
HAMLET - An Expression Compilerloptimizer for the Implementation of
Heuristics to Minimize Multiple-Valued Programmable Logic Arrays*

John M. Yurchak
Department of Computer Science

Naval Postgraduate School, Code CS/Yu
Monterey, CA 93943-5000

ABSTRACT
HAMLET is a CAD tool that translates a user

specification of a multiple-valued expression into a layout
of a multiple-valued programmable logic array (MVL-
PLA) which realizes that expression. It is modular to
accommodate future minimization heuristics and future
MVL-PLA technologies. At present, it implements two
heuristics, [2] and [8] and one MVL-PLA technology,
current-mode CMOS [6] . Specifically, HAMLET accepts
a sum-of-products expression from the user, applies a
minimization heuristic, and then produces a PLA layout of
a multiple-valued current-mode CMOS PLA.

Besides its design capabilities, HAMLET can also
analyze heuristics. Random functions can be generated,
heuristics applied, and statistics computed on the results.
User-derived expressions can also be analyzed. In addi-
tion to the mininlization heuristics [2] and [8], HAMLET
can apply search strategies based on these heuristics,
which, in the extreme, is exhaustive, producing true
minimal forms. HAMLET is available to the public;
instructions on how to obtain this program are in Appen-
dix A. It is written in C and conforms to the UNIX com-
mand line format.

I. INTRODUCTION
The implementation of multiple-valued logic (MVL)

circuits in VLSI has created a need for multiple-valued
logic computer-aided design (MVL-CAD) tools. Pro-
grammable logic arrays (PLA’s) are of special interest.
Their design is regular, thus placing a lower demand on
the tool’s capabilities. Also, the technology for multiple-
valued PLA’s (MVL PLA’s) exists in CCD [4], current-
mode CMOS [6], and voltage-mode CMOS [9]. Since the
subject is so new, there is only one other MVL-CAD tool,
for MVL-CCD PLA’s [5].

This paper describes HAMLET (Heuristic Analyzer
for Multiple-valued Logic Expression Translation), a

Jon T. Butler
Department of Electr. and Comp. Eng.

Naval Postgraduate School, Code ECBu
Monterey, C A 93943-5004

tool that accepts an expression, applies minimization algo-
rithms to the expression, and produces an MVL-PLA that
realizes the minimized expression. The MVL-PLA layout
[6] conforms to MOSSIS design rules and the output file
circuits are in MAGIC format [lo]. Unlike previous
implementations of heuristics [1-3,5,8,12], which
represent a function intemally as a truth table, HAMLET
represents the function as a sum-of-products expression.
Thus, we avoid storage space limitations associated with
truth tables of even moderately sized functions. lhis
paper is intended to serve as an introduction to HAMLET.
A manual, Yurchak and Butler [15], exists giving com-
plete information on its use.

Although HAMLET is a CAD tool, it can also be used
to analyze minimization heuristics. It does this by ran-
domly generating expressions, applying the heuristics, and
collecting the results. The use of random functions avoids
bias that could unfairly favor one heuristic. On the other
hand, especially chosen functions can be analyzed; this
allows one to selectively investigate specific heuristic
characteristics. HAMLET is designed to be easily
modified. At present, it implements the Pomper and
Armstrong [8] and Dueck and Miller [2] heuristics, as
well as various search techniques derived from these.
Both the basic heuristics and search algorithms can be
modified. Indeed, we do this now as part of our research
on improved minimization methods for MVL-PLA’s.

While there has been little previous work on CAD
tools for MVL circuits, there has been significantly more
work on minimization algorithms. We know of three
heuristic MVL sum-of-products minimization algorithms.
Each uses the direct cover method, in which a minterm
(assignment of values to all variables) is first determined
and then an implicant is found that covers the minterm.
Pomper and Armstrong [8] introduced in 1981 the first
known direct cover method for MVL functions. It selects
a mintem rmzdonzly and chooses the largest iniplicant
covering the selected minterm. In 1986, Besslich [l]

*Research supported in part by NSF Grant MIP-8706553, in part by NATO Grant 423/84, and in part by the
Naval Research Laboratory under a Naval Postgraduate School block funded grant.

144

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1990 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
HAMLET - An Expression Compiler/optimizer for the Implementation of
Heuristics to Minimize Multiple-Valued Programmable Logic Arrays

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
HAMLET is a CAD tool that translates a user specification of a multiple-valued expression into a layout of
a multiple-valued programmable logic array (MVLPLA) which realizes that expression. It is modular to
accommodate future minimization heuristics and future MVL-PLA technologies. At present, it implements
two heuristics, [2] and [8] and one MVL-PLA technology current-mode CMOS [6]. Specifically, HAMLET
accepts a sum-of-products expression from the user, applies a minimization heuristic, and then produces a
PLA layout of a multiple-valued current-mode CMOS PLA. Besides its design capabilities, HAMLET can
also analyze heuristics. Random functions can be generated heuristics applied, and statistics computed on
the results. User-derived expressions can also be analyzed. In addition to the mininlization heuristics [2]
and [8], HAMLET can apply search strategies based on these heuristics which, in the extreme, is
exhaustive, producing true minimal forms. HAMLET is available to the public instructions on how to
obtain this program are in Appendix A. It is written in C and conforms to the UNIX command line format.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

introduced another direct cover method that seeks to cover
the most isolated minterms first. Like the Pomper and
Armstrong [8] heuristic, it selects the largest implicant. In
1987, Dueck and Miller [2] introduced a direct cover
method that also seeks the most isolated ininterm first (by
a method different than that of Besslich [l]), but chooses
an implicant that tends to introduce the fewest discontinui-
ties when subtracted from the function. Dueck [3] has
modified the heuristic described in [2] obtaining improved
performance on specific examples.

In addition to the Pomper and Armstrong and Dueck
and Miller heuristics, HAMLET implements adaptations
of these. Specifically, where these heuristics make one
choice from several, HAMLET allows a search in which
possibly all choices are examined. The Besslich heuristic
was not chosen because of speed considerations. Also, it
relies on a truth table representation that is not compatible
with the expression representation we chose to implement.

11. BACKGROUND
Let X = (x l , x 2 , . . * ,xn) be a set of iz variables,

where xi takes on values from R = (0,1, ..., r-1 1. A
function f (X) is a mapping f : R +R U [r) , where r is
the don’t care value. Specifically, f (X) is said to be an
n-vuriable r-valued fuizction. Fig. 1 shows an example of
a 2-variable 4-valued function. A function value f (m)

\”.
x2

In the realization of functions by a multiple-valued
PLA, constants and literals occur as operands of the h4IN
functions. An inzplicantI(X) =p Q(x1,x2,. . * , x n) is the
MIN of a constant and a set of literals where each variable
xi appears exactly once, and p is a constan in the set
(1,2, . . . , r) . For example, I l (x I j 2) = l x 1 x2 is an
implicant that is 1 when xl is 1 or 2 and x2 is 2 or 3. An
implicant of a function f (X) has the property that
f (x) 2 I (x) for every assignment of values x to variables
inX andp E (1,2, ..., r-1). For example,Il(xl,x2) is an
implicant of function f (x x2) shown in Fig. 1. The cir-
cle in the lower center represents I l(x 1, xz). An implicant
I (X) of a function f (X) is aprinze inzplicant if there is no
other implicant I ’ (X) off (X) such that I ’ (x) > I (x) for
every assignment of values x to variables in X. For
example, I (x l , x 2) is not a prime implicant. However,
1 x1 x2 is a prime implicant. Any function can be
expressed as the SUM of implicants [111. For example,
the function in Fig. 1 can be expressed as the SUM of six
implicants,

1 8 2 3

1 2 1 3 1

0 0 0 0 1 1 0 I 0 2 1 1
f (XI’X2) = 1 X I x2 + 1 x1 x2 + 1 x1 x2

0 3 1 1 1 2 2 3 0 0 2 2 + 1 x1 x2 + 1 XI x2 + 2 x1 x 2 . (1)

The six circlings in Fig. 1 represent the six implicants in
this expression. We use the term sum-ofproducts to
describe functions realized by multiple-valued PLA’s,
where sum refers to SUM. A sum-of-products expression
for function f (X) is minimal if there is no other expres-
sion for f (X) with fewer implicants. Given f (X), impli-
cant I (X) covers a minterm at m iff (m) = I(m). There-
fore, g (X) = f (X) - I (X) has the property g (m) = 0.
Tirumalai and Butler [131 show that, unlike binary minim-
ization, minimal sum-of-products expressions in higher
radices consist of nonprime, as well as prime implicants.

Figure 1. An Example of a 2-Variable 4-Valued Function.

corresponding to a specific assignment of values m to
variables in X is called a nziizternz iff 0 < f (m) < r . For
example, in Fig. 1 there are seven minterms with value 1,
three with value 2, and one with value 3.

Functions realized by the PLA’s described in [4,6,11]
are composed of three functions,

1 . literal: f (x ,) = x
2. MIN: f(x1,x2)=x1x2 (=minimum(xl,x2)), and
3. SUM: f (x l , x 2) =x1+x2 (=minimum(xl+x2, r - l),

where xi is viewed as an integer and + is
integer addition. The SUM operation (+) is
thus addition truncated to the highest logic
value.

a b
(= r-1 if a <xl I b , else = 0,

111. HEURISTIC MINIMIZATION ALGORITHMS
We have devised improved versions of existing

heuristic methods for the minimization of expressions for
implementation by MVL-PLA’s. Existing heuristics,
when given a choice, choose one option and never back-
track to determine if another choice would have resulted
in an improved realization. Our improved versions of
these heuristics allow some specified degree of search.
For small expressions, exhaustive search can be applied in
a reasonable time to produce a minimal expression, while,
for large expressions, the search can be restricted to avoid
the excessive computation time of exhaustive search.

A. THE HEURISTIC TEMPLATE
All known MVL minimization heuristics use the

direct cover method. This is a two step process that

145

chooses, for the given function, f (X),

1. a minterm m off (X), and
2. an implicant I (X) off (X) that covers m ,

Function f (X) - I (X) is formed and the two step process
performed on it, until a final function is obtained consist-
ing entirely of 0's and r 's (don't cares). With logic values
viewed as integers, the operation - is ordinary integer sub-
traction except for the following cases. 1. I f f (x) is a
don't care, then so also is f (x) - I @) . Thus, a don't care
value in the original function appears as a don't care in all
subsequent functions. 2. I f f (x) - I (x) is 0 or less and
the given function is r - 1, then f (x) - I (x) is a don't
care value. This is to accommodate the truncated sum
operation when the sum of implicant values produce r - 1
or more. Since any I' - 1 in the given function is poten-
tially a sum that has been truncated, the algorithm tracks
such values; otherwise, certain minimal solutions would
be lost. For example, consider a 4-valued function whose
minimal sum-of-products expression consists of two
implicants with constant 2 that cross at some x where the
function has value 3. Subtracting one of these implicants

few other minterms) tend to have the lowest clustering
factor, and are chosen first. Consider again the function in
Fig. 1. There are seven minterms with the smallest f (m),
those corresponding to 1's in the map. Among these, the
minterm m with lowest CF(m) is x1x2=3 1. Here, the
clustering factor is 4, while all other clustering factors are
greater than 4. Note that x1 x 2 = 3 1 is the only 1-mintenn
that is adjacent to less than two other minterms.

For a selected minterm, an implicant is chosen that
has the smallest rbc, relative break count. That is, the
relative break count is a measure of how many discon-
tinuities are introduced into a function when the present
implicant is subtracted. For example, there are four impli-
cants covering the 1-minterm at x1 x 2 = 3 1. An implicant
that leaves holes or break up a function tend to have a
higher rbc than those that do not. This has the intuitive
interpretation that the preferred implicants are those impli-
cants whose subtraction leaves a function that is realized
by as few remaining implicants.

D. HEURISTICS APPLIED WITH BACKTRACK-
ING

The heuristics discussed above proceed from a given
function to a function consisting entirely of 0's and don't
cares. At eqch step, only one choice is made, even when

the case of ties, only one is chosen. In HAMLET, the user
is given the option of exploring various choices. m a t is,
at any point in the algorithm, a set of choices is recorded

leaves a function with 2's except for a 1 at x. To realize
the minimal solution, the heuristic must now realize the
resulting function with just one implicant. That is, it must

subtracted from it.

tics. Formal algorithmic descriptions appear in [121.

"recognize" that the was Once a and that a be there is more than one (equally good) choice. That is, in

We give here qualitative descriptions of these heuris-

B. POMPER AND ARMSTRONG [SI
In this version of the direct cover method, minterm m

is chosen randomly. Next, the implicant is chosen so that
1. the implicant value is equal to that of m , 2. the impli-
cant results in the most 0 values in f (X) - I (X), 3. among
the set of all implicants from 2. the largest are selected,
and 4. among the set of implicants from 3, one is arbi-
trarily chosen. Consider, for example, the function in Fig.
1. Assume the 1-minterm at x x = 2 3 is the randomly
chosen minterm. Then, the implicant 1 x 1 x2 is the
selected implicant because it is uniquely the largest impli-
cant that produces the most 0's when subtracted from the
function.

1 2 1 2 1 3

C. DUECK AND MILLER [2]
In this version of the direct cover method, minterm m

is chosen as the most isolated mirzterm. Specifically, for
each minterm m with the smallest value f (m), the clus-
tering factor CF(m) is computed and the minterm with
the smallest CF (m) is chosen. To compute the clustering
factor, one tallies, for each minterm, adjacent minterms
with which m can be combined and the directions (vari-
ables) having at least one minterm with which m can be
combined. Minterms that are isolated (i.e., surrounded by

so that- at a later tim-e, when backtracking occurs, these
altemative choices can be made. This option is imple-
mented with a recursive program that searches a tree, in
which nodes correspond to functions and arcs to impli-
cants. The root node corresponds to the given function
and all its children to functions derived by subtracting sin-
gle implicants from the given function. The recursive pro-
gram calls itself as it moves through the tree searching for
the realization with fewest implicants. The depth to which
the program goes corresponds to the number of impli-
cants. Initially, the program searches to some maximum
depth determined by the best known expression for the
given function. As better realizations are found, this max-
imum depth becomes smaller, until the end when the
expression with the fewest implicants has been deter-
mined. At each application of the recursive call, two
expressions are considered, the current (probably incom-
plete) solution and the best obtained so far.

IV. MINIMIZATION USING HAMLET

A. THE STRUCTURE OF HAMLET
HAMLET is a family of utility programs. Written in

the C programming language, it currently runs on the
UNIX operating system, but should port easily to other

146

environments. The user controls the behavior of HAM-
LET by supplying command line options formatted
according to standard UNM conventions. Some of the
programs that compose HAMLET are

mvlc

mvlt

nzvla

mvll

An expression compiler and optimizer. Applies
one or more heuristics to MVL expressions,
reports heuristic performance and produces an
MVL-PLA data file that is the input to the PLA
layout generator, mvll.

A test expression generator. Produces sets of
randomly generated expressions that conform to
parameters supplied by the user.

A heuristic performance analyzer. Takes heuris-
tic performance data from successive runs of
mvlc and produces statistical data.

A PLA layout generator. Accepts a data file
supplied by mvlc and produces a layout of a
current-mode CMOS PLA realizing the expres-
sion in its data file.

B. mvlc - Expression Compiler.
The most important of these programs is mvlc. Its

5700 lines of code correspond to about 85% of HAMLET.
mvlc provides a user-interface similar to that of a typical
high-level programming language compiler. The user
creates an input file, using a text editor, consisting of
MVL expressions. Fig. 2 shows the 2-variable 4-valued
expression in (1) in the format suitable for mvlc

4:2:
+ 1 * x 1 (O,O)*X2(0 ,O)
+l*XI(1 ,l)*X2(0,1)
+1*X1(0,2)*X2(1,1)

+2*Xl(O,O)*X2(2,2);

+l*X1(0,3)*X2(1,l)
+ 1 *X1(1,2)*X2(2,3)

Figure 2. mvlc Format for the Expression in (I).
mvlc extracts semantic infomiation from the input

expression and stores it as a linked List. For example, the
expression given in Fig. 2 is stored as shown hi Fig. 3.
This original input expression is called EOri . mvlc uses
this structure as a basis for applying selectecfheuristics in
an attempt to produce an equivalent structure (identical
coverage) with fewer implicants. For example, when the

. value f (m) of the expression is needed for some assign-
ment of values m to die variables X, the linked list of
implicants is scanned (by subroutine EVAL) as the contri-
bution of each to f (m) is tallied. At the end, a correct
value of f (m) is achieved. In addition to reporting
heuristic performance results, mvlc creates an output file
representing an optimized MVL expression that is the
input to mvll, the layout generator.

Figure 3. Intemal Representation of the Expression in (1).
Using command line options, the user selects a) one

or more heuristics and b) a search method used by mvlc .
There are two categories of search methods, one-pass and
mu lti-pas s.

One-Pass Method

heuristic, H, the one-pass method proceeds as follows.
This is the default mode. Assuming a user-selected

Assume three expression data structures:

E o ~ g - the original parsed input expression
EWork - a working expression that is modified

EFinal - the final (heuristic-optimized) expression
by the heuristic

For each input expression Eorig (
1. COPY Eori to Ework ;
2. Initialize kFinal to an empty expression

3. Repeat (
(no implicants);

3.1 Apply H to Ework, producing an

3.2 Subtract I from Ework;
3.3 Add I to EFina, ;

) until Ework is covered;
4. Report the results and output EFinal;

implicant, I ;

1
stop

Figure 4. Algorithm for the One-Pass Method,

Multi-Pass Method
The multi-pass method is a backtracking search.

Treating the current state of the working expression,
Ework, as a node in an n - a y tree, each candidate impli-
cant for that expression, when subtracted from EwCrk,
yields a daughter node corresponding to an expression
with one less term. The search can be configured in many
ways to allow subtle alterations in the performance of the
selected heuristic. The application of the direct cover
heuristic invokes two choices a) a minterm selection func-
tion f M i n and b) an implicant selection function f,,, .

147

Both are used within a recursive function, fSearch, whose
algorithm is shown in Fig 5. The multi-pass method
applies f in a depth-first search for the shortest path
to coverage of the input expression. This algorithm is
shown in Fig 6.

For the current state of EWork 1
" ApplyfMin 1

1.1 Select one or more minterms and save
them in a list, LMj,, ;

1
2, APPIYfImp I

2.1 For each minterm in LMin (
2.1.1 Select one or more implicants and

save them in a list, L .
Imp '

1
1
3. For each implicant 1 in LI,, 1

3.1
3.2
3.3
3.4

1
3.5
3.6

1
1
Retum

Push (save) the state Gf Ework and EFinu,;
Subtract I from Ework ;
Add I to EFiml ;
If Ework is covered 1
3.4.1 Save EFinal;
3.4.2 Retum;

Recursively apply f Search ;
Fop (restore) the state of Ework and EFinal ;

Figure 5. The Algorithm for f .

For each input expression EOrig [

" EInput to EWork ;
2. Initialize EFim, to an empty expression

(no implicants);
3' f to 'Work ;
4. Report the results and output the saved EFinul;

1
stop

Figure 6. The Algorithm for the Multi-Pass Method.

Example of Results from mlc
To observe how ntvlc applies a heuristic, consider

once again the function in Fig. 1. This can be realized by
an expression with six implicants, as shown in (1) and Fig.
1. Assume the user has established the input file with the
six implicant expression shown in Fig. 2. Consider the
application of Dueck and Miller [2] using the one-pass
method. Fig. 7 shows the selection of the first implicant.

First, for all minterms of lowest logic value, the clustering
factor is computed and the lowest is identified. Here, the
1-minterm at x , x 2 = 3 1 is the only one with the lowest
clustering factor of al l minterms with lowest logic value.
As can be seen in Fig. 7, it is the only 1-
minterm that is adjacent to one other minterm; all other
1-minterms are adjacent to at least two other minterms.

rbc = -3

3 0 1 1 2 3 rbc = -2

Figure 7. Selection of the First Implicant Using the
Dueck and Miller Heuristic in the One-Pass Method.

Next, the implicant is selected. Fig. 7 shows the four
implicants that cover the selected minterm, as well as the
rbc for each. There is exactly one with the lowest rbc . It
is

1 *X1(1,3)*X2(1,l) .

This is subtracted from Ework and added to EFiM, as
shown in Fig. 8. Here, .Ework is the same as the Ework
shown in Fig. 3 except for an additional implicant on the
right. This corresponds to -1*X1(1,3)*X2(1,1). This pro-
cess is repeated until all minterms in Ework evaluate to 0
or don't care. In the end, EFinu, is a structure similar to
EOri , except that its implicants are chosen by the heuris-
tic. +his structure can be used to generate an input file for
the layout generator. Fig. 9 shows the expression realized
by the one-pass Dueck and Miller [2] heuristic applied to
the function in Fig. 1. As can be seen, only five impli-
cants are needed, which represents a reduction of one
implicant over the user-defined expression.

One limitation of this heuristic is that, for a given
state of an expression, minterms with the lowest clustering
factor and implicants with the lowest rbc do not always
yield the minimal expression. The multi-pass method
corrects this by examining altematives. To illustrate its
flexibility, consider the running example expression. If
the multi-pass method is applied to the expression in Fig.
2, and we require that for each partial expression, the three
implicants of lowest rbc are chosen (in comparison with
the one-pass method, in which only one implicant is
chosen), then a solution with four implicants is chosen, as
shown in Fig. 10. It is interesting that this solution is not
found in the one-pass method because, in choosing

148

EWork

v n r = 2 coeff = I coeff = 1
RBC RBC

bounds bounds
teims = I

coeff = 1 coeff = 1 coeff = 1 coeff = 2 coeff = -1
RBC RBC RBC RBC RBC

bounds bounds bounds bounds bounds

I I I I

Figure 8. Ework and EFiMl

Figure 9. The Expression Achieved by the Dueck and
MiIler Heuristic in the One-Pass Method.

Figure 10. The Expression Achieved by the Dueck and
Miller Heuristic in the Multi-Pass Method.

the first implicant, there is only one with the lowest rbc ,
and it is not part of any minimal expression. The multi-
pass search succeeds because it considers more than one
path in the search tree.

User Options
What makes ntvlc useful is not just its ability to apply

different heuristics and observe the results, but the way in
which it facilitates the analysis of different heuristic and
search options over a large set of expressions. For exam-
ple, in the multi-pass method, the behavior of f M i n and
.f,,,,,, as well as certain aspects of fSearc,, are under user
control. For each choice, there are various data that can be
collected. For example, HAMLET can answer the follow-
ing

I I I I

After the First Implicant is Chosen.

1. "For which of 1000 randomly generated expressions
does Dueck and Miller do better than Pomper
and Armstrong?"

2. "For how many expressions in a set of 2000 random
expressions does Dueck and Miller yield greater
than 10% more implicants than is in the original
expression? It

3. "What is the mean performance of some search
option as compared to Pomper and Armstrong?"

In many cases, such problems are solved automatically by
nzvlc in conjunction with other programs in the HAMLET
family. For example, we use nzvlt to generate large sets of
random expressions to obtain statistical data on heuristic
performance. This tool creates ordinary text files that can
be read and edited by the user if desired. ntvla automati-
cally executes nzvkc on sets of expression, comparing the
performance of various heuristic options are graphing the
results on a Postscript printer. As an example, we can use
mvla to automatically generate data for a graph of the rela-
tionship between, say, the number of terms per expression
and the time to find a solution for a given heuristic.

C. mvlr - Test Expression Generator
mvlt is a program that generates a set of random

expressions for use by nzvlc. The expressions generated
by nivlt use a random number generator that generates

1. a nonzero coefficient p from r - 1 possible
coefficients with uniform distribution and

2. a set of n intervals (a i , bi), where ai 5 bi , from the

set of all [2 + r possible intervals with uniform

distribution, where n is the number of variables.

One implicant is formed with a structure as follows.
'1 61 a, 6 2 'n bn

p XI x2 . . *
If more than one implicant is requested, then a similar
process is repeated for each. The generator makes one
further restriction on the set of implicants. Whenever an

149

implicant is generated, a check is made to see if an impli-
cant was generated earlier identical to the present one
except perhaps in the constant. If so, the present one is
discarded and a new implicant is generated. nivlt, how-
ever, does not check whether a currently generated expres-
sion was generated earlier. This would increase consider-
ably the execution time and only preclude a typically
unlikely event.

D. mvla - Statistical Data Analyzer
An important use of HAMLET is in analyzing the

behavior of heuristics. This is done in nzvlu, which uses
random expressions generated by nzvlt and minimized by
mvlc to produce various graphs and histograms of heuris-
tic performance. Included in the operations performed by
mvla are

1. average value of number of implicants used over the
ensemble,

2. percent of the minimized expressions that have
fewer, the same, and more implicants than the
number of implicants in the given function set,

3. total number of implicants used by the minimized
expressions divided by the total number of impli-
cants in the given set of expressions

4. average number of implicants used in the minimized
expressions where the minimized expression had
fewer implicants than the given expression.

An especially useful feature is the automatic generation of
histograms from the data generated. For example, the
application of a heuristic on say 1000 functions with say 6
implicants produces some number of minimized functions
with 6, 5 , etc. implicants. When mvla is completed, a plot
is printed showing the number of functions for each
number of implicants in the form of a histogram. Sinii-
larly, plots can be automatically generated of some
behavior like the average number of, implicants verses
radix or the time of computation verses the number of
variables. An example of the output produced by mvla is
shown in Fig. 11. Here nivlt was asked to generate 1000
random 4-valued 2-variable functions each with six impli-
cants. Both the one-pass (top histogram) and multi-pass
(bottom histogram) versions of Dueck and Miller were
applied to this set. The line just below each histogram
shows statistics associated with the plot above. Starting
from left to right, the value to the right of the < sign
shows the fraction of expressions improved by the heuris-
tic (85% and 94%), the value to the right of the = sign
shows the fraction of expressions where the heuristic pro-
duced exactly the same number of implicants as the ran-
domly generated function (12% and 6%), and the value to
the right of the < sign shows the fraction expressions
where the heuristic did not do as well as the randomly
generated function (3% and 0%). These figures show
clearly the improvement achieved by the search technique

250

non oCc 30 o9:1(:50 1 9 8 5
mvlc -0 -sc r.mvl -b >mvlaa03202

.... I
200 4 /.:;:I . /.:::I

6 8 10 0 2 4

1mp1icants
a . 8 5 -0.12 X . 0 3 Pm:O.69/0.23 Bm:0.63 8:0.17 H:1.33 Tm:O.Ol/O.OO

Hon D c t 30 09:20:33 1989
mvlc -SH-Z - S i 4 -So t.mvl -b >mvlac03282

300 1
250

ZOO
Cas-,

(10001 150

100

50

0

0 2 4 6 a
Implisants

<0.94 -0.06 >O.OO PmrO.65l0.20 Bm:O.63 B r O . 1 7 U:1.17 Tm:O.32/0.44

Figure 11. Example of the Output Produced by mvla.

associated with the multi-pass method. The value to the
right of Pm: shows the performance, the fraction of the
total number of implicants in the ensemble used by the
heuristic (69% and 65%). That is, over all 1000 expres-
sions generated, the one-pass method h e c k and Miller
heuristic used 69% of the 6 . 1000 required in the realiza-
tion of set of unminimized randomly generated expres-
sions. The multi-pass method used 4% fewer implicants
or 65%. The standard deviation appears to the right of the
performance figure (0.23 and 0.20). Next, is the fraction
of implicants used by the best (B) expression and the
worst (W) expression. These are 17% and 17% for the
best and 133% and 11% for the worst. That is, for the
one-pass method, out of the 1000 randondy generated
expressions, the expressions requiring the least and most
implicants in the expressions after application of the
heuristic required 17% (or 1) and 133% (or 8) of the
implicants in the given expression (6). At the extreme
right is the time required by mvlu complete the analysis.
This shows that for the one-pass method, 0.01 seconds per
expression were required, and, for the multi-pass method,
0.32 seconds per expression were required. Thus, the time
required rises significantly, because of the search done in
the multi-pass method. There is a variability in the time
required by various expressions. That is, nivla prints out a

150

number indicating which expression it is currently minim-
izing. The times to execute various expressions differ
greatly, especially in the multi-pass method; some proceed
quickly, while take others much longer. The rightmost
figure shows the variance in time required for minimiza-
tion. It is small in the one-pass method (0.00) and large in
the multi-pass method (0.44). The black box in the
abscissa shows the number of implicants in each of the
randomly generated functions, 6 in the case of thls exam-
ple. Just above each histogram is a datehime stamp and
the mvlc command that created the histogram.

E. mvll - PLA Layout Generator
mvll produces the layout of a current-mode CMOS

PLA that realizes the given input expression. The layout
conforms to the conventions of Berkeley’s Magic program
[lo]. Thus, a Manhatten scalable CMOS design is pro-
duced that satisfies the Meadconway lambda design
rules. There are no options; the design is produced
directly from the input. Fig. 12 shows the layout of a
current-mode CMOS PLA produced by mvll that realizes
the minimal expression of the running example (Fig. 10).
Here, the two inputs (x00 and xO1) enter from the left,
while the four product terms are laid out horizontally and
are summed at the bottom to form the output (fQ0).

VII. CONCLUDING REMARKS
HAMLET is a CAD tool for multiple-valued logic

expressions. It accepts a user-specified sum-of-products
expression, attempts to find a smaller expression, and then
produces the layout of a PLA that realizes the expression.
In addition, HAMLET is an analysis tool. For example, it
can generate random functions, apply chosen niinimiza-
tion heuristics, and compile statistics. This allows us to
compare heuristics. Yang and Wang [14] have used

HAMLET to develop new heuristics for MVL-PLA
minimization. An operation manual, Yurchak and Butler
[151, exists showing the complete set of options available
in HAMLET. Appendix A shows how HAMLET can be
obtained over the ARPANET.

HAMLET has been designed to be easily modified;
for example, new heuristics are easily added, as well as
layout generators for technologies other than current-
mode CMOS. A significant part of the effort was devoted
to developing a program that would have a long lifetime.
Our expectation is that, as more experience is gained with
MVL-PLA’s, they will become a predominant part of
MVL circuit design. Since we have only a limited basis
on which to choose heuristic minimization algorithms, we
view this as a productive research area. HAMLET is
highly structured, so that, with simple well-documented
procedures, one can easily generate this companion
software. For example, the EVAL function, a subroutine
that accepts an assignment of values to variables and pro-
duces a function value, can be easily changed to a fast
table lookup program when significantly larger memories
become available, allowing a truth table lookup. At this
time, EVAL scans the linked list for the function value on
the first call, stores the value (when storage is available),
then simply returns this value on all subsequent calls.

VII. ACKNOWLEDGMENTS
Most of mvll, the VLSI layout generator, was

developed by Y.-H. KO [6] as part of his M.S. thesis at the
Naval Postgraduate School. A preliminary version of the
heuristic minimization part of HAMLET appeared in the
M.S. thesis of H.-S. Lee [7]. The authors express their
gratitude for their contribution to this work. Also, the
authors appreciate the comments of the referees, which led
to improvements in this paper.

Figure 12. Layout of a Current-Mode MVL-PLA That Realizes the Expression Minirmzed by HAMLET (Fig. 10).

151

REFERENCES

[11 P. W. Besslich, "Heuristic minimization of MVL func-
tions: A direct cover approach," IEEE Trans. on Com-
put., February 1986, pp. 134-144.

Symposium on Multiple-valued Logic, May 1988, pp.

[13] P. Tirumalai and J. T. Butler, "Prime and nonprhe
implicants in the minimization of multide-valued

226-236.

[31

[41

logic functions", Proceedings of the 19ti Interna-
tional Symposium on Multiple-valued Logic, May

[141 C. Yang and Y. Wang, "A neighborhood decoupling
algorithm for truncated sum minimization", Proceed-
ings of the 20th International Symposium on
Multiple-valued Logic, May 1990.

[2] G. W. Dueck and D. M. Miller, "A direct cover MVL
minimization using the truncated sum," Proceedings
of the 17th International Symposium on Multiyle-
Valued Logic, May 1987, pp. 221-227.

G. W. Dueck, "Algorithms for the minimization of
binary and multiple-valued logic functions," Ph.D.
Dissertation, Department of Computer Science,

1989, pp. 272-279.

University of Manitoba, Winnipeg, MB, 1988.

H. G. Kerkhoff and J. T. Butler, "Design of a high-
radix programmable logic array using profiled peris-
taltic charge-coupled devices," Proceedings of the
16th International Symposium on Multiple-Valued
Logic, May 1986, pp. 100-103.

[15] J. Yurchak and J. T. Butler, "HAMLET user refer-
ence manual" Naval Postgraduate School Technical
Report, Department of Computer Science, Monterey,
CA 93943.

APPENDIX A. HOW TO TRANSFER HAMLET

[5] H. G. Kerkhoff and J. T. Butler, "A module compiler
for the design of high-radix CCD PLA's," Interna-
tional Journal of Electronics, Vol. 67, No. 5,
November 1989, pp. 747-805.

[6] Y.-H. KO, "Design of multiple-valued programmable
logic arrays,", M.S. Thesis, Department of Electrical
and Computer Engineering, Naval Postgraduate
School, Monterey, CA, December 1988.

[7] H.-S. Lee, "A CAD tool for current-mode niultiple-
valued CMOS circuits," M.S. Thesis, Department of
Electrical and Computer Engineering, Naval Poslgra-
duate School, Monterey, CA, December 1988.

[8] G. Pomper and J. A. Armstrong, "Representation of
multivalued functions using the direct cover method,"
IEEE Trans. on Comput. Sept. 1981, pp. 674-679.

[9] J. G. Samson, "Design of a PLA in multi-valued
logic," 250-uurs opdracht, Department of Electrical
Engineering, University of Twente, 30 June 1988.

[lo] W. S. Scott, R. N. Mayo, G. Hamachi, and J.
Ousterhout, I986 VLSI Design Tools, University of
California - Berkeley Report No. UCB/CSD 86/272,
December 1985.

[l l] P. Tirumalai and J. T. Butler, "On the realization of
multiple-valued logic functions using CCD PLA's,"
Proceedings of the 1984 International Symposium on
Multiple-valued Logic, May 1984, pp. 33-42.

[121 P. Tirumalai and J. T. Butler, "Analysis of minimiza-
tion heuristics for multiple-valued programmable
logic arrays ," Proceedings of the I988 International

TO YOUR ACCOUNT
HAMLET is public domain software. No warranties

are made regarding its operation. If you have an
ARPANET connection, you can obtain HAMLET by log-
ging into your account, moving to the directory where you
will be using HAMLET, and applying the following pro-
cedure.

1. % ftp cs.nps.navy.mil
Invoke the file transfer program, connecting to the
VAX-11 in the Department of Computer Science at
the Naval Postgraduate School. If this succeeds,
you will see the login prompt.

2. Login as username "anonymous", password (your
own name)

3. >cdpub
Change the current directory to the public domain
directory.

4. >binary
5. > get mv1.tar.Z

Transfer the set of mvl programs to your directory
on your home account.

6. >bye
Exit the Naval Postgraduate School's system.

7. % uncompress mv1.tar.Z
Convert the files to standard uncompressed format.

8. % tar xvf mvl.tar
Extract the files.

9. %moreREADME
Read the latest changes and instructions.

10. % make all

152

http://cs.nps.navy.mil

