Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis

Kayla Kuzmich and Doug Bohl PhD

Air Force Research Laboratory (AFMC)
AFRL/RQRC
10 E. Saturn Blvd.
Edwards AFB CA 93524-7680

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

Distribution A: Approved for Public Release; Distribution Unlimited. PA#12957

Viewgraph Presentation for the American Physical Society, San Diego, CA in 18-20 November 2012.

This research establishes multi-phase molecular tagging velocimetry (MTV) use and explores its limitations. The flow conditions and geometry in the inducer of an upper stage liquid Oxygen (LOX)/LH2 engine frequently cause cavitation which decreases turbopump performance. Complications arise in performing experiments in liquid hydrogen and oxygen due to high costs, high pressures, extremely low fluid temperatures, the presence of cavitation, and associated safety risks. Due to the complex geometry and hazardous nature of the fluids, a simplified throat geometry with water as a simulant fluid is used. Flow characteristics are measured using MTV, a noninvasive flow diagnostic technique. MTV is found to be an applicable tool in cases of low cavitation. Highly cavitating flows reflect and scatter most of the laser beam disallowing penetration into the cavitation cloud. However, data can be obtained in high cavitation cases near the cloud boundary layer.

Subject Terms

Security Classification of:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Limitation of Abstract

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>19</td>
<td>Nils Sedano</td>
</tr>
</tbody>
</table>

Telephone No

<table>
<thead>
<tr>
<th>19b. TELEPHONE NO (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>661-275-5972</td>
</tr>
</tbody>
</table>
Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis

19 November 2012

Kayla Kuzmich
Doug Bohl, Ph. D.

Clarkson University
Potsdam, NY
Outline

• Objectives
• Flow diagnostic
 – Molecular tagging velocimetry
• Facility and experimental design
 – Deaeration system
 – Cavitating test section
• Test points
• Results
• Conclusions
Objectives

• Develop data necessary to calibrate cavitation codes
• Explore the application of MTV in two phase flow
• Explore the fluid dynamics of the model
Molecular Tagging Velocimetry (MTV)

• Whole field, non-intrusive, optical technique
• Tracer uniformly mixed with working fluid
 — Measurements possible everywhere
 — Tagged region imaged twice during life time of tracer
• Long lived tracer excited (tagged) at proper wavelength
 — Phosphorescence
 — Quenched by oxygen
• Velocity is the derivative of the Lagrangian displacement
Molecular Tagging Velocimetry

- **Triplex - \(\tau = 3.5\) ms**
 - Bromonaphthalene – Saturated [~10\(^{-5}\) M]
 - Cyclodextrin – [10\(^{-4}\) M]
 - Cyclohexanol – [0.055 M]
Facility Design

Figure 5: Facility Model

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Cavitating Test Section (CTS)

- 25” long CTS
- Two slits on the top surface
- Black anodized aluminum
Experimental Set-up
Experiment

- 20 runs of each test point
 - Volumetric flow rate
 - Ten offset
- 209 images for each run
- Test points
 - 3 non-cavitating
 - 1 inception of cavitation
 - 3 fully cavitating

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Flow Rate [gpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>326</td>
</tr>
<tr>
<td>1.1</td>
<td>354</td>
</tr>
<tr>
<td>1.2</td>
<td>377</td>
</tr>
<tr>
<td>1.3</td>
<td>388</td>
</tr>
<tr>
<td>1.4</td>
<td>398</td>
</tr>
<tr>
<td>1.5</td>
<td>409</td>
</tr>
<tr>
<td>1.6</td>
<td>430</td>
</tr>
</tbody>
</table>
Non-cavitating (Point 1.2)

Normalized Velocity Magnitude

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Light Cavitation (Point 1.3)

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Moderate Cavitation (Point 1.4)
Heavy Cavitation (Point 1.6)
Normalized Velocity Profiles

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Normalized \(v \)-Velocity Profiles

\[\frac{v}{u} \]

- Pre Inception
- Light Cavitation
- Moderate Cavitation
- Heavy Cavitation

\[\frac{L}{h} \]

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Conclusions

• Data was used to aid in cavitation number calibration

• MTV was successfully used in two phase flow
 — Though the limits of use were established based on cavitation cloud density

• Velocity at the throat increased with increased cavitation