The Navy Coupled Ocean Data Assimilation (NCODA) system in HYCOM

O. M. Smedstad1, J. A. Cummings2, A. J. Wallcraft2, H. E. Hurlburt2, P. J. Hogan2, E. P. Chassignet3, W. C. Thacker4, H. Kang5

1Planning Systems Inc.
2Naval Research Laboratory
3Florida State University
4Atlantic Oceanographic and Meteorological Laboratory
5University of Miami

http://www.hycom.org

HYCOM NOPP/GODAE
Tallahassee, Florida
7-9 November 2006
The Navy Coupled Ocean Data Assimilation (NCODA) system in HYCOM
Atlantic near real-time system

- 1/12° Atlantic (28°S to 70°N)
- Running in near real-time (on Wednesday)
 - Assimilates the satellite altimeter analysis from the MODAS operational system at the Naval Oceanographic Office (NAVOCEANO)
 - Mean SSH from the 1/12° MICOM (ECMWF)
 - Vertical projection via the Cooper and Haines technique (1996, JGR)
 - FNMOC/NOGAPS atmospheric forcing
 - Relaxation to the MODAS SST analysis
- 10 day hindcast, 14 day forecast
- Provide boundary conditions for coastal models

http://www7320.nrlssc.navy.mil/ATLhycom1-12/skill.html
http://www.hycom.org
White/black line is the frontal analysis of MCSST observations performed at NAVOCEANO. Black line represents data more than four days old.

http://www.hycom.org
Sequential Incremental Update Cycle
Analysis-Forecast-Analysis

MVOI - simultaneous analysis 5 ocean variables
temperature, salinity, geopotential, velocity (u,v)

Navy Coupled Ocean Data Assimilation (NCODA)

Ocean Obs
SST: GAC/LAC
MCSST, GOES,
Ship, Buoy
Profile: XBT,
CTD, PALACE
Float, Fixed Buoy,
Drifting Buoy
Altimeter SSHA
SSM/I Sea Ice

Ocean QC

3D MVOI
Innovations

HYCOM Model

Forecast Fields
Prediction Errors

First Guess

Increments
HYCOM/NCODA coupling

- HYCOM to 3D z-grid
- NCODA analysis on z-grid
- Use the NCODA analysis in an incremental updating of the HYCOM variables.
- Daily NCODA analysis
1/12° GULF OF MEXICO HYCOM CONFIGURATION

- Horizontal grid: 1/12° (258 x 175 grid points, 6.5 km spacing on average)
- 18°N to 31°N
- 20 vertical coordinates
- Bathymetry: 5m coastline
- Surface forcing from FNMOC/NOGAPS
- Monthly river runoff
- Nested Boundary:
 relaxation to the 1/12° Atlantic HYCOM T, S, U and V along open boundary, (no assimilation in these experiments)
HYCOM identical twin SSH and SST data

Ocean model sampled along observed tracks

Model sampled at observed MCSST locations

TOPEX - white ERS2 - black
HYCOM identical twin results
“Observed” track and MCSST locations

SSH increments

29 August 1999
Day 1

18 October 1999
Day 50

SST

SSH

29 August 1999
Day 1

18 October 1999
Day 50
HYCOM identical twin results

“Observed” track and MCSST locations

Truth 29 August 1999 Analysis, day 1

Truth 18 October 1999 Analysis, day 50
HYCOM identical twin results
Temperature and salinity sections along 25.08ºN
“Observed” track and MCSST locations

Truth

Analysis, day 1
29 August 1999

Truth

Analysis, day 50
18 October, 1999
HYCOM identical twin results
RMSE vertical profiles (0-500m)
“Observed” track and MCSST locations

29 August 1999 18 October 1999

RMSE error (50.4)
Mean error (50.4)
1/25° GULF OF MEXICO HYCOM CONFIGURATION

- Horizontal grid: 1/25° (517 x 349 grid points, 3.5 km spacing on average)
- 18°N to 31°N
- 20 vertical coordinates
- Bathymetry: real coastline (minimum depth 2m)
- Surface forcing from FNMOC/NOGAPS
- Monthly river runoff
- Nested Boundary:
 relaxation to the 1/12° Atlantic HYCOM climatological T, S, U and V along open boundary
HYCOM nowcast SSH with the NAVO frontal analysis of MCSST observations (white/black lines, black data > 4 days old)
1/12° Global HYCOM Configuration

- Horizontal grid: 1/12° equatorial resolution
 - 4500 x 3298 grid points, ~6.5 km spacing on average, ~3.5 km at pole

- Mercator 79°S to 47°N, then Arctic dipole patch

- Vertical coordinate surfaces: 32 for σ_2^*

- GISS mixed layer model

- Thermodynamic (energy loan) sea-ice model

- Surface forcing: wind stress, wind speed, thermal forcing, precipitation, relaxation to climatological SSS

- Monthly river runoff (986 rivers)

- Initialize from January climatology (GDEM3) T and S, then SSS relaxation from PHC 3.0
 - No subsurface relaxation to climatology
1/12° Global HYCOM Mean SSH (05.6)

Original

Rubber sheeted

Nicolas Choplain
1/12° Global HYCOM
Hindcast started 12 November 2003

SSH 17 November 2003

HYCOM nowcast SSH with the NAVO frontal analysis of MCSST observations (white/black lines, black data > 4 days old)
1/12° Global HYCOM Mean SSH (05.6)

Original

Rubber sheeted

Nicolas Choplain
Comparison of mean SSH to mean dynamic topography from XBTs.

Track 63

Track 109
1/12º Global HYCOM
Hindcast started 12 November 2003

SSH date: Feb 25, 2004
1/12° Global HYCOM

Hindcast started 12 November 2003

SSH 12 November 2003

sea surface height 30 November 2003 (60.4)
1/12° Global HYCOM

NCODA observations 17 November 2003

SSH

SSH Observations 17 Nov 03 00Z 9 km grid

Satellite SST 17 Nov 03 00Z 9 km grid

In situ SST

In Situ SST 17 Nov 03 00Z 9 km grid

Profile Observations 17 Nov 03 00Z 9 km grid

Profiles
1/12º Global HYCOM
Hindcast started 12 November 2003
Mean SSH January 2004

No assimilation
Assimilation

HYCOM mean SSH with the mean pathway of the Gulf Stream ±1 stdv
HYCOM mean SSH with the mean pathway of the Kuroshio ± 1 stdv
1/12° Global HYCOM
Hindcast started 12 November 2003
January 2004

140°W 2°N

38°W 4°N

95°W 0°N

0°E 0°N
Future

- Update rubber sheeted mean SSH (in the Gulf Stream region)
- Continue present run (to real time)
- Include rest of domain in assimilation
- Test assimilation of ice concentration in the Bering Sea
1/12° Global/Atlantic HYCOM

February 2004

1/12° Global HYCOM

38°W 4°N

Temperature at: 38W04N 21-Jan-2004

Depth (m)

PIRATA

HYCOM analysis (60.4)

0 5 10 15 20 25 30

Temperature (°C)

1/12° Atlantic HYCOM

0°E 0°N

Temperature at: 000e00n 21-Jan-2004

Depth (m)

PIRATA

HYCOM nowcast (9.1)

0 5 10 15 20 25 30

Temperature (°C)