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1.  Introduction 

 

The U.S. Navy is currently pursuing lightweight material options for shipboard structural 
applications, including hull, topside and mast structures.  It is necessary to develop preliminary 
design criteria and methods to assess structures before the development of detailed finite element 
models. 

The design equations and criteria presented in this report are for simply-supported 
orthotropic plates typically used in composite ship structures.  The design equations presented 
provide orthotropic plate solutions for principal use in code development.  In addition, the 
method could extend to overall ship structural design, for scantling design, or for input into an 
overall design program. 

This document provides design equations and criteria for simply-supported orthotropic 
plates in the context of the design of composite hull and topside structures.  It identifies ship 
structural loads, structural design criteria, and design equations for solid, sandwich and hat-
stiffened panels, as well as girders and frames. 

 

2.  Ship Structural Design Loads 

 

Loads on the hull structure define the basic requirements for any ship structure.  The hull 
loads are related to geometry, size, speed, and operational and combat environments of the ship.  
The determination of the loads is a crucial part of the composite structural design process. 

Within the ship structure, there are a variety of loads which are experienced by the various 
parts.  Because of the variety of loads acting on the hull, bulkheads and decks, it is important to 
first identify, then define each load and conditions in which they can occur.  Only when there is 
an understanding of the frequency can we understand when and how the loads may be combined. 

From the structural design manual for surface ships [Reference 1], loads are grouped into 
four categories, basic loads, sea environment, operational environment, and combat environment; 
see Figure 1.  Table 1 shows ship structural members and pertinent loads and their combination 
for analysis. 
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Loads for naval ship design are discussed in the structural design manual for surface ships 
[Reference 1] and also by, a topside design guide [Reference 2].  These documents provide much 
of the background information on which this report is based.  Recently, classification societies, 
Det Norske Veratis (DNV) and American Bureau of Shipping (ABS), have added more specific 
information about basic, sea environment, and operational environment loads of naval ships and 
of ships with non-traditional hull forms [References 3, 4, 5]. 

 

 
 
 
 

SHIP STRUCTURAL LOADS
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GUN BLAST
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AND ACCIDENTAL
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Figure 1.  Categories of Ship Structural Loads 
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Table 1.  Ship Structures Load Application Chart 

Ship Component 

Loads to be Combined Load to be Applied Independently 
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last 
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hock 

1 Shell & Frame                  
A Midship X X X X - - - - X - - - X X - X - 
B Forward X X X X - - - X X - - - X X - X - 

C Aft X X X X - - - - X - - - X X - X - 
D Sponson Shell - X - X - X - X - - - - - X - X - 
E Web Frame - X X X - X X X X X X - X X - X - 

2 Bulkhead                  
A Longitudinal X - X X - - - - X X - X - - - - - 
B Transverse - - X X - - - - X X - X - - - X - 
C Bends - - - X X - X - - - - - - - X X - 

D Misc. - - X X - - - - X X - X - - - - - 

3 Decks                  
A Interior X - X X X - X - X X - X - X - - - 

B Weather X X - X X X X X X - X X - X X X - 
C Platforms - - X X X - X - X X - X - - - - - 

4 Stanchion - X X X X X X - X X X X - X X X - 

5 Superstructures                  
A Long X X - X X X X - - - X X - X X X - 
B Short - X - X X X X - - - X X - X - X - 

C Deckhouse - X - X X X X - - - X X - X - X - 

6 Foundations                  
A Critical Machinery/Equipment - - - X  - - - - - - - - X - - X

B 
Secondary 
Machinery/Equipment 

- - - X  - - - - - - - - X - - - 

C Exposed Locations - - - X  X - X - - X - - X - X - 
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3.  Composite Failure Modes 

The Definition of Failure 

The following excerpts are from Ship Structural Design Concepts, SSDC-P1, Ship 
Structure Committee [Reference 6]. 

Damage 

A structure is damaged if its original form has changed in a way which is detrimental to its 
future performance, even though there may be no immediate loss of function.  Examples of 
damage include excessive permanent deformations or the appearance of cracks due to fatigue or 
local brittleness.  In such cases the structure may still be able to sustain its design loads, but 
because of the possible adverse effects on performance or appearance, and hence on the 
confidence of operators and users, repairs should be effected as soon as convenient. 

Collapse 

This occurs when a structure is damaged so badly that it can no longer fulfill its function.  
This loss of function may be gradual, as in the case of a lengthening fatigue crack or spreading 
plasticity; or sudden, as when the failure occurs through plastic instability or through 
propagation of a brittle crack.  In all cases the collapse load may be defined as the minimum 
load which will cause this loss of function. 

 

The strength of laminates cannot, in general, be predicted reliably from their constituent 
properties; it is therefore usually evaluated by reference to test data.  Theoretical models, 
supported by microscopic examination, have, however, provided insight into the mechanics of 
laminate failure.  For composite materials, internal material failure frequently occurs before any 
macroscopic change in the composite is observed.  Examples of internal failures that may lead to 
catastrophic failure of the composite structure include [Reference 7]: 

1) Microcracking of the matrix, 
2) Separation of the fibers from the matrix (debonding), 
3) Failure or rupture of individual fibers, and 
4) Separation of individual lamina from each other (delamination). 

For composite sandwich laminates, failure modes include: 

5) Above faiures for skin of sandwich, 
6) Core failure due to yielding, cracking or ultimate strength, and 
7) Skin/core delamination. 

 
These failures modes can cause damage which may require composite repair; others may 

lead to overall structural failure or collapse.  In the case of preliminary design, these failure 
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modes can affect structural design criteria.  Four classes of design criteria must be met for a 
feasible design: 

 Deflection requirement, 

 Strength limits, 

 Buckling, and 

 Natural frequency. 

Properties normally required for design purposes and failure evaluation/prediction are 
tensile, compressive, flexural, in-plane and interlaminar shear strengths.  Material modulus data 
are needed to determine deflection, buckling strength and natural frequencies.  Material strength 
data are needed for comparison with strength allowables. 

 

4.  Overall Ship Design Process 

 

The structural design process is initiated by assuming a set of ship hull cross-sectional 
scantlings for the midship plating.  For the first cycle of the design, the contributions of 
longitudinal stiffeners to the overall hull sectional modulus may be neglected.  Using the 
longitudinal hull girder loads, the induced primary stresses in the deck and hull bottom are 
calculated [References 8, 9, 10, 11, 12].  With these primary in-plane stresses and assumed 
transverse frame spacing and plate thickness, the assumed scantlings are checked for buckling 
under in-plane loads and ultimate strength under combined in-plane and lateral loadings.  The 
calculated stress results and design criteria are used to modify the assumed set of cross-sectional 
scantlings and the iterative processes continues until an optimum set of scantlings is obtained. 

4.1.  Ship Cross-Section Analysis 

Hull girder analysis requires that deck and bottom stress and overall ship deflection is 
checked.  Using a maximum bending at mid-ship, the induced stress in the deck and bottom is 
given by: 

),min(:
...

...

TensionnCompressioult

ultB
Keel

ultD
Deck

where
SOFI

Mc
SOFI

Mc













 

In addition to stress, hull girder deflection must be checked.  Assume that the ship’s weight 
is evenly distributed between perpendiculars and that the moment of inertia throughout the 
length of the hull is equal to the value at midships.  The evenly distributed weight required to 
give a bending moment for the case of simply-supported ends gives [Reference 13]: 
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PL

M
W

8
  

The beam deflection can be calculated from the following: 

200/1
384

5 3


EI

WLP  

The hull girder deflection is required to be less than 1/200. 

4.2.  Composite Panel Analysis 

From the ship cross-sectional analysis mentioned above, in-plane axial forces and in-plane 
bending moments are determined.  With knowledge of the out-of-plane load requirements, the 
ship structure can be segmented into panels for design analysis.  Necessary equations and design 
criteria will be discussed in subsequent sections. 

The design equations are split into three categories:  solid laminate panels, sandwich 
panels, hat-stiffened-panels.  Four classes of design criteria must be met for a feasible design: 

 Deflection requirement, 
 Strength limits, 
 Buckling, and 
 Natural frequency. 

 

5.  Design Criteria (Limit States) 

5.1 Deflection Requirements 

Structural stiffness is a major driver in the design of composite structures due to the low 
composite modulus.  Deflection limits can be absolute limits or limits due to imposed design 
criteria.  Absolute limits represent physical constraints based on tolerances or interference with 
adjacent structures or equipment.  Limits due to design criteria aid in avoidance of other 
requirements such as crew habitability/visibility, motions (velocity or acceleration) or natural 
frequency. 

The absolute deflection limits must be set on a case-by-case basis and are typically not load 
case dependent.  Specified design criteria limits have values which could be as much as 1/25 and 
as little as 1/1000 in some civil engineering applications [Reference 14]. 
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Deflection limits used in the past for composite structural design are: 

L/200 internal (walking) decks panels 
L/200 internal (walking) decks frame 
L/100 internal (non-walking) decks panels
L/100 internal (non-walking) decks frames
L/200 hull exterior frames 
L/150 hull exterior deck panels 
L/150 hull exterior panels (elsewhere) 
L/100 topside exterior panels and frame 
L/50 bulkhead to bulkhead panels 

5.2 Strength Limits 

Using current methodology, material strengths are determined via stress.  Historically, 
material knockdown factors that reduce ultimate strength values to account for laminate service 
conditions have also been derived from stress-based testing and calculation. 

To determine failure with analytical or numerical (FE) results, maximum stress theory is 
most-commonly used.  In comparison with other failure theories, maximum stress theory is 
conservative and well understood.  Jenkins [Reference 15] stated that failure occurs when one or 
all of the orthotropic stress values exceed their maximum limits as obtained in uni-axial tension, 
compression or pure shear stress test, when material is tested to failure.  For plane stress, this is: 

11 = X 
22 = Y 
12 = S 

 5.3 Buckling Criteria 

Ship structures generally have: [Reference 16] 

Plate Buckling-Critical Member 4
Plate Buckling-Non-Critical Member 2
Stanchion and Stiffener Buckling 4

5.4 Natural Frequency Criteria 

From the DDX deckhouse program, the approach to account for vibration at preliminary 
design level is to determine the panel’s natural frequency.  The local response of individual 
panels (panel natural frequencies) will be above 125% of the ship’s blade rate values [Reference 
17]. 

Where:  Shaft Rate (Hz) = Shaft RPM / 60 

Blade Rate (Hz) = # of Blades × Shaft RPM / 60 
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5.5 Design Allowables and Factors of Safety 

5.5.1 Traditional Factor of Safety Approach 

Typically, a traditional single factor of safety design has been used.  Design data sheets for 
hull structures have used a single factor of safety from the ultimate strength [Reference 18].   

stiffener or stanchion 4 
static loading 4 
long-term loading (creep) 4 
fatigue 6 
air blast load (one-time-load) 1.25
repeated impact load 8 

5.5.2 Design Allowable Method 

Design allowable stress levels should account for all applicable fabrication and loading 
condition uncertainties.  These uncertainties include, but are not limited to the following: 

1. End-use/In-service environment, 
2. Fatigue loadings, 
3. Sustained loadings, 
4. Impact loadings, 
5. Form and shape factors, 
6. Laminate thickness effects, 
7. Manufacturing variables, 
8. Residual stresses and strains, and 
9. Corrosion effects. 

When accounting for these effects by testing or other methods, one may establish design 
allowables by first determining material allowables, and then applying a reduced factor of safety.  
The material allowables account for the anticipated in-service, worst-case environmental 
conditions, for example, elevated temperature, moisture, processing variability (B-basis 
statistical determinations).  When material allowables are known, then the design allowables are 
determined as follows: 

Using the material knockdown factors combined with a load uncertainty, the factor of 
safety can be determined. 

factorsy uncertaint load 

factorsknockdown  material 

F.S.

1

1














φ

K

K j

M

j

i

N

i


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6.  Panel Design Equations 

6.1 Solid Laminate Panel Design 

Consider a rectangular plate of length, a, width, b, and thickness, t shown in Figure 2.  For 
marine construction, the rectangular panel loads can be simplified into an average edge force Nx, 
or Ny combined with an in-plane bending moment and in-plane shear, Nxy.  In addition, the panel 
may be subjected to a uniform pressure, P, on the entire panel.  Using classical plate theory for 
thin plates, Z-stress = 0 (no transverse shear deformation), the governing equation for 
displacement, w, of the plate in the Z direction is 

   yxF
y

w
D

yx

w
DD

x

w
D ,22

4

4

2222

4

66124

4

11 












 

where Dij’s are the flexural rigidities of the plate given by: 

      12
,

112112
,

112

3
12

66
2112

3
121

12
2112

3
2

22
2112

3
1

11

tG
D

tE
D

tE
D

tE
D 














 

With these terms, the governing equation can be rewritten as: 

  yxF
y

w

yx

w

x

w
,2

4

4

22

4
2

1

4

4












   

where: 

2211

6612

11

22 2
      ,

DD

DD

D

D 
 

 

The non-dimensional adjusted plate aspect ratio is given by: 

b

a
R

4/1
   

Plate equations are valid for symmetric laminates (with no bending twist coupling, Bij = 0).  
For further discussion on plate equations, go to the detailed progression in Reference [Reference 
19].  Additionally, in laminated parts, the flexural rigidities, Dij’s, can be determined through 
classical laminate theory see Appendix A. 

6.1.1 Deflection of Solid Laminate Panel 

The deflection of a composite panel is important in composite design due to the low 
modulus of laminates.  Because the modulus ranges from 1 to 10 Msi, deflection limits can 
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govern design.  For a simply-support panel, the deflection solution for a uniform pressure is 
given by the Navier solution [Reference 20].  This solution converges rapidly for deflection 
within 20 to 40 terms of the summation. 
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Figure 2.  Generalized Rectangular Plate with Typical Panel Loads 
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For most panels in marine construction, the simply-support deflection is overly 
conservative.  For this reason, the clamped-clamped rectangular panel is calculated [Reference 
19].  The maximum deflection of a clamped-clamped rectangular panel is: 

if –1 <  < (3.5)^0.5 
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   5.332,5.332 2
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1    

As an alternative to the piece-wise solution proposed by Roberts & Bao [Reference 19], a 
continuous function is presented by Lekhnitskii [Reference 21] and similarly by Whitney 
[Reference 22]. 
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Not only is the continuous function easier to employ computationally, but solution 
accuracy appears improved over a larger range of aspect ratios and panel material orthotropy. 

The maximum deflection of the simply-supported and clamped-clamped panel are 
combined using a weighted average W to estimated the panel deflection.  W ranges between 0 
and 1 and is typically taken to be 0.75. 
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6.1.2 Stress of Solid Laminate Panel 

For preliminary design and assessment, stresses in the simply-supported rectangular panel 
offer a conservative estimate of stress in the panel.  Stress components can be determined 
through the extension of the Navier solution [Reference 20].  The Navier solution for a 
rectangular panel with a uniform pressure gives the following moment and shear resultants due 
to bending: 
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The maximum stresses for a solid laminate panel are: 
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In addition to the bending stress due to out-of-plane pressure, membrane components can 
be determined from in-plane loading. 
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6.1.3 Buckling of Solid Laminate Panel 

Solid laminate panel buckling can arise from any loads shown in Figure 2.  Here we will 
show the solutions for a simply-support panel under Nx, Ny, Nxy and in-plane bending moments.  
There is little information on resulting buckling due to combined loaded cases.  However, it 
should be noted that all components of the loads are typically not substantial at the same time.  
These equations will form the basis for an interaction equation to be used to assess combinations 
of loading. 

In-plane buckling of a simply supported panel due to a uniform edge load for both the X-
face and Y-face are given below [Reference 19]. 
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The panel will buckle in m half waves if 
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The critical in-plane bending moment along each edge of a simply-supported panel is given 
by [Reference 23]: 
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Y-Moment 
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the panel buckles in k m-half waves when: 
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if Ri is greater than 3.8741, these critical in-plane bending moment can be estimated by: 
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For in-plane shear, there are limited solutions for rectangular plate buckling.  Here the plate 
is assumed to be infinitely long, for which Rx approaches infinity.  The critical in-plane shear for 
this case is given by [Reference 23]: 
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6.1.4 Natural Frequency of Solid Laminate Panel 

In addition to deflection concerns, the low modulus of composites can make the natural 
frequency of the panel a concern.  The general form of the panel natural frequency is given 
[Reference 22]: 

  4
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2
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2
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22
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 RDRDDD
a
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where: 

 = rotational inertia (slugs/in2) 

for a simply support panel the fundamental natural frequency is given by the following constants 











3

4
2

1

 

for a clamped-clamped panel, the fundamental natural frequency is given by the following 
constants 
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

The true natural frequency can be estimated by a weighting function given by following: 

  Clampedss WW   1
 

Typically W is taken to be 0.25. 

6.1.5 Design Criteria for Solid Laminate Panel 

The following 11 criteria, arising from the above equations, must be satisfied. 
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where: 

dLIMIT = deflection limit for the panel 

Si = stress allowable for each component of stress 

F.S. =  Factor of safety for stress 

F.S.B. =  Factor of safety for buckling 

LIMIT  = minimum natural frequency of the panel 
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6.2.  Sandwich Panel Design 

The design of sandwich panels in this discussion is limited to equal face sheet thickness 
and similar material (see Figure 3), where Dij’s are flexural rigidities of the plate given by 
[Reference 24]: 

tf

c or hc

d

h

 

Figure 3.  Sandwich Panel Dimensions 
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Additional terms are needed to represent transverse shear stiffness of the sandwich 
laminate.  These terms are given by: 
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6.2.1 Deflection of Sandwich Laminate Panel 

Due to transverse shear deformation of the core, a sandwich panel will deflect more than 
estimated by the classical plate theory.  The revised Navier solution for a simply-supported 
sandwich panel is given by Dobyns [Reference 25].  This solution is general and can apply to 
sandwich or solid laminate plates where: 
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Amn, Bmn, and Cmn can be determined by substitutions into the governing equations 
resulting in the following solution: 
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The Amn, Bmn, and Cmn can be solved: 
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As in the solid panel case, the simply-support solution is overly conservative.  For this 
reason, the clamped-clamped rectangular panel is calculated from the work by Roberts 
[Reference 24]. 

The maximum deflection of a clamped-clamped rectangular panel is: 
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These terms are combined using a weighted average, W, to estimate the true panel 
deflection.  The weighting function, W, ranges between 0 and 1.  Typically W is taken to be 0.25. 
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6.2.2 Stress of Sandwich Laminate Panel 

For panel stresses the Navier Solution for a simply-supported panel under uniform pressure 
with transverse shear deformation was used to determine Mx, My, Mxy. In addition, the shear 
resultants can be found. This is important because in a sandwich panel the core (only) is assumed 
to resist shear. Using the solutions for displacement and rotations, the stress couples, Mx, My, and 
Mxy and shear resultants Qx and Qy can be determined. 
































































































































































































































































































































































1 1
6666

1 1
2212

1 1
22

1 1
12

2212

1 1
1211

1 1
12

1 1
11

1211

coscos
2

1
2

sinsin

sinsinsinsin

sinsin

sinsinsinsin

m n
mnmnxy

m n
mnmny

m n
mn

m n
mny

y

m n
mnmnx

m n
mn

m n
mnx

x

b

yn

a

xm

a

m
B

b

n
AD

xy
DM

b

yn

a

xm

b

n
BD

a

m
ADM

b

yn

a

xm

b

n
BD

b

yn

a

xm

a

m
ADM

y
D

x
DM

b

yn

a

xm

b

n
BD

a

m
ADM

b

yn

a

xm

b

n
BD

b

yn

a

xm

a

m
ADM

y
D

x
DM















 











































 






 b

yn

a

xm

a

m
CAA

x

w
AQ

m n
mnmnx

 sincos
1 1

5555  











































 






 b

yn

a

xm

b

n
CBA

y

w
AQ

m n
mnmny

 cossin
1 1

4444  



NSWCCD-65-TR–2004/16A 

21 

The resulting stresses in the face sheet and core shear are: 
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In addition to the bending stress due to out-of-plane pressure, membrane components can 
be determined from in-plane loading.  
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6.2.3 Buckling of Sandwich Laminate Panel 

There are several modes of buckling for a solid-core sandwich panel.  These modes include 
face-wrinkling instability, core shear instability, or overall buckling.  The critical stress for 
buckling is discussed by Vinson [Reference 26] and given below.  Overall buckling is given by: 
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When the condition for overall buckling is satisfied, the panel may still buckle due to core 
shear instability given by: 
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Face wrinkling instability causes a short-wave buckling of the sandwich skins, primarily 
when core modulus is low or skins are thin.  The critical in-plane edge load to cause face 
wrinkling is estimated by two methods.  The first by Vinson [Reference 26]: 
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A second estimate of critical in-plane edge load to cause face wrinkling is given by Hoff 
and Mautner [Reference 27]: 
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Buckling will occur at the minimum edge load as calculated above.  For the assessment of 
buckling in the Y direction, terms can be rearranged with proper directionality.  To assess shear 
face wrinkling, stress is given by the lower of the following [Reference 7]: 
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The in-plane moment and shear critical loads equations can be used with proper flexural 
rigidities for the sandwich panel. 

6.2.4 Natural Frequency of Sandwich Laminate Panel 

Additionally, the natural frequency of the sandwich panel can be approximated with 
equations used in Section 6.1.4 with proper flexural rigidities for the sandwich panel.  Note in 
this case, transverse shear deformation consideration is not used. 
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6.2.5 Design Criteria for Sandwich Laminate Panel 

The 14 design constraints which must be satisfied for a feasible design are shown below.  
Note that core shear stresses become a critical component in the design. 
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6.3.  Hat-Stiffened Panel Design 

Consider a panel with several hat-stiffeners attached; see Figure 4.  In this case, three 
separate analysis checks must be done.  First, the unsupported panel, which is now length a, 
width s-bw, can be designed using the procedures discussed in Section 6.1 or 6.2.  Second, the 
plate-stiffener combination must be checked.  Finally, the overall panel length a width b with 
effective stiffness properties must assessed. 

s

Unsupported
Plate Dimensions

a x (s-bw)

a
b

 

Figure 4.  Hat-Stiffened Panel Dimensions 

6.3.1 Stiffener or Girder/Frame Design 

Figure 5 shows hat stiffener geometry.  For analysis of hat-stiffened structure, the core is 
assumed to be ineffective.  When calculating the characteristics of the plate-hat-stiffener 
combination, the effective width of the beam is given by ABS Rules [Reference 4]: 
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Figure 5.   Hat-Stiffener Dimensions 

Composite hat-stiffeners typically have lay-ups which vary between the webs and cap.  
Also, composite hat-stiffeners have different composite materials in stiffener caps.  To represent 
a composite hat-stiffened beam, a designer must: 
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


N

i
iieff AEEA

1  

Develop an effective bending stiffness:    



N

i
yiiiiieffy IEzAEEI

1

2  

From this, the area A and moment of inertia of the plate-stiffener combination I can be 
determined.  See Appendix B for an example. 

For beam bending due to out-of-plane load, the beam is assumed to have a uniform load w 
(lb/in).  The resulting shear and moments will cause maximum tensile or compressive stress 
values either at the mid-span or ends of the beam, shown Figure 6. 

The bending moments and shear forces are defined as [Reference 1]: 
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where: 

w  = normal load in lb/in 

L  = span of plate-stiffener combination 

f1, f2, f3 = response factors 
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For hydrostatic, dead, damage or tank overflow load of plate-stiffener combination (that is, 
load that is uniform over a large area): 
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For hydrostatic, dead, damage or tank overflow load of plate-frame stiffener combination 
(that is, load that is not uniform over a large area): 
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For live loads and dynamic loads (slamming) of plate-frame or plate-stiffener combination 
(that is, load that is intermittent from frame to frame): 
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From the moments, stress in the plate-stiffener combination can be determined: 
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Figure 6.  General Shear and Moments 

The column buckling of the plate-stiffener combination with uniform cross-section is given 
by Reference [Reference 1]: 
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The defection of the plate-stiffener combination is defined by Navy standards [Reference 
1]: 

EI

wL
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The buckling critical stress is: 
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1
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In addition to overall buckling, web buckling should be checked.  This can be assessed 
using the equations for solid laminate (the hat stiffener core is taken to be non-structural) for 
edge compression and shear, respectively. 

6.3.2 Overall Stiffened Panel Design 

To this point, the hat-stiffened panel has been examined for the unsupported panel and the 
plate-stiffener combination.  Now the entire panel with length a and width b must be examined 
for defection criteria, natural frequency, and overall buckling.  This can be done by developing 
flexural rigidities for the entire hat-stiffened panel.  This work was done Roberts and Bao 
[Reference 19]: 
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The response of this panel can be calculated via solid laminate equations in the Section 6.1. 

Longitudinally framed structures are also subject to buckling failure; see Figure 7 and 
Figure 8.  A suitable formula for critical buckling stress ycr (simply supported ends) for 
longitudinally framed composite structures is given as Reference [2]: 
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where: 

L = longitudinal panel span, 

EI = the flexural rigidity of a longitudinal with assumed effective plate width, 

A = total cross-sectional area of the longitudinal, including effective width of plate, 

GAS = shear rigidity with AS = the area of the stiffener webs. 
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Figure 7.  Interframe Buckling Modes 
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Reference [Reference 28] 

Figure 8.  Extraframe Buckling Modes 
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6.3.3 Design Criteria for Hat-Stiffened Panels 
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Appendix A 
Classical Laminate Theory (CLT): 

 

In Section 6 of this report, preliminary design equations are presented with smeared 
composite laminates properties.  In most Navy projects, smeared laminates representing common 
structural configurations, that is, quasi-isotropic, have been tested.  In this case, a designer can 
now input a set of modulii and strength properties for a single plate thickness. 

However, depending on the material test data developed through the material test program, 
the use of material properties in laminated plates can be determined.  In some cases, lamina (ply) 
properties are generated (warps-parallel or uni-directional).  In this case, the user can define a 
stacking sequence for construction which provides individual ply information in the material set 
(lamina elastic constants), thickness, and angular orientation; see Figure A-1.  Micro-mechanics 
analysis can be used to predict the behavior of the laminate.  Equivalent properties can be 
determined using: 

 Classical Laminate Theory, CLT, to Predict Equivalent Stiffness Characteristics, First-
Ply Strength Note: CLT is valid for symmetric laminates (with no bending twist coupling, 
Bij = 0) 

 CLT with Ply-Discount Method to Predict Equivalent Stiffness Characteristics and 
Ultimate Strength Predictions 

 Micro-Mechanics Analysis with Progressive Failure/Damage Analysis (Currently there 
are no standard methods for using these models.) 

 Classical Laminated Plate Theory covered in detail in Reference [26]. 
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Figure A-1.  Laminated Plate Assembly 
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Appendix B 
Sample Area and Moment of Inertia Calculation 

 
 

 
[Reference 28] 

Figure B-1.  Sample Area and Moment of Inertia Calculation 
Solid Hat-Stiffener 
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[Reference 28] 

Figure B-2.  Sample Area and Moment of Inertia 
Calculation Sandwich Hat-Stiffener 
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