AIN bandgap temperature dependence from its optical properties

E. Silveiraa,*, J.A. Freitasb, S.B. Schujmanc, L.J. Schowalterc

a Depto. de Fisica, UFFPR, Caixa Postal 19044, 81531-990 Curitiba-PR, Brazil
b Naval Research Laboratory, ESTD, Washington, DC 20375-5347, USA
c Crystal IS, Inc., Green Island, NY 12183, USA

\textbf{A R T I C L E I N F O}

Available online 7 June 2008

Keywords:
B1. Nitrides
B2. Semiconducting aluminum compounds
B2. Semiconducting materials

\textbf{A B S T R A C T}

In the present work we report on the AIN gap energy temperature dependence studied through the optical properties of high-quality large bulk AIN single crystals grown by a sublimation–recondensation technique. The cathodoluminescence, transmission/absorption as well as optical reflectance measurements at low temperature show a clear feature at about 6.03 eV, which could be attributed to the free exciton A. Even using a rather thick sample it was possible to observe the absorption due to the free exciton A in this energy range due to its large binding energy. We followed the temperature evolution of these features up to room temperature and inferred the gap energy temperature dependence using the exciton binding energy obtained by our group in the past.

\textcopyright 2008 Elsevier B.V. All rights reserved.

1. Introduction

The rapid research progress of the III-nitrides in recent years culminated with the commercial availability of a number of optoelectronic devices. Reductions in the dislocation density have resulted in improved electron mobility in AIN as well as the fabrication of PIN homojunction light emitting diodes (LEDs) with emission as low as 210 nm \cite{1}. This layered structure device was fabricated of PIN homojunction light emitting diodes (LEDs) with emission as low as 210 nm \cite{1}. This layered structure device was obtained on a SiC(0001) substrate. In order to cover the whole deep UV region, high-quality Al\textsubscript{x}Ga\textsubscript{1-x}N alloys with high Al mole fractions are required. A homoepitaxial film could improve the already high-quality Al\textsubscript{x}Ga\textsubscript{1-x}N alloy layers in these devices, consequently allowing the improvement of quantum efficiency and delivered power. Despite the success in obtaining short wavelength emission for such devices, the achieved external quantum efficiency of the order of 10^{-6} is still considered very low. Therefore, high-quality AIN substrate is a key factor in the attempt to improve device quality layers with high Al mole fraction, since it would be chemically compatible with the substrate, would minimize the stress built up inside the film, allowing for the growth of thicker film layers, be able to dissipate the heat much more efficiently during operation and avoid the problems caused by differences in the thermal expansion coefficients.

Optical characterization methods provide unique access to intrinsic and extrinsic material properties. Studies on the near band-edge optical properties of AIN have been restricted to only a few research groups due to technical difficulties involved in the deep UV optical measurements and the lack of high-quality AIN crystals. As an example, only a small number of publications have reported the detection of emission of AIN. The majority of the studies discussed the photo- and cathodoluminescence (CL) and reflectance (OR) characterization of AIN films \cite{2–12}, and fewer focused on bulk AIN single crystals \cite{13–15}.

Wurtzite-type AIN presents three valence bands at the Γ point of the Brillouin zone as a result of the noncubic crystal-field and spin–orbit splittings lifting the degeneracy of the p-like valence bands. Nonetheless, the AIN band structure and even its gap energy value are still a matter of ongoing discussion in the literature. Photoluminescence spectroscopy combined with first-principles band structure calculations have shown that the discrepancy in band-gap values for the AIN found in the literature could, in part, be lifted in terms of selection rules for the optical transitions \cite{5}. Further experimental investigations corroborated with the previous statements \cite{14,15}. CL and OR revealed the AIN excitonic structure, allowing the estimation of the spin–orbit and crystal-field splittings \cite{14}.

In the present work, we report on the optical properties of high-quality large bulk AIN single crystals grown by a sublimation–recondensation technique. Diverse single-crystal wafers of AIN, obtained by cutting and polishing the crystals from the former growth step, were investigated using CL, transmission/absorption and OR measurements at different temperatures.

2. Experimental details

The high-quality large bulk AIN single crystals used here were grown by a self-seeded sublimation–recondensation technique \cite{16}. The crystalline quality of the samples has been tested by X-ray diffraction measurements. More details on growth and structural characterization can be found elsewhere \cite{16,17}. For...
In the present work we report on the AlN gap energy temperature dependence studied through the optical properties of high-quality large bulk AlN single crystals grown by a sublimation-recondensation technique. The cathodoluminescence, transmission/absorption as well as optical reflectance measurements at low temperature show a clear feature at about 6.03 eV, which could be attributed to the free exciton A. Even using a rather thick sample it was possible to observe the absorption due to the free exciton A in this energy range due to its large binding energy. We followed the temperature evolution of these features up to room temperature and inferred the gap energy temperature dependence using the exciton binding energy obtained by our group in the past.
the CL measurements, a commercial electron gun, installed in an ultra high vacuum chamber, was used to excite the samples at different excitation densities. Electron beam (e-beam) currents between 1 and 5 µA and e-beam energies between 5 and 15 keV were typically used. The spot size was determined to be approximately 80 µm. The energy density was kept between 40 and 1000 W/cm². After exciting the AlN samples, the light emitted by the samples was collected and focused by a set of parabolic mirrors with matching numerical apertures, and dispersed by a double spectrometer fit with 1200 grooves/mm gratings. The dispersed light was subsequently detected by an UV-sensitive GaAs photomultiplier connected to a computer-controlled photon-counter. Inside the vacuum chamber the samples were mounted on a cold finger cryostat with a controlled temperature varying from 5 to 300 K.

For the absorption and OR measurements, the light from a 150 W deuterium lamp dispersed by a 0.5 m monochromator, equipped with a 1200 grooves/mm grating, was used as the light source. After interaction with the sample the light was detected by a solar-blind photomultiplier attached to a photon-counter system. The whole light path had been purged and kept with nitrogen gas overpressure in order to minimize absorption by the oxygen molecules present in the air.

3. Results and discussion

Fig. 1 shows typical spectra of AlN samples obtained from CL, OR and transmission (trans.) experiments in the near band-edge energy range at 6 K for CL and OR and 7.5 K for the transmission experiment. The CL spectrum has been measured using 5 keV as the e-beam energy and 5 µA as its current. This spectrum shows five different transitions, which have been tentatively assigned to free and bound exciton recombination processes based on temperature quenching studies [18]. In this spectrum the A-exciton is at approximately 6.03 eV as a shoulder of the most intense line at 6.010 eV attributed to a neutral donor-bound-exciton recombination. Reflectance measurements supported in part the assignments presented in the previous work, where the so-called A-exciton could be observed in the same energy range [14], as depicted in the OR spectrum in Fig. 1. The representative OR spectrum, taken from an a-faced AlN-crystal wafer, shows a typical excitonic transition line shape over the same energy range as the line observed in the CL data. Also in

![Fig. 1](image1.png)

Fig. 1. Low-temperature cathodoluminescence (CL), optical reflectivity (OR) and transmission (trans.) spectra of AlN bulk crystals in the near-band-edge energy range. FXA indicates the position of the free exciton-A.

![Fig. 2](image2.png)

Fig. 2. AlN optical reflectivity spectra as a function of temperature.

...
dependence. The model proposed by Päßler et al. contributed to understand the origins of some of the parameters used in previous semi-empirical models like the one proposed by Vífa et al. More details are found elsewhere.

Fig. 4 summarizes the temperature dependence of the free exciton A line positions obtained in the experiments discussed above. In this figure the hollow symbols represent the data obtained from the CL measurements for different AlN bulk crystals, the fully inverted triangles show the results from the OR experiments, depicted in Fig. 2, and the stars represent the results from the absorption experiments. One can observe the same temperature behavior for all groups of data from the different experiments, with an almost constant energy value in the low-temperature range, decreasing in energy for higher temperatures. The curve used to describe the temperature behavior of the AlN energy gap (full line in Fig. 4) represents a fit using the Päßler model. Although this model involves Bose–Einstein statistics and spectral functions to describe the electron–phonon interaction, it still depends on experimental parameters. It is therefore not possible to find the right curve parameters without the adjustment of the parameters based on experimental data. Nonetheless, this fit is in very good agreement with the experimental data as one can see from the figure. By taking into account the A-exciton binding energy obtained by us previously, it is possible to estimate the evolution of the AlN gap energy as a function of temperature. Extrapolating the gap energy value for very low temperature we estimate the AlN gap to be approximately 6.09 eV, reaching 6.00 eV at room temperature.

One common characteristic for the experimental data on the AlN energy gap as a function of temperature found in the literature is its almost linear behavior for temperatures above approximately 200 K up to room temperature. This is an important parameter for the development of optoelectronic devices working at room temperature, since it will influence, for example, the emission wavelength of such devices. Some of the temperature coefficients for the band-gap energy of AlN for temperatures above 200 K described in the literature are shown in Table 1. As one can see from this table, our results compare very well with the ones obtained from bulk samples grown on sapphire substrates [11,33]. The fluctuation observed in result from Ref. [2] may be attributed to strain fluctuations and even different sample temperatures. A direct comparison between our results and the ones published before is not possible at this point, since it lacks on a common figure of merit for the sample quality.

4. Conclusions

The optical properties of AlN bulk crystals have been investigated using cathodoluminescence, optical reflectance and transmission/absorption experiments. The temperature dependence of the structures assigned to the AlN A-exciton shows a very good agreement among the results from the three experimental optical techniques. The energy positions of the A-exciton line were fitted using a semi-empirical model proposed by Päßler et al. [26], which we found to be the best one to describe it. Using the binding energy for the A-exciton we proposed the gap to be at approximately 6.09 eV for low temperature and at 6.00 eV for room temperature.

Acknowledgements

The work at NRL was partially supported by the Department of the Navy Grant N00014-02-1-4087 issued by the ONR-IFO. Financial support from CNPq (Brazilian agency) is also acknowledged.
References