OPTIMAL SETS FOR GAMES OVER THE SQUARE

I. Glicksberg and C. Gross

RM-839

25 July 1952

This is a working paper. It may be expanded, modified, or withdrawn at any time.
Optimal Sets for Games Over the Square
Summary: It is shown that every non-void weak* closed convex set of distributions on the unit interval is the set of all optimal strategies for one player in some game with continuous payoff over the square.

OPTIMAL SETS FOR GAMES OVER THE SQUARE

I. Glicksberg and O. Gross

In this note we shall call the set of all optimal strategies for one player in a game an optimal set. Optimal sets, in two-person zero-sum games with continuous payoff have the obvious properties of convexity and closure in the weak* topology, so that one might ask whether these properties characterize such sets. The answer, in the case of compact metric pure strategy spaces, is in the affirmative, as will be shown.

We shall begin with games over the square. Since the space $C(0,1)$, of continuous functions over the unit interval, is separable, the space S of distributions over the unit interval is, in the weak* (w^*) topology, compact and metric.
Let us set \((\psi, f) = \int_0^1 \psi(x) df(x) \) for \(\psi \in C(0,1) \) and \(f \) a distribution, so that \(\{f \mid (\psi, f) \geq \alpha\} \) is a \(w^* \) closed half space of distributions. The fundamental fact that we need is that any non-void \(w^* \) closed convex set \(K \) of distributions is the intersection of a sequence of such half spaces. This can be established via Brouwer's Reduction Theorem (cf. Hurewicz and Wallman, Dimension Theory, Index) which states the following: In a space satisfying the second axiom of countability a family of closed sets, with the property that every decreasing sequence of elements of the family has its intersection in the family, contains a minimal (or irreducible) element. So certainly satisfies the second axiom of countability as a compact metric space, and if we take as our family of closed sets all countable intersections of half spaces which contain \(K \), we clearly may apply the theorem to obtain a minimal set \(K_0 \) which is the intersection of a sequence of half spaces and contains \(K \). But certainly it can be no larger than \(K \), for if \(f \) is in \(K_0 \) but not in \(K \) then we have a closed half space \(H \) containing \(K \) but not \(f \), so that \(K_0 \cap H \) is in the family and properly contained in \(K_0 \) contradicting the minimal character of \(K_0 \). Thus we may write

1 We may clearly take such functions \(\psi \) and constants \(\alpha \) to be bounded by 1, as we shall do below.
\[K = \bigcap_{n} \{ f \mid f \in S \text{ and } (\psi_n, f) \geq a_n \} \]
of a sequence of half spaces. In order to construct the appropriate payoff we must require the minimizing player's pure strategy space \mathcal{E} (which we assume compact though not necessarily metric) be infinite. (Indeed if \mathcal{E} contains just n points then the maximizing player always may play just n points and some sets K will not be optimal sets.)

Since \mathcal{E} is infinite, at most one point y_0 in \mathcal{E} has the property that each of its open neighborhoods has a finite complement (if we had two such points we would have disjoint neighborhoods with finite complements, and the space \mathcal{E} would be finite). Choose a point $y_1 \neq y_0$ and an open neighborhood W_1 of y_1 for which W_1^c (the complement of W_1) is infinite, further, a neighborhood V_1 of y, for which $V_1 \subseteq W_1$ (\mathcal{E} is of course regular). Since W_1 is an infinite compact space we may find by the same argument a point $y_2 \in W_1$ with a relative open neighborhood $W_2 \cap W_1^c$ (where W_2 is open in \mathcal{E}) with infinite complement in W_1, and thus by the regularity of \mathcal{E} an open neighborhood V_2 of y_2 for which $V_2 \cap V_1^c = 0$. The relative complement in W_1 of $W_2 \cap W_1^c$ is of course $W_1^c \cap W_2 = (W_1 \cup W_2)^c$, again an infinite compact space, and thus by induction we obtain a sequence $(\{y_n\}_{n=1}^\infty)$ of points and $(\{V_n\}_{n=1}^\infty)$ of pairwise disjoint open neighborhoods.
Let \(y_n \in U_n \), \(U_n \subset V_n \) where \(U_n \) is open, and let \(h_n \) be a continuous function, \(0 \leq h_n \leq 1 \), \(h_n(y_n) = 1 \), which vanishes outside \(U_n \), and define \(M \) by

\[
M(x, y) = \sum \frac{1}{n} h_n(y) \left[u_n(x) - a_n \right],
\]

where \(K = \bigcap \{ f | (f_n, f) \not\equiv a_n \} \). Since at most one term of the sum differs from zero \(M \) is well defined; it is easily seen to be continuous. For, given \(\varepsilon > 0 \) and a point \((x_0, y_0) \in AxB \), if \(y_0 \notin \bigcup V_n \) then \(y_0 \notin V_k \), and, in \(AxV_k \), the function is \(\frac{1}{K} h_k(y) \left[u_k(x) - a_k \right] \) and neighborhoods \(U \) of \(x_0 \) and \(V \) of \(y_0 \) exist for which

\[
|M(x, y) - M(x_0, y_0)| < \varepsilon \quad \text{for } x \in U, \ y \in V,
\]

by virtue of the continuity of \(h_k \) and \(u_k \). If \(y_0 \notin \bigcup V_k \) then \(y_0 \) has for each \(n \) a neighborhood \(V^{(n)} \) for which

\[
y(n) \cap V_k = \emptyset, \ k = 1, \ldots, n, \text{ so that}
\]

\[
|M(x, y)| < \frac{1}{n} \quad \text{for } x \in U, \ y \notin V^{(n)}
\]

whence \(M \) is continuous.

Since \(B \) is compact, \(y_n \) has at least one cluster point \(y_0 \), and clearly we must have \(M(x, y_0) = 0 \) for all \(x \). Since

\[
\int M(x, y) df(x) = \sum \frac{1}{n} h_n(y) \left[(f_n, f) - a_n \right] \geq 0 \quad \text{for } f \notin K,
\]

the value is 0, and \(f \) is optimal only if
\[
\int M(x, y_n)df(x) = \frac{1}{n}[f_n(f) - a_n] \geq 0
\]

or \(f \in K \).

In summary: If the pure strategy space of the maximizing player is compact metric and that of his opponent is compact and infinite, every weak* closed convex set of his mixed strategies is an optimal set for some continuous payoff.

Unfortunately, this does not have an obvious bearing on the important problem of determining structure of solution sets, i.e. the pair of optimal sets in a game. Not all possible pairs of optimal sets, for example, are attainable. Consider the following special case on the square. Let the optimal set for the maximizing player be the uniform distribution, \(f(x) = x \), and that of the minimizing player be the set of all distributions. Suppose \(M \) is the continuous payoff of a game with this solution set, and let the value of the game be \(v \). Since any pure strategy is optimal for the minimizing player \(M(x, y) \neq v \) for all \(x, y \). If \(M(x, y) < v \) for some point in the square, then obviously this holds in a neighborhood and \(\int M(x, y)dx < v \), which contradicts the optimality of \(f \). Therefore \(M \equiv v \), and all distributions are optimal for the maximizing player, a contradiction.