearrangements of  FGFR2 , including 

patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment 
of FGFR rearrangements across multiple tumor cohorts, we identifi ed additional FGFR fusions with 
intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblas-
toma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization 
capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins 
induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited 
enhanced susceptibility to pharmacologic inhibition  in vitro  and  in vivo . Because of the combinatorial 
possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, 
which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR 
fusions across diverse cancer types. 

  SIGNIFICANCE:  High-throughput sequencing technologies facilitate defi ning the mutational landscape 
of human cancers, which will lead to more precise treatment of patients with cancer. Here, through 
integrative sequencing efforts, we identifi ed a variety of FGFR gene fusions in a spectrum of human 
cancers. FGFR fusions are active kinases. Cells harboring FGFR fusions showed enhanced sensitivity to 
the FGFR inhibitors PD173074 and pazopanib, suggesting that patients with cancer with FGFR fusions 
may benefi t from targeted FGFR kinase inhibition.  Cancer Discov; 3(6); 636–47. ©2013 AACR.
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     INTRODUCTION 
 Advances in next-generation sequencing technologies have 

refi ned the molecular taxonomy of a spectrum of human 
diseases and facilitated a move toward “precision medicine” 
( 1, 2 ). With regard to oncology, defi ning the mutational land-
scape of an individual patient’s tumor will lead to more precise 
treatment and management of patients with cancer. Compre-
hensive clinical sequencing programs for patients with cancer 
have been initiated at a variety of medical centers, including 
our own ( 3, 4 ). In addition to the potential for identifying 
“actionable” therapeutic targets in patients with cancer, these 
clinical sequencing efforts may lead to the identifi cation of 
novel “driver” mutations that may be rare in a common cancer 
type or newly revealed in relatively rare cancer types. 

 Recurrent gene fusions are an important class of “driver” 
mutation in cancer, as exemplifi ed by the  BCR–ABL  gene fusion 
that characterizes chronic myeloid leukemia (CML; ref.  5 ). 
Importantly, virtually all patients with CML harbor the BCR–
ABL kinase fusion and respond to the small-molecule kinase 
inhibitor, imatinib, representing one of the earliest examples 
of precision medicine in practice ( 6 ). In 2005, it was discov-
ered that more than 50% of prostate cancers harbor recurrent 
gene fusions of the androgen-regulated gene  TMPRSS2  with 
ETS transcription factors ( 7 ), suggesting that gene fusions/
translocations may play a signifi cant role in common epithelial 
tumors, similar to hematologic malignancies and sarcomas. 
Subsequently, recurrent gene rearrangements have been iden-
tifi ed in carcinomas of the lung, breast, colon, and thyroid, 
among other epithelial tissues ( 8–12 ). Of these, the  EML4–ALK  
gene fusion, which characterizes 1% to 5% of lung adenocarci-
nomas, has gained the most traction in the context of preci-
sion therapy, as patients with this gene fusion respond to the 
kinase inhibitor crizotinib ( 13, 14 ). Recently,  FGFR1  and  FGFR3  
fusions with  TACC1  and  TACC3 , respectively, have been identi-
fi ed in approximately 3% of the tumor glioblastoma multiforme 
(GBM; ref.  15 ), and  FGFR3–TACC3  fusions were identifi ed in a 
subset of bladder carcinomas ( 16 ). Preclinical studies suggest 
that patients with GBM with  FGFR – TACC  gene fusions may 
benefi t from targeted FGFR kinase inhibition ( 17, 18 ).   

 RESULTS 
 Our Institutional Review Board (IRB)-approved clinical 

sequencing program, called the Michigan Oncology Sequencing 
Program (MI-ONCOSEQ), enrolls patients with advanced can-
cer across all histologies ( 3 ). Since April 2011, we have enrolled 
more than 100 patients on this program, which involves obtain-
ing a current tumor biopsy with matched normal samples 
(blood and/or buccal swab). The samples are then subjected to 
integrative sequencing that includes whole-exome sequencing of 
the tumor and matched normal tissue, transcriptome sequenc-
ing, and, as needed, low pass genome sequencing ( 3 ). This com-
bination of DNA and RNA sequencing technologies allows one 
to be relatively comprehensive with regard to the mutational 
landscape of coding genes, including point mutations, indels, 
amplifi cations, deletions, gene fusions/translocations, and out-
lier gene expression. These results are generated within a 5 to 
7 week time frame and are presented at an institutional “preci-
sion tumor board” (previously called sequencing tumor board) 
to deliberate upon potentially actionable fi ndings. 

 In this study, 4 MI-ONCOSEQ patients who harbored gene 
fusions of  FGFR2  by transcriptome sequencing were prospec-
tively identifi ed ( Fig. 1 ). The fi rst patient (MO_1036) was a 
34-year-old female diagnosed with metastatic cholangiocar-
cinoma. By whole-exome sequencing of the tumor relative to 
the matched normal, we detected 8 nonsynonymous somatic 
point mutations (Supplementary Table S1). The most interest-
ing of these in terms of tumor biology was the inactivation of 
the SWI/SNF chromatin remodeling complex through muta-
tion of  ARID1A  (Q1573*) and  PBRM1  (C736*). The SWI/
SNF complex has been implicated as a tumor suppressor, and 
inactivating somatic mutations of  ARID1A  and  PBRM1  have 
been identifi ed in renal cell carcinoma, breast cancer, and ovar-
ian cancer ( 19 ). The copy number landscape for MO_1036 as 
determined by whole-exome sequencing is shown in  Fig. 1A  
and Supplementary Table S2. Interestingly, by paired-end 
RNA sequencing, we detected an intrachromosomal fusion 
that resulted in the in-frame fusion of the  FGFR2  to  BICC1  
( Fig. 1A ). Although 7 additional chimeric RNAs were detected 
(Supplementary Table S3), only the  FGFR2–BICC1  fusion 
exhibited a combination of high supporting reads ( n  = 259), 
predicted in-frame fusion protein, and predicted potential 
therapeutic actionability via kinase inhibition. The  FGFR2–
BICC1  fusion was confi rmed by quantitative PCR (qPCR) 
analysis ( Fig. 1A ). Neither copy number aberrations nor point 
mutations were observed in  FGFR2  or  BICC1 .  

 The second MI-ONCOSEQ patient with an  FGFR2  fusion 
(MO_1039) was a 61-year-old male with metastatic cholan-
giocarcinoma. Like the fi rst patient, this individual’s tumor 
expressed an  FGFR2–BICC1  fusion of identical confi gura-
tion ( Fig. 1B  and Supplementary Table S4). This fusion was 
similarly validated by qPCR ( Fig. 1B ). In contrast, however, 
this cholangiocarcinoma case exhibited 27 nonsynonymous 
somatic point mutations, including an inactivating mutation 
of  TP53  (R267W; Supplementary Table S5) and a distinct 
copy number landscape ( Fig. 1B  and Supplementary Table 
S6). Neither point mutations nor copy number changes in 
FGFR genes were identifi ed in this patient. 

 The third patient with an  FGFR2  fusion was a 31-year-
old woman with metastatic breast cancer (MO_1051). RNA 
sequencing revealed an in-frame interchromosomal fusion 
of  FGFR2  with  AFF3 , which had a functional structure analo-
gous to the FGFR2 kinase fusions found in cholangiocar-
cinoma ( Fig. 1C ). In addition to the  FGFR2–AFF3  fusion, 
which was detected with 138 supporting reads and validated 
by qPCR ( Fig. 1C ), 6 additional gene fusions with a lower 
number of reads were identifi ed (Supplementary Table S7). 
This breast cancer case also harbored 204 nonsynonymous 
point mutations, including mutation of  TP53  (G199E) and 
a known activating mutation of  PIK3CA  (H1047R; Supple-
mentary Table S8). While this breast cancer case exhibited 
a number of amplifi cations and deletions (Supplementary 
Table S9), as expected (based on past clinical pathology data), 
this patient was negative for the  ERBB2  amplifi cation. 

 The fourth patient (MO_1081) with an  FGFR2  fusion was 
a 57-year-old male with Gleason score 5+4 metastatic prostate 
cancer. Transcriptome sequencing of a brain metastasis revealed 
an interchromosomal fusion of  SLC45A3  with  FGFR2  in which 
the  SLC45A3  noncoding exon 1 was fused to the intact cod-
ing region of  FGFR2  ( Fig. 1D  and Supplementary Table S10). 
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 Figure 1.      Integrative sequencing and mutational analysis of 4 index  cancer patients found to harbor FGFR fusions. A computed tomography-guided 
biopsy was used to obtain tumor specimens from patients with cancer enrolled in the MI-ONCOSEQ protocol. A sample of their normal tissue (blood 
or buccal swab) was also obtained for germline studies. The samples were subjected to integrative sequencing and analyzed for mutations. For each 
patient, a diagram summarizing the cancer type, histopathology, number of nonsynonymous somatic point mutations and gene fusions detected, and gene 
copy number landscape is presented. The predicted structure of the FGFR fusion protein identifi ed in each case is illustrated. FGFR gene fusions were 
validated by quantitative real-time PCR followed by gel electrophoresis or by outlier expression assessed by RNA-seq. The four index cases shown are 
MO_1036, cholangiocarcinoma (A), MO_1039, cholangiocarcinoma (B), MO_1051, breast cancer (C), and MO_1081, prostate cancer (D). qPCR results for 
each case are compared with a set of 6 cDNA controls from unrelated patient tumors (C1–C6). For the patient with prostate cancer, expression of  FGFR2  
is shown (in reads per kilobase per million reads) relative to a compendium of 84 prostate cancer samples. SNVs, single-nucleotide variants.   
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As  SLC45A3  is a prostate-specifi c, androgen-regulated gene 
( 20 ), the  SLC45A3–FGFR2  fusion is predicted to drive overex-
pression of wild-type FGFR2. Importantly,  FGFR2  exhibited 
outlier expression in the index case relative to our compen-
dium of prostate cancer tissues ( n  = 84;  Fig. 1D ), and a similar 
rare case of  FGFR2  outlier expression was identifi ed in the 
Glinsky and colleagues ( 21 ) prostate cancer cohort (Supple-
mentary Fig. S1A and B). 

 As we had identifi ed novel  FGFR2  gene fusions in cholangio-
carcinoma, breast cancer, and prostate cancer, we next asked 
whether FGFR family fusions are present across carcinomas 
of different histologies. To address this, we analyzed RNA-
seq data generated from an internal cohort of diverse tumors 
( n  = 322) and The Cancer Genome Atlas (TCGA) effort 
( n  = 2,053; Supplementary Table S11) for gene fusions using 
several bioinformatics approaches (see Methods). Including 
the initial 4 index cases, we identifi ed 24 tumors or cell lines 
with  FGFR1 ,  2 , and  3  fusions ( Fig. 2  and Supplementary 
Tables S12, S13, and S14). All of the gene fusions nominated 
expressed an FGFR family member as a 5′ or 3′ fusion part-
ner with intact kinase domains suggesting potential action-
ability. 5′ FGFR fusions to  BICC1 ,  AFF3 ,  CASP7 ,  CCDC6 , 
 KIAA1967 ,  OFD1 ,  BAIAP2L1 , and  TACC3  (multiple exons) 
were identifi ed and 3′ FGFR fusions to  SLC45A3 ,  BAG4 , 
and  ERLIN2  were identifi ed. Cancer types harboring FGFR 
fusions were quite diverse and included cholangiocarcinoma 
( n  = 2), breast cancer ( n  = 4), prostate cancer ( n  = 1), thyroid 
cancer ( n  = 1), lung squamous cell carcinoma ( n  = 6), bladder 
cancer ( n  = 5), oral cancer ( n  = 1), head and neck squamous 
cell carcinoma ( n  = 2), and glioblastoma ( n  = 2). FGFRs are 
known to exhibit tissue-specifi c splicing, resulting in IIIb and 
IIIc isoforms ( 22 ). Both IIIb and IIIc isoforms of  FGFR2  and 
 FGFR3  were evident in the RNA-seq data of the fusion cases, 
depending on cancer type (Supplementary Table S12).  

 As most of the diverse FGFR fusion partners contribute 
domains with known dimerization motifs, including coiled-coil, 
SAM, LisH, BAR, SPFH, and caspase ( 23–29 ), we hypothesized 
that oligomerization may serve as the common mechanism of 
activation of FGFR fusion proteins. Thus, we expressed selected 
epitope-tagged versions of the FGFR fusions in HEK 293T cells 
and looked for protein oligomerization by coimmunopre-
cipitation. For example, whereas FGFR3–BAIAP2L1, FGFR3–
TACC3, FGFR2–BICC1, and FGFR2–CCDC6 interacted 
 in vitro , wild-type FGFR2 and FGFR3 did not in the absence 
of FGF ligands ( Fig. 3A  and Supplementary Fig. S2). We also 
show that the isolated fusion domains provided by BAIAP2L1, 
TACC3, KIAA1967, CCDC6, and BICC1 interact  in vitro  as oli-
gomerization domains (Supplementary Fig. S3), further sup-
porting the notion of oligomerization-induced activation of 
FGFR kinase fusions. We additionally showed dimerization 
capability of the coiled-coil domain present in the FGFR2–CIT 
fusion identifi ed recently in a lung adenocarcinoma by Seo and 
colleagues (ref.  30 ; Supplementary Fig. S3).  

 Unlike wild-type FGFR2 and FGFR3, overexpression of 
selected examples of FGFR fusions, including FGFR2–BICC1, 
FGFR3–BAIAP2L1, and FGFR3–TACC3, in 293T cells induced 
morphologic changes characterized by rounding up of cells 
(Supplementary Fig. S4). Overexpression of these FGFR fusion 
proteins also enhanced cell proliferation based on real-time cell 
imaging ( Fig. 3B ). To further show that FGFR fusion kinases 

are biologically active, we stably expressed FGFR fusions in 
benign immortalized TERT-HME cell lines. Stable lines har-
boring the FGFR3–BAIAP2L1, FGFR3–TACC3, and FGFR2–
CCDC6 fusions showed expression of active FGFR fusion 
kinases (as shown by tyrosine phosphorylation of the fusion 
kinases) and enhanced proliferation of the cells ( Fig. 3C–E ). 
Activation of downstream mitogen-activated protein kinase 
ERK1/2 and the transcription factor STAT1 was also observed 
in the stable lines (Supplementary Fig. S5). In addition, the 
ERLIN2–FGFR1 fusion also produced an active FGFR kinase, 
as shown by tyrosine phosphorylation of the expressed fusion 
construct (Supplementary Fig. S6). 

 To evaluate the effects of pharmacologic inhibition of cells 
naturally harboring FGFR fusions, we assessed the sensitivity 
of bladder cancer cell lines to an FGFR small-molecule kinase 
inhibitor PD173074 ( 31 ). SW780 cells were characterized to 
have a fusion of  FGFR3–BAIAP2L1  in this study and a study by 
Williams and colleagues (ref.  16 ; Supplementary Fig. S7A), 
whereas J82 and HT-1197 cells harbor activating point muta-
tions of  FGFR3  [K652E and S249C respectively ( 32 ), Catalog 
of Somatic Mutations in Cancer (COSMIC)]. Importantly, 
while the FGFR fusion-positive cell line SW780 was sensitive to 
nanomolar concentrations of PD173074, the  FGFR3 -mutant cell 
lines used here were not ( Fig. 4A ), suggesting that FGFR fusions 
may exhibit sensitivity to FGFR inhibitors, whereas some FGFR 
mutations are known to be resistant ( 33 ). Inhibition of prolif-
eration was also shown with a second FGFR inhibitor, pazo-
panib, again showing sensitivity of the FGFR fusion-positive 
lines SW780 and RT4 (Supplementary Fig. S7B). PD173074 
exerted a cell-cycle arrest effect on fusion-positive SW780 cells, 
but not on fusion-negative HT-1197 cells (Supplementary Fig. 
S8). Similar results for FGFR fusion-positive lines were obtained 
 in vivo . SW780 xenografts exhibited decreased tumor growth 
with increasing doses of PD173074, whereas J82 xenografts 
did not ( Fig. 4B ). Expression of the  FGFR3–BAIAP2L1  fusion  in 
vitro  induced ERK1/2 activation (Supplementary Fig. S5), and, 
similarly, fusion-positive SW780 xenografts exhibited strong 
ERK1/2 activation, which could be abolished by treatment with 
the FGFR inhibitor PD173074 ( Fig. 4C ). The RT4 urothelial 
carcinoma line harboring  FGFR3-TACC3  fusion also exhibited 
sensitivity to FGFR inhibition in a xenograft model ( Fig. 4B ). 
Toxicity of PD173074 was monitored by assessment of mouse 
body weight (Supplementary Fig. S7C).  

 Further experiments using siRNA knockdown show the 
central role of  FGFR3–BAIAP2L1  fusion in SW780 cell pro-
liferation. Knockdowns using either  FGFR3  of  BAIAP2L1  
siRNAs resulted in a dramatic reduction in cell prolifera-
tion in fusion-positive SW780 cells. In contrast, knockdown 
of  FGFR3  or  BAIAP2L1  did not have signifi cant effects on 
cell proliferation in either fusion-negative cell line J82 or 
HT-1197 (Supplementary Fig. S9).   

 DISCUSSION 
 Sequencing and analysis of each of the 4 FGFR fusion-positive 

patients described in this study were carried out in a time frame 
of 5 to 7 weeks. The sequencing results were each presented 
at our bimonthly multidisciplinary precision tumor board for 
discussion and deliberation. The fi rst patient with cholangio-
carcinoma, MO_1036, who harbored the  FGFR2–BICC1  
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 Figure 2.      Schematic representations of the predicted FGFR fusions identifi ed by transcriptome sequencing of human cancers. Data used include RNA 
sequencing results from the 4 index patients, our internal tumor cohort, and the TCGA compendium. Out of 4 FGFR receptor family members,  FGFR1 , 
 FGFR2 , and  FGFR3  are involved in gene fusions with various partners located on several chromosomes. Eleven distinct fusion partners of FGFRs were 
identifi ed. Exon and codon numberings are based on the reference accessions in Supplementary Table S13. LUSC, lung squamous cell carcinoma; HNSCC , 
head and neck squamous cell carcinoma.   
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 Figure 3.      Functional characterization of FGFR fusion proteins. A, oligomerization of FGFR fusion proteins shown by immunoprecipitation (IP)-Western 
blotting (WB). HEK 293T cells were transfected with respective MYC- and V5-tagged FGFR wild-type or fusion proteins and reciprocal IP-WBs were 
carried out. B, cell proliferation assays as determined by live-cell imaging of 293T cells overexpressing various FGFR fusion proteins. Data shown are 
cell confl uence versus time at 3-hour intervals. Each data point is the mean of quadruplicates. C, stable expression of FGFR fusion proteins in TERT-HME 
cells. Cell lysates were prepared from various stable lines and expression of chimeric proteins was detected by anti-V5 antibody. D, FGFR fusion protein 
activity in TERT-HME cells. Cell lysates from various stable lines were immunoprecipitated and immunoblotted (IB) with the antibodies indicated. 
E, overexpression of FGFR fusions induces cell proliferation in TERT-HME cells. Cell proliferation assays were conducted by IncuCyte live-cell imaging. 
Data shown are cell confl uence versus time at 3-hour intervals. Each data point is the mean of quadruplicates.   
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 Figure 4.      Inhibition of FGFR fusion kinase activity repressed tumor growth in a mouse xenograft model. A, inhibition of cell proliferation by the 
FGFR inhibitor PD173074. The  FGFR3–BAIAP2L1  bladder cell line SW780, and 2 control bladder cell lines J82 (K652E mutation) and HT-1197 (S249C 
mutation), were tested for the effects of PD173074 at 3 concentrations on cell proliferation, assessed by the WST-1 method at the indicated times. 
Data shown are the means of triplicates. B, differential sensitivity of FGFR fusion-positive versus FGFR-mutant bladder cancer xenograft growth to 
PD173074. Mice xenografted with bladder cancer SW780 cells ( FGFR3–BAIAP2L1  fusion), RT4 ( FGFR3–TACC3  fusion), or J82 cells (K652E mutation) 
were treated daily with PD173074 after tumors were formed. The tumor size was monitored over a time course of 3 weeks. *,  P  < 0.05; **,  P  < 0.005.
C, inhibition of the FGFR signaling pathway by the FGFR inhibitor PD173074 in mouse xenograft tumors. Bladder cancer SW780 cells were implanted in 
mice and treated with PD173074 after tumor formation as shown in B. Protein lysates of tumor tissues were prepared and immunoblotted with antibod-
ies against phospho-ERK1/2, pan-ERK1/2, and γ-tubulin.   
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fusion, underwent a conventional chemotherapy regimen in 
which her cancer progressed, chose not to pursue FGFR-directed 
therapy, and died 3 months after enrollment on this protocol. 
The second patient with cholangiocarcinoma, MO_1039, also 
harboring an  FGFR2–BICC1  fusion, underwent conventional 
chemotherapy but did not show tumor shrinkage and was 
enrolled on an FGFR inhibitor clinical trial. The patient with 
metastatic breast cancer, MO_1051, harboring the  FGFR2–AFF3  
fusion, died of end-stage disease before the sequencing results 

were available. The patient with metastatic prostate cancer 
underwent irradiation of the brain (after brain metastasis resec-
tion) and continues to be maintained on hormonal treatment. 
Because of his brain metastasis, the prostate cancer patient was 
not eligible for an FGFR clinical trial. 

 Activating point mutations of  FGFR1 ,  FGFR2 ,  FGFR3 , or 
 FGFR4  have been identifi ed in a variety of cancers, includ-
ing gliomas, bladder cancer, multiple myeloma, and rhab-
domyosarcomas ( 34 ). Studies of hematologic diseases 
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led to the identifi cation of 3′ gene fusions of  FGFR1  in 
myeloproliferative disorder ( 35 ) and 3′  FGFR3  fusions in 
peripheral T-cell lymphoma ( 36 ) and multiple myeloma ( 35 ). 
As described earlier, 5′ gene fusions of  FGFR1  and  FGFR3  
with  TACC1  and  TACC3  have recently been identifi ed in GBM 
in 2 studies ( 15 ,  37 ). Here, we identify potentially actionable 
5′ and 3′ FGFR rearrangements across a diverse array of both 
common and rare solid tumors. Ten novel FGFR fusion part-
ners were identifi ed. In the Singh and colleagues ( 15 ) GBM 
study, the mechanism of activation of the FGFR fusions was 
proposed to be through mislocalization to mitotic spindle 
poles mediated by the coiled-coil domain of the TACC fusion 
partner. This presumably leads to mitotic and chromosomal 
segregation defects, triggering aneuploidy. In the Parker and 
colleagues ( 37 ) GBM study, increased expression through loss 
of the  FGFR3  3′ UTR and  miR-99a  regulation was hypoth-
esized as an activating mechanism. While these may be poten-
tial mechanisms in the specifi c case of the FGFR3–TACC3 
fusion proteins in GBM, this likely does not explain the 
diverse array of fusion partners identifi ed for FGFRs in this 
study. We propose a different, potentially more inclusive, 
model in which the FGFR fusion partners (e.g.,  BICC1 , 
 TACC3 ,  CCDC6 ,  BAIAP2L1 ,  KIAA1967 ,  CASP7 ,  CIT , and 
 OFD1 ) mediate oligomerization, which triggers activation of 
the respective FGFR kinase. Of note, we have not detected any 
FGFR fusions that result in simple truncation of the FGFR 
protein, despite prior investigations suggesting that 3′ trun-
cating splicing isoforms encode activated FGFR2 proteins 
( 38 ). The FGFR fusions detected have persistently exhibited 
substantial dimerization domain contributions from the 3′ 
fusion partner. 

 The  SLC45A3–FGFR2  gene fusion identifi ed in the index 
prostate cancer is quite interesting, as its pathogenic role 
is likely through a mechanism that is distinct from fusion 
protein oligomerization (shared by the other gene fusions 
tested). The entire open reading frame of  FGFR2  is expressed 
under the control of an androgen-regulated promoter of 
 SLC45A3 , leading to the marked overexpression of FGFR2. 
The  SLC45A3–FGFR2  fusion is analogous to the previously 
characterized  TMPRSS2–ETS  gene fusions characterized in 
more than 50% of prostate cancers ( 7 ). One would predict 
that this patient should respond to second-generation antian-
drogens, such as MDV3100 ( 39 ), as well as FGFR inhibition. 
Another interesting observation in this study is the enhanced 
sensitivity to the FGFR inhibitor PD173074 of cell lines har-
boring an  FGFR3  fusion relative to those that have an activat-
ing point mutation of  FGFR3 . While beyond the scope of this 
study, additional FGFR inhibitors and larger panels of FGFR 
fusions and FGFR-mutant cell lines will need to be studied to 
determine the broader applicability of these results. Clinical 
trials for several FGFR inhibitors are underway or in late-
stage preclinical development ( 33 ,  40 ,  41 ). It will be important 
to enrich these early-stage clinical trials with patients harbor-
ing FGFR gene fusions, similar to the successful development 
of the small-molecule kinase inhibitor crizotonib in patients 
with lung cancer harboring the  EML4–ALK  gene fusion. The 
wide range of cancers in which FGFR rearrangements were 
detected in this study suggests that development of FGFR 
rearrangements is lineage-independent and emphasizes the 
importance of developing mutation-enriched clinical trials 

rather than trials based on tissue of origin. While each indi-
vidual type of genetic aberration may occur at low frequency, 
the integrated sequencing approach identifi es a wide range 
of informative genetic aberrations, potentially guiding the 
enrollment into numerous trials of diverse therapeutics. 

 In this study, we identifi ed 4 patients with FGFR fam-
ily gene fusions through an established clinical sequenc-
ing project called MI-ONCOSEQ. Combining these index 
patients with an analysis of transcriptome data from our 
internal tumor cohorts as well as the TCGA identifi ed FGFR 
fusions in a wide array of cancers, including cholangiocarci-
noma, GBM, squamous lung cancer, bladder cancer, breast 
cancer, thyroid cancer, oral cancer, head and neck squamous 
cell carcinoma, and prostate cancer. In addition to  TACC1  
and  TACC3 , we identifi ed 10 additional FGFR fusion part-
ners, as well as implicated 3 out of 4 FGFR family members 
( FGFR1 ,  2 , and  3 ) in gene rearrangements. We also suggest 
a common mechanism of activation of these fusion pro-
teins and show that FGFR gene fusion-positive cancers have 
enhanced susceptibility to FGFR inhibitors over activating 
point mutations of FGFR.   

 METHODS  
  Clinical Study and Specimen Collection  

 Sequencing of clinical samples was conducted under IRB-approved 
studies at the University of Michigan (Ann Arbor, MI). Patients 
were enrolled and consented for integrative tumor sequencing, 
MI-ONCOSEQ (IRB# HUM00046018; ref.  3 ). Medically qualifi ed 
patients 18 years or older with advanced or refractory cancer are eli-
gible for the study. Informed consent details the risks of integrative 
sequencing and includes upfront genetic counseling. Biopsies  were 
arranged for safely accessible tumor sites. Needle biopsies were snap 
frozen in optimum cutting temperature compound and a longitudi-
nal section was cut. Hematoxylin and eosin-stained frozen sections 
were reviewed by pathologists to identify cores with highest tumor 
content. Remaining portions of each needle biopsy core were retained 
for nucleic acid extraction.   

  Cell Lines and Antibodies  
 Cell lines were purchased from the American Type Culture Collection 

and verifi ed by next-generation transcriptome sequencing methods to 
identify known somatic mutations (COSMIC database). Oral cancer 
cell lines were obtained from their originating lab (A.-J. Cheng) and are 
not verifi ed. Cells were grown in specifi ed media supplemented with 
FBS and antibiotics (Invitrogen). Anti-c-MYC antibody was purchased 
from Sigma. Anti-V5 antibody was purchased from Life Technologies. 
Anti-FGFR3 antibodies were purchased from Epitomics and Cell Sig-
naling. Antisera for phospho-FGFR, phospho-ERK1/2, pan-ERK1/2, 
phospho-STAT1, and pan-STAT1 were purchased from Cell Signaling. 
Anti-phosphotyrosine antibody clone 4G10 is from Millipore.   

  DNA/RNA Isolation and cDNA Synthesis  
 Genomic DNA from frozen needle biopsies and blood was isolated 

using the Qiagen DNeasy Blood & Tissue Kit, according to the manu-
facturer’s instructions. Total RNA was extracted from frozen needle 
biopsies using the Qiazol reagent with disruption using a 5-mm 
bead on a TissueLyser II (Qiagen), and purifi ed using a miRNeasy Kit 
(Qiagen) with DNase I digestion, according to the manufacturer’s 
instructions. Total RNA was isolated from cancer cell lines using the 
TRIzol reagent (Life Technologies). RNA integrity was verifi ed on an 
Agilent 2100 Bioanalyzer using RNA Nano reagents (Agilent Tech-
nologies). cDNA  was synthesized from total RNA using SuperScript 
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III (Invitrogen) and random primers (Invitrogen) for quantitative 
real-time PCR (qRT-PCR) analysis.   

  Preparation of Next - Generation Sequencing Libraries  
 Transcriptome libraries were prepared following Illumina’s TruSeq 

RNA protocol, using 1–2 μg of total RNA. Poly(A) +  RNA was isolated 
using Sera-Mag oligo(dT) beads (Thermo Scientifi c) and fragmented 
with the Ambion Fragmentation Reagents kit (Ambion). cDNA 
synthesis, end-repair, A-base addition, and ligation of the Illumina 
indexed adapters were conducted according to Illumina’s protocol. 
Libraries were size-selected for 250–300 bp cDNA fragments on a 
3% Nusieve 3:1 (Lonza) agarose gel, recovered using QIAEX II gel 
extraction reagents (Qiagen), and PCR-amplifi ed using Phusion DNA 
polymerase (New England Biolabs) for 14 PCR cycles. The amplifi ed 
libraries were purifi ed using AMPure XP beads. Library quality was 
measured on an Agilent 2100 Bioanalyzer for product size and concen-
tration. Paired-end libraries were sequenced with the Illumina HiSeq 
2000 (2 × 100 nucleotide read length). Reads that passed the chastity 
fi lter of Illumina BaseCall software were used for subsequent analysis. 

 Exome libraries of matched pairs of tumor/normal genomic DNAs 
were generated using the Illumina TruSeq DNA Sample Prep Kit, fol-
lowing the manufacturer’s instructions. Three micrograms of each 
genomic DNA was sheared using a Covaris S2 to a peak target size of 
250 bp. Fragmented DNA was concentrated using AMPure XP beads 
(Beckman Coulter), followed by end-repair, A-base addition, and liga-
tion of the Illumina indexed adapters according to Illumina’s proto-
col. The adapter-ligated libraries were electrophoresed on 3% Nusieve 
3:1 (Lonza) agarose gels and fragments between 300 and 350 bp were 
recovered using QIAEX II gel extraction reagents (Qiagen). Recovered 
DNA was amplifi ed using Illumina index primers for 8 cycles. The 
amplifi ed libraries were purifi ed using AMPure XP beads and the 
DNA concentration was determined using a Nanodrop spectropho-
tometer. One microgram of the libraries were hybridized to the Agi-
lent SureSelect Human All Exon V4 at 65°C for 60 hours following 
the manufacturer’s protocol (Agilent). The targeted exon fragments 
were captured on Dynal M-280 streptavidin beads (Invitrogen), and 
enriched by amplifi cation with the Illumina index primers for 9 addi-
tional cycles. After purifi cation of the PCR products with AMPure XP 
beads, the quality and quantity of the resulting exome libraries were 
analyzed using an Agilent 2100 Bioanalyzer and DNA 1000 reagents. 

 We used the publicly available software FastQC to assess sequenc-
ing quality. For each lane, we examined per-base quality scores across 
the length of the reads. Lanes were deemed passing if the per-base 
quality score boxplot indicated that more than 75% of the reads had 
>Q20 for bases 1–80. In addition to the raw sequence quality, we also 
assessed alignment quality using the Picard package. This allows 
monitoring of duplication rates and chimeric reads that may result 
from ligation artifacts and provides crucial statistics for interpreting 
the results of copy number and structural variant analysis.   

  Nomination of Gene Fusions  
 To identify gene fusions, paired-end transcriptome reads passing 

fi lter were mapped to the human reference genome and UCSC genes, 
allowing up to 2 mismatches, with Illumina ELAND software (Effi -
cient Alignment of Nucleotide Databases) and Bowtie ( 42 ). Sequence 
alignments were subsequently processed to nominate gene fusions 
using the method described earlier ( 9 ). In brief, paired-end reads 
were processed to identify those that either contained or spanned a 
fusion junction. Encompassing paired reads refer to those in which 
each read aligns to an independent transcript, thereby encompass-
ing the fusion junction. Spanning mate pairs refer to those in which 
one sequence read aligns to a gene and its paired-end spans the 
fusion junction. Both categories undergo a series of fi ltering steps 
to remove false positives before being merged together to generate 

the fi nal chimera nominations. Reads supporting each fusion were 
realigned using BLAT (UCSC Genome Browser) to reconfi rm the 
fusion breakpoint.   

  Mutation Analyses  
 We annotated the resulting somatic mutations using RefSeq tran-

scripts. HUGO gene names were used. The impact of coding nonsyn-
onymous amino acid substitutions on the structure and function of 
a protein was assessed using Blocks Substitution Matrix scores. We 
also assessed whether the somatic variant was previously reported in 
dbSNP135 or COSMIC v5668. 

 Tumor content for each tumor exome library was estimated from 
the sequence data by fi tting a binomial mixture model with 2 com-
ponents to the set of most likely single-nucleotide variant (SNV) 
candidates on 2-copy genomic regions. The set of candidates used 
for estimation consisted of coding variants that (i) exhibited at least 
3 variant fragments in the tumor sample, (ii) exhibited zero variant 
fragments in the matched benign sample with at least 16 fragments 
of coverage, (iii) were not present in dbSNP, (iv) were within a tar-
geted exon or within 100 base pairs of a targeted exon, (v) were not in 
homopolymer runs of 4 or more bases, and (vi) exhibited no evidence 
of amplifi cation or deletion. To fi lter out regions of possible amplifi -
cation or deletion, we used exon coverage ratios to infer copy number 
changes, as described below. Resulting SNV candidates were not used 
for estimation of tumor content if the segmented log-ratio exceeded 
0.2 in absolute value. Candidates on the Y chromosome were also 
eliminated because they were unlikely to exist in 2-copy genomic 
regions. Using this set of candidates, we fi t a binomial mixture model 
with 2 components using the R package fl exmix, version 2.3-8. One 
component consisted of SNV candidates with very low variant frac-
tions, presumably resulting from recurrent sequencing errors and 
other artifacts. The other component, consisting of the likely set of 
true SNVs, was informative of tumor content in the tumor sample. 
Specifi cally, under the assumption that most or all of the observed 
SNV candidates in this component are heterozygous SNVs, we expect 
the estimated binomial proportion of this component to represent 
one-half of the proportion of tumor cells in the sample. Thus, the 
estimated binomial proportion as obtained from the mixture model 
was doubled to obtain an estimate of tumor content. 

 Copy number aberrations were quantifi ed and reported for each 
gene as the segmented normalized log2-transformed exon coverage 
ratios between each tumor sample and matched normal sample ( 43 ). 
To account for observed associations between coverage ratios and vari-
ation in GC  content across the genome, locally weighted scatterplot 
smoothing (LOWESS) normalization was used to correct per-exon 
coverage ratios before segmentation analysis. Specifi cally, mean GC 
percentage was computed for each targeted region, and a LOWESS 
curve was fi t to the scatterplot of log2-coverage ratios vs. mean GC 
content across the targeted exome using the LOWESS function in R 
(version 2.13.1) with smoothing parameter  f  = 0.05. 

 Somatic point mutations were identifi ed in the tumor exome 
sequence data using the matched normal exome data to eliminate 
germline polymorphisms. Parameters and computational methods 
were as previously described ( 44 ). 

 For RNA-seq gene expression analysis, transcriptome data was proc-
essed as previously described. Genes were nominated as exhibiting 
potential “outlier” expression relative to a cohort of  n  = 282 previ-
ously sequenced tissues using the following conditions: (i) the gene 
was required to have an expression value of at least 20 RPKM in the 
sample of interest; (ii) the gene was required to be at or above the 
90th percentile relative to all previously sequenced tissues, of any type; 
(iii) the gene was required to have a fold change of at least 2 relative 
to the maximum reads per kilobase per million reads over all previ-
ously sequenced benign tissues; and (iv) the 25th percentile of the gene 
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expression measurements over the previously sequenced tissues was 
required to be less than 50 RPKM. Collectively, these parameters target 
genes with (i) high absolute expression, (ii) high expression relative to 
previously sequenced tissues, (iii) high expression relative to all benign 
tissues, and (iv) expression that is not uniformly high across all tissues. 

 Partially redundant sequencing of areas of the genome affords the 
ability for cross-validation of fi ndings. We cross-validated exome-
based point mutation calls by manually examining the genomic and 
transcriptomic reads covering the mutation using the UCSC Genome 
Browser. Likewise, gene fusion calls from the transcriptome data can 
be further supported by structural variant detection in the genomic 
sequence data as well as copy number information derived from the 
genome and exome sequencing.   

  Quantitative RT-PCR  
 For validation of fusion transcripts, qRT-PCR assays were con-

ducted. Total cDNAs of index cases and negative control samples 
were synthesized using SuperScript III System according to the 
manufacturer’s instructions (Invitrogen). Quantitative RT-PCR was 
conducted using fusion-specifi c primers (Supplementary Table S15) 
with SYBR Green Master Mix (Applied Biosystems) on the StepOne 
Real-Time PCR System (Applied Biosystems). The PCR products were 
further analyzed by agarose gel electrophoresis. Relative mRNA levels 
of the fusion transcripts were normalized to the expression of the 
housekeeping gene  GAPDH .   

  Inhibition of FGFR Receptors and Cell Proliferation Assay  
 Bladder cancer cells SW780, J82, and HT-1197 were seeded into 

96-well plates in triplicate and allowed to attach before drug treat-
ment. The FGFR inhibitor PD173074 (Selleck Chemicals) was added 
to the cultures at concentrations of 0, 5, 25, and 100 nmol/L. Relative 
cell numbers were measured by WST-1 assays at indicated time points 
following the manufacturer’s instructions (Roche). To test the effects 
of the FGFR inhibitor pazopanib (Selleck Chemicals) on cell prolif-
eration, SW780, RT4, J82, and HT-1197 cells were seeded into 24-well 
plates in quadruplicates and allowed to attach before drug treatment. 
Pazopanib was added to the cultures at concentrations of 0, 0.1, 0.5, 
and 1 μmol/L. Cell proliferation was determined by IncuCyte live-cell 
imaging system (Essen Biosciences).   

  Cloning and Expression of FGFR Fusions  
 The FGFR fusion alleles were PCR amplifi ed from cDNA of the 

index cases or cell lines using the primers listed in Supplementary 
Table S15 and the Expand High Fidelity protocol (Roche). PCR prod-
ucts were digested with restriction endonuclease and ligated into the 
pcDNA3.1 vector (Invitrogen), which had been modifi ed to contain a 
C-terminal MYC-epitope tag or V5-epitope tag. Expression constructs 
were transfected into HEK 293T cells using FuGene HD transfection 
reagent (Promega). Cells were harvested 24 hours after transfection 
for protein analysis. For stable line establishment in TERT-HME 
cells, FGFR fusion alleles were cloned into the pCDH510B lentiviral 
vector (System Biosciences), which had been modifi ed to contain 
a C-terminal V5 epitope tag. Lentiviruses were produced with the 
ViraPower packaging mix (Invitrogen) in 293T cells using FuGene 
HD transfection reagent (Roche). Benign TERT-HME cells at 30% 
confl uence were infected at a multiplicity of infection of 20 with 
the addition of polybrene at 8 mg/mL, and the cells were selected by 
20  μg/mL puromycin. Stable pools of resistant cells were obtained 
and analyzed for expression of the FGFR fusion proteins by Western 
blot analysis with anti-V5 antibody. Cell proliferation was measured 
by IncuCyte imaging system as described above. 

 For the cell proliferation assay, HEK 293T cells were transfected 
with control vector or FGFR fusion constructs. Twenty-four hours 
after transfection, cells were trypsinized, resuspended in Dulbecco’s 
Modifi ed Eagle Medium (DMEM) containing 2% FBS, and plated in 

quadruplicate at 12,000 cells per well in 24-well plates. The plates were 
incubated at 37°C and 5% CO 2  atmosphere using the IncuCyte live-cell 
imaging system (Essen Biosciences). Cell proliferation was assessed by 
kinetic imaging confl uence measurements at 3-hour time intervals.   

  Coimmunoprecipitation  
 HEK 293T cells were grown to approximately 70% confl uence 

in DMEM supplemented with 10% FBS, followed by transfection 
with MYC-tagged or V5-tagged expression construct alone or in 
combination using FuGene6 reagent (Promega). Twenty-four hours 
after transfection, cell pellets were lysed in lysis buffer (58 mmol/L 
Na2HPO4, 17 mmol/L NaH2PO4, 68 mmol/L NaCl, 1% Triton 
X-100, 0.5% sodium deoxycholate, 0.1% SDS, and protease inhibi-
tors), followed by immunoprecipitation with tag epitope-specifi c 
antibodies (Sigma) and protein-G Dynabeads (Invitrogen). Precipi-
tates were washed 3 times with IP Wash buffer (20 mmol/L Tris, pH 
8, 2 mmol/L EDTA, 150 mmol/L NaCl, 1% Triton X100) and eluted 
in SDS-PAGE loading buffer at 95°C for 5 minutes. Immunoprecipi-
tated proteins were separated on SDS-PAGE and detected by Western 
blotting with tag epitope-specifi c antibodies (Sigma).   

  siRNA Knockdown of  FGFR3  and  BAIAP2L1 
 SW780, J82, and HT-1197 bladder cancer cells were transfected 

twice with  FGFR3 -targeting siRNA,  BAIAP2L1 -targeting siRNA, or 
nontargeting siRNA (Thermo Scientifi c Dharmacon) using Dharma-
FECT1 reagent (Dharmacon). The siRNAs used were as follows: ON-
TARGETplus FGFR3 L-003133-00-0005, ON-TARGETplus BAIAP2L1 
L-018664-00-0005, and ON-TARGETplus Nontargeting pool. Twenty-
four hours after transfection, cells were trypsinized and plated in trip-
licate at 8,000 cells per well in 24-well plates. The plates were incubated 
at 37°C with 5% CO 2  atmosphere in the IncuCyte live-cell imaging sys-
tem (Essen Biosciences). Cell proliferation rate was assessed by kinetic 
imaging confl uence measurements at 3-hour time intervals.   

  Mouse Xenograft Models  
 Five week-old male C.B17/SCID mice were procured from a breed-

ing colony at University of Michigan, maintained by Dr. Kenneth 
Pienta. Mice were anesthetized using a cocktail of xylazine (80 mg/kg, 
intraperitoneal) and ketamine (10 mg/kg, intraperitoneal) for chemical 
restraint. Bladder cancer cells SW780 (2 million cells for each implan-
tation site) or J82 (5 million cells for each implantation site) were 
resuspended in 100 μL of 1× PBS with 20% Matrigel (BD Biosciences) 
and were implanted subcutaneously into fl ank region on both sides. 
Eight mice were included in each experimental group. All tumors 
were staged for 2 weeks (SW780 cells) and 3 weeks (J82 cells) before 
starting the drug treatment. Xenografted mice with palpable tumors 
were treated with a FGFR inhibitor PD173074 (Selleck Chemicals) 
dissolved in 5% ethanol in corn oil (intraperitoneal). Mice in control 
group received 5% ethanol in corn oil as vehicle control. Tumor 
growth was recorded weekly by using digital calipers, and tumor 
volumes were calculated using the formula (π/6) (L × W2), where 
L = length of tumor and W = width. Any decrease in the body weight 
of mice was monitored biweekly during the course of the study. 
All experimental procedures involving mice were approved by the 
University Committee on Use and Care of Animals at the University 
of Michigan and conform to their relevant regulatory standards. 
Tumor tissues from xenografted SW780 cells were harvested and 
lysed in radioimmunoprecipitation assay buffer containing protease/
phosphatase inhibitors for Western blot analysis.    
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Breast cancer is the most prevalent cancer in women, and over 
two-thirds of cases express estrogen receptor-a (ER-a, encoded 
by ESR1). Through a prospective clinical sequencing program 
for advanced cancers, we enrolled 11 patients with ER-positive 
metastatic breast cancer. Whole-exome and transcriptome 
analysis showed that six cases harbored mutations of ESR1 
affecting its ligand-binding domain (LBD), all of whom had 
been treated with anti-estrogens and estrogen deprivation 
therapies. A survey of The Cancer Genome Atlas (TCGA) 
identified four endometrial cancers with similar mutations of 
ESR1. The five new LBD-localized ESR1 mutations identified 
here (encoding p.Leu536Gln, p.Tyr537Ser, p.Tyr537Cys, 
p.Tyr537Asn and p.Asp538Gly) were shown to result in 
constitutive activity and continued responsiveness to anti-
estrogen therapies in vitro. Taken together, these studies 
suggest that activating mutations in ESR1 are a key mechanism 
in acquired endocrine resistance in breast cancer therapy.

Advances in high-throughput sequencing technologies are beginning 
to establish a molecular taxonomy for a spectrum of human diseases 
and has facilitated a move toward ‘precision medicine’ (refs. 1,2). With 
regard to oncology, defining the mutational landscape of a patient’s 
tumor will lead to more precise treatment and management of indi-
viduals with cancer. Comprehensive clinical sequencing programs 
for cancer patients have been initiated at a variety of medical cent-
ers, including our own3,4. In addition to the potential for identify-
ing ‘actionable’ therapeutic targets in cancer patients, these clinical 
sequencing efforts may also shed light on acquired resistance mecha-
nisms developed against targeted therapies5–7.

ER is the primary therapeutic target in breast cancer and is 
expressed in 70% of cases8. Drugs directly antagonizing ER, such as 

tamoxifen and fulvestrant, are a mainstay of breast cancer treatment; 
however, approximately 30% of ER-positive breast cancers exhibit  
de novo resistance, whereas 40% acquire resistance to these therapies9. 
In addition to anti-estrogen therapies, patients with ER-positive breast 
cancer are also treated with aromatase inhibitors such as letrozole 
and exemestane10. Aromatase inhibitors block the peripheral con-
version of androgens into estrogen and, in post-menopausal women, 
lead to over a 98% decrease in circulating levels of estrogen. As with 
anti-estrogens, treatment with aromatase inhibitors results in the 
development of resistance, but this is presumably due to different 
mechanisms, as patients with breast cancer who develop resistance to 
aromatase inhibitors often still respond to anti-estrogen therapies11. 
The molecular mechanisms of endocrine resistance in ER-positive 
breast cancer continues to be an active area of research12.

Our institutional review board (IRB)-approved clinical sequenc-
ing program, called MI-ONCOSEQ (the Michigan Oncology 
Sequencing Program), enrolls patients with advanced cancer across 
all histologies3. Since April 2011, we have enrolled over 200 patients 
in this program, which involves obtaining a current tumor biopsy 
with matched normal samples (blood and/or buccal swab). Samples 
are then subjected to integrative sequencing, which includes whole-
exome sequencing of the tumor and matched normal sample, tran-
scriptome sequencing and, as needed, low-pass whole-genome 
sequencing3. This combination of DNA and RNA sequencing tech-
nologies allows one to be relatively comprehensive with regard to 
the mutational landscape of coding genes, including analysis of 
point mutations, indels, amplifications, deletions, gene fusions or 
translocations, and outlier gene expression profiles. These results are 
generated within a 5- to 7-week time frame and are presented at an 
institutional ‘precision medicine tumor board’ to deliberate upon 
potentially actionable findings.
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As part of the MI-ONCOSEQ program, we enrolled and sequenced 
11 patients with metastatic ER-positive breast cancer (Table 1 and 
Supplementary Table 1). A diverse array of aberrations were identi-
fied in individual patients, some of which are potentially actionable, 
including mutations in PIK3CA (n = 4), BRCA1 aberrations (n = 2), 
FGFR2 aberrations (n = 2)13, NOTCH2 frameshift deletion (n = 1), 
cyclin and associated cyclin-dependent kinase aberrations (n = 3) 
and MDM2 amplification and overexpression (n = 1). Aberrations  
were also frequently found in the tumor suppressor TP53 (n = 6), the 
DNA mismatch repair gene MSH2 (n = 1) and in epigenetic regulators  
(n = 2), including ARID2, ARID1A and SMARCA4, among others. 
The complete spectra of somatic mutations with associated altera-
tions in expression levels and copy number in the index patients are 
given in Supplementary Figure 1 and Supplementary Tables 2 and 3. 
Two of the index patients, MO_1031 and MO_1051, exhibited a high 
level of mutations consistent with ‘signature B’ identified in a whole-
genome study of mutational processes in breast cancer14. There were 
39 gene fusions identified in the 6 index patients, with 11 encoding 
in-frame fusion proteins (Supplementary Fig. 2 and Supplementary  
Tables 4 and 5), including an activating FGFR2-AFF3 fusion13.

The most notable observation in the mutational landscapes of 
these treated patients with ER-positive breast cancer was the find-
ing of nonsynonymous mutations in ESR1 affecting the LBD (n = 6). 
The six index patients MO_1031, MO_1051, MO_1069, MO_1129, 
MO_1167 and MO_1185 had mutations encoding p.Leu536Gln, 
p.Tyr537Ser, p.Asp538Gly, p.Tyr537Ser, p.Asp538Gly and p.Tyr537Ser 
alterations in the LBD, respectively. The respective mutation in each 
case was detected by whole-exome sequencing of the tumor rela-
tive to the matched normal sample and was corroborated by whole-
transcriptome sequencing, as ESR1 was expressed at moderate to high 
levels (Supplementary Table 2). The clinical histories of the index 
patients are depicted in timelines in Figure 1. For three of the patients  
(MO_1051, MO_1069 and MO_1129), we had access to primary diag-
nostic material and showed that the ESR1 mutations were not present at 
an earlier stage, indicating that they were acquired after endocrine ther-
apy (Fig. 1 and Supplementary Table 2). Interestingly, all of the index 
patients were treated with anti-estrogens (tamoxifen and/or fulvestrant) 

and aromatase inhibitors (letrozole, anastrozole and/or exemestane). 
Two of the patients also had an oophorectomy. Comparison of the 
mutations present in each primary versus post-treatment pair showed 
a substantial number of shared mutations in both samples of the pair, 
including activating mutations in PIK3CA in two of the cases. Thus,  
it is clear that the index cases presented with recurrent disease of the 
original primary tumor surviving in an estrogen-deprived state and 
having acquired ESR1 mutations. Of note, neither ESR1 amplifications 
nor gene fusions were observed in these cases.

The five new LBD alterations of ESR1 identified in this study are 
depicted in Figure 2. Each occurred in the vicinity of the synthetic 
alterations of ESR1 that are inverted in response to tamoxifen and 
involve p.Met543Ala and p.Leu544Ala alterations (Inv-mut-AA2)15 
and served as a positive control for our subsequent in vitro studies.  
We next investigated the occurrence of ESR1 mutations in a range of 
breast cancer types. Here we took advantage of data from the TCGA 
Project, which has generated whole-exome sequences for 27 tumor 
types across at least 4,000 individual samples. As expected, LBD- 
disrupting mutations of ESR1 were not detected in the 390 ER-positive 
breast cancers sequenced by TCGA, as these were primary resection 
samples before hormonal treatment16, nor did we detect ESR1 muta-
tions in a cohort of 80 triple-negative breast carcinoma transcriptomes 
(D.R.R., Y.-M.W., X.C., S.K.-S., A.M.C. et al., unpublished data).

As the LBD-disrupting mutations of ESR1 we identified were 
somatic and were acquired after treatment, we next assessed whether 
the encoded proteins were dependent on estrogen for activation.  
We cloned into expression vectors each of the five ESR1 mutants identi-
fied in this study (encoding p.Leu536Gln, p.Tyr537Ser, p.Asp538Gly, 
p.Tyr537Cys and p.Tyr573Asn alterations) and subsequently cotrans-
fected these constructs into HEK293T cells with an estrogen response 
element (ERE)-luciferase reporter system. We then exposed steroid 
hormone–deprived cells to β-estradiol for 24 h and assessed ERE 
reporter levels. Surprisingly, unlike wild-type ESR1, which had little  
ERE reporter activity in the absence of ligand, all five of the ESR1 
mutants had strong constitutive activation of the ERE reporter that was 
not markedly enhanced with β-estradiol (Fig. 3). This finding suggested 
that each of the mutations developed in the context of evolution during 

Table 1  Clinical sequencing of 11 metastatic ER-positive breast cancer cases

Case
Age 

(years) ER/PR/ERBB2 Treatmenta
Number of  

SNVs/fusions Genetic aberrationb

MO_1031 41 +/+/− Tamoxifen, letrozole, 
fulvestrant

266/18 ESR1 (p.Leu536Gln), gene copy gains of FGFR1, FGFR2, CCND1 and GNRHR

MO_1051 31 +/−/− Oophorectomy, letrozole, 
fulvestrant

248/5 ESR1 (p.Tyr537Ser), PIK3CA (p.His1047Arg), TP53 (p.Gly199Glu),  
FGFR2-AFF3 fusion

MO_1069 62 +/+/− Tamoxifen, letrozole, 
fulvestrant

74/9 ESR1 (p.Asp538Gly), ARID2 (p.Glu245*), gene copy losses of TP53, BRCA1, 
RB1, ARID1A and SMARCA4

MO_1129 44 +/+/− Tamoxifen, oophorectomy, 
anastrozole, fulvestrant, 
exemestane

32/3 ESR1 (p.Tyr537Ser), PIK3CA (p.Glu542Lys), gene copy gains of CCND1 and 
PAK1

MO_1030 78 +/+/− Tamoxifen (short),  
anastrozole, fulvestrant

26/2 PIK3CA (p.Glu545Ala), TP53 copy loss

MO_1068 65 +/−/− Tamoxifen, anastrozole 83/10 PIK3CA (p.His1047Arg), TP53 (p.Glu51*), MSH2 copy loss

MO_1090 52 +/+/− Tamoxifen, anastrozole 28/11 No significant drivers identified

MO_1107 46 +/+/− Tamoxifen, oophorectomy, 
anastrozole, fulvestrant, 
exemestane

63/12 BRCA1 (c.5385_5386insC), frameshift deletions in TP53, SMARCA4 and NF1

MO_1167 60 +/−/− Tamoxifen, letrozole 47/3 ESR1 (p.Asp538Gly)

MO_1185 58 +/+/− Tamoxifen, letrozole,  
fulvestrant, exemestane

88/1 ESR1 (p.Tyr537Ser), CDH1 (p.Gln641*), NOTCH2 (frameshift deletion), TP53 
copy loss

TP_2004c 52 +/−/− Tamoxifen (short) 29/22 MDM2 gene amplification, gene copy losses of CDKN2A and CDKN2B

PR, progesterone receptor; SNVs, single-nucleotide variants.
aOnly anti-estrogen–related treatments are listed. Patients also received chemotherapies, radiation or mastectomy in the interim between diagnosis and MI-ONCOSEQ sequencing. bAmino acid 
substitutions caused by nonsynonymous somatic mutations are given in parentheses. cTP_2004 is male.
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an estrogen-deprived state. Consistent with this idea, a whole-genome 
sequencing study of 46 patients with ER-positive breast cancer enrolled 
in 2 aromatase inhibitor trials did not identify any of these ESR1 muta-
tions in the pretreatment samples analyzed17.

Next, we assessed whether anti-estrogen therapies affected the func-
tional activity of the LBD mutants. As effects on inhibition can be 
influenced by the levels of ectopic ER expression, we performed a dose 
response study with expression plasmid and selected a dose of 50 ng 
for the following experiments18 (Supplementary Fig. 3). As expected, 
wild-type ESR1 was inhibited in a dose-dependent fashion by the anti-
estrogens 4-hydroxytamoxifen, fulvestrant and endoxifen (Fig. 4 and 

Supplementary Figs. 4–6). In addition, the mutant corresponding to 
the synthetic ESR1 mutation (Inv-mut-AA2) was activated in a dose-
dependent fashion by these anti-estrogens (Fig. 4), which has been 
reported previously15. Interestingly, ESR1 with each of the five LBD 
alterations identified in this study was inhibited by tamoxifen and ful-
vestrant in a dose-dependent fashion and did not exhibit the inverted 
response to anti-estrogens that the synthetic Inv-mut-AA2 mutant 
did. One could speculate that the corresponding mutations did not 
arise under selective pressure of anti-estrogen treatment but rather in 
the context of an estrogen deprivation setting, such as treatment with 
aromatase inhibitors and/or oophorectomy. The IC50 (half-maximal 

MO_1031

First diagnosis
Metastasis found
in lung and liver

Neoadjuvent 
chemotherapy,
mastectomy

Clinical and tumor 
marker progression, 
MI-ONCOSEQ seq
(ESR1-L536Q)

Tamoxifen PaclitaxelLetrozole Gemcitabine,
carboplatin

Fulvestrant,
capecitabine,
denosumab

1999 2001 2006 20122009 2010 2011

MO_1051

Radiation
chemotherapy,
left mastectomy,
hysterectomy,
oophorectomy

First diagnosis,
FFPE sequenced
(ESR1 wild type)

Right prophylactic
mastectomy

MI-ONCOSEQ seq
(ESR1-Y537S)

Radiation,
vinorelbine

Letrozole DocetaxelFulvestrant CapecitabineDasatinib

2005 2006 20122007 2009 20112008

MO_1069

CAF chemotherapy,
radiation, mastectomy,
tamoxifen

First diagnosis,
FFPE sequenced
(ESR1 wild type)

Disease 
progression
in liver

MI-ONCOSEQ seq
(ESR1-D538G)

PaclitaxelLetrozole CapecitabineFulvestrant,
paclitaxel,
gemcitabine

Tumor relapsed
bone and liver
matastasis

Disease 
progression
in liver

Fulvestrant Vinorelbine

1994 1999 2007 20122010 20112003 2008

MO_1129

Progressed 
in liver
MI-ONCOSEQ seq
(ESR1-Y537S)

First diagnosis,
FFPE sequenced
(ESR1 wild type)

Metastasis found
in skin and bone

Elevating 
tumor markers
progressed 
in bone

Gemcitabine,
denosumab

Tamoxifen Oophorectomy,
anastrozole,
zoledronate

Exemestane,
capecitabine

Fulvestrant

CAF chemotherapy,
radiation

2001 2002 2006 20132008 2011 2012

MO_1167

Tamoxifen Letrozole,
zoledronate

Denosumab Capecitabine

Chemotherapy,
radiation

First diagnosd with basal cell carcinomas,
benign thyroid tumor and melanoma

MI-ONCOSEQ seq
(ESR1-D538G)Brain metastasis

1995 20132011 20121996

MO_1185

Bevacizumab,
chemotherapy

Chemotherapy,
mastectomy,
radiation,
paclitaxel

Tamoxifen Letrozole Tamoxifen,
zoledronate

Fulvestrant,
capecitabine

Exemestane,
everolimus

1997 20132010 20111998 2009

First diagnosd with 
invasive lobular carcinoma

MI-ONCOSEQ seq
(ESR1-Y537S)

Metastatic lobular
carcinoma

Figure 1  Clinical timelines for the six index ER-positive metastatic breast cancer patients harboring ESR1 mutations. Shown are patients’ histories 
of clinical treatment from first diagnosis until enrollment in the MI-ONCOSEQ study. Each bar represents the timeframe of treatment. FFPE, formalin 
fixed, paraffin embedded; CAF, cyclophosphamide, doxorubicin, fluorouracil chemotherapy.
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inhibitory concentration) values for both 4-hydroxytamoxifen and 
fulvestrant were two- to fourfold higher for all mutants compared 
to wild-type ESR1. Fulvestrant exhibited greater maximal inhibition 
than 4-hydroxytamoxifen for all the mutants tested (Supplementary 
Figs. 4 and 5).

The ESR1 alterations identified in this study cluster near the begin-
ning of helix 12 (Fig. 2). Structural studies have demonstrated a key 
role for the position of helix 12 in the response of the ER to agonists 
and antagonists19, and Tyr537 has been postulated to form a cap-
ping motif contributing to the activity of the receptor20. Specifically, 
the p.Tyr537Ser mutant has been reported to have higher affin-
ity for estrogen than wild-type ESR1 and interacts with the SRC1 
coactivator in the absence of ligand21,22. Several studies using 
experimental mutagenesis have implicated the same three residues 
identified here as critical determinants of the transcriptional activity of  
the receptor21,23,24.

As estrogen therapy has been shown to have a positive effect in 
treating aromatase inhibitor–resistant advanced breast cancers, we 
tested the effect of low- to high-dose estrogen on the activity of the 
mutants in the transient luciferase reporter assays (Supplementary 
Fig. 7)25,26. The results did not suggest that the effectiveness of this 
therapy is mediated through direct control of the transcriptional 
activity of these mutants, if encoded by the responding patients.

Although the primary intent of our broad-based clinical sequencing 
program is to identify actionable and/or driver mutations in advanced 
cancers, this study demonstrates how such prospective, real-time 
sequencing efforts can also shed light on resistance mechanisms that 
develop against targeted therapies. A number of resistance mecha-
nisms have been suggested to function in the evasion of endocrine 
treatment, including activation of the mTOR and phosphoinositide  
3-kinase (PI3K) pathways, among others9,27. Although the total 

number of ER-positive breast cancers we have sequenced is modest, we 
have done so in a comprehensive fashion in terms of delineating muta-
tional landscapes and incorporating both DNA and RNA sequencing. 
This analysis identified de novo driver mutations and/or potentially 
acquired mutations in breast cancer such as mutations resulting in 
PI3K activation, PAK1 amplification and FGFR fusion and amplifica-
tion, which have been described previously13,28,29. Among potential 
new mechanisms described, we identified profound focal amplification 
of MDM2 (which encodes a negative regulator of p53 that is targetable) 
and copy gains of GNRHR (encoding gonadotropin-releasing hormone 
receptor), which may be related to past endocrine therapy.

As the LBD-disrupting mutations of ESR1 identified in this study 
result in constitutive activity, the encoded mutant proteins can func-
tion in the absence of ligand and maintain ER signaling. In 1997, an 
ESR1 mutation affecting the LBD, encoding a p.Tyr537Asn alteration, 
was detected in a single individual with stage IV metastatic breast 
cancer who had been treated with diethylstibesterol, but, since then, 
this mutation has been considered to be very rare30. With the advent of 
widespread aromatase inhibitor therapy, we suggest that alteration of 
the ESR1 LBD is likely a common mechanism of resistance that devel-
ops in low-estrogen states. Interestingly, LBD-disrupting mutations 
of ESR1 were detected somatically in 4 of 373 cases of endometrial 
cancer31. We speculate that the four TCGA endometrial tumors that 
harbor LBD-affecting mutations likely came from patients with con-
current breast cancer, as tamoxifen treatment is known to be associated 
with higher incidence of this tumor type and such patients also often 
receive estrogen deprivation treatment32.

Our study suggests that it is unlikely that these LBD alterations 
develop in the context of anti-estrogen treatment, as the mutated ESR1 
variants continue to be responsive to direct ER antagonists such as 
tamoxifen and fulvestrant. This finding is consistent with clinical 
reports showing that patients that develop resistance to aromatase 
inhibitors still respond to anti-estrogen treatment11. Although this 
prospective clinical sequencing study was not designed to charac-
terize a specific cancer type or treatment resistance mechanism, 
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Figure 3  ESR1 with acquired mutations encodes constitutively active 
protein. HEK293T cells were cotransfected with an ERE–firefly luciferase 
reporter plasmid, a plasmid constitutively expressing Renilla luciferase as 
an internal control and various ESR1 constructs (as illustrated in Fig. 2). 
Steroid hormone–deprived cells were either untreated or stimulated with  
5 nM β-estradiol for 24 h. Firefly luciferase activities were normalized 
using corresponding Renilla luciferase activities for each condition.  
Fold change in ESR1-driven transcriptional activity was calculated using 
untreated wild type as a control for each condition. Data shown are the 
means from triplicate experiments. Amino acid changes in respective 
ESR1 mutants are indicated. WT, wild-type ESR1. Error bars, s.d.
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Wild type (WT)

Inv-mut-AA2

MO_1031 L536Q

MO_1051, 1129, 1185 Y537S

MO_1069, 1167 D538G

Endometrium Y537C

Endometrium Y537N

395 405 511 550H11 H12

1 595ESR1

AF-1 DBD Hinge LBD/AF-2

Figure 2  Schematic of ESR1 alterations identified 
in this study. The structural domains of ESR1 
are illustrated on top, including the transcription 
activation function-1 domain (AF-1), the DNA-
binding domain (DBD), the hinge domain and 
the ligand-binding domain (LBD/AF-2). Altered 
residues identified in mutants are marked in red, 
and reference residues are shown in bold in the 
wild-type sequence. Endometrium p.Tyr537Cys 
and p.Tyr537Asn are two alterations discovered in 
endometrial cancer samples from the TCGA study. 
Inv-mut-AA2 represents a ligand activity inversion 
mutant of ESR1 that confers inverted responses to 
anti-estrogen and estrogen. H11, helix 11; H12, 
helix 12.
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future studies comprising larger cohorts 
of breast cancer patients with disease that 
recurs after varied endocrine treatments 
will more precisely delineate the incidence 
of this acquired resistance mechanism.  
The focused nature of these mutations and 
their role in aromatase inhibitor resistance 
suggest the possibility of monitoring patients 
undergoing treatment using circulating 
tumor DNA methods33,34. In this manner,  
treatment could be shifted to head off  
evolving tumor resistance.

URLs. BLAT, http://genome.ucsc.edu/cgi-bin/
hgBlat; ORF Finder, http://www.ncbi.nlm.nih.
gov/gorf/gorf.html.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequence data have been deposited in the  
database of Genotypes and Phenotypes (dbGaP), which is hosted 
by the National Center for Biotechnology Information (NCBI),  
under accessions phs000602.v1.p1 and phs000673.v1.p1.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 4  Acquired ESR1 mutations result 
in maintained sensitivity to anti-estrogen 
therapies. HEK293T cells were cotransfected 
with an ERE–firefly luciferase reporter plasmid, 
a plasmid constitutively expressing Renilla 
luciferase and various ESR1 constructs as 
indicated. (a,b) Steroid hormone–deprived cells 
were either untreated or treated with increasing 
doses of the anti-estrogen drugs tamoxifen (a) 
and fulvestrant (b) in the presence of 5 nM 
β-estradiol (E2) for 24 h. Percentage change 
in ESR1-driven transcriptional activity was 
calculated using E2-treated cells as the control 
for each tested construct. Data shown are the 
means from triplicate experiments. Error bars, 
s.d. *P < 0.001. Red, wild type; blue, clinically 
identified mutants; orange, synthetic ligand-
inversion mutant; green, vector control.
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ONLINE METHODS
Clinical study and specimen collection. Sequencing of clinical samples 
was performed under IRB-approved studies at the University of Michigan. 
Patients were enrolled and consented for integrative tumor sequencing in 
MI-ONCOSEQ (Michigan Oncology Sequencing Protocol, HUM00046018). 
Medically qualified patients 18 years or older with advanced or refractory can-
cer were eligible for the study. Informed consent detailed the risks of integra-
tive sequencing and includes up-front genetic counseling. Informed consent 
was obtained from all subjects included in this study. Biopsies were arranged 
for safely accessible tumor sites. Needle biopsies were snap frozen in OCT 
(Optimal Cutting Temperature) compound, and a longitudinal section was 
cut. Frozen sections stained with hematoxylin and eosin were reviewed by  
pathologists to identify cores with the highest tumor content. Remaining  
portions of each needle biopsy core were retained for nucleic acid extraction.

Extraction of DNA and RNA. Genomic DNA from frozen needle biopsies 
and blood was isolated using the Qiagen DNeasy Blood and Tissue kit,  
according to the manufacturer’s instructions. Total RNA was extracted from 
frozen needle biopsies using the Qiazol reagent with disruption using a  
5-mm bead on a Tissuelyser II (Qiagen) and was purified using a miRNeasy 
kit (Qiagen) with DNase I digestion, according to the manufacturer’s instruc-
tions. RNA integrity was verified on an Agilent 2100 Bioanalyzer using RNA 
Nano reagents (Agilent Technologies).

Preparation of next-generation sequencing libraries. Transcriptome libraries 
were prepared using 1–2 µg of total RNA. Polyadenylated RNA was isolated 
using Sera-Mag oligo(dT) beads (ThermoScientific) and fragmented with the 
Ambion Fragmentation Reagents kit. cDNA synthesis, end repair, A-base addi-
tion and ligation of the Illumina indexed adaptors were performed according 
to Illumina’s TruSeq RNA protocol. Libraries were selected for DNA fragments 
of 250–300 bp in size on a 3% Nusieve 3:1 agarose gel (Lonza), recovered 
using QIAEX II gel-extraction reagents (Qiagen) and PCR amplified using 
Phusion DNA polymerase (New England BioLabs). Amplified libraries were 
purified using AMPure XP beads (Beckman Coulter). Library quality was 
measured on an Agilent 2100 Bioanalyzer by product size and concentration. 
Paired-end libraries were sequenced with the Illumina HiSeq 2000 platform  
(2 × 100-nucleotide read length). Reads that passed the chastity filter of 
Illumina BaseCall software were used for subsequent analysis.

Exome libraries of matched pairs of tumor and normal genomic DNA were 
generated using the Illumina TruSeq DNA Sample Prep kit, following the 
manufacturer’s instructions. In brief, 1–3 µg of each genomic DNA sample was 
sheared using a Covaris S2 to a peak target size of 250 bp. Fragmented DNA 
was concentrated using AMPure XP beads, and end repair, A-base addition 
and ligation of Illumina indexed adaptors were performed. Adaptor-ligated 
libraries were electrophoresed on 3% Nusieve agarose gels, and fragments of 
300–350 bp were recovered using QIAEX II gel-extraction reagents. Recovered 
DNA was amplified using Illumina index primers for eight cycles and purified 
using AMPure XP beads, and DNA concentration was determined using a 
Nanodrop spectrophotometer. Libraries (1 µg) were hybridized to the Agilent 
SureSelect Human All Exon v4 chip at 65 °C for 60 h, following the manu-
facturer’s protocol (Agilent Technologies). Targeted exon fragments were 
captured on Dynal M-280 streptavidin beads (Invitrogen) and enriched by 
amplification with the Illumina index primers for nine additional PCR cycles. 
PCR products were purified with AMPure XP beads and analyzed for quality 
and quantity using an Agilent 2100 Bioanalyzer and DNA 1000 reagents.

We used the publicly available software FastQC to assess sequencing quality. 
For each lane, we examined per-base quality scores across the length of the 
reads. Lanes were deemed passing if the per-base quality score box plot indi-
cated that >85% of the reads had >Q20 for bases 1–100. In addition to raw 
sequence quality, we also assessed alignment quality using the Picard package. 
This allows monitoring of duplication rates and chimeric reads that may result 
from ligation artifacts, crucial statistics for interpreting the results of copy 
number and structural variant analysis.

Gene fusion detection. Paired-end transcriptome sequencing reads were 
aligned to the human reference genome (GRCh37/hg19) using an RNA sequenc-
ing (RNA-seq) spliced read mapper Tophat2 (ref. 35) (Tophat 2.0.4) with the 

‘–fusion-search’ option turned on to detect potential gene fusion transcripts.  
In the initial process, Tophat2 internally deploys an ultrafast short-read align-
ment tool, Bowtie (Version 0.12.8), to map the transcriptome data. Potential 
false-positive fusion candidates were filtered out using the ‘Tophat-Post-
Fusion’ module. Further, fusion candidates were manually examined for anno-
tation and ligation artifacts. Junction reads supporting the fusion candidates 
were realigned using the BLAT alignment tool to confirm fusion breakpoints.  
Full-length sequence of each fusion gene was constructed on the basis of  
supporting junction reads and evaluated for potential ORFs using an ORF 
Finder. For gene fusions with robust ORFs, the amino acid sequences of the 
fused proteins were explored using the Simple Modular Architecture Research 
Tool (SMART) to examine the gain or loss of known functional domains in 
the fusion proteins.

Gene expression. BAM ‘accepted_hits.bam’ files, which were generated by the 
Tophat mapping module, were used to quantify the expression data through 
Cufflinks36 (Version 2.0.2), an isoform assembly and RNA-seq quantifica-
tion package. The structural features of 56,369 transcripts from the Ensembl 
resource (Ensembl 66) were used as an annotation reference to quantify the 
expression of individual transcripts and isoforms. The ‘Max Bundle Length’ 
parameter was set to ‘10000000’, and ‘multi-read-correct’ was flagged on to 
perform an initial estimation procedure to more accurately weight reads  
mapping to multiple locations in the genome.

Mutation analysis. Whole-exome sequencing was performed on an Illumina 
HiSeq 2000 or HiSeq 2500 instrument in paired-end mode, and primary base 
call files were converted into FASTQ sequence files using the bcl2fastq con-
verter tool bcl2fastq-1.8.4 in the CASAVA 1.8 pipeline. FASTQ sequence files 
were then processed through an in-house pipeline constructed for whole-
exome sequence analyses of paired cancer and normal genomes. Sequencing 
reads were aligned to reference genome build hg19 (GRCh37) using Novoalign 
multithreaded (Version 2.08.02, Novocraft) and converted into BAM files 
using SAMtools (Version 0.1.18)37. Sorting and indexing of BAM files used 
Novosort threaded (Version 1.00.01), and duplicate reads were removed using 
Picard (Version 1.74). Mutation analysis was performed using VarScan2 algo-
rithms (Version 2.3.2)38 with the pileup files created by SAMtools mpileup 
for tumor and matched normal samples, simultaneously performing pairwise 
comparisons of base call and normalized sequence depth at each position. For 
SNV detection, filtering parameters including coverage, variant read support, 
variant frequency, P value, base quality, the presence of homopolymers and 
strandedness were applied. For indel analysis, Pindel (Version 0.2.4) was used 
on tumor and matched normal samples, and indels common to both samples 
were classified as germline, whereas indels present in tumor but not in normal 
samples were classified as somatic. Finally, a list of candidate indels as well as of 
somatic and/or germline mutations was generated by excluding synonymous 
SNVs. ANNOVAR39 was used to functionally annotate the detected genetic 
variants, and positions are based on Ensembl 66 transcript sequences.

Tumor content for each tumor exome library was estimated from the 
sequence data by fitting a binomial mixture model with two components 
to the set of most likely SNV candidates from two-copy genomic regions. 
The set of candidates used for estimation consisted of coding variants that 
(i) were supported by at least 3 variant fragments in the tumor sample,  
(ii) were not supported by variant fragments in the matched benign sam-
ple, with at least 16 fragments of coverage, (iii) were not present in dbSNP,  
(iv) were within a targeted exon or within 100 bp of a targeted exon, (v) were 
not in homopolymer runs of 4 or more bases and (vi) exhibited no evidence 
of amplification or deletion. To filter out regions of possible amplification 
or deletion, we used exon coverage ratios to infer copy number changes, as 
described below. Resulting SNV candidates were not used for the estimation 
of tumor content if the segmented log ratio exceeded 0.2 in absolute value. 
Candidates on the Y chromosome were also eliminated because they were 
unlikely to exist in two-copy genomic regions. Using this set of candidates, 
we fit a binomial mixture model with two components using the R package 
flexmix, version 2.3-8. One component consisted of SNV candidates with very 
low variant fractions, presumably resulting from recurrent sequencing errors 
and other artifacts. The other component, consisting of the set of likely true 
SNVs, was informative of tumor content in the tumor sample. Specifically, 
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under the assumption that most or all of the observed SNV candidates in this 
component are heterozygous SNVs, we expect the estimated binomial propor-
tion of this component to represent one-half of the proportion of tumor cells 
in the sample. Thus, the estimated binomial proportion obtained from the 
mixture model was doubled to obtain an estimate of tumor content.

Copy number aberrations were quantified and reported for each gene as 
the segmented, normalized, log2-transformed exon coverage ratio between 
each tumor sample and its matched normal sample40. To account for observed 
associations between coverage ratios and variation in GC content across the 
genome, lowess normalization was used to correct per-exon coverage ratios 
before segmentation analysis. Specifically, mean GC percentage was computed 
for each targeted region, and a lowess curve was fit to the scatterplot of log2 
coverage ratios versus mean GC content across the targeted exome using the 
lowess function in R (version 2.13.1) with smoothing parameter f = 0.05.

Partially redundant sequencing of areas of the genome affords the ability for 
cross-validation of findings. We cross-validated exome-based point mutation 
calls by manually examining the genomic and transcriptomic reads covering 
the mutation using the UCSC Genome Browser. Likewise, gene fusion calls 
from the transcriptome data can be further supported by structural variant 
detection in the genomic sequence data, as well as by copy number information 
derived from genome and exome sequencing.

Chemicals and reagents. β-estradiol, (Z)-4-hydroxytamoxifen, (E/Z)-
endoxifen hydrochloride hydrate and fulvestrant were purchased from  
Sigma-Aldrich.

Plasmids and cloning. cDNA for wild-type ESR1 was PCR amplified from a 
breast cell line MCF7 (ATCC) with the introduction of a sequence encoding an  
N-terminal Flag tag. cDNAs encoding the relevant mutations of ESR1 
were generated by site-directed mutagenesis (QuikChange, Agilent 
Technologies), and full-length constructs were fully sequenced. All ESR1 
variants were placed in the lentiviral vector pCDH (System Biosciences) for  
eukaryotic expression.

ERE-luciferase reporter assays. For cell transfection experiments, HEK293T 
cells (ATCC) were plated at a density of 1–2 × 105 cells per well (24-well plates) 
in phenol red–free DMEM containing 10% FBS and antibiotics. Once cells 
attached, the medium was replaced with DMEM containing 10% charcoal/
dextran-treated FBS (HyClone), and cells were cultured overnight. The 
next day, cells were transiently cotransfected with ESR1 expression plasmid  
(50 ng/well) and luciferase reporter constructs (25 ng/well; SABiosciences) using 
FuGene 6 reagent (Promega). The ER-responsive luciferase plasmid encod-
ing the firefly luciferase reporter gene is driven by a minimal CMV promoter 
and tandem repeats of the estrogen transcriptional response element (ERE).  
A second plasmid constitutively expressing Renilla luciferase served as 
an internal control for normalizing transfection efficiencies (Cignal ERE 
Reporter, SABiosciences). After transfection for 18 h, cells were serum starved 
for a few hours before treatment with β-estradiol or anti-estrogen drugs. Cells 
were harvested 18 h after treatment, and luciferase activity was measured 
using the Dual-Luciferase Reporter Assay System (Promega). IC50 values were 
computed using the GraphPad Prism application to fit a four-parameter dose  
response curve.
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