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ABSTRACT

Tracking maneuvering targets is a complex problem which has attracted a great deal of
effort over the past several years. It has been now well established that, in terms of tracking
accuracy, the Interacting Multiple Model (IMM) algorithm where state estimates are mixed
perform significantly better for maneuvering targets than the other types of filters (Adaptive
Single Model, Input Estimation, Variable Dimension, etc.). However, the complexity and
computation cost of the IMM algorithm can prohibit its use in some applications for which
simpler algorithms can provide us with the necessary accuracy at a lower computation cost. This
document presents the evaluation of the tracking accuracy of a multiple model track filter using
three different constant-velocity models running in parallel (3CVPAR) and a maneuver detector.
The output estimate is defined by selecting the model having its likelihood function lower than a
Target Maneuver Threshold (TMTH). This approach is recommended for the MultiSensor Data
Fusion (MSDF) problem to be tested in the Advanced Shipboard Command and Control
Technology (ASCACT) testbed. The tracking performance of the 3CVPAR track filter is
compared with: 1) an adaptive single motion model Kalman filter (ASMMKEF) ; 2) an IMM
algorithm using the same three CV models than the 3CVPAR filter; 3) an IMM filter using a CV
model and a constant acceleration (CA) model producing a CVCA filter ; 4) an IMM filter using
a CV and two CA models (CA1l, CA2) differing only by the level of process noise producing a
CV2CA filter. Calculations of the average Root Mean Square Error (RMSE) on 100 Monte Carlo
runs permit to evaluate the tracking accuracy of the 3CVPAR track filter compared with simpler
(ASMMKEF) or more complex (IMMs) algorithms on a challenging multiple-sensor scenario.

RESUME

Le pistage de cibles qui manoeuvrent est un probléme complexe qui continue d'attirer
I"attention de nombreux chercheurs depuis plusieurs années. On a établi que le filtrage de
Kalman de type modéles multiples interactifs (MMI) donnait la meilleure précision de pistage par
rapport & d'autres approches de filtrages (mode¢le unique adaptatif, estimation de variable
d’entrée, dimension variable, etc.). Cependant, la complexité et le cofit en calculs de 1'algorithme
MMI peut entraver son usage pour certaines applications ou des algorithmes plus simples
peuvent apporter la précision nécessaire a un cofit moindre en calculs. Ce document présente les
résultats de 1'évaluation de plusieurs méthodes de filtrage afin d'en recommander une pour
1'application de fusion de données qui fera l'objet de tests dans le banc d'essai que l'on nomme
“*ASCACT" (Advanced Shipboard Command and Control Technology). L'approche
recommandée pour 'ASCACT" utilise trois filtres ayant des modéles différents de vitesses
constantes (appelés ""3CVPAR™") et un détecteur de manoeuvre. L'estimé est choisi par le filtre
dont la fonction de vraisemblance du modéle de vitesse dépasse un seuil de détection de
manoeuvre. La performance du filtre “*'3CVPAR"" est comparée a: 1) un modéle unique adaptatif;
2) un algorithme MMI utilisant les trois mémes modéles de vitesses constantes que le filtre
“3CVPAR'; 3) un filtre MMI utilisant un modéle de vitesse constante et un modéle
d’accélération constante; et finalement 4) un filtre MMI utilisant un modéle de vitesse constante,
mais avec deux modeéles d'accélération constante. La précision de ces approches de pistage est
évaluée en calculant I'erreur quadratique moyenne de 100 essais Monte Carlo.




UNCLASSIFIED

i
TABLE OF CONTENTS
ABSTRACT/RESUME ......coriuimmrmmnecsneisssessesesssmsesssecsmssssssessesssasssssssnsssssessssassanns i
EXECUTIVE
SUMMARY ..ottt et et e et e v ieaiaa e e v
1.0 INTRODUCTION ...cocciiiiiicricimiamcriiirnineeesiieaseassancaraseeesseraneesasassessesssanesinsassesnssossesnees 1
2.0 THE KALMAN FILTER EQUATIONS .....ccoooriiinmenitinternreesrenee et aeesee s ssnecseesseaees 4
3.0 ADAPTIVE SINGLE MOTION MODEL TRACK FILTER. .........cccccovvuirmeenerrnecrivenes 5
4.0 MULTIPLE MODEL TRACK FILTER USING DECISION RULES........c.cccceenruen. 6
5.0 THE IMM ALGORITHM ......ccccinniiniiiiiiiitiieiiniiee e et enreeeiss e e se e seess s esanesseas 9
6.0 MOTION MODELS ....cooieiiiiiiereenie e crtecreresee e e ssnrssrae st asressses e seasessessasanesssesanes 13
T.0 RESULTS ..ottt sttt cen e s e sat et esenes s raes e aeane s besabassneesrnassserananses 15
7.1 SCONATIO...c.ciiiticieit ittt et e et st et e r e eae 15
7.2 Tuning Of Parameters........ccoccciiviininiieiniienereeiiiensiiesssecesnee e essanesseresssseeseneecssensaes 16
7.3 Main RESUILS ..oicceiiiiiiiiicin ettt e 17
8.0 CONCLUSION ...ttt sttt eis st sse e sit e sasas s saesrteentssasssnsesbessaseonecsssssenss 36
0.0 REFERENCES .......iiiitiriieiiicieenmirieeerse e sreesmesnnessessmnes satseomseesensssntesasesrases srsesenes 37

FIGURES 1 to 31

TABLES I to III




UNCLASSIFIED
v

EXECUTIVE SUMMARY

The objective of the Advanced Shipboard Command and Control Technology
(ASCACT) project is to improve the shipboard data processing capability of the
Command and Control Information Systems (CCISs) on Canadian warships. The ongoing
final phase of this project will deliver an advanced development model testbed to the
Defence Research Establishment Valcartier (DREV) for conducting naval CCIS research.
The ASCACT Testbed will be used to investigate the adaptation of commercial off the
shelf (COTS) technology to naval CCIS applications such as Multi-Source Data Fusion
(MSDF), Situation Threat Assessment (STA), and Resource Management (RM).

The MSDF application of the ASCACT Testbed will focus on fusing simulated
data reports from six sensors of the Canadian Patrol Frigate (CPF) in order to derive the
best estimates of the kinematic properties for each perceived entity in the environment,
and to infer the identity and key attributes of these entities. DREV has been working for
over a decade to develop technologies to enable Canada’s warships to dynamically and
automatically obtain an image of a tactical situation. The scope of this research is within
the time frame of the HALIFAX class mid-life refit and the spin-offs will also be of direct
benefit to the IROQUOIS class and its potential replacement. The choice of a method for
filtering and prediction is usually the first task facing the designer of the target tracking
function of a MSDF system, and many approaches exist. It has been now well established
that, in terms of tracking accuracy, the Interacting Multiple Model (IMM) algorithm
where state estimates are mixed perform significantly better for maneuvering targets than
the other types of filters (Adaptive Single Model, Input Estimation, Variable Dimension,
etc.). However, the complexity and computation cost of the IMM algorithm can prohibit
its use in some applications for which simpler algorithms can provide us with the
necessary accuracy at a lower computation cost.

This report presents the evaluation of the tracking accuracy of a multiple model
track filter using three different constant-velocity models running in parallel (3CVPAR)
and a maneuver detector. The output estimate is defined by selecting the model having its
likelihood function lower than a Target Maneuver Threshold (TMTH). This tracking filter
scheme as been proposed for ASCACT. The tracking performance of the 3CVPAR track
filter is compared with: 1) an adaptive single motion model Kalman filter (ASMMKF) ;
2) an IMM algorithm using the same three CV models than the 3CVPAR filter; 3) an
IMM filter using a CV model and a constant acceleration (CA) model producing a CVCA
filter ; 4) an IMM filter using a CV and two CA models (CA1, CA2) differing only by the
level of process noise producing a CV2CA filter. Calculations of the average RMSE
error on 100 Monte Carlo runs permit to evaluate the tracking accuracy of the 3CVPAR
track filter compared with simpler (ASMMKZF) or more complex (IMMs) algorithms on a
challenging multiple-sensor scenario.
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1.0 INTRODUCTION

The objective of the Advanced Shipboard Command and Control Technology
(ASCACT) project is to improve the shipboard data processing capability of the
Command and Control Information Systems (CCISs) on Canadian warships. The ongoing
final phase of this project will deliver an advanced development model testbed to the
Defence Research Establishment Valcartier (DREV) for conducting naval CCIS research.
The ASCACT Testbed will be used to investigate the adaptation of commercial-off-the-
shelf (COTS) technology to naval CCIS applications such as Multi-Source Data Fusion
(MSDF), Situation Threat Assessment (STA), and Resource Management (RM).

The MSDF application of the ASCACT Testbed will focus on fusing simulated
data reports from six sensors of the Canadian Patrol Frigate (CPF) in order to derive the
best estimates of the kinematic properties for each perceived entity in the environment,
and to infer the identity and key attributes of these entities. DREV and Lockheed Martin
Canada Inc. have been working for over a decade to develop technologies to enable
Canada’s warships to dynamically and automatically obtain an image of a tactical
situation. The scope of this research is within the time frame of the HALIFAX class mid-
life refit and the spin-offs will also be of direct benefit to the IROQUOIS class and its
potential replacement. The choice of a method for filtering and prediction is usually the
first task facing the designer of the target tracking function of a MSDF system, and many
approaches exist. However, approaches based on Kalman filters are the most popular
when dealing with the problems presented by missing data, variable measurement noise

statistics, and maneuvering targets with variable dynamic capabilities.

Reference [1] presents a practical, quantitative demonstration of Kalman filtering
techniques for kinematics data fusion in MSDF systems. The report describes the
standard linear Kalman filter, but also a number of non-linear filtering techniques. Since
tracking a maneuvering target is a complex but very important issue, the main techniques

for handling target maneuvers are discussed. The various target kinematics models most
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frequently used for Kalman filtering purposes are also discussed in detail but no
evaluation has been conducted to specifically recommend an approach to be tested in the

ASCACT real-time testbed. This is the aim of the current report.

Tracking maneuvering targets has attracted a great deal of effort over the past
several years, leading to algorithms of an increasing complexity. Recent studies [2-3]
clearly establishes the superiority of the tracking performance of the Interacting Multiple
Model (IMM) algorithm developed by Blom et al. [4-5] compared with the single motion
model track filters such as the input estimation [6] and variable dimension filters [7].
Both rely on certain maneuver detection criteria to update the parameters or to modify the
structure of the track filters. Most of these detection criteria are based on threshold rules
that need to be satisfied a certain number of consecutive times prior for the filter’s being
switched to a maneuver mode. The consequence is an unavoidable delay in the maneuver
response of the track filter, which may lead to dramatic consequences such as target loss.
This problem is solved by the track filters algorithms using a mix of the state estimates of
each model (IMM algorithmé). Each model represents one of the many different motion
regimes of the target during its movement. Other types of multiple model track filters do
not combine each model state estimate but rather select one of them as output according
to decision rules analogous to those used for the single model track filters. While these
track filters perform better than the single model track filter, their maneuver responses are
also delayed since the model switching algorithm is based on decision rules applied in the
(recent) history of the target. Despite the complexity of such algorithms, their
computational loads are smaller than those for the IMM algorithm. Even if their
performances are somewhat lower, they may perform adequately for applications

involving moderate maneuvers.

This report presents the results of a study evaluating the effect of mixing the state
estimates on the tracking performance of a multiple model track filter. For this purpose,
the same motion models are used to build : 1) a multiple model track filter using decision

rules to select which model will provide the output estimate ; 2) an IMM track filter
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where state estimate of each model are mixed. In both cases, the motion models used
correspond to a constant velocity motion with different process noise covariances. The
tracking performance of these filters is compared with that of the known track filters.
First, a comparison with an adaptive single motion model track filter confirms the
improvement obtained by using multiple models either interacting (IMM) or not
(selection of the output state of one model according to specific decision rules). Then, the
performance of our two filters is compared with that of: 1) an IMM track filter using a
constant-velocity (CV) and a constant-acceleration (CA) models to form a CVCA track
filter; 2) an IMM track filter using a constant-velocity (CV) and two constant-
acceleration models (CA1 and CA2) to form a CV2CA track filter. The tracking accuracy
of these filters is evaluated by computing the average Root Mean Square Error (RMSE)

on position and velocity resulting from a Monte-Carlo experiment of 100 independent

runs.

The report is organized as follows. Chapter 2 presents some background material.
Then, the algorithms that are to be compared are successively presented: 1) the adaptive
single motion model track filter (Chapter 3); the multiple model using decisions rules
(Chapter 4) ; the formalism of the IMM algorithm (Chapter 5). The motion models used
to build the CVCA and CV2CA track filters are presented in Chapter 6. Simulation

results are presented in Chapter 7.

The results contained in this report have been presented unrefereed at the SPIE
conference [8] without any recommendation for the ASCACT project. The work was
carried out under Lockheed Martin Canada Internal R&D funding and at DREV under
Work Unit 1bal4 (Support to the ASCACT Integration Working Group) between January
1998 and February 1999.
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2.0 THE KALMAN FILTER EQUATIONS
The discrete time model for a dynamic system can be written as:
X, =F_ X 4+G W, (1)
z,=H, x +v, 2

where w,, is a pxl process noise vector supposed white and Gaussian
(W,.,=N(0,Q,_,),v, is a nx]l measurement error vector also supposed white and
Gaussian (v,_,=N(0,R,), and z, is a nx] measurement vector. Noting X, 4 and Py,

the estimate of the state and covariance of the system prior to assimilating the

measurement at time t, and described by the prediction equations are written as:
Xyt =Fiet Xieoqpen (3)
T T
Pk =Fea Peopet B+ Gt Quogpe 1 Gy “4)

The updated (a posteriori) state and covariance estimates using the measurement

z, to improve the prior estimate X  is written as :
Xy =Xyt T (@ —H Xy 1) )]
Pk|k =(I-K, H, )Pk|k—1 (6)
with K, is the Kalman gain defined as :

Kk=Pk|k—1HI (H, Pk]k—1HI +R,)™ N
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3.0 ADAPTIVE SINGLE MOTION MODEL TRACK FILTER

The Adaptive Single Motion Model track filter (noted from now on ASMMKEF) is

based on a constant velocity motion model. The discrete-time model is given by :

(x| 1 Ar 0 0O
X | 01 0 O @
X, = =
Ty, 10 0 1 Ar
v, | 0 0 0 1
[At* 74 A*/2 0 0
A272 A 0 0
G QG =c2, 9
QG 0 0  At*/4 Af?/2 ©)
|0 0  AP/2 A

Equation 9 shows that the process noise covariance ¢ has the dimension of an
acceleration (m-s7*). This acceleration is estimated recursively by a linear regression on

the last five estimates of the target velocity. This simple algorithm uses the estimated

acceleration to increase the process noise and has the advantage of being decision free

[9].
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4.0 MULTIPLE MODEL TRACK FILTER USING DECISION RULES

A multiple model track filter is designed to track maneuvering targets by applying
decision rules on the statistical distance provided by three Kalman filters running in
parallel (3CVPAR). Each of these filters uses a constant-velocity model for the system
dynamic, which can still be described by Eq. 9. However, each model is characterized by
a different level of process noise by the definition of three different values for o. For a
low value of o, the Kalman filter will be more confident in the state estimate than on the
measurement and will filter out the measurement noise as well as making the motion
model unable to respond adequately to a target maneuver. On the other hand, for a high
value of o, the Kalman filter will be more confident in the measurement than on the state
estimate, which will put the motion model in a better position to respond adequately to a
target maneuver but producing a jerky track ( RMSE in position higher than for a low
value of o). The three values of o taken in our experiments were chosen to enter a

maneuver magnitude of respectively 0.03, 0.3 and 3 g in the process noise covariance.

Figure 1 shows a block diagram of the 3CVPAR algorithm. For each filter (i),

3 . . 2 »
the weighted norm of the innovations ‘d;(l is computed as :

s 12 i i - i
idL‘ =(zk—Hkxklk—1)T(HkPlklk—1H:+Rk) 1(zk'Hkxlklk—1)

r e (10)
ldb "=V TSI Vi)

The innovations are supposed white, Gaussian processes v, =N(0,S} ). Following

this assumption, the weighted norm of innovations is chi-square distributed with M

degrees of freedom, where M is the measurement dimension (number of independent
measures). In our application M will be equal to 2. The value taken by |dL|2 is compared

with a threshold given by the chi-square distribution. For instance, taking the target

maneuver threshold (TMTh) equal to 9 will mean that 1% of the measurements can
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exceed this threshold only by random fluctuations (i.e. no maneuver involved). However,
if this threshold is exceeded for a certain amount of consecutive time, it is reasonable to

think that a maneuver is likely ongoing.

vitk+1)
%1 (k) ——»! c #1 S'k+1 :
> (Low o) Dk+le+l)
P’ (k|k) ———> Pk +1llk+1)
' Maneuver
vik+y Detection
x2(kfk)———» S*(k+1) "
e+l | CMKF #2 — > Filter X(k+1lk+1)
R (k¥ | (Medium o) X(k+Uk+Y) | Re-Initialization | Pr+1k+y
P? (ke j———> Prk+llk+l)
Output
f Selection
vik+1) -~
X3 (k) —— c “ S'(k+1) -
> (High o) k+1lk+1)
P3(k|k) ~m—— Ple+lle+1)

Re-Initialization
Requests

FIGURE 1 — The multiple model filter using decision rules (3CVPAR)
Source: Ref.{1]

Figure 1 shows that, for each model the weighted norm of innovations ldLl is

computed and compared with the predetermined TMTh, and the number of times IdLIZ

exceeds this value is stored in counters F'. The values in these counters is then compared
with some predetermined thresholds NF' which will determine the state estimate taken as
output for the 3CVPAR track filter but also for each mode if a reconfiguration is

necessary.
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Table I summarizes the set of decision rules that are used. Columns 3-5 show that,
depending on the magnitude of the maneuver, the state estimate of certain modes no
longer represents the true state of the target. In such cases, the output state estimate of the
3CVPAR filter replaces the state estimate(s) of the deficient mode(s). For instance, the
third line shows that a moderate maneuver is ongoing. The state estimate of mode 2 is
taken as the 3CVPAR output and replaces the state estimate of mode 1, which no longer
represents the dynamic of the target.

TABLE I

Decisions rules if |dLl2 >TMTh

[d J>>TMTh Maneuver Output State Estimate of
and Magnitude
mode 1 mode 2 mode 3 3CVPAR

F' <NF' No maneuver 1 2 3 1
F'>NF! moderate 2 2 3 2
F'<NF?

F'>NF! wild 3 3 3 3
F2>NF?

F3<NF3

F'>NF! evasive re-initialize | re-initialize | re-initialize none
F2>NF?

F3>NF3
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5.0 THE IMM ALGORITHM

The IMM algorithm assumes that the dynamic system can be exactly described at
a given time of its evolution by one out of M possible models with jumps between these
models following a Markov chain with known transition probabilities. The IMM

algorithm works according to the following steps:

e A different mix of the state estimates is used for each filter. This respective
weighting of each state estimate in the mix depends on both the probability of

each model and the model switching probability.

e Then, each filter computes its own a posteriori state estimate and its associated
model likelihood. The a posteriori model probability is then computed using
the model likelihood function, the a priori model probabilities and the model

switching probabilities.

e The output state estimate of the IMM track filter is computed by weighting the
a posteriori state estimate of each filter by the corresponding a posteriori
model probability. The output state estimate of the IMM filter is no longer

used for the estimation.

Figure 2 shows a block diagram of the IMM algorithm for a dynamic system

supposed to follow two discrete-time models. Let x! be the state estimate at time k based
on the model j at time k and model i at time k-1. Let A, be the (Mx1) vector of model
likelihood at time k, and p, the (Mx1) vector of model probabilities once all the
likelihood functions have been taken into account. Let pﬂi_“k be the probability associated

with the model j at time k and model i at time k-1.




% (k—1|k-1)
P'(k—1]k-1)

l
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l

$2(k—1]k~1)

P*(k-1|k-1)

Interaction / Mixing

/Im(k-llk—l) /‘uz(k—l'k—l)
Hy(k—1]k-1) Hyp (k=1 k=1)

' (k—-1k-1) 22 (k-11k-1)
P (k-1|k-1) Mixing Probabilities P®(k~1|k~1)
Combination
7 § 7 ¥
h 4 A 4
Subfilter | z(k) ,|  Subfilter
Model M, R(k) Model M,
=1y py(k~1)

A, (k) A, (R) |
(k| k) ) i | %% (k| k)
P! (k|k) v P*(k| k)
Mode Probability Update
# (k) 14, (k)
I State Estimate and I |

Covariance Combination

l

X(k | k)
P(k|k)

FIGURE 2 —IMM algorithm using two models (Source: Ref.[1])
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The above three steps can be expressed mathematically as :

e Prior State Estimates

m
olj i ij
Xk’—j1]k—1 =z Xy qk-1-H i|<J—1|k—1 (1D
i=1

where the prior model probability are given by

“li!j-‘uk-1 =@'l"‘:|<j—1|k—1 (12)
C)
C j=g | JRTH-E (13)
with the mixed covariance given by
Pl?lj1|k-—1 =i H :l(j—1|k—1 [P:(—1§k-1 +(xik-1|k—1 -xg91|k-1 )(XL—1||<-1 _x2!1|k—1 Y ] (14)

i=1
e Model Likelihood

Each model i provides its a posteriori state estimate xL,H given the measurement

z, . The likelihood function of the model i is given by :

1 1 1 i - i
A= : exp[i'(zk—Hkxkgk-*l)T H.P k}k—lHI +R )z, -H k Xigk-1)]
IZRSLI

1
|2ns;|

(15)

exp[=vITSE'V,
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The a posteriori model probabilities are given by :

By =%AL (16)
C =z ALC, )
e  QOutput State Estimate
X =,Z:: M X (18)
Puge= sk [Pl + (K X1 )=, | (19)

i=1
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6.0 MOTION MODELS

A three model IMM version of the above 3CVPAR is designed. As described in
Chapter 4, the motion models are constant velocity (CV) and differ in the value of ¢ used
in the calculation of the covariance of the process noise (resp. 0.03 g, 0.3 g, 3 g). This
filter is called, from now-on, the IMM-3CV track filter. The tracking performances of the
3CVPAR and IMM-3CYV filters are compared with those of two IMM algorithms: 1) an
IMM algorithm using one CV model and one CA model to form a CVCA track filter; 2)
an IMM algorithm using one CV model and two CA models (CA1 and CA2) to form a
CV2CA track filter. The CV model used in these two IMM algorithms is described in
Chapter 3 (with ¢ =0.03 g).

The discrete-time model for the constant acceleration (CA) is given by :

I ¢t 2 0 0 0
0 I t 0 0 0 20)
0 0 I 0 0 0
F, =
0 0 0 1 t 2
0 0 0 0 1 ¢
0o 0 0 0 0 1|
(21)
(At*/4 AP12 A212 0 0 0 |
AP12 A At 0 0 0
At2/2 At 1 0 0 0
G, QG =02
QG 0 0 0 At‘/4 A2 A?/2
0 0 0 At?/2  Af? At
. 0 0 0  A?P/2 M 1]
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In this study, the values of the constant ¢ used in the calculation of the covariance
of the process noise of the two constant acceleration filter are 6=0.3 g (CAl) and c=3 g

(CA2).
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7.0 RESULTS

The tracking performance of the 3CVPAR track filter is compared with that of its
IMM version, as well as to that of the ASMMKF, CVCA and CV2CA track filters.

7.1 Scenario

The scenario consists of a series of maneuvers executed by an air target. Two
surveillance radars are used: a short-range radar R1 tracking the target (at a rate of 30
rpm) up to a range of 45 miles, and a medium-range radar R2 tracking the target at a rate

of 12 rpm during the entire scenario.
The target executes the following maneuvers:

e segment 2: right turn-of ~ 0.2 g at (x,y)=(26,30),

e segment 2: right turn-of ~ 0.2 g at (x,y)=(23,35),

e segment 4: 3 consecutive left turns of ~ 1 g at (x,y)=(65,37) , (66,40), (64,40);
s segment 5: a speed change from 300 to 750 knots at (x,y)=(63,25),

e segment 5 : aright turm of 5 g at (x,y)=(63,0).

Segments (1, 3, 6) do not contain maneuvers. Figure 3 represents the ground-truth
generated by the scenario simulator (the curvilinear dashed line materializing at the range
limit of R1). A measurement noise is added to the ground-truth using realistic values for
the nominal uncertainties of each sensor. A Monte Carlo experiment of 100 runs has been

performed and all the following results are averaged quantities over those 100 runs.
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FIGURE 3 - Scenario of a maneuvering air target

7.2 Tuning of Parameters

Some of the filters needed prior parameter tuning before any evaluation of their
performance could be made. For each of these filters a preliminary Monte-Carlo
experiment of 100 runs was conducted to select the parameters that provided an average

RMSE in position lower than the RMSE on measurements.
o The pre-defined parameters for the 3CVPAR filter are:

o=[0.03g, 0.3g,3g]; NF' =[3,3,3]; TMTh=9.21




Since two measurement rates were considered (12 and 30 rpm), a Markov transition
matrix I1 for an arbitrary time of update needed to be defined [10]. It is made possible

by defining the constant probability flow matrix A, which relates to IT and to the time

UNCLASSIFIED

of update by the relation:

17

I1,, = e zI+AAt+52—?-At2+---

Q

The pre-defined parameters for the IMM filters are summarized in Table II as:

TABLE II:
IMM filter parameters

2)

3CV-IMM CvCA CV2CA
Model probabilities po=[09 01 00] po=[09 01] no=[09 01 0.0]
Probability flow matrix 099 001 O _[099 0.1 098 002 O
A II=| 6.2 0.7 01 1005 095 1=} 0.01 098 0.01
0.02 00 098 002 00 098
o [0.03 0.3 3.0]g [0.03 0.3]g [0.03 0.3 3.0]g

7.3 Main results

Figures 4-11 show the comparison of the variation of the covariance state estimate

(left column: [x], right column: [y]) over time for each studied filter. The abrupt drop at

the beginning of the scenario (around t=56.9 Ks) is due to the fusion of the radar R1,

which has higher accuracy than R2. At around t=57.32 Ks, the target flies out of the range

of R1, measurements become less accurate and the values of the state covariance reflect

it. Then, at t=58.07 Ks, the target re-enters the range of R1, the measurements are more

accurate and the value of the state covariance decreases.




UNCLASSIFIED
18

The time-shift of the peaks clearly shown on Figs. 4-11 demonstrates that the
ASMMKEF has the slowest response to the maneuvers. Then comes the 3CVPAR
algorithm, which is slower than the three IMM aigorithms which perform, equally in that
respect. These figures confirm that the mix of the state estimates characterizing the IMM

algorithm allows the filter to quickly react to maneuvers.
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FIGURE 11 - Average covariance (y) - CV2CA, 3CVPAR

Figures 12-19 show the comparison of the average RMSE on position (left
column: [x], right column: [y]) over time for each studied filter. Since the ASMMKF
reacts too late to the various maneuvers, it has the poorest performance. Among the IMM
algorithms, the CVCA produces the best results, followed by the CV2CA and then the
IMM-3CV. The 3CVPAR has a performance that puts it between the CV2CA and the
IMM-3CV.

Figures 20-27 show the comparison of the average RMSE on velocities (left
column: [x], right column: [y]) over time for each studied filter. As expected, the IMM
algorithms produce the best results and are very comparable. The 3CVPAR comes close
behind, the ASMMKEF reacts poorly to wild maneuvers (t=57.7 Ks) due to its too long

time of response.
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Figure 28 shows, for the 3CVPAR algorithm, the index of the model selected for
output after applying the decision rules of the maneuver detector. Figures 29-31 show the
probabilities of the models for the different IMM algorithms. Some similarities exist
between the switching pattern used by the 3CVPAR and the one used by the CVCA. It
demonstrates that the peaks of the RMSE on velocity correspond to the various
reconfiguration stages of the 3CVPAR filter. Those peaks also correspond to a higher
weight put on the CA model for the CVCA filter. The 3CV-IMM and 3CVPAR switch in
a similar manner to the high ¢ model (3 g). When the CVCA filter uses the CV model,
the CV2CA uses the CA1 model.
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FIGURE 28 - Index of model selected for output (3CVPAR)
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7.4 When 3CVPAR Outperforms The Other Algorithms?

A statistical test [11] is performed to evaluate when the performances of the

3CVPAR are lower, equal or even better those of other filters (especially, the IMM

algorithms). The ratio Al is computed for each of the 6 segments (defined by the
A

boundaries [k,1] for simplicity) of the scenario. Denoting A is the average (on the 100

Monte Carlo runs) of the differences:

Af:'t;er = 1 i [ (xﬁlter _Xground —truth )2 _ (XSCVPAR —X graund —truth ) 2]

I—k+1 m|m m|m m|m m|m (23)

m-k

and o_ is the associated standard deviation.
A
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The working hypothesis is that the tracking quality of the 3CVPAR algorithm is
better than with the other filters:

Hl :ATter =€Elter _S:CVF'AR >0 (2 4)

It is shown that H, is accepted if the significance of H, A}® <0 is less than 5% which

implies AI'" /o e > 1.65.

Table III summarizes the results obtained by computing the ratio Alo_ for the
A

RMSE on position and velocities (separated by a / ) averaged on the 100 runs of our
Monte-Carlo experiment. Each column corresponds to the section of the scenario

identified on the Figure 3.

TABLE IIT:
Comparison of 3CVPAR to The Other Filters (100 runs)

Filter 1 2 3 4 5 6
ASMMKF 2.84/3.24 -12.8/-12.1 1.78/1.73 26.4/29.7 -3.21/-1.36 3.85/4.11
IMM-3CV 2.67/3.30 -12.5/-12.6 0.15/0.65 7.25/8.76 -2.85/70.87 -0.75/-0.83

CVCA 4.72/5.81 -17.4/-15.9 1.81/2.30 -13.3/-9.38 | -10.61/-11.54 | 4.56/1.45
CV2CA 10.4/10.40 | -17.46/-15.24 11.9/9.6 -13.2/-9.48 -8.64/-7.44 -1.07 /0.60

As described in Section 7.1, segments 1, 3, and 6 correspond to quiescent portions
of the target trajectory. The test shows that, during those periods, our working hypothesis
is satisfied, which means that the tracking accuracy of the 3CVPAR algorithm is higher
than that of the other filters.
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Segment 2 contains two moderate maneuvers (0.2 g) spaced in time. The test
shows that, for this type of maneuver, the other filters outperfom the 3CVPAR algorithm.
The difference in magnitude of the two first peaks on Figs. 12-19 explain this effect.
However, this is not critical at this point, the performance of the 3CVPAR for such

maneuvers stays acceptable.

Segment 4 contains two moderate maneuvers (1 g) close in time. It is interesting
to see that, this time, the ASMMKEF and the 3CV-IMM have real difficulties to track
adequately the target. The 3CVPAR algorithm performs better than those filters while
being largely under the level of performance attained by the CVCA and CV2CA
algorithms for this type of maneuver.

Segment 5 contains a linear acceleration and a wild maneuver (5 g). The reading
of the results is, in that case, quite different from that of segment 2 for which all the filters
were performing more or less adequately. This time the performances of the ASMMKEF,
3CV-IMM and 3CVPAR algorithms are not good enough to guarantee that they will not

loose the target.
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8.0 CONCLUSION

A parallel filter using three constant-velocity models is presented. This filter is
called “3CVPAR”. Its tracking accuracy has been compared with simpler algorithms
(Adaptive Single Motion Model Kalman Filter), with its IMM version as well as with
more classical IMM algorithms such as the CVCA and CV2CA track filters. The
respective tracking accuracy of each algorithm has been evaluated by performing a
Monte-Carlo study of 100 runs on a challenging multiple-sensor scenario including
various types of maneuvers. This study shows that the 3CVPAR filter will perform
reasonably wellfor applications involving moderate maneuvers. Its simplicity and iés low
computational load compared with the classical IMM algorithms can make it the filter of
choice. This is recommended for the baseline MSDF application of the ASCACT testbed.
When maneuvers of higher magnitude are expected (evasive), IMM algorithms that
include a maneuver modeling are preferable. This is recommended for future advanced
MSDF application of ASCACT.
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CV model and a constant acceleration (CA) model producing a CVCA filter ; 4} an IMM filter using a CV and two CA models
(CA1, CA2) differing only by the level of process noise producing a CV2CA filter. Calculations of the average Root Mean Square
Eror (RMSE) on 100 Monte Carlo runs permit to evaluate the tracking accuracy of the 3CVPAR track filter compared with
simpler (ASMMKF} or more complex (IMMs) algorithms on a challenging multiple-sensor scenario.
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