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ABSTRACT 

Tracking maneuvering targets is a complex problem which has attracted a great deal of 
effort over the past several years. It has been now well established that, in terms of tracking 
accuracy, the Interacting Multiple Model (IMM) algorithm where state estimates are mixed 
perform significantly better for maneuvering targets than the other types of filters (Adaptive 
Single Model, Input Estimation, Variable Dimension, etc.). However, the complexity and 
computation cost of the IMM algorithm can prohibit its use in some applications for which 
simpler algorithms can provide us with the necessary accuracy at a lower computation cost. This 
document presents the evaluation of the tracking accuracy of a multiple model track filter using 
three different constant-velocity models running in parallel (3CVP AR) and a maneuver detector. 
The output estimate is defined by selecting the model having its likelihood function lower than a 
Target Maneuver Threshold (TMTH). This approach is recommended for the MultiSensor Data 
Fusion (MSDF) problem to be tested in the Advanced Shipboard Command and Control 
Technology (ASCACT) testbed. The tracking performance of the 3CVP AR track filter is 
compared with: 1) an adaptive single motion model Kalman filter (ASMMKF); 2) an IMM 
algorithm using the same three CV models than the 3CVPAR filter; 3) an IMM filter using a CV 
model and a constant acceleration (CA) model producing a CVCA filter ; 4) an IMM filter using 
a CV and two CA models (CAl, CA2) differing only by the level of process noise producing a 
CV2CA filter. Calculations of the average Root Mean Square Error (RMSE) on 100 Monte Carlo 
runs permit to evaluate the tracking accuracy of the 3CVP AR track filter compared with simpler 
(ASMMKF) or more complex (IMMs) algorithms on a challenging multiple-sensor scenario. 

RESUME 

Le pistage de cibles qui manoeuvrent est un probleme complexe qui continue d'attirer 
!'attention de nombreux chercheurs depuis plusieurs annees. On a etabli que le filtrage de 
Kalman de type modeles multiples interactifs (MMI) donnait la meilleure precision de pistage par 
rapport a d'autres approches de filtrages (modele unique adaptatif, estimation de variable 
d'entree, dimension variable, etc.). Cependant, la complexite et le cout en calculs de l'algorithme 
MMI peut entraver son usage pour certaines applications ou des algorithrnes plus simples 
peuvent apporter la precision necessaire a un cout moindre en calculs. Ce document presente les 
resultats de revaluation de plusieurs methodes de filtrage afin d'en recommander une pour 
!'application de fusion de donnees qui fera l'objet de tests dans le bane d'essai que l'on nornme 
"ASCACT" (Advanced Shipboard Command and Control Technology). L'approche 
recommandee pour "ASCACT'' utilise trois filtres ayant des modeles differents de v1tesses 
constantes (appeles "3CVPAR") et un detecteur de manoeuvre. L'estime est choisi par le filtre 
dont Ia fonction de vraisemblance du modele de vitesse depasse un seuil de detection de 
manoeuvre. La performance du filtre ''3CVPAR'' est comparee a: 1) un modele unique adaptatif; 
2) un algorithme MMI utilisant les trois memes modeles de vitesses constantes que le filtre 
"3CVPAR"; 3) un filtre MMI utilisant un modele de vitesse constante et un modele 
d'acceleration constante; et finalement 4) un filtre MMI utilisant un modele de vitesse constante, 
mais avec deux modeles d'acceleration constante. La precision de ces approches de pistage est 
evaluee en calculant l'erreur quadratique moyenne de 100 essais Monte Carlo. 
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EXECUTIVE SUMMARY 

The objective of the Advanced Shipboard Command and Control Technology 
(ASCACT) project is to improve the shipboard data processing capability of the 
Command and Control Information Systems (CCISs) on Canadian warships. The ongoing 
final phase of this project will deliver an advanced development model testbed to the 
Defence Research Establishment Valcartier (DREV) for conducting naval CCIS research. 
The ASCACT Testbed will be used to investigate the adaptation of commercial off the 
shelf (COTS) technology to naval CCIS applications such as Multi-Source Data Fusion 
(MSDF), Situation Threat Assessment (STA), and Resource Management (RM). 

The MSDF application of the ASCACT Testbed will focus on fusing simulated 
data reports from six sensors of the Canadian Patrol Frigate (CPF) in order to derive the 
best estimates of the kinematic properties for each perceived entity in the environment, 
and to infer the identity and key attributes of these entities. DREV has been working for 
over a decade to develop technologies to enable Canada's warships to dynamically and 
automatically obtain an image of a tactical situation. The scope of this research is within 
the time frame of the HALIFAX class mid-life refit and the spin-offs will also be of direct 
benefit to the IROQUOIS class and its potential replacement. The choice of a method for 
filtering and prediction is usually the first task facing the designer of the target tracking 
function of a MSDF system, and many approaches exist. It has been now well established 
that, in terms of tracking accuracy, the Interacting Multiple Model (IMM) algorithm 
where state estimates are mixed perform significantly better for maneuvering targets than 
the other types of filters (Adaptive Single Model, Input Estimation, Variable Dimension, 
etc.). However, the complexity and computation cost of the IMM algorithm can prohibit 
its use in some applications for which simpler algorithms can provide us with the 
necessary accuracy at a lower computation cost. 

This report presents the evaluation of the tracking accuracy of a multiple model 
track filter using three different constant-velocity models running in parallel (3CVP AR) 
and a maneuver detector. The output estimate is defined by selecting the model having its 
likelihood function lower than a Target Maneuver Threshold (TMTH). This tracking filter 
scheme as been proposed for ASCACT. The tracking performance ofthe 3CVPAR track 
filter is compared with: 1) an adaptive single motion model Kalman filter (ASMMKF); 
2) an IMM algorithm using the same three CV models than the 3CVP AR filter; 3) an 
IMM filter using a CV model and a constant acceleration (CA) model producing a CVCA 
filter; 4) an IMM filter using a CV and two CA models (CAl, CA2) differing only by the 
level of process noise producing a CV2CA filter. Calculations of the average RMSE 
error on 100 Monte Carlo runs permit to evaluate the tracking accuracy of the 3CVP AR 
track filter compared with simpler (ASMMKF) or more complex (IMMs) algorithms on a 
challenging multiple-sensor scenario. 
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1.0 INTRODUCTION 

The objective of the Advanced Shipboard Command and Control Technology 

(ASCACT) project is to improve the shipboard data processing capability of the 

Command and Control Information Systems (CCISs) on Canadian warships. The ongoing 

fmal phase of this project will deliver an advanced development model testbed to the 

Defence Research Establishment Valcartier (DREV) for conducting naval CCIS research. 

The ASCACT Testbed will be used to investigate the adaptation of commercial-off-the­

shelf (COTS) technology to naval CCIS applications such as Multi-Source Data Fusion 

(MSDF), Situation Threat Assessment (STA), and Resource Management (RM). 

The MSDF application of the ASCACT Testbed will focus on fusing simulated 

data reports from six sensors of the Canadian Patrol Frigate (CPF) in order to derive the 

best estimates of the kinematic properties for each perceived entity in the environment, 

and to infer the identity and key attributes of these entities. DREV and Lockheed Martin 

Canada Inc. have been working for over a decade to develop technologies to enable 

Canada's warships to dynamically and automatically obtain an image of a tactical 

situation. The scope of this research is within the time frame of the HALIFAX class mid­

life refit and the spin-offs will also be of direct benefit to the IROQUOIS class and its 

potential replacement. The choice of a method for filtering and prediction is usually the 

first task facing the designer of the target tracking function of a MSDF system, and many 

approaches exist. However, approaches based on Kalman filters are the most popular 

when dealing with the problems presented by missing data, variable measurement noise 

statistics, and maneuvering targets with variable dynamic capabilities. 

Reference [1] presents a practical, quantitative demonstration of Kalman filtering 

techniques for kinematics data fusion in MSDF systems. The report describes the 

standard linear Kalman filter, but also a number of non-linear filtering techniques. Since 

tracking a maneuvering target is a complex but very important issue, the main techniques 

for handling target maneuvers are discussed. The various target kinematics models most 
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frequently used for Kalman filtering purposes are also discussed in detail but no 

evaluation has been conducted to specifically recommend an approach to be tested in the 

ASCACT real-time testbed. This is the aim of the current report. 

Tracking maneuvering targets has attracted a great deal of effort over the past 

several years, leading to algorithms of an increasing complexity. Recent studies [2-3] 

clearly establishes the superiority of the tracking performance of the Interacting Multiple 

Model (IMM) algorithm developed by Blom et al. [4-5] compared with the single motion 

model track filters such as the input estimation [6] and variable dimension filters [7]. 

Both rely on certain maneuver detection criteria to update the parameters or to modify the 

structure of the track filters. Most of these detection criteria are based on threshold rules 

that need to be satisfied a certain number of consecutive times prior for the filter's being 

switched to a maneuver mode. The consequence is an unavoidable delay in the maneuver 

response of the track filter, which may lead to dramatic consequences such as target loss. 

This problem is solved by the track filters algorithms using a mix of the state estimates of 

each model (IMM algorithms). Each model represents one of the many different motion 

regimes of the target during its movement. Other types of multiple model track filters do 

not combine each model state estimate but rather select one of them as output according 

to decision rules analogous to those used for the single model track filters. While these 

track filters perform better than the single model track filter, their maneuver responses are 

also delayed since the model switching algorithm is based on decision rules applied in the 

(recent) history of the target. Despite the complexity of such algorithms, their 

computational loads are smaller than those for the IMM algorithm. Even if their 

performances are somewhat lower, they may perform adequately for applications 

involving moderate maneuvers. 

This report presents the results of a study evaluating the effect of mixing the state 

~stimates on the tracking performance of a multiple model track filter. For this pwpose, 

the same motion models are used to build : 1) a multiple model track filter using decision 

rules to select which model will provide the output estimate; 2) an IMM track filter 
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where state estimate of each model are mixed. In both cases, the motion models used 

correspond to a constant velocity motion with different process noise covariances. The 

tracking performance of these filters is compared with that of the known track filters. 

First, a comparison with an adaptive single motion model track filter confmns the 

improvement obtained by using multiple models either interacting (IMM) or not 

(selection of the output state of one model according to specific decision rules). Then, the 

performance of our two filters is compared with that of: 1) an IMM track filter using a 

constant-velocity (CV) and a constant-acceleration (CA) models to form a CVCA track 

filter; 2) an IMM track filter using a constant-velocity (CV) and two constant­

acceleration models (CAl and CA2) to form a CV2CA track filter. The tracking accuracy 

of these filters is evaluated by computing the average Root Mean Square Error (RMSE) 

on position and velocity resulting from a Monte-Carlo experiment of 100 independent 

runs. 

The report is organized as follows. Chapter 2 presents some background material. 

Then, the algorithms that are to be compared are successively presented: 1) the adaptive 

single motion model track filter (Chapter 3); the multiple model using decisions rules 

(Chapter 4); the formalism ofthe IMM algorithm (Chapter 5). The motion models used 

to build the CVCA and CV2CA track filters are presented in Chapter 6. Simulation 

results are presented in Chapter 7. 

The results contained in this report have been presented umefereed at the SPIE 

conference [8] without any recommendation for the ASCACT project. The work was 

carried out under Lockheed Martin Canada Internal R&D funding and at DREV under 

Work Unit lba14 (Support to the ASCACT Integration Working Group) between January 

1998 and February 1999. 



UNCLASSIFIED 
4 

2.0 THE KALMAN FILTER EQUATIONS 

The discrete time model for a dynamic system can be written as: 

(1) 

(2) 

where w k-t is a px 1 process noise vector supposed white and Gaussian 

(wk_1=N(O,Qk_1), vk is a nxl measurement error vector also supposed white and 

Gaussian (vk_1=N(O,Rk), and zk is a nxl measurement vector. Noting xklk-1 and Pklk-t 

the estimate of the state and covariance of the system prior to assimilating the 

measurement at time tk and described by the prediction equations are written as: 

(3) 

p -~ p ~T +G Q GT klk-1- k-1 k-11k-1 k-1 k-1 k-'llk-1 k-1 (4) 

The updated (a posteriori) state and covariance estimates using the measurement 

zk to improve the prior estimate xklk-1 is written as : 

(5) 

(6) 

with Kk is the Kalm~ gain defined as : 

(7) 
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3.0 ADAPTIVE SINGLE MOTION MODEL TRACK FILTER 

The Adaptive Single Motion Model track filter (noted from now on ASMMKF) is 

based on a constant velocity motion model. The discrete-time model is given by : 

xk 1 At 0 0 

xk 0 1 0 0 
xk 

Yk 
Fk= 

0 0 1 At 
(8) 

Yk 0 0 0 1 

At 4 /4 At 3 /2 0 0 

GkQG~ =o-2· 
At 3 /2 At 2 0 0 

0 0 At 4 14 At 3 /2 
(9) 

0 0 At3 /2 At 2 

Equation 9 shows that the process noise covariance cr has the dimension of an 

acceleration ( m·s-2 
). This acceleration is estimated recursively by a linear regression on 

the last five estimates of the target velocity. This simple algorithm uses the estimated 

acceleration to increase the process noise and has the advantage of being decision free 

[9]. 
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4.0 MULTIPLE MODEL TRACK FILTER USING DECISION RULES 

A multiple model track filter is designed to track maneuvering targets by applying 

decision rules on the statistical distance provided by three Kalman filters running in 

parallel (3CVP AR). Each of these filters uses a constant-velocity model for the system 

dynamic, which can still be described by Eq. 9. However, each model is characterized by 

a different level of process noise by the defmition of three different values for cr. For a 

low value of cr , the Kalman filter will be more confident in the state estimate than on the 

measurement and will filter out the measurement noise as well as making the motion 

model unable to respond adequately to a target maneuver. On the other hand, for a high 

value of cr , the Kalman filter will be more confident in the measurement than on the state 

estimate, which will put the motion model in a better position to respond adequately to a 

target maneuver but producing a jerky track ( RMSE in position higher than for a low 

value of cr ). The three values of cr taken in our experiments were chosen to enter a 

maneuver magnitude of respectively 0.03, 0.3 and 3 gin the process noise covariance. 

Figure 1 shows a block diagram of the 3CVP AR algorithm. For each filter ( i ), 

the weighted norm of the innovations ~d~ 1
2 

is computed as : 

(10) 

The innovations are supposed white, Gaussian processes v~ =N(O,S~). Following 

this assumption, the weighted norm of innovations is chi -square distributed with M 

degrees of freedom, where M is the measurement dimension (number of independent 

measures). In our application M will be equal to 2. The value taken by ld~r is compared 

with a threshold given by the chi-square distribution. For instance, taking the target 

maneuver threshold {TMTh) equal to 9 will mean that 1% of the measurements can 

I 
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exceed this threshold only by random fluctuations (i.e. no maneuver involved). However, 

if this threshold is exceeded for a certain amount of consecutive time, it is reasonable to 

think that a maneuver is likely ongoing. 

+I) 
+ l) 

v 1(k+l) 
it(klkJ S'(k+l} 

CMKF#l 
x1 (k + tlk+ tJ (Low cr} 

P'(k!k) P1(k+tlk+l) 

t Maneuver 
y2(k+l) Detection 

x2fklkJ S2 (k + l) 
CMKF#2 x2(k+dk+ l) 

Filter x(k+tlk+tJ 

(Medium cr) Re-Initialization P(k+tlk+l) 
pl(kJk) P1(k+ ilk+ l) 

Output 

+ Selection 
v'(k+ l) 

x3(k!k) S'(k+ l) 
CMKF#3 

x'fk+l!k+tJ (High cr) 
P'(k!Jcj P'(k +ilk+ I) 

t Re-Initialization I Requests 

FIGURE 1 - The multiple model filter using decision rules (3CVP AR) 
Source: Ref.[I] 

Figure 1 shows that, for each model the weighted norm of innovations ld~~
1 

is 

computed and compared with the predetermined TMTh, and the number of times ~d~ r 
exceeds this value is stored in counters Fi. The values in these counters is then compared 

with some predetermined thresholds NF1 which will determine the state estimate taken as 

output for the 3CVP AR track filter but also for each mode if a reconfiguration is 

necessary. 
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Table I summarizes the set of decision rules that are used. Columns 3-5 show that, 

depending on the magnitude of the maneuver, the state estimate of certain modes no 

longer represents the true state of the target. In such cases, the output state estimate of the 

3CVPAR filter replaces the state estimate(s) of the deficient mode(s). For instance, the 

third line shows that a moderate maneuver is ongoing. The state estimate of mode 2 is 

taken as the 3CVPAR output and replaces the state estimate ofmode 1, which no longer 

represents the dynamic of the target. 

TABLE I: 

Decisions rules if ~d~ r > TMTh 

[d'J2>TMTh Maneuver Output State Estimate of 

and Magnitude 

mode 1 mode2 mode3 3CVPAR 

F1 < NF1 No maneuver 1 2 3 1 

F1>NF1 moderate 2 2 3 2 

F1<NF2 

F1>NF1 wild 3 3 3 3 

F2>NF2 

F3<NF3 

F1>NF1 evasive re-initialize re-initialize re-initialize none 

F2>NF2 

F3>NF3 

• 
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5.0 THE IMM ALGORITHM 

The IMM algorithm assumes that the dynamic system can be exactly described at 

a given time of its evolution by one out of M possible models with jumps between these 

models following a Markov chain with known transition probabilities. The IMM 

algorithm works according to the following steps: 

• A different mix of the state estimates is used for each filter. This respective 

weighting of each state estimate in the mix depends on both the probability of 

each model and the model switching probability. 

• Then, each filter computes its own a posteriori state estimate and its associated 

model likelihood. The a posteriori model probability is then computed using 

the model likelihood function, the a priori model probabilities and the model 

switching probabilities. 

• The output state estimate of the IMM track filter is computed by weighting the 

a posteriori state estimate of each filter by the corresponding a posteriori 

model probability. The output state estimate of the IMM filter is no longer 

used for the estimation. 

Figure 2 shows a block diagram of the IMM algorithm for a dynamic system 

supposed to follow two discrete-time models. Let x~ be the state estimate at time k based 

on the model j at time k and model i at time k-1. Let Ak be the (Mxl) vector of model 

likelihood at time k, and flk the (Mxl) vector of model probabilities once all the 

likelihood functions have been taken into account. Let J.l~-1lk be the probability associated 

with the model j at time k and model i at time k-1. 



i 1(k-11 k-1) 
P1(k-1!k-1) 
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Interaction I Mixing 

~ .. 
p 111 (k-ll k -1) 

p 211(k-ll k-1) 

X01 (k-11 k-1) 

P01(k-1lk-1) 

, 

Subfilter 
Model M1 

.., -

Mixing Probabilities 
Combination 

A u 

z(k) 

R(k) 

J4(k-1) p2(k-1) 

... 

A 1(k) A2 (k) 
il( klk) 
PI( klk) 

.. 

H ,. ,, , 

Mode Probability Update 

State Estimate and 
Covariance Combination 

i(k 1 k) 
P(kl k) 

, 

i 2 (k-llk-1) 

P 2 (k-llk-1) 

i 02 (k -11 k -1) 
P 02(k-ljk-1) 

Subfilter 
Model M2 

i 2(k lk) 
p2(k lk) 

FIGURE 2- IMM algorithm using two models (Source: Ref.[1]) 

--------------------~~------------------------------ -----------------r~·· -
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The above three steps can be expressed mathematically as : 

• Prior State Estimates 

m 
xou -~x' ,,IIi 

k-1lk-1-LJ k-1[k-1•r-k-1lk-1 
i=l 

where the prior model probability are given by 

with the mixed covariance given by 

m [ ] pou _ iii pi + xi -xou xl -xou T 
k-1(k-1-L: ·f..Lk-1jk-1 k-111<.-1 < k-1lk-1 k-1lk-1 )< k-1lk-1 k-1lk-1) 

i=l 

• Model Likelihood 

(11) 

(12) 

(13) 

(14) 

Each model i provides its a posteriori state estimate x~lk-1 given the measurement 

zk. The likelihood function of the model i is given by : 

1 1 IT · 1 . 
--===exp[-vk s~ v~] 
~12ns~j 2 

(15) 
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The a posteriori model probabilities are given by : 

m 

C=LAikci 
j=l 

• Output State Estimate 

Pklk = f ·fl~ [P~Ik +(x~lk -xklk)(x~lk -xklk) T] 
i=l 

1 

(16) 

(17) 

(18) 

(19) 
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6.0 MOTION MODELS 

A three model IMM version of the above 3CVP AR is designed. As described in 

Chapter 4, the motion models are constant velocity (CV) and differ in the value of a used 

in the calculation of the covariance of the process noise (resp. 0.03 g, 0.3 g, 3 g). This 

filter is called, from now-on, the IMM-3CV track filter. The tracking performances of the 

3CVPAR and IMM-3CV filters are compared with those of two IMM algorithms: 1) an 

IMM algorithm using one CV model and one CA model to form a CVCA track filter; 2) 

an IMM algorithm using one CV model and two CA models (CAl and CA2) to form a 

CV2CA track filter. The CV model used in these two IMM algorithms is described in 

Chapter 3 (with cr = 0.03 g). 

The discrete-time model for the constant acceleration (CA) is given by: 

xk=[xk xk Xk Yk Yk 
.. r 

Yk 

1 t t/2 0 0 0 

0 1 t 0 0 0 
(20) 

0 0 1 0 0 0 
Fk= 

0 0 0 1 t t/2 

0 0 0 0 1 t 

0 0 0 0 0 1 

(21) 

t:..t 4 /4 t:..t 3 /2 t:..t 2 /2 0 0 0 

t:..t 3 12 t:..t2 At 0 0 0 

GkQG~ = cr2
• 

At 2 /2 At 1 0 0 0 

0 0 0 At4 /4 At3 /2 At 2 /2 

0 0 0 At3 /2 At2 t:..t 

0 0 0 At 2 /2 At 1 



UNCLASSIFIED 
14 

In this study, the values of the constant cr used in the calculation ofthe covariance 

ofthe process noise ofthe two constant acceleration filter are cr=0.3 g (CAl) and cr=3 g 

(CA2). 

I ------------- -------------,,-
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7.0 RESULTS 

The tracking performance of the 3CVP AR track filter is compared with that of its 

IMM version, as well as to that of the ASMMKF, CVCA and CV2CA track filters. 

7.1 Scenario 

The scenario consists of a series of maneuvers executed by an air target. Two 

surveillance radars are used: a short-range radar Rl tracking the target (at a rate of 30 

rpm) up to a range of 45 miles, and a medium-range radar R2 tracking the target at a rate 

of 12 rpm during the entire scenario. 

The target executes the following maneuvers: 

• segment 2: right turn-of- 0.2 g at (x,y)=(26,30), 

• segment 2: right turn-of- 0.2 g at (x,y)=(23,35), 

• segment 4: 3 consecutive left turns of- 1 g at (x,y)=(65,37) , (66,40), (64,40); 

• segment 5: a speed change from 300 to 750 knots at (x,y)=(63,25), 

• segment 5 : a right turn of 5 gat (x,y)=(63,0). 

Segments (1, 3, 6) do not contain maneuvers. Figure 3 represents the ground-truth 

generated by the scenario simulator (the curvilinear dashed line materializing at the range 

limit ofRl). A measurement noise is added to the ground-truth using realistic values for 

the nominal uncertainties of each sensor. A Monte Carlo experiment of 100 runs has been 

performed and all the following results are averaged quantities over those 100 runs. 
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FIGURE 3 - Scenario of a maneuvering air target 

7.2 Tuning of Parameters 

p4 

5 

65 

Some of the filters needed prior parameter tuning before any evaluation of their 

performance could be made. For each of these filters a preliminary Monte-Carlo 

experiment of 100 runs was conducted to select the parameters that provided an average 

RMSE in position lower than the RMSE on measurements. 

• The pre-defined parameters for the 3CVP AR filter are: 

cr= [ 0.03g, 0.3g, 3g]; NF 1 = [ 3, 3, 3]; TMTh = 9.21 

I 

70 
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• Since two measurement rates were considered (12 and 30 rpm), a Markov transition 

matrix II for an arbitrary time of update needed to be defined [1 0]. It is made possible 

by defining the constant probability flow matrix A, which relates to II and to the time 

of update by the relation: 

II Al!.t I AA AAA2 
M = e ~ + fi.Ll.t + --ut + · · · 

2! 
(22) 

The pre-defined parameters for the IMM filters are summarized in Table II as: 

TABLE II: 

IMM filter parameters 

3CV-IMM CVCA CV2CA 

Model probabilities J.L 0 =[0.9 0.1 0.0] J.L 0 =[0.9 0.1] J.L o=[0.9 O.l 0.0] 

Probability flow matrix 

r··· 
O.Ql 

0 l n=[0.99 0.01] [0.98 0.02 

0~1] A ll= 0.2 0.7 0.1 0.05 0.95 ll= 0.01 0.98 

0.02 0.0 0.98 0.02 0.0 0.98 

cr [0.03 0.3 3.0]g [0.03 0.3]g [0.03 0.3 3.0]g 

7.3 Main results 

Figures 4-11 show the comparison of the variation of the covariance state estimate 

(left column: [x], right column: [y]) over time for each studied filter. The abrupt drop at 

the beginning of the scenario (around t=56.9 Ks) is due to the fusion of the radar Rl, 

which has higher accuracy than R2. At around t=57.32 Ks, the target flies out of the range 

of R1, measurements become less accurate and the values of the state covariance reflect 

it. Then, at t=58.07 Ks, the target re-enters the range ofRl, the measurements are more 

accurate and the value of the state covariance decreases. 
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The time-shift of the peaks clearly shown on Figs. 4-11 demonstrates that the 

ASMMKF has the slowest response to the maneuvers. Then comes the 3CVP AR 

algorithm, which is slower than the three IMM algorithms which perform, equally in that 

respect. These figures confirm that the mix of the state estimates characterizing the IMM 

algorithm allows the filter to quickly react to maneuvers. 
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Figures 12-19 show the comparison of the average RMSE on position (left 

column: [x], right column: [y]) over time for each studied filter. Since the ASMMKF 

reacts too late to the various maneuvers, it has the poorest performance. Among the IMM 

algorithms, the CVCA produces the best results, followed by the CV2CA and then the 

IMM-3CV. The 3CVPAR has a performance that puts it between the CV2CA and the 

IMM-3CV. 

Figures 20-27 show the comparison of the average RMSE on velocities (left 

column: [x], right column: [y]) over time for each studied filter. As expected, the IMM 

algorithms produce the best results and are very comparable. The 3CVP AR comes close 

behind, the ASMMKF reacts poorly to wild maneuvers (t=57.7 K.s) due to its too long 

time of response. 

·~------ ------------
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Figure 28 shows, for the 3CVP AR algorithm, the index of the model selected for 

output after applying the decision rules of the maneuver detector. Figures 29-31 show the 

probabilities of the models for the different IMM algorithms. Some similarities exist 

between the switching pattern used by the 3CVPAR and the one used by the CVCA. It 

demonstrates that the peaks of the RMSE on velocity correspond to the various 

reconfiguration stages of the 3CVP AR filter. Those peaks also correspond to a higher 

weight put on theCA model for the CVCA filter. The 3CV-IMM and 3CVPAR switch in 

a similar manner to the high cr model (3 g). When the CVCA filter uses the CV model, 

the CV2CA uses the CAl model. 
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7.4 When 3CVPAR Outperforms The Other Algorithms? 

A statistical test [11] is performed to evaluate when the performances of the 

3CVPAR are lower, equal or even better those of other filters (especially, the IMM 

algorithms). The ratio A/ a_ is computed for each of the 6 segments (defined by the 
ll 

boundaries [k,l] for simplicity) of the scenario. Denoting A is the average (on the 100 

Monte Carlo runs) of the differences: 

!{liter 1 ~[(X filter -Xground-truth )2 -(x3CVPAR -Xground-truth)2] 
k,l [ _ k + 1 L.J mjm mlm mlm mlm 

m-k 

and a_ is the associated standard deviation. 
ll 

(23) 
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The working hypothesis is that the tracking quality of the 3CVP AR algorithm is 

better than with the other filters: 

H :/).filter ==Efilter -E3CVPAR>O 
1 k k k (24) 

It is shown that H 1 is accepted if the significance of H0 D.~ter ~ 0 is less than 5% which 

implies fl~ler Ia nor> 1.65. 
k 

Table ITI summarizes the results obtained by computing the ratio A/cr _ for the 
A 

RMSE on position and velocities (separated by a I) averaged on the 100 runs of our 

Monte-Carlo experiment. Each column corresponds to the section of the scenario 

identified on the Figure 3. 

TABLE Ill: 

Comparison of 3CVP AR to The Other Filters C1 00 runs) 

Filter 1 2 3 4 5 6 

ASMMKF 2.84/3.24 -12.8/-12.1 1.78/1.73 26.4/29.7 -3.21/-1.36 3.85/4.11 

IMM-3CV 2.67/3.30 -12.5/-12.6 0.15/0.65 7.25/8.76 -2.85/0.87 -0.75/-0.83 

CVCA 4.72/5.81 -17.4/-15.9 1.81 I 2.30 -13.3 /-9.38 -10.61/-11.54 4.56/1.45 

CV2CA 10.4/10.40 -17.46/-15.24 11.9/9.6 -13.2/-9.48 -8.64/-7.44 -1.07/0.60 

As described in Section 7.1, segments 1, 3, and 6 correspond to quiescent portions 

of the target trajectory. The test shows that, during those periods, our working hypothesis 

is satisfied, which means that the tracking accuracy of the 3CVP AR algorithm is higher 

than that of the other filters. 
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Segment 2 contains two moderate maneuvers (0.2 g) spaced in time. The test 

shows that, for this type of maneuver, the other filters outperfom the 3CVP AR algorithm. 

The difference in magnitude of the two first peaks on Figs. 12-19 explain this effect. 

However, this is not critical at this point, the performance of the 3CVP AR for such 

maneuvers stays acceptable. 

Segment 4 contains two moderate maneuvers (1 g) close in time. It is interesting 

to see that, this time, the ASMMKF and the 3CV-IMM have real difficulties to track 

adequately the target. The 3CVP AR algorithm performs better than those filters while 

being largely under the level of performance attained by the CVCA and CV2CA 

algorithms for this type of maneuver. 

Segment 5 contains a linear acceleration and a wild maneuver (5 g). The reading 

of the results is, in that case, quite different from that of segment 2 for which all the filters 

were performing more or less adequately. This time the performances of the ASMMKF, 

3CV-IMM and 3CVPAR algorithms are not good enough to guarantee that they will not 

loose the target. 
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8.0 CONCLUSION 

A parallel filter using three constant-velocity models is presented. This filter is 

called "3CVP AR". Its tracking accuracy has been compared with simpler algorithms 

(Adaptive Single Motion Model Kalman Filter), with its IMM version as well as with 

more classical IMM algorithms such as the CVCA and CV2CA track filters. The 

respective tracking accuracy of each algorithm has been evaluated by performing a 

Monte-Carlo study of 100 runs on a challenging multiple-sensor scenario including 

various types of maneuvers. This study shows that the 3CVP AR filter will perform 

reasonably wellfor applications involving moderate maneuvers. Its simplicity and its low 

computational load compared with the classical IMM algorithms can make it the filter of 

choice. This is recommended for the baseline MSDF application of the ASCACT testbed. 

When maneuvers of higher magnitude are expected (evasive), IMM algorithms that 

include a maneuver modeling are preferable. This is recommended for future advanced 

MSDF application of ASCACT. 

I 
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