An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks: The rf-Discharge as a Complex Permeability Medium

August 15, 2013

James C. Camparo,¹ Fei Wang,² Yat Chan,² and Warren E. Lybarger¹
¹Electronics and Photonics Laboratory
Physical Sciences Laboratories
²Communication Systems Implementation Subdivision
Communications and Networking Division

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-09-C-0001

Authorized by: Space Systems Group

Approved for public release; distribution is unlimited.
An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks: The rf-Discharge as a Complex Permeability Medium

August 15, 2013

James C. Camparo,¹ Fei Wang,² Yat Chan,² and Warren E. Lybarger¹
¹Electronics and Photonics Laboratory
 Physical Sciences Laboratories
²Communication Systems Implementation Subdivision
 Communications and Networking Division

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-09-C-0001

Authorized by: Space Systems Group

Approved for public release; distribution is unlimited.
An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks: The rf-Discharge as a Complex Permeability Medium

Approved by:

William T. Lotshaw, Director
Photonics Technology Department
Electronics and Photonics Laboratory

Walter F. Bugge, Principal Director
Electronics and Photonics Laboratory
Physical Sciences Laboratories

Diana M. Johnson, Principal Director
Communication Systems
Implementation Subdivision
Communications and Networking Division

Eileen Z. Wang, Systems Director
GPS III Nav Payload
Navigation Division
Space Systems Group

© The Aerospace Corporation, 2013.
All trademarks, service marks, and trade names are the property of their respective owners.
Contents

Abstract .. 1

I. Introduction .. 1

II. The Inductor in a Real Discharge Lamp ... 2

III. The Colpitts Oscillator .. 3

IV. Physical Model for β .. 4

V. Summary ... 5

References .. 5

Equipment Calibration Information ... 7

Figures

1. A feedback model for the Colpitts or Hartley oscillator used to drive rf-discharge lamps in vapor-cell atomic clocks ... 1

2. Figure 1 redrawn. Here, V_i is the input voltage to the amplifier .. 1

3. In a real rf-discharge lamp, the impedance Z_i that corresponds to the loops of wire surrounding the lamp’s glass bulb should be replaced with the RLC circuit shown here. 2

4. Real (blue) and imaginary (red) parts of the complex impedance for the RLC model of the inductor loops that surround the lamp’s glass bulb (assuming no discharge) 2

5. In the rf-discharge lamp of an atomic clock, the inductor coils of the Colpitts or Hartley oscillator surround a glass bulb that contains Rb and a noble gas (e.g., Xe or Kr) 3

6. Real (blue) and imaginary (red) parts of the complex impedance for the RLC model of Fig. 3 with $\alpha = 1.2$ and $\beta/\alpha = 0.01$... 3

7. Real (blue) and imaginary (red) parts of the complex impedance for the RLC model of Fig. 3 with $\alpha = 1.2$ and $\beta/\alpha = 0.03$... 3

8. The parallel resonant frequency (red), ω_p, and series resonant frequency (blue), ω_s, of the Colpitts oscillator .. 4
9. The difference between the parallel resonant frequency (red) and the series resonant frequency (blue) from their values in the case of $C_{CP} \to \infty$. .. 4

10. $\Delta \beta/\Delta \beta_{\text{max}}$ (yellow squares) and $\Delta \beta_{\text{Xe}}/\Delta \beta_{\text{Xe,max}}$ (orange circles) as a function of lamp temperature for our lamp operating at nominal rf-power.. 5
An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks: The rf-Discharge as a Complex Permeability Medium

J. Camparo,1 F. Wang,2 Y. Chan,2 and W. Lybarger1

1Physical Sciences Laboratories
and
2Communications Networking Division
The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA

Abstract

In the rf-discharge lamp of an atomic clock, the inductor of a Colpitts or Hartley oscillator surrounds a glass bulb containing a vapor of Rb and a noble gas (typically Xe or Kr). Rf-energy is extracted from the field leading to ionization of the Rb, and in recombination with electrons these Rb ions produce the resonant light necessary for atomic signal generation. From an electrical perspective, the discharge can be viewed as a permeable medium located inside an inductor's coils. This permeable medium, however, must have both a real and an imaginary part: not only does the discharge alter the phase of the circuit's rf-field, it also extracts energy from the resonant circuit. Here, we consider the manner in which this complex permeability enters the electrical description of the oscillator, and its likely dependence on discharge parameters.

I. Introduction

We consider the very general oscillator feedback circuit illustrated in Fig. 1, where an external AC voltage V'_i is added to a feedback signal, V_f, to produce the input voltage V_i for an amplifier. Of course, the key element in the figure is the network of complex impedances in the feedback loop, which typically take one of two configurations [1]: a Colpitts oscillator configuration, where Z_2 and Z_3 are capacitors with Z_1 the loop-inductor surrounding a lamp's glass bulb; or a Hartley oscillator, where Z_1 is a capacitor, and Z_2 and Z_3 are inductors (one of which corresponds to the wire loops surrounding a lamps' glass bulb [2,3]).

Figure 1: A feedback model for the Colpitts or Hartley oscillator used to drive rf-discharge lamps in vapor-cell atomic clocks. For the Colpitts oscillator, Z_2 and Z_3 are capacitors with Z_1 an inductor. For the Hartley oscillator, Z_2 and Z_3 are inductors with Z_1 a capacitor. In either case, an inductor is assumed to surround the glass bulb of the rf-discharge lamp, thereby providing energy to ionize the Rb atoms and generate resonant light.

Figure 2: Figure 1 redrawn. Here, V_f is the input voltage to the amplifier.
\[V_o = \frac{V_iZ_iZ_2}{R_o(Z_1 + Z_2 + Z_3) + Z_i(Z_2 + Z_3)} = \frac{V_i}{\kappa}. \]

Then, returning to Fig. 1, we see that

\[V_0 = gV_i = g(V_i + V_f), \]

and from Eq. (1) this yields

\[V_o = \frac{gV_i'}{1 - gK}. \]

The only way \(V_0 \) can be non-zero without an input signal \(V' \), i.e., the only way the circuit can self-oscillate is if \(gK = 1 \). Since \(g \) is real, self-oscillation implies that \(\kappa \) must also be real. In other words, the feedback signal must return to the amplifier input in phase (i.e., \(V_f = |V_f|e^{i\theta} \), \(\theta \) must equal \(2\pi n \) where \(n \) is an integer). Thus, for self-oscillation we require that

\[\text{Re}[K] = 1 \quad \text{and} \quad \text{Im}[K] = 0. \]

If, to first order, we assume that the \(Z_i \) are pure inductors and capacitors, then from Eq. (1) it is clear that

\[\text{Im}[\kappa] = Z_1 + Z_2 + Z_3 = 0. \]

\[\text{Re}[\kappa] = \frac{Z_2 + Z_1}{Z_2} = -\frac{Z_2}{Z_1} = g. \]

Thus, in order for \(g \) to be positive, we see from Eq. (4b) that oscillation limits the choices for the \(Z_i \): if \(Z_i \) is an inductor then \(Z_2 \) must be a capacitor; alternatively, if \(Z_i \) is a capacitor than \(Z_2 \) must be an inductor.

II. The Inductor in a Real Discharge Lamp

![Figure 3](image-url)

Figure 3: In a real rf-discharge lamp, the impedance \(Z_i \) that corresponds to the loops of wire surrounding the lamp's glass bulb should be replaced with the RLC circuit shown here. For the Colpitts lamp oscillator that we used in our experiments (i.e., \(L = 650 \text{ nH} \)), one of us (FW) measured \(C_s = 3.7 \text{ pF} \), \(R_s = 8 \Omega \), and \(C_p = 9 \text{ pF} \).

Recent measurements made by one of us (FW) clearly demonstrate that in a real rf-discharge lamp oscillator there is a subtlety that must be included in the model of Section I. Briefly, whatever element in the feedback network corresponds to the loop inductor surrounding the lamp's glass bulb, we must consider this as a resonant RLC circuit as illustrated in Fig. 3. Briefly, \(C_1 \) and \(R_1 \) are the series capacitance and resistance, respectively, which must exist for real loops of wire; while the parallel capacitor, \(C_p \), represents the capacitance that must exist between the loops of wire and the lamp's metal housing.

Defining \(Z_L \) as the complex impedance of the RLC circuit, it is straightforward to show that in the absence of a discharge (i.e., the inductor loops simply surround air) that

\[\text{Re}[Z_L] = \frac{(f - 1)C_pR_s}{\omega^2C_pC_s^2R_s^2 + f^2C_p\left(\frac{\omega^2}{\omega_L^2} - 1\right)} \]

\[\text{Im}[Z_L] = \frac{\left(\frac{\omega^2}{\omega_L^2} - f^2 - 1\right)\left(1 - \frac{\omega^2}{\omega_L^2}\right) - \omega^2C_p^2R_s^2}{\omega^4C_pC_s^2R_s^4 + f^2C_p\left(\frac{\omega^2}{\omega_L^2} - 1\right)^2}. \]

In these expressions,

\[\omega_L = \sqrt{\frac{C_s + C_p}{LC_sC_p}} \quad \text{and} \quad f = \frac{C_s + C_p}{C_p}. \]

Figure 4 shows plots of \(\text{Re}[Z_L] \) and \(\text{Im}[Z_L] \) as functions of frequency for the parameters that were measured for our experimental setup, and which are given in the caption of Fig. 3.

![Figure 4](image-url)

Figure 4: Real (blue) and imaginary (red) parts of the complex impedance for the RLC model of the inductor loops that surround the lamp's glass bulb (assuming no discharge). We employed the parameters given in the caption of Fig. 3.

As illustrated in Fig. 5, to include the influence of the discharge in Eqs. (5), we let \(L \to \mu L \), where \(\mu \) is a complex scalar permeability: \(\mu = \alpha - i\beta \) [4]. Here, \(\alpha \) describes that part of the plasma discharge that gives...
rise to a phase shift of the rf-field, and which we expect will influence the resonant frequency of the RLC circuit, \(\omega_L \). \(\beta \) describes rf-energy extraction by the discharge, and so we expect it to contribute to \(R_s \).

Without going into all the details here, an analysis of Fig. 3 including a term for the discharge's permeability gives credence to these expectations. Thus, in order to include the discharge in Eqs. (5) and (6) we need only make the replacements
\[
\omega_L \to \frac{\omega_L}{\sqrt{1 + \frac{\beta}{\alpha} \frac{\omega_f}{\omega_L^2} C_p}} \quad \text{(7a)}
\]
and
\[
R_s \to R_s + \left(\frac{\beta}{\alpha} \right) \frac{\omega_f}{\omega_L^2} C_s \quad \text{(7b)}
\]

Figure 6 shows plots of \(\text{Re}[Z_L] \) and \(\text{Im}[Z_L] \) with a discharge present: \(\alpha = 1.2 \) and \(\beta/\alpha = 0.01 \). Figure 7 is similar, but with \(\beta/\alpha = 0.03 \).

As illustrated in Figs. 5, 6, and 7, \(\text{Im}[Z_L] \) crosses zero at two locations near \(\omega_L \). From Eq. (5b), it is straightforward to calculate these zero crossings in the case that \(\omega_C R_s < 1 \), which will typically be the case (even when the discharge is present). We define \(\omega_s \) as the series resonant frequency and \(\omega_p \) as the parallel resonant frequency:
\[
\omega_s, \omega_p = \frac{\omega_L}{\sqrt{2 + \frac{\beta}{\alpha} \frac{\omega_f}{\omega_L^2} C_s}} \quad \text{and} \quad \frac{\beta}{\alpha} \frac{\omega_f}{\omega_L^2} C_s = 1.
\]

Typically, the oscillator will resonate at \(\omega_s \) since it is at this frequency that the real part of the impedance is minimized.

III. The Colpitts Oscillator

As a consequence of the considerations presented in Section II, and referring to Fig. 2, for a Colpitts oscillator we take
\[
Z_2 = R_L - \frac{i}{\omega C_2}, \quad Z_3 = R_C - \frac{i}{\omega C_3}, \quad \text{and} \quad Z_4 = \text{Re}[Z_L] + i \text{Im}[Z_L].
\]

Here, \(R_C \) is the equivalent series resistance that we expect for a real capacitor, but which we will henceforth assume is zero.

To determine the resonant frequency of the Colpitts oscillator we employ Eq. (4a) along with Eqs. (5), (7) and (8). First, however, we note that in Colpitts oscillator circuit used in our experiments we have \(C_2 = 150 \text{ pF} \) and \(C_3 = 30 \text{ pF} \). Thus, if we define a "Colpitts capacitance," \(C_{CP} \), as
then in our case we have \(C_{CP} = 25 \text{ pF} \), so that \(C_{CP}/C_{P} = 0.36 \) and \(C_{S}/C_{CP} = 0.15 \). Thus, while the Colpitts capacitance is greater than the capacitances occurring in the RLC circuit of the lamp’s coils, it is not significantly greater. Consequently, the complex impedance of these capacitors cannot be ignored, and we have from Eq. (4a)

\[
\text{Im}[Z] = -\frac{1}{\omega C_{2}} - \frac{1}{\omega C_{3}} = 0 = \frac{f}{\omega} \left(1 - \frac{\omega^2}{\omega_{c}^2} \right) - \frac{\omega^2}{\omega_{c}^2} R_{s} \left(\frac{\omega}{\omega_{c}} - 1 \right)^2 - \frac{1}{\omega C_{CP}} . \tag{11}
\]

Solving Eq. (11) numerically for the series and parallel resonant frequencies, \(\omega_{S} \) and \(\omega_{P} \), respectively, Figs. 8 and 9 show \(\omega_{S} \) and \(\omega_{P} \) as functions of \(C_{CP} \) with \(\alpha = 1.2 \) and \(\beta/\alpha = 0.01 \). Figure 8 shows the actual resonant frequencies, while Fig. 9 shows the difference between these frequencies and the resonant frequencies in the case that \(C_{CP} \to \infty \). (Notice in Fig. 9 that the units for \(\Delta \omega_{p} \) are kHz.) Clearly, the Colpitts capacitance has a small but non-negligible effect on \(\omega_{S} \), affecting its value by \(\sim 4\% \) in our case of \(C_{CP} = 25 \text{ pF} \). Alternatively, the Colpitts capacitance has hardly any effect on \(\omega_{P} \), affecting its value by \(\sim 0.016\% \) in our case. Thus, while the Colpitts capacitors \(C_{2} \) and \(C_{3} \) cannot be ignored, the resonant frequency of the oscillator is primarily determined by the RLC circuit of the lamp coils illustrated in Fig. 3. This will most certainly vary from lamp to lamp (even for the same circuit design), and likely gives rise to some of the variability among Rb clock lamp oscillators.

IV. Physical Model for \(\beta \)

In this section, we attempt to tie \(\beta \) to physical characteristics of the discharge. To begin, we first note that as a resistance term, we expect \(\beta \) to be proportional to the circuit’s power loss. More specifically, we expect \(\beta \) to represent electrical power that flows out of the circuit, into the discharge, and from the discharge is irreversibly lost.

Without too much difficulty, we can imagine at least three processes that lead to irreversible energy flow out of the discharge: discharge heating of the bulb’s glass walls [5,6], electron excitation of Xe and the resulting Xe photon emission [7], and electron/Rb\(^{+}\) recombination leading to photon emission [7]. We do not include Rb ionization in this list, since ionization by itself does not represent energy loss; energy is only lost by the discharge when those ions recombine with electrons and emit a photon that escapes the discharge. In this regard, it is important to note that radiation trapping [8,9] likely limits the discharge’s energy loss by electron/Rb\(^{+}\) recombination, since the energy carried by the radiation-trapped photon has a high probability of getting back into the discharge.

We therefore write

\[
\beta \sim \gamma_{m}(T-T_{DC}) + \frac{\gamma_{Xe}}{(kT_{e})^{3/2}} \int_{0}^{e_{i}} \sqrt{x} e^{-XeT} dx \quad + \left(\gamma_{Rb}^{3} - \Gamma_{RT}([\text{Rb}]) \right) . \tag{12}
\]

The first term on the right-hand-side of Eq. (12) represents rf-heating: \(T_{DC} \) is the temperature of the
discharge when the rf-field supplies no additional heat (i.e., it is the temperature of the discharge as defined by a DC heater around the lamp bulb) and $1/\gamma_{TH}$ is a thermal time constant. The second term on the right-hand-side of Eq. (12) corresponds to electron excitation of Xe: ε_j is the first excited state of Xe at 8.4 eV, and T_e is the electron temperature. From our lamp’s spectra we estimate $T_e \sim 3500$ K [5], so that $kT_e \sim 0.3$ eV. Finally, the last term in brackets on the right-hand-side of Eq. (12) represents electron/Rb$^+$ recombination. Since we expect charge neutrality in the discharge, the density of Rb$^+$ should equal the density of free electrons, and the rate of recombination should be proportional to those two densities multiplied by an ambipolar diffusion time constant, $1/\gamma_D$. Further, we reduce the loss of electron/Rb$^+$ recombination by a radiation-trapping term, Γ_{RT}, which we expect will be some complicated function of the neutral rubidium atom density in the discharge, [Rb].

Focusing on the Xe excitation term, we write

$$\beta_{Xe} = \frac{\gamma_{Xe}}{(kT_e)^{3/2}} \int_{\varepsilon_1}^{\infty} \frac{e^{-\varepsilon/Xe}}{e^{\varepsilon_1/Xe}} d\varepsilon. \tag{13}$$

Then, evaluating the integral we get

$$\frac{\beta_{Xe}}{\gamma_{Xe}} = \sqrt{\frac{\varepsilon_1}{kT_e}} e^{-\varepsilon_1/Xe} \sqrt{\frac{\pi}{2}} \text{Erfc}\left[\sqrt{\frac{\varepsilon_1}{kT_e}}\right]. \tag{14}$$

where Erfc[...] is the complimentary error function [10]. Note, however, that $\varepsilon_1/kT_e \sim 28$, so that the first term on the right-hand-side of Eq. (14) has a value of $\sim 4 \times 10^{-12}$, while the second term on the right-hand-side of Eq. (14) has a value of $\sim 6 \times 10^{-15}$. Thus, to good approximation for our limited range of T_e values we can ignore the second term on the right-hand-side of Eq. (14) and write

$$\beta_{Xe} \equiv \frac{\gamma_{Xe}}{\sqrt{kT_e}} e^{-\varepsilon_1/Xe}. \tag{15}$$

Figure 10 shows $\Delta\beta/\Delta\beta_{max}$ (yellow squares) and $\Delta\beta_{Xe}/\Delta\beta_{Xe,max}$ (orange circles) as a function of lamp temperature for our lamp operating at nominal rf-power.

V. Summary

In analyzing an atomic clock’s rf-discharge lamp oscillator, we found that the lamp coils must be modeled as an RLC circuit if the electrical characteristics of the oscillator are to be properly understood. Further, from an electrical perspective, the plasma inside the lamp cannot be ignored, and that this should be included in the circuit analysis as a permeable medium with a real and an imaginary part: $\mu = \alpha - i\beta$. Re[\mu] plays a primary role in determining the lamp circuit’s resonant frequency, while Im[\mu] plays an important role in determining the circuit’s energy loss (i.e., the circuit’s Q). Finally, we considered the discharge processes that likely contribute to Im[\mu], and presented evidence for a primary played by electron temperature.

References

Equipment Calibration Information

Technical Reports Addendum Asset Summary

IRAAS ID #: 2013062710014120041
Report Name: An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks: The rf-Discharge as a Complex Permeability Medium
Aerospace Report Number: TOR-2013-00430
Start Date of Test: 2012-08-27
End Date of Test: 2012-11-19
Program: GPSIII
Description: Keywords:

<table>
<thead>
<tr>
<th>Asset</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Usage Start Date</th>
<th>Usage End Date</th>
<th>Asset Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAB78</td>
<td>TESTWORKS INCORPORATED</td>
<td>TDS5064</td>
<td>2012-08-27</td>
<td>2012-11-19</td>
<td>Certificate Number: O06121-02015/2012-08-27</td>
</tr>
<tr>
<td>ACR75</td>
<td>ANALYTIC CORPORATION</td>
<td>MEASUREX TDS II</td>
<td>2012-08-27</td>
<td>2012-11-19</td>
<td>Certificate Number: 535584-1MEASUREX TDS II-000-2012-08-27</td>
</tr>
<tr>
<td>CPG94</td>
<td>HP</td>
<td>89020</td>
<td>2012-08-27</td>
<td>2012-11-19</td>
<td>Certificate Number: 535584-189020-000-2012-08-27</td>
</tr>
</tbody>
</table>

Support and Auxiliary Equipment are not calibrated.