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Optimal Index Policies for Anomaly Localization in
Resource-Constrained Cyber Systems
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Abstract— The problem of anomaly localization in a resource-
constrained cyber system is considered. Each anomalous compo-
nent of the system incurs a cost per unit time until its anomaly is
identified and fixed. Different anomalous components may incur
different costs depending on their criticality to the system. Due
to resource constraints, only one component can be probed at
each given time. The observations from a probed component are
realizations drawn from two different distributions depending on
whether the component is normal or anomalous. The objective
is a probing strategy that minimizes the total expected cost,
incurred by all the components during the detection process,
under reliability constraints. We consider both independent and
exclusive models. In the former, each component can be abnormal
with a certain probability independent of other components. In
the latter, one and only one component is abnormal. We develop
optimal simple index policies under both models. The proposed
index policies apply to a more general case where a subset
(more than one) of the components can be probed simultaneously
and have strong performance as demonstrated by simulation
examples.

Index Terms— Anomaly localization, Sequential Probabili-
ty Ratio Test (SPRT), sequential hypothesis testing, detection
under uncertainty.

I. INTRODUCTION

We consider anomaly localization where the objective is
to identify anomalous components in a system quickly and
reliably. Consider a cyber system with K components. Each
component may be in a normal or an abnormal state. If
abnormal, component k incurs a cost ck per unit time until its
anomaly is identified and fixed. Due to resource constraints,
only one component can be probed at a time, and switching
to a different component is allowed only when the state of
the current component is declared. The observations from a
probed component (say k) follow distributions f

(0)
k or f

(1)
k

depending on whether the component is normal or anomalous,
respectively. The objective is a probing strategy that dynam-
ically determines the order of the sequential tests performed
on all the components so that the total cost incurred to the
system during the entire detection process is minimized under
reliability constraints.
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A. Main Results

The above problem presents an interesting twist to the
classic sequential hypothesis testing problem. In the case
when there is only one component, minimizing the cost is
equivalent to minimize the detection delay, and the problem is
reduced to a classic sequential test where both the simple and
the composite hypothesis cases have been well studied. With
multiple components, however, minimizing the detection delay
of each component is no longer sufficient. The key to minimize
the total cost is the order at which the components are being
tested. It is intuitive that we should prioritize components
with higher costs when abnormal and components with higher
prior probabilities for being abnormal. Another parameter that
plays a role in the total system cost is the expected time
in detecting the state of a component which depends on the
observation distributions {f (0)

k , f
(1)
k }: it is desirable to place

components that require longer testing time toward the end of
the testing process. The challenge here is how to balance these
key parameters in the dynamic probing strategy.

We show in this paper that the optimal probing strategy is an
open-loop policy where the testing order can be predetermined,
independent of the realizations of each individual test in terms
of both the test outcome and the detection time. Furthermore,
the probing order is given by a simple index. Specifically,
under the independent model where each component is ab-
normal with probability πk independent of other components,
the index is in the form of πkck/E(Nk), where E(Nk) is the
expected detection time for component k. Under the exclusive
model where one and only one component is abnormal, the
index is in the form of πkck/E(Nk|H0) where E(Nk|H0)
is the expected detection time for component k under the
hypothesis of it being normal. It is interesting to notice the
difference in the indexes for these two models. Intuitively
speaking, under the exclusive model, the detection times of the
normal components tested before the single abnormal one add
to the cost incurred by the abnormal component, while under
the independent model, the detection time of any component,
normal or abnormal, adds to the delay in catching the next
abnormal component.

The above simple index forms of the probing order are
optimal for both the simple hypothesis ({f (0)

k , f
(1)
k }Kk=1 are

known) and the composite hypothesis ({f (0)
k , f

(1)
k }Kk=1 have

unknown parameters) cases. These index policies also apply
to the case where more than one component can be probed
simultaneously and offer strong performance as demonstrated
by simulation examples. Their optimality in this case, however,
remains open.
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B. Applications

In addition to anomaly detection in cyber systems, the
above problem also finds applications in spectrum scanning
in cognitive radio systems and event detection in sensor
networks. In the following we give two specific examples.

Consider a cyber network consisting of K components
(which can be routers, paths, etc.). Due to resource constraints,
only a subset of the components can be probed at a time. An
Intrusion Detection System (IDS) analyzes the traffic over the
components to detect Denial of Service (DoS) attacks (such
attacks rely on overwhelming the component with useless
traffic that exceeds its capacity so as to make it unavailable
for its intended use). Let the cost ck be the normal expected
traffic (packets per unit time) over component k. Thus, in
this example minimizing the total expected cost minimizes
the total expected number of failed packets in the network
during DoS attacks. The exclusive model applies to cases
where an intrusion to a subnet, consisting of K components,
has been detected and the probability of each component being
compromised is small (thus with high probability, there is only
one abnormal component).

Another example is spectrum sensing in cognitive radio
systems. Consider a spectrum consisting of K orthogonal
channels. Accessing an idle channel leads to a successful trans-
mission, while accessing a busy channel results in a collision
with other users. A Cognitive Radio (CR) is an intelligent
device that can detect and access idle channels in the wireless
spectrum. Due to resource constraints, only a subset of the
channels can be sensed at a time. Once a channel is identified
as idle the CR transmits over it. Let ck be the achievable rate
over channel k. Thus, in this example minimizing the total
expected cost minimizes the total expected loss in data rate
during the spectrum sensing process.

C. Related Work

The anomaly localization problem, studied in this paper,
presents an interesting twist to the classic sequential hypoth-
esis testing problem which considers only a single stochastic
process. Sequential hypothesis testing was pioneered by Wald
[1]. Wald derived the Sequential Probability Ratio Test (SPRT)
for a binary hypothesis testing. Under the simple hypotheses
case, the SPRT is optimal in terms of minimizing the expected
sample size under given type I and type II error probability
constraints. Various extensions for M-ary hypothesis testing
and testing composite hypotheses were studied in [2]–[8] for
a single process. In these cases, asymptotically optimal per-
formance can be obtained as the error probability approaches
zero.

Differing from this work, most of the existing studies on
sequential detection over multiple processes focus on min-
imizing the total detection delay. Sequential detection over
independent processes have been considered in [9]–[14]. In
[9], [10], the problem of quickly detecting an idle period over
multiple independent ON/OFF processes was considered. An
optimal threshold policy was derived in [10]. The ON/OFF
nature of the processes and the objective of minimizing the
total detection delay make the problems considered in [9], [10]

fundamentally different from the one considered in this work.
In [11], the problem of quickest detection of idle channels over
K independent channels with fixed idle/busy state was studied.
The objective is to minimize the detection delay under error
constraints. It was shown that the optimal policy is to carry
out an independent SPRT over each channel, irrespective of
the testing order. In contrast to [11], we show in this paper that
the optimal policy in our model highly depends on the testing
order even when the processes are independent. In [12], the
problem of identifying the first abnormal sequence among an
infinite number of i.i.d sequences was considered. An optimal
cumulative sum (CUSUM) test was established under this set-
ting. The sequential search problem under the exclusive model
was investigated in [15]–[18]. Optimal policies were derived
for the problem of quickest search over Weiner processes [15]–
[17]. It was shown in [15], [16] that the optimal policy is to
select the sequence with the highest posterior probability of
being the target at each given time. In [17], an SPRT-based
solution was derived, which is equivalent to the optimal policy
in the case of searching over Weiner processes. However,
minimizing the total expected cost in our model leads to a
different problem and consequently a different index policy.

The classic target whereabouts problem is also a detection
problem over multiple processes. In this problem, multiple
locations are searched to locate a target. The problem is
often considered under the setting of fixed sample size as in
[19]–[22]. In [19], [20], [22], searching in a specific location
provides a binary-valued measurement regarding the presence
or absence of the target. In [21], Castanon considered the
dynamic search problem under continuous observations: the
observations from a location without the target and with the
target have distributions f and g, respectively. The optimal
policy was established under a symmetry assumption that
f(x) = g(b− x) for some b.

The anomaly detection problem can be considered as a
special case of active hypothesis testing in which the decision
maker chooses and dynamically changes its observation model
among a set of observation options. Classic and more recent
studies of general active hypothesis testing problems can be
found in [23]–[27].

D. Organization

In Section II we describe the system model and problem
formulation. In Section III we propose a two-stage optimiza-
tion problem that simplifies computation while preserving op-
timality. In Section IV we derive optimal algorithms under the
independent and exclusive models for the simple hypotheses
case. In Section V we extend our results to the composite
hypothesis case: we derive asymptotically optimal algorithms
under the independent and exclusive models. In Section VI
we provide numerical examples to illustrate the performance
of the algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cyber system consisting of K components,
where every component may be in a normal state (i.e., healthy)
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or abnormal state. Define

H1 , {k : 1 ≤ k ≤ K , component k is abnormal} ,

H0 , {k : 1 ≤ k ≤ K , component k is healthy} ,
(1)

as the sets of the abnormal and healthy components.
We consider two different anomaly models.

1) Exclusive model: One and only one component is abnor-
mal with a priori probability πk, where

∑K
k=1 πk = 1.

2) Independent model: Each component k is abnormal with
a priori probability πk independent of other components.

Every abnormal component k incurs a cost ck (0 ≤ ck < ∞)
per unit time until it is tested and identified. Components
in a normal state do not incur cost. We focus on the case
where only one component can be probed at a time. The
resulting probing strategies apply to the case where a subset
of the components can be probed simultaneously and their
performance in this case are studied via simulation examples,
given in Sec. VI. When component k is tested at time t, a
measurement (or a vector of measurements) yk(t) is drawn
independently in a one-at-a-time manner. If component k is
healthy, yk(t) follows distribution f

(0)
k ; if component k is

abnormal, yk(t) follows distribution f
(1)
k . We focus first on

the simple hypotheses case, where the distributions f
(0)
k , f (1)

k

are completely known. In Section V we extend our results to
the composite hypotheses case, where there is uncertainty in
the distribution parameters.

Let k∗(t) denotes the component index which is tested at
time t. Let y(t) =

{
k∗(i), yk∗(i)

}t
i=1

be the set of all the
available observations (and the component indices) up to time
t. A selection rule is a mapping from y(t−1) to {1, 2, ...,K},
which indicates which component is chosen to be tested at time
t. A stopping rule and a decision rule are used to decide when
to terminate the test and which components are declared as
abnormal, respectively.

Remark 1: Computing optimal policies for detection prob-
lems involving multiple sequences becomes impractical in
general as the number of sequences or the sample size in-
creases [21]. In [15], [19]–[21], restrictive assumptions on the
distributions were used to obtain simple optimal index policies.
In [12], [17], [18], restrictive assumptions on the search model
were used to make the problem mathematically tractable. Here,
we use similar assumptions on the search model to obtain a
mathematically tractable optimization problem.

We consider the case where switching between components
is allowed only when the state of the current component is
declared (i.e., switching without memory). From a system
perspective, the advantages of this scheme are twofold. First,
switching between components typically adds a significant
delay that should be avoided. Second, the decision maker
stores observations of only one component at each time. Thus,
this scheme is applicable to limited-memory systems. For
convenience, we define tm as the time when the decision
maker starts the mth test. Let ϕ(tm) ∈ {1, 2, ...,K} be a
selection rule that indicates which component is probed at
time tm. The vector of selection rules for the K components

is denoted by ϕ = (ϕ(t1), ..., ϕ(tK)). Let 1k(tm) be the
probing indicator function, where 1k(tm) = 1 if component
k is probed at time tm and 1k(tm) = 0 otherwise.

Let τk be a stopping time (or a stopping rule), which is the
time when the the decision maker stops taking observations
from component k and declares its state. The vector of
stopping times for the K components is denoted by τ =
(τ1, ..., τK). The random sample size required to make a
decision regarding the state of component k is denoted by
Nk. For example, if the decision maker tests component 1
followed by component 2, then τ1 = N1 and τ2 = N1 +N2.
Let δk ∈ {0, 1} be a decision rule, which the decision maker
uses to declare the state of component k at time τk. δk = 0 if
the decision maker declares that component k is in a healthy
state (i.e., H0), and δk = 1 if the decision maker declares
that component k is in an abnormal state (i.e., H1). The
vector of decision rules for the K components is denoted by
δ = (δ1, ..., δK). An admissible strategy s is a sequence of
K sequential tests for the K components and denoted by the
tuple s = (τ , δ,ϕ).

The problem is to find a strategy s that minimizes the total
expected cost, incurred by all the abnormal components until
declaring their states, subject to type I (false-alarm) and type
II (miss-detect) error constraints for each component:

inf
s

E

{∑
k∈H1

ckτk

}
s.t. PFA

k ≤ αk , PMD
k ≤ βk ∀k = 1, ...,K ,

(2)

Applying type I and type II error constraints for every
component was done in [11] for the problem of quickest
spectrum scanning over K independent channels. In this case,
the optimal solution is a sequence of SPRTs (irrespective of
the testing order) for the K channels [11]. However, in this
paper we show that minimizing the total expected cost leads
to different solutions.

Remark 2: Note that the definition of (2) does not include
the cost due to missed-detection events of abnormal com-
ponents. However, the probability of missed-detection events
decreases exponentially with the sample size [1], [24]. Since
the error probability is typically required to be small, (2) well
approximates the actual loss in practice.

Remark 3: In contrast to the case of minimizing the total
delay, in our model sampling normal components after all the
abnormal components have been identified does not incur cost.
Therefore, applying a sequence of K sequential tests with type
I and type II error constraints (2) for every component is
reasonable for both independent and exclusive models (note
that in our model the decision maker is allowed to declare
more than one component as abnormal under the exclusive
model). From a system perspective, this formulation makes
the scheme robust against mistakes in the system model (for
instance, if an exclusive model is assumed, but there is more
than one abnormal component in the system).

We develop optimal and asymptotically optimal algorithms
to solve (2) under the simple and composite hypotheses
cases, respectively. We show that the optimal probing strategy
follows a simple index rule and is predetermined at time t1
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(i.e., open-loop) under both the independent and exclusive
models.

III. DECOUPLING OF ORDERING AND SEQUENTIAL
TESTING

In this section, we show that the probing order and the
sequential testing of each component can be decoupled. As a
consequence, the solution to (2) can be obtained in two stages.
At the first stage, the problem is to find a stopping rule τk
and a decision rule δk for every component k that minimize
the expected sample size given Hi subject to error probability
constraints:

inf
τk,δk

E(Nk|Hi) , i = 0, 1

s.t. PFA
k ≤ αk , PMD

k ≤ βk . (3)

For the simple hypotheses case, the solution to the first-stage
optimization problem (3) is given by the SPRT [1].
Assume that component k is tested at time t = 1. Let

Lk(n) =

∏n
i=1 f

(1)
k (yk(i))∏n

i=1 f
(0)
k (yk(i))

(4)

be the Likelihood Ratio (LR) between the two hypotheses for
component k at stage n.
Let Ak, Bk (Bk > 1/Ak) be the boundary values used by
the SPRT for component k, such that the error constraints are
satisfied. In the SPRT algorithm, at each stage n, the LR is
compared to the boundary values as follows:

• If Lk(n) ∈
(
(Ak)

−1, Bk

)
, continue to take observations

from component k.
• If Lk(n) ≥ Bk, stop taking observations from component

k and declare it as abnormal (i.e., δk = 1). Clearly, Nk =
n.

• If Lk(n) ≤ (Ak)
−1, stop taking observations from

component k and declare it as normal (i.e., δk = 0).
Clearly, Nk = n.

Remark 4: Implementation of the SPRT requires compu-
tation of Ak and Bk ensuring the constraints on the error
probability. In general, the exact determination of the boundary
values is very laborious and depends on the observation
distribution. Wald’s approximation can be applied to simplify
the computation [1]:

Bk ≈ 1− βk

αk
, Ak ≈ 1− αk

βk
. (5)

Wald’s approximation performs well for small αk, βk. Since
type I and type II errors are typically required to be small,
Wald’s approximation is widely used in practice [1].

At the second stage, the problem is to find a selection rule
ϕ that minimizes the objective function, given the solution to
the K subproblems (3):

inf
ϕ

E

{∑
k∈H1

ckτk | (τ ∗, δ∗)

}
(6)

where
τ ∗ = (τ∗1 , ..., τ

∗
K) , δ∗ = (δ∗1 , ..., δ

∗
K) (7)

denote the vectors of stopping times and decision rules,
respectively, that solve the K subproblems (3).
The solutions to the second-stage optimization problem for the
independent and exclusive models are given in Section IV.

The formulation of the two-stage optimization problem
allows us to decompose the original optimization problem (2)
into K + 1 subproblems (3) and (6). In subsequent sections
we show that the two-stage optimization problem preserves
optimality under both the independent and exclusive models.

IV. THE SIMPLE HYPOTHESES CASE

In this section we derive optimal solutions to both the
independent and exclusive models when the observation distri-
butions under both hypotheses are completely known. Under
the independent model, the posterior probability of component
k being abnormal can be updated at time tm+1 as follows:

πk(tm+1) = (1− 1k(tm))πk(tm)

+
1k(tm)πk(tm)f

(1)
k (yk(Nk))

πk(tm)f
(1)
k (yk(Nk)) + (1− πk(tm)) f

(0)
k (yk(Nk))

,

(8)
where πk(t1) = πk denotes the a priori probability of compo-
nent k being abnormal. The term yk(Nk) = {yk(i)}tm+Nk−1

i=tm
denotes the Nk-size vector of observations, taken from com-
ponent k.
Under the exclusive model, πk(tm+1) is given in (9) at the
top of the next page. Note that in contrast to the indepen-
dent model, under the exclusive model the beliefs of all the
components are changed at each time due to the dependency
across components. The posterior probabilities depend on the
selection rule and the collected measurements.

A. Optimal Index Policies

Based on the solution to the two-stage optimization prob-
lem, we propose Algorithms 1, 2, presented in Tables I, II,
to solve (2). In [28], the problem of ordering operations (or
components) with a given processing time was considered. It
was shown that the optimal selection rule for the problem of
minimizing an expected weighted sum of completion times
is to select the components in decreasing order of ck/E(Nk).
However, the problem in (6) is different. First, the components
may be normal or abnormal and the expected sample size
depends on the component state. Second, the objective is
to minimize an expected weighted sum of stopping times
of abnormal components only. Third, under the exclusive
model, the state of each component depends on other com-
ponents. Furthermore, the original optimization (2) is also
over the stopping rules which control the expected sample
size. Here, we derive optimal selection rules that solve the
second-stage optimization problem (6) for the independent
and exclusive models. These selection rules are given in step
1 in Tables I, II for the independent and exclusive models,
respectively. Arranging the components in decreasing order
of πk(t1)ck/E(Nk) or πk(t1)ck/E(Nk|H0) in step 1 can be
done in O(K logK) time via sorting algorithms. Next, by
the optimal solution to (3), a series of SPRTs is performed
according to this order until all the components are tested.
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πk(tm+1) =
1k(tm)πk(tm)f

(1)
k (yk(Nk))

πk(tm)f
(1)
k (yk(Nk)) + (1− πk(tm)) f

(0)
k (yk(Nk))

+
(1− 1k(tm))πk(tm)f

(0)
ϕ(tm)(yϕ(tm)(Nϕ(tm)))

πϕ(tm)(tm)f
(1)
ϕ(tm)(yϕ(tm)(Nϕ(tm))) +

(
1− πϕ(tm)(tm)

)
f
(0)
ϕ(tm)(yϕ(tm)(Nϕ(tm)))

.

(9)

TABLE I
ALGORITHM 1 FOR THE INDEPENDENT MODEL

1. arrange the components in decreasing

order of πk(t1)ck/E(Nk)

2. for k = 1, ...,K components do:

3. perform SPRT for component k,

with PFA
k ≤ αk, PMD

k ≤ βk

TABLE II
ALGORITHM 2 FOR THE EXCLUSIVE MODEL

1. arrange the components in decreasing

order of πk(t1)ck/E(Nk|H0)

2. for k = 1, ...,K components do:

3. perform SPRT for component k,

with PFA
k ≤ αk, PMD

k ≤ βk

The index policies, described in Algorithms 1, 2, are intu-
itively satisfying. The priority of component k in terms of
testing order should be higher as the cost ck increases, or the
a priori probability of being abnormal πk(t1) increases. Under
the independent model, the priority of component k in terms
of testing order should be higher as the expected sample size
E(Nk) decreases (since E(Nk) contributes to the cost of every
component which is tested after component k). On the other
hand, under the exclusive model, the priority of component
k in terms of testing order should be higher as E(Nk|H0)
decreases. Note that under the exclusive model, we take into
account the expected sample size under H0 solely. The reason
is that if component k is abnormal, there is no additional cost,
incurred by other components (since only one component is
abnormal). On the other hand, if component k is healthy, then
E(Nk|H0) contributes to the cost of the components which are
tested after component k (and may be abnormal). The SPRT
is used in both models to minimize the expected sample size
to reduce the total cost.

The optimality of Algorithms 1, 2 is shown in the following
theorem.

Theorem 1: Under the independent and exclusive models,
Algorithms 1, 2, respectively, solve the original optimization
problem (2).
Proof: See Appendices VIII-A and VIII-B.

Note that Algorithms 1, 2 use open-loop selection rules (as

stated in step 1), where the components order is predetermined
at time t1. However, Theorem 1 is not restricted to open-
loop selection rules. Theorem 1 shows that Algorithms 1, 2
are optimal among the class of both open-loop and closed-
loop selection rules.

B. Computing the Index

Arranging the components in decreasing order of
πk(t1)ck/E(Nk) or πk(t1)ck/E(Nk|H0) requires one
to compute the expected sample size E(Nk|Hi) for all
k = 1, 2, ...,K. In general, it is difficult to obtain a closed-
form expression for E(Nk|Hi). However, since the solution
to (3) is given by the SPRT, Wald’s approximation can be
applied to simplify the computation [1]. For every i, j = 0, 1,
let

Dk(i||j) = Ei

(
log

f
(i)
k (yk(1))

f
(j)
k (yk(1))

)
(10)

be the Kullback-Leibler (KL) divergence between the hypothe-
ses Hi and Hj , where the expectation is taken with respect to
f
(i)
k .

The expected sample size conditioned on each hypothesis is
well approximated by [1]:

E(Nk|H0) ≈
(1− αk) log Ãk − αk log B̃k

Dk(0||1)
,

E(Nk|H1) ≈
(1− βk) log B̃k − βk log Ãk

Dk(1||0)
,

(11)

where Ãk = (1 − αk)/βk, B̃k = (1 − βk)/αk are the
approximation to Ak, Bk, given in (5).
The expected sample size required to make a decision regard-
ing the state of component k is given by:

E(Nk) = πkE(Nk|H1) + (1− πk)E(Nk|H0) , (12)

where the approximation approaches the exact expected sam-
ple size for small αk, βk.

V. THE COMPOSITE HYPOTHESES CASE

In the previous section we focused on the simple hypothe-
ses case, where the distribution under both hypotheses are
completely known. For this case, the SPRT was applied in
Algorithms 1, 2 to solve (3). However, in numerous cases there
is uncertainty in the observation distributions.

For example, Consider a one-parameter distribution. Sup-
pose that it is required to test θk < θ

(0)
k against θk > θ

(1)
k >

θ
(0)
k . As discussed in [1], the SPRT can be applied to this

problem by testing θk = θ
(0)
k against θk = θ

(1)
k , where the

boundary values are set such that the error constraints are
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satisfied at θ
(0)
k , θ

(1)
k . For some important cases, such as an

exponential family of distributions, this sequential test has the
property that type I and type II errors are less than αk, βk for
all θk < θ

(0)
k and θk > θ

(1)
k , respectively. However, while the

SPRT minimizes the expected sample size at θk = θ
(0)
k , θ

(1)
k , it

is highly sub-optimal for other values of θ, as demonstrated in
Section VI. Therefore, other techniques should be considered
under the composite hypotheses case.

Let θk be a vector of unknown parameters of component k.
The observations {yk(i)}i≥1 are drawn from a common dis-
tribution f (y|θk), θk ∈ Θk, where Θk is the parameter space
of component k. If component k is healthy, then θk ∈ Θ

(0)
k ; if

component k is abnormal, then θk ∈ (Θ\Θ(0)
k ). Let Θ(0)

k , Θ(1)
k

be disjoint subsets of Θk, where Ik = Θ\(Θ(0)
k ∪ Θ

(1)
k ) ̸= ∅

is an indifference region1. When θk ∈ Ik, the detector is
indifferent regarding the state of component k. Hence, there
are no constraints on the error probabilities for all θk ∈ Ik.
The hypothesis test regarding component k is to test

θk ∈ Θ
(0)
k against θk ∈ Θ

(1)
k .

Narrowing Ik has the price of increasing the sample size.
Let

θ̂k(n) = arg max
θk∈Θk

f (yk(n)|θk),

θ̂
(i)

k (n) = arg max
θk∈Θ

(i)
k

f (yk(n)|θk),
(13)

be the Maximum-Likelihood Estimates (MLEs) of the parame-
ters over the parameter spaces Θk, Θ(i)

k at stage n, respectively.
In contrast to the SPRT (for the simple hypotheses case),

the theory of sequential tests of composite hypotheses does
not provide optimal performance in terms of minimizing the
expected sample size under given error constraints. Neverthe-
less, asymptotically optimal performance can be obtained as
the error probability approaches zero.

First, we provide an overview of existing sequential tests
for composite hypotheses which are relevant to our problem.
Next, we apply these techniques to solve (2).

A. Existing Sequential Tests for Composite Hypothesis Testing

The key idea is to use the estimated parameters to perform
a one-sided sequential test to reject H0 and a one-sided
sequential test to reject H1. Note that these techniques were
introduced for a single process. However, in this paper we
apply sequential tests for K components. Thus, we use the
subscript k to denote the component index.

1) Sequential Generalized Likelihood Ratio Test (SGLRT):
We refer to sequential tests that use the Generalized Likelihood
Ratio (GLR) statistics as the SGLRT.
For i = 0, 1, let

L
(i),GLR
k (n) = log

∏n
r=1 f(yk(r)|θ̂k(n))∏n
r=1 f(yk(r)|θ̂

(i)

k (n))
(14)

1The assumption of an indifference region is widely used in the theory of
sequential testing of composite hypotheses to derive asymptotically optimal
performance. Nevertheless, in some cases this assumption can be removed.
For more details, the reader is referred to [4].

be the GLR statistics used to reject hypothesis Hi at stage n.
Let

N
(i)
k = inf

{
n : L

(i),GLR
k (n) ≥ B

(i)
k

}
, (15)

be the stopping rule used to reject hypothesis Hi. B
(i)
k is the

boundary value.
For each component k, the decision maker stops the sampling
when Nk = min

{
N

(0)
k , N

(1)
k

}
. If Nk = N

(0)
k , component k

is declared as abnormal (i.e., H0 is rejected). If Nk = N
(1)
k ,

component k is declared as normal (i.e., H0 is accepted).
The SGLRT was first studied by Schwartz [2] for a one-

parameter exponential family, who assigned a cost of c for
each observation and a loss function for wrong decisions.
It was shown that setting B

(i)
k = log(c−1) asymptotically

minimizes the Bayes risk as c approaches zero. A refinement
was studied by Lai [4], [6], who set a time-varying boundary
value B

(i)
k ∼ log((nc)−1). Lai showed that for a multivariate

exponential family this scheme asymptotically minimizes both
the Bayes risk and the expected sample size subject to error
constraints as c approaches zero [6].

2) Sequential Adaptive Likelihood Ratio Test (SALRT): We
refer to sequential tests that use the Adaptive Likelihood Ratio
(ALR) statistics as the SALRT.
For i = 0, 1, let

L
(i),ALR
k (n) = log

∏n
r=1 f(yk(r)|θ̂k(r − 1))∏n
r=1 f(yk(r)|θ̂

(i)

k (n))
(16)

be the ALR statistics used to reject hypothesis Hi at stage n.
Let

N
(i)
k = inf

{
n : L

(i),ALR
k (n) ≥ B

(i)
k

}
, (17)

be the stopping rule used to reject hypothesis Hi, where B
(i)
k

is the boundary value.
For each component k, the decision maker stops the sampling
when Nk = min

{
N

(0)
k , N

(1)
k

}
. If Nk = N

(0)
k , component

k is declared as abnormal. If Nk = N
(1)
k , component k is

declared as normal.
The SALRT was first introduced by Robbins and Siegmund

[3] to design power-one sequential tests. Pavlov used it to
design asymptotically (as the error probability approaches
zero) optimal (in terms of minimizing the expected sample
size subject to error constraints) tests for composite hypothesis
testing of the multivariate exponential family [5]. Tartakovsky
established asymptotically optimal performance for a more
general multivariate family of distributions [7].

The advantage of using the SALRT is that setting B
(0)
k =

log 1
αk

, B(1)
k = log 1

βk
satisfies the error probability constraints

in (3). However, such a simple setting cannot be applied to
the SGLRT. Thus, implementing the SALRT is much simpler
than implementing the SGLRT. The disadvantage of using
the SALRT is that poor early estimates (for small number
of observations) can never be revised even though one has a
large number of observations.
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B. Asymptotically Optimal Index Policies

Under the composite hypotheses case, one should modify
step 3 in Algorithms 1, 2, given in Tables I, II by performing
the SGLRT or SALRT instead of the SPRT. We refer to
the modified algorithms as Algorithms 3, 4, respectively. In
the following theorems, we show that Algorithms 3, 4 are
asymptotically optimal in terms of minimizing the objective
function subject to the error constraints (2) as the error
probabilities approach zero2. When deriving asymptotics we
assume that PFA

k → 0, PMD
k → 0 for all k such that the

asymptotic optimality property in terms of minimizing the
expected sample size subject to the error constraints holds for
each single process for both SGLRT and SALRT, as discussed
in Section V-A.

Theorem 2: Consider the independent model under the com-
posite hypotheses case. Let (τ ∗, δ∗,ϕ∗) be the optimal solution
to (2). Let (τA3, δA3,ϕA3) be the solution achieved by Algo-
rithm 3. Then, as PFA

k → 0, PMD
k → 0 for all k, we obtain:

E

{∑
k∈H1

ckτk|(τA3, δA3,ϕA3)

}

∼ E

{∑
k∈H1

ckτk|(τ ∗, δ∗,ϕ∗)

} (18)

Proof: See Appendix VIII-C.

Theorem 3: Consider the exclusive model under the com-
posite hypotheses case. Let (τ ∗, δ∗,ϕ∗) be the optimal solution
to (2). Let (τA4, δA4,ϕA4) be the solution achieved by Algo-
rithm 4. Then, as PFA

k → 0, PMD
k → 0 for all k, we obtain:

E

{∑
k∈H1

ckτk|(τA4, δA4,ϕA4)

}

∼ E

{∑
k∈H1

ckτk|(τ ∗, δ∗,ϕ∗)

} (19)

Proof: See Appendix VIII-D.

C. Computing the Index

Arranging the components in decreasing order of
πk(t1)ck/E(Nk) or πk(t1)ck/E(Nk|H0) requires one
to compute the expected sample size E(Nk|Hi) for all
k = 1, 2, ...,K. In general, it is difficult to obtain a closed-
form expression for the exact value of E(Nk|Hi). However,
we can use the asymptotic property of the tests to obtain a
closed-form approximation to E(Nk|Hi), which approaches
the exact expected sample size as the error probability
approaches zero.
For every i = 0, 1, let

Dk(θk||λ) = Eθk

(
log

f(yk(1)|θk)

f(yk(1)|λ)

)
(20)

2As shown in the proof of Theorems 2, 3, the index policies are still optimal
in terms of testing order. The asymptotic optimality is due to the performance
of the sequential test under the composite hypothesis case.

be the KL divergence between the real value of θk and λ,
where the expectation is taken with respect to f(y|θk),
and let

D∗
k(θk||Θ(i)

k ) = inf
λ∈Θ

(i)
k

Dk(θk||λ) . (21)

Let P (i)(θk) be a prior distribution on θk under hypothesis Hi

at component k. Then, as PFA
k → 0, PMD

k → 0, the expected
sample size is given by:

E(Nk|H0) ∼
∫
θk∈Θ

(0)
k

logB
(1)
k

D∗
k(θk||Θ(1)

k )
dP (0)(θk) ,

E(Nk|H1) ∼
∫
θk∈Θ

(1)
k ∪I

(1)
k

logB
(0)
k

D∗
k(θk||Θ(0)

k )
dP (1)(θk)

+

∫
θk∈I

(0)
k

logB
(1)
k

D∗
k(θk||Θ(1)

k )
dP (1)(θk) ,

(22)

where I
(0)
k , I

(1)
k are disjoint subsets of Ik and Ik = I

(0)
k ∪I

(1)
k .

For all θk ∈ I
(i)
k we have logB

(j)
k

D∗
k(θk||Θ(j)

k )
≤ logB

(i)
k

D∗
k(θk||Θ(i)

k )
for

i, j = 0, 1.
The expected sample size required to make a decision regard-
ing the state of component k is given by:

E(Nk) = πkE(Nk|H1) + (1− πk)E(Nk|H0) , (23)

which can be well approximated for small error probability
using (22).

Remark 5: In numerous cases, uncertainty is associated
with the abnormal state solely, where the distribution under
the normal state is completely known. In these cases, evalu-
ating E(Nk) to implement Algorithm 3 depends on the prior
distribution of θk ∈ Θ\Θ(0)

k , while evaluating E(Nk|H0) to
implement Algorithm 4 does not.

VI. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate
the performance of the algorithms. Consider a cyber network
consisting of K components (which can be routers, paths,
etc.), as discussed in section I-B. Assume that an intruder
tries to launch a DoS or Reduction of Quality (RoQ) attacks
by sending a large number of packets to a component. RoQ
attacks inflict damage on the component, while keeping a low
profile to avoid detection. RoQ attacks do not cause denial of
service.

To detect such attacks, the IDS performs a traffic-based
anomaly detection. It monitors the traffic at each component
to decide whether a component is compromised. Roughly
speaking, if the actual arrival rate is significantly higher
than the arrival rate under the normal state, then the IDS
should declare that the component is in an abnormal state. A
similar traffic-based detection technique was proposed in [29]
for a different model, considering a single process without
switching to other components. For each component k, we
assume that packets arrive according to a Poisson process with
rate θ(k). When component k is tested, the IDS collects an
observation yk(n) ∈ N0 every time unit, which represents
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the number of packets that arrived in the interval (n − 1, n).
Assume that the IDS considers component k as normal if
θk ≤ θ

(0)
k , and tests θk ≤ θ

(0)
k against θk ≥ θ

(1)
k (i.e.,

Ik = {θk|θ(0)k < θk < θ
(1)
k } is the indifference region). We

set ck = θ
(0)
k . As discussed in Section I-B, under this setting

the optimization problem minimizes the maximal damage to
the network in terms of packet-loss.

A. Detection Under Simple Hypotheses

We consider the case where the observations follow Pois-
son distributions yk(n) ∼ Poi(θ

(0)
k ) or yk(n) ∼ Poi(θ

(1)
k )

depending on wether component k is healthy or abnormal,
respectively, where θ

(0)
k , θ

(1)
k are known to the IDS. To imple-

ment Algorithms 1, 2 (which are optimal in this scenario for
the independent and exclusive models, respectively), we need
to compute the LR between the hypotheses, defined in (4),
and the expected sample sizes under the hypotheses, which
can be well approximated by (11). Let Λk(n) = logLk(n) be
the Log-Likelihood Ratio (LLR) between the two hypotheses
of component k at stage n, where Lk(n) is defined in (4).
After algebraic manipulations, it can be verified that the LLR
is given by:

Λk(n) = −n
(
θ
(1)
k − θ

(0)
k

)
+log

(
θ
(1)
k /θ

(0)
k

) n∑
i=1

yk(i) . (24)

It can be verified that the KL divergence between the hypothe-
ses Hi and Hj , defined in (10), is given by:

Dk(i||j) = θ
(j)
k − θ

(i)
k + θ

(i)
k log

(
θ
(i)
k /θ

(j)
k

)
. (25)

Substituting (25) in (11) yields the required approximation to
the expected sample size.

Next, we provide numerical examples to illustrate the per-
formance of the algorithms. We compared three schemes: a
Random selection SPRT (R-SPRT), where a series of SPRTs
are performed until all the components are tested in a ran-
dom order (which is optimal for the problem of minimizing
the detection delay over independent processes [11]), and
the proposed Algorithms 1, 2, which are optimal under the
independent and exclusive models, respectively.

Let ∆K = (100 − 10)/(K − 1). We set ck = θ
(0)
k = 10 +

(k − 1)∆K (i.e., the costs are equally spaced in the interval
[10, 100]) and θ

(1)
k = 1.5 · θ(0)k . The error constraints were set

to PFA
k = 10−2, PMD

k = 10−6 for all k. For the independent
and exclusive models, we set πk = 0.8 and πk = 1/K for
all k, respectively. The performance of Algorithms 1 and 2
are presented in Fig. 1(a) and 1(b) under the independent and
exclusive models, respectively, and compared to the R-SPRT.
It can be seen that the proposed Algorithms save roughly 50%
of the objective value as compared to the R-SPRT under both
the independent and exclusive model scenarios.

Next, we simulate the independent model when 2 com-
ponents are observed at a time and the total number of
components is K = 6. Note that in this case Algorithm 1 may
not be optimal. We use an exhaustive search as a bench mark to
demonstrate the performance of Algorithm 1 in this scenario.
The exhaustive search is done by performing a sequence of
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(a) An independent model scenario.
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Algorithm 2
R−SPRT

(b) An exclusive model scenario.

Fig. 1. Objective value as a function of the number of components under
the independent and exclusive models.

K SPRTs among all the possible testing orders. Then, the
minimal objective value is chosen as a bench mark. We set
the maximal cost to cmax = 100 and the costs are equally
spaced in the interval [cmin, 100]. The error constraints were
set to PFA

k = PMD
k = 10−2 for all k. The performance gain

of the exhaustive search scheme over Algorithm 1 as a function
of cmin are presented in Fig. 2. It can be seen that Algorithm
1 almost achieves the performance of the exhaustive search
scheme in this scenario for all cmin. For small cmin both
algorithms perform the same, since the difference between the
indices increases. The exhaustive search outperforms Algorith-
m 1 for cmin > 97, but the gain remains very small.

B. Detection Under Uncertainty

We consider the case of composite hypotheses, where there
is uncertainty in the distribution parameters, as discussed in
Section V. To implement the asymptotically optimal Algo-
rithms 3, 4, we need to compute the GLR or ALR statistics,
defined in (14), (16) and the expected sample sizes under
the hypotheses, which can be well approximated by (22).
The MLEs of the parameters over the parameter spaces Θk,
Θ

(i)
k are given by the sample mean and the boundary of

the alternative parameter space, respectively. As a result,
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Gain over Algorithm 1

Fig. 2. Performance gain of an exhaustive search over Algorithm 1 as a
function of cmin under the independent model.

substituting: θ̂k(n) = 1
n

∑n
i=1 yk(i) , θ̂

(i)
k (n) = θ

(i)
k , in (14),

(16) yields the GLR and ALR statistics, respectively. The KL
divergence between the real value of θk and the parameter
space Θ

(i)
k is given by:

D∗
k(θk||Θ

(i)
k ) = θ

(i)
k − θk + θk log

(
θk/θ

(i)
k

)
. (26)

Substituting (26) in (22) yields the approximate expected
sample size.

Next, we provide numerical examples to illustrate the per-
formance of the algorithms under uncertainty. We simulated
a network with homogenous components (i.e., any selection
rule is optimal). We compared three schemes: R-SPRT, and
Algorithms 3 or 4 (which achieve the same performance in this
case) using the SALRT and the SGLRT, discussed in section
V-A. We set θ

(0)
k = 19, θ

(1)
k = 21. Under uncertainty, the

IDS considers component k as normal if θk ≤ θ
(0)
k , and tests

θk ≤ θ
(0)
k against θk ≥ θ

(1)
k (i.e., Ik = {θk|19 < θk < 21} is

the indifference region). To implement the SGLRT, we set the
cost per observation c = 10−3. According to the assigned cost,
we obtained the following error probability constraints for all
k: PFA

k ≤ 0.026 for all θ(k) ≤ 19 and PMD
k ≤ 0.03 for

all θ(k) ≥ 21. We do not restrict the detector’s performance
for 19 < θ(k) < 21 (Note that narrowing the indifference
region has the price of increasing the required sample size).
In Fig. 3 we show the average number of observations (in a
log scale) required for the anomaly detection as a function
of θ(k). As expected, for θk = 19 and θk = 21 the R-
SPRT requires lower sample size as compared to the proposed
schemes. On the other hand, it can be seen that for most values
of θ the SGLRT and the SALRT require lower sample size as
compared to the R-SPRT. The SALRT performs the worst for
18 < θk < 22, and performs the best for θk ̸∈(18, 22), roughly.
The SGLRT obtains the best average performance. It can be
seen that for large values of θk the anomaly is detected very
quickly, since the distance between the hypotheses increases.
This result confirms that DoS attacks are much easier to detect
than RoQ attacks.
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Fig. 3. Average number of observations as a function of the arrival rate of
packets (denoted by θ).

VII. CONCLUSION

The problem of anomaly localization in a resource-
constrained cyber system was investigated. Due to resource
constraints, only one component can be probed at a time.
The observations are realizations drawn from two different
distributions depending on whether the component is normal
or anomalous. An abnormal component incurs a cost per unit
time until it is tested and identified. The problem was formu-
lated as a constrained optimization problem. The objective is
to minimize the total expected cost subject to error probability
constraints. We considered two different anomaly models: the
independent model in which each component can be abnormal
independent of other components, and the exclusive model
in which there is one and only one abnormal component.
For the simple hypotheses case, we derived optimal algo-
rithms for both independent and exclusive models. For the
composite hypotheses case, we derived asymptotically (as the
error probability approaches zero) optimal algorithms for both
independent and exclusive models. These optimal algorithms
have low-complexity.

The algorithms that have been developed in this paper can
be applied to other models of anomaly detection as well. We
can modify the proposed algorithms to any detection scheme
that performs a series of tests until all the components are
tested. The required modification is in step 3 of the algorithms,
where the SPRT/SALRT/SGLRT are replaced by any given
test. Such modified algorithms minimize the objective function
among all the algorithms that perform the given test.

VIII. APPENDIX

A. Proof of Theorem 1 Under The Exclusive Model

Let E′(Nk|Hi,t) be the expected sample size achieved by a
stopping rule and a decision rule (τ ′k(t), δ

′
k(t)), depending on

the time that component k is tested (i.e., (τ ′k(t), δ
′
k(t)) depend

on the selection rule), such that error constraints are satisfied.
Let EA2(Nk|Hi) be the expected sample size achieved by the
SPRT’s stopping rule and decision rule (τA2

k , δA2
k ), indepen-

dent of the time that component k is tested (i.e., (τA2
k , δA2

k ) are
independent of the selection rule), such that error constraints
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are satisfied. Clearly, EA2(Nk|Hi) ≤ E′(Nk|Hi, t) for all k, t,
for i = 0, 1.
Step 1: Proving the theorem for K = 2:
Assume that

π1(t1)c1
EA2(N1|H0)

≥ π2(t1)c2
EA2(N2|H0)

. (27)

Consider selection rules ϕ(1), ϕ(2) that select component 1
first followed by component 2 and component 2 first followed
by component 1, respectively. The expected cost achieved by
(τ ′(t), δ′(t),ϕ(2)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τ ′(t), δ′(t),ϕ(2))

}
= (E′(N2|H1, t1))π2(t1)c2

+(E′(N2|H0, t1) +E′(N1|H1, t2))π1(t1)c1.

(28)

The expected cost achieved by (τ ′(t), δ′(t),ϕ(1)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τ ′(t), δ′(t),ϕ(1))

}
= (E′(N1|H1, t1))π1(t1)c1

+(E′(N1|H0, t1) +E′(N2|H1, t2))π2(t1)c2.

(29)

Note that the expected cost achieved by both selection rules
can be further reduced by minimizing the expected sample
sizes (such that error constraints are satisfied) independent
of the selection rules, which is achieved by (τA2

k , δA2
k ).

Therefore, an optimal solution must be (τA2, δA2,ϕ(1)) or
(τA2, δA2,ϕ(2)). Next, we use the interchange argument to
prove the theorem for K = 2. The expected cost achieved by
(τA2, δA2,ϕ(2)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA2, δA2,ϕ(2))

}
=
(
EA2(N2|H1)

)
π2(t1)c2

+
(
EA2(N2|H0) +EA2(N1|H1)

)
π1(t1)c1.

(30)

The expected cost achieved by (τA2, δA2,ϕ(1)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA2, δA2,ϕ(1))

}
=
(
EA2(N1|H1)

)
π1(t1)c1

+
(
EA2(N1|H0) +EA2(N2|H1)

)
π2(t1)c2.

(31)

the expected cost achieved by ϕ(1) is lower than that achieved

by ϕ(2) since
π1(t1)c1

EA2(N1|H0)
≥ π2(t1)c2

EA2(N2|H0)
, which com-

pletes the proof for K = 2.
Step 2: Proving the theorem by induction on the number of
components K:

Assume that the theorem is true for K−1 components (where
one and only one component is abnormal). Assume that

π1(t1)c1
EA2(N1|H0)

≥ π2(t1)c2
EA2(N2|H0)

≥ ... ≥ πK(t1)cK
EA2(NK |H0)

.

(32)
Consider the case of K components and denote ϕ(j) as an
optimal selection rule that selects component j first.
Step 2.1: Proving the theorem for the last K−1 components:

Next, we show that the last K−1 components must be selected
in decreasing order of πk(t1)ck/E

A2(Nk|H0) and tested by
the SPRT.
Let

γj(t) =
1

πj(t)
f
(1)
j (yj(Nj))

f
(0)
j (yj(Nj))

+ 1− πj(t)

. (33)

Note that when the decision maker completes testing compo-
nent j, the other components update their beliefs according
to:

πk(t2) = γj(t1)πk(t1) , ∀k ̸= j . (34)

The expected cost achieved by ϕ(j) given the outcome (at time
t2) by testing component j (i.e., given the observations vector
yj(Nj)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | ϕ(j),yj(Nj)

}
= πj(t2)cjNj + (1− πj(t2))×

E


K∑

k=1,k ̸=j

ckτk1{k∈H1} | ϕ(j),yj(Nj), j ∈ H0

 .

(35)
Let

τ̃k = τk −Nj ∀k ̸= j (36)

be the modified stopping time, defined as the stopping time
from t = Nj + 1 until testing of component k is completed.
Thus, we can rewrite (35) as:

E

{
K∑

k=1

ckτk1{k∈H1} | ϕ(j),yj(Nj)

}

=
K∑

k=1

πk(t2)ckNj + (1− πj(t2))×

E


K∑

k=1,k ̸=j

ck τ̃k1{k∈H1} | ϕ(j),yj(Nj), j ∈ H0

 .

(37)
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The term
∑K

k=1 πk(t2)ckNj in (37) follows since,

Pr
(
k ∈ H1 | ϕ(j),yj(Nj), j ∈ H0

)
=

Pr
(
k ∈ H1, j ∈ H0 | ϕ(j),yj(Nj),

)
Pr
(
j ∈ H0 | ϕ(j),yj(Nj),

)
=

Pr
(
k ∈ H1 | ϕ(j),yj(Nj),

)
Pr
(
j ∈ H0 | ϕ(j),yj(Nj),

) =
πk(t2)

1− πj(t2)
, π̃k(t2) .

(38)
Minimizing

E

{
K∑

k=1

ckτk1{k∈H1} | ϕ(j),yj(Nj)

}
(39)

at time t2, requires one to minimize

E


K∑

k=1,k ̸=j

ck τ̃k1{k∈H1} | ϕ(j),yj(Nj), j ∈ H0

 (40)

in (37).
Note that (40) is the cost for K − 1 components (where
one and only one component is abnormal) starting at time
t = t2 = Nj + 1, with prior probability π̃k(t2) = πk(t2)

1−πj(t2)

for component k ̸= j being abnormal. By the induction
hypothesis, for any optimal selection rule ϕ(j) that selects
component j first, arranging the last K − 1 components in
decreasing order of π̃k(t2)ck/E

A2(Nk|H0) (and testing them
by the SPRT) minimizes (40).
Since

π̃k(t2) =
γj(t1)

1− πj(t2)
πk(t1) ∀k ̸= j, (41)

then

π̃1(t2)c1
EA2(N1|H0)

≥ π̃2(t2)c2
EA2(N2|H0)

≥ · · · ≥ π̃j−1(t2)cj−1

EA2(Nj−1|H0)

≥ π̃j+1(t2)cj+1

EA2(Nj+1|H0)
≥ · · · ≥ π̃K(t2)cK

EA2(NK |H0)
.

(42)
Thus, the last K−1 components must be selected in decreasing
order of πk(t1)ck/E

A2(Nk|H0) and tested by the SPRT.
Step 2.2: Proving the theorem for all the K components:
Finally, we show that component 1 (i.e., the component with
the highest index) must be selected first. The expected cost
achieved by (τ ′(t), δ′(t),ϕ(j)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τ ′(t), δ′(t),ϕ(j))

}

= πj(t1)cj (E
′(Nj |H1, t1)) +

K∑
k=1,k ̸=j

[πk(t1)ck×E′ (Nj |H0, t1) +

 k−1∑
i=1,i̸=j

EA2 (Ni|H0)


+EA2 (Nk|H1)

)]
.
(43)

First, note that the expected cost achieved by
(τ ′(t), δ′(t),ϕ(j)) can be further reduced for all j by
minimizing the expected sample size E′(Nj |Hi, t1) for
i = 0, 1, which is achieved by (τA2

j , δA2
j ). Therefore, an

optimal solution must be (τA2, δA2,ϕ(j)) for an optimal
selection rule ϕ(j). Thus, in the following we consider
solutions of the form (τA2, δA2,ϕ).
Next, by contradiction, consider an optimal selection rule
ϕ(j ̸=1) that selects component j ̸= 1 first. Therefore, ϕ(j ̸=1)

selects the components in the following order:

j, 1, 2, ..., j − 1, j + 1, ...,K.

As a result, the expected cost achieved by (τA2, δA2,ϕ(j ̸=1))
is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA2, δA2,ϕ(j ̸=1))

}
= πj(t1)cj

(
EA2(Nj |H1)

)
+π1(t1)c1

[
EA2 (Nj |H0) +EA2 (N1|H1)

]
+

K∑
k=2,k ̸=j

[πk(t1)ck×EA2 (Nj |H0) +

 k−1∑
i=1,i ̸=j

EA2 (Ni|H0)


+EA2 (Nk|H1)

)]
.
(44)

We use the interchange argument to prove the theorem.
Consider a selection rule ϕ(1) that selects component 1 first
followed by components j, 2, 3, j − 1, j + 1, ...,K. Similar to
(44), the expected cost achieved by (τA2, δA2,ϕ(1)) is given
by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA2, δA2,ϕ(1))

}
= π1(t1)c1

(
EA2(N1|H1)

)
+πj(t1)cj

[
EA2 (N1|H0) +EA2 (Nj |H1)

]
+

K∑
k=2,k ̸=j

[πk(t1)ck×EA2 (Nj |H0) +

 k−1∑
i=1,i ̸=j

EA2 (Ni|H0)


+EA2 (Nk|H1)

)]
.
(45)

By comparing (44) and (45), it can be verified that:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA2, δA2,ϕ(1))

}

≤ E

{
K∑

k=1

ckτk1{k∈H1} | (τA2, δA2,ϕ(j ̸=1))

}
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since π1(t1)c1/E
A2(N1|H0) ≥ πj(t1)cj/E

A2(Nj |H0) .
The expected cost can be reduced by selecting component
1 first followed by component j, which contradicts the opti-
mality of ϕ(j ̸=1). Hence, at time t1 selecting component 1
minimizes the expected cost. We have already proved that
selecting the last K − 1 components in decreasing order
of πk(t1)ck/E

A2(Nk|H0) minimizes the objective function,
which completes the proof. �

B. Proof of Theorem 1 Under The Independent Model

Let E′(Nk|Hi,t) be the expected sample size achieved by a
stopping rule and a decision rule (τ ′k(t), δ

′
k(t)), depending on

the time that component k is tested (i.e., (τ ′k(t), δ
′
k(t)) depend

on the selection rule), such that error constraints are satisfied.
Let EA1(Nk|Hi) be the expected sample size achieved by the
SPRT’s stopping rule and decision rule (τA1

k , δA1
k ), indepen-

dent of the time that component k is tested (i.e., (τA1
k , δA1

k ) are
independent of the selection rule), such that error constraints
are satisfied. Clearly, EA1(Nk|Hi) ≤ E′(Nk|Hi, t) for all k, t,
for i = 0, 1 and are achieved by Algorithm 1.

First, consider the case where K = 2. Assume that
π1(t1)c1
EA1(N1)

≥ π2(t1)c2
EA1(N2)

.

Consider selection rules ϕ(1), ϕ(2) that select component 1
first followed by component 2 and component 2 first followed
by component 1, respectively. The expected cost achieved by
(τ ′(t), δ′(t),ϕ(2)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τ ′(t), δ′(t),ϕ(2))

}
= (E′(N2|H1, t1))π2(t1)c2

+(E′(N2|t1) +E′(N1|H1, t2))π1(t1)c1.

(46)

The expected cost achieved by (τ ′(t), δ′(t),ϕ(1)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τ ′(t), δ′(t),ϕ(1))

}
= (E′(N1|H1, t1))π1(t1)c1

+(E′(N1|t1) +E′(N2|H1, t2))π2(t1)c2.

(47)

Note that the expected cost achieved by both selection rules
can be further reduced by minimizing the expected sample
sizes (such that error constraints are satisfied) independent
of the selection rules, which is achieved by (τA1

k , δA1
k ).

Therefore, an optimal solution must be (τA1, δA1,ϕ(1)) or
(τA1, δA1,ϕ(2)). Next, we use the interchange argument to
prove the theorem for K = 2. The expected cost achieved by
(τA1, δA1,ϕ(2)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA1, δA1,ϕ(2))

}
=
(
EA1(N2|H1)

)
π2(t1)c2

+
(
EA1(N2) +EA1(N1|H1)

)
π1(t1)c1.

(48)

The expected cost achieved by (τA1, δA1,ϕ(1)) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA1, δA1,ϕ(1))

}
=
(
EA1(N1|H1)

)
π1(t1)c1

+
(
EA1(N1) +EA1(N2|H1)

)
π2(t1)c2.

(49)

The expected cost achieved by ϕ(1) is lower than that achieved
by ϕ(2) since π1(t1)c1

EA1(N1)
≥ π2(t1)c2

EA1(N2)
, which completes the proof

for K = 2.
The rest of the proof follows by induction on the number of
components, as was done under the exclusive model. �

C. Proof of Theorem 2

For every k, let E∗(Nk|Hi) be the minimal expected
sample size that can be achieved by any sequential test, such
that error constraints are satisfied. Let EA3(Nk|Hi) be the
expected sample size achieved by Algorithm 3, such that error
constraints are satisfied. Clearly, E∗(Nk|Hi) ≤ EA3(Nk|Hi)
for all k, for i = 0, 1.
Assume that

π1(t1)c1
E∗(N1)

≥ π2(t1)c2
E∗(N2)

≥ ... ≥ πK(t1)cK
E∗(NK)

. (50)

Similar to the proof of Theorem 1, it can be verified that
the optimal solution to (2) is to select the components in
the following order: 1, 2, ...,K, where the components are
tested by a sequential test that achieves expected sample size
E∗(Nk|Hi) for all k, for i = 0, 1. Therefore, the expected
cost achieved by (τ ∗, δ∗,ϕ∗) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τ ∗, δ∗,ϕ∗)

}

=

K∑
k=1

πk(t1)ck

[(
k−1∑
i=1

E∗ (Ni)

)
+E∗ (Nk|H1)

]
.

(51)

By the asymptotic optimality property of the SALRT/SGLRT
for a single process (used in Algorithm 3), it follows that
EA3(Nk|Hi) ∼ E∗(Nk|Hi) for all k, for i = 0, 1 as
PFA
k → 0, PMD

k → 0. As a result, for sufficiently small
error probabilities, the solution (τA3, δA3,ϕA3) is to select
the components in the following order: 1, 2, ...,K, where the
components are tested by an asymptotically optimal sequential
test that achieves expected sample size EA3(Nk|Hi) for all
k, for i = 0, 1. Therefore, the expected cost achieved by
(τA3, δA3,ϕA3) is given by:

E

{
K∑

k=1

ckτk1{k∈H1} | (τA3, δA3,ϕA3)

}

=
K∑

k=1

πk(t1)ck

[(
k−1∑
i=1

EA3 (Ni)

)
+EA3 (Nk|H1)

]
.

(52)
Since EA3(Nk|Hi) ∼ E∗(Nk|Hi) for i = 0, 1 as PFA

k →
0, PMD

k → 0 for all k, the theorem follows. �
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D. Proof of Theorem 3

The structure of the proof is similar to the proof of Theorem
2. Hence, we provide a sketch of the proof, using notation
similar to that used in the proof of Theorem 2. Similar to
the proof of Theorem 1, it can be verified that the optimal
solution to (2) is to select the components in decreasing
order of πk(t1)ck/E

∗(Nk|H0), where the components are
tested by a sequential test that achieves expected sample size
E∗(Nk|Hi) for all k, for i = 0, 1. By the asymptotic optimality
property for a single process of the SALRT/SGLRT (used
in Algorithm 4), it follows that EA4(Nk|Hi) ∼ E∗(Nk|Hi)
for all k, for i = 0, 1 as PFA

k → 0, PMD
k → 0. As a

result, for sufficiently small error probabilities, the solution
(τA4, δA4,ϕA4) is to select the components in decreasing
order of πk(t1)ck/E

∗(Nk|H0), where the components are test-
ed by an asymptotically optimal sequential test that achieves
expected sample size EA4(Nk|Hi) for all k, for i = 0, 1.
Similar to the proof of Theorem 2, comparing the objec-
tive functions achieved by (τ ∗, δ∗,ϕ∗) and (τA4, δA4,ϕA4)
proves the theorem. �
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