Title and Subtitle: Development and Characterization of a Bidirectional Optical Multipass Cavity for Counter-propagating High Energy Pulsed Laser Applications

Authors: Jacob Graul, Taylor Lilly, and Andrew Ketsdever

Performing Organization Name(s) and Address(es):
Air Force Research Laboratory (AFMC)
AFRL/RQRS
1 Ara Drive.
Edwards AFB CA 93524-7013

Sponsoring / Monitoring Agency Name(s) and Address(es):
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

Distribution / Availability Statement:
Distribution A: Approved for Public Release; Distribution Unlimited. PA#12839

Abstract:
Briefing Charts for the American Institute of Aeronautics and Astronautics Rocky Mountain Section Technical Symposium, Denver, Colorado in 26 October 2012.
Development and Characterization of a Bidirectional Optical Multipass Cavity for Counter-propagating High Energy Pulsed Laser Applications

Jacob Graul, ERC Inc., Edwards AFB, CA 93524, USA,
Taylor Lilly, University of Colorado, Colorado Springs, CO 80918, USA
Andrew Ketsdever, Air Force Research Laboratory, Edwards AFB, CA 93524, USA
Overview

- Multipass cavity was developed for counter-propagating high energy pulsed laser applications
- Cavity was designed to potentially allow for repeated temporal and spatial superposition of counter-propagating pulses
 - Trap: One-time change in pulse polarization state
 - Maintain: Optical focusing system employed
 - Optimized: by simulation
 - Experimentally characterized
Optical Cavities

• **Cavities**
 - provide a closed path for circulation of light
 - Function follows form:
 1.) Active & resonant
 2.) Passive & resonant /nonresonant

• **What can they do for me?**
 - Increased laser pulse repetition rates
 - Increased laser-gas energy deposition efficiency
 - Increased absorption path length
 - Increased sensitivity in spectroscopy studies
 - Variety of energy storage & amplification schemes
Prior Multipass Cavity Applications

1. Potential non-resonant laser gas heating
2. X- and γ-ray production using Inverse Compton scattering
3. Chemical Kinetics using Infrared Multiple Photon Dissociation (IRMD)
4. Raman scattering for molecular structure studies
5. Cavity ring-down laser absorption spectroscopy (CRDS)
6. Laser absorption spectroscopy

Experimental Cavity Requirements

Experimental

• For the requirement of this study, any potential cavity design must:
 – Efficiently trap/contain pulsed laser light at 532 nm
 – Simultaneous injection pulses
 – Exhibit high damage thresholds
 – Spatial/temporal superposition
 – Reduce beam diameters down to ~50 μm

Implementation

• Problem: Time reversibility
• Possible solutions
 1. Laser Resonant Cavity
 2. Long path length
 3. Modification and Trap
 a. Color Change Cavity
 b. One-time Polarization Change
• Selected Approach: Pockels Cell
 – Linear electro optic Pockels effect
 – Introduces net relative phase shift between orthogonal components
 – Can act as a dynamic $\lambda/2$ or $\lambda/4$ wave plate/dynamic phase retarder/frequency shifter

\[T_0 = T_1 \]

Mirror

0°
Single Pockels Cell Cavity Design

Mohamed et al.

- Pockels effect is a linear electrooptic effect
- Birefringence
 - Index of refraction
 \[n = \frac{c}{v} \]
- Pockels cell used for dynamic phase retardation
- 2 important voltages

\[V_{\lambda/2} = \frac{\lambda}{2n_3^3 r_{63}} \]

\[V_{\lambda/2} \text{ for KD*P at 532 nm } \approx 3.6 \text{ kV} \]
Single Pockels Cell Cavity Design

- **Conditioning wave plates**
- **Faraday Isolator**
 - Faraday effect
 - Faraday rotator & 2 Glan polarizers
 - Non-reciprocal rotation
 - One-way valve
- **Galilean Telescopes**
- **PBCs**
 - p/s polarization
 - Differential response
- **Pockels Cell/Driver**
 - @ $V_{A/2}$ on 1st pass
 - V=0 on subsequent passes
 - One-way valve
- **Keplerian**
Implementation

Experimental Setup

Equipment

- Laser(s)
 - Nd:YAG 532 nm, 5 ns FWHM, Continuum Minilite/Powerlite
- Cavity length 2.4284 m (96 in); rt pulse time 8.09 ns
- Timing Control
 - SRS DG535 x3
- Pockels cell/driver
 - Leysop Ltd. UPC 6 mm aperture; 250 ps rise, 6 ns width; KD*P 650MW/cm2
- Intra- and extra-cavity focusing system
- Knife Edge System
Results: Spatial Superposition

Vertical Knife Beam Centers

R² = 0.9713

R² = 0.9974

Vertical Knife Beam Diameters

Div Centers

Conv Centers

Linear (Div Centers)

Horizontal Knife Beam Centers

R² = 0.9982

R² = 0.991

Horizontal Knife Beam Diameters

Div Centers

Conv Centers

Linear (Div Centers)

Vertical Knife Data: Beam Superposition

Horizontal Knife Data: Beam Superposition

Distribution A – Approved for public release; distribution is unlimited
Results: Temporal Superposition

- **Temporal pulse superposition**
- Greater than 40 rt
 - 532 nm, 5 ns FWHM, Continuum Minilite, 4 mJ
- Cavity length 2.4284 m (96 in); period 8.09 ns
- Pockels cell/driver
 - Leysop Ltd. UPC 6 mm aperture; 250 ps rise, 6 ns width
- Periodicity matches cavity
- PD
 - Active area .006 mm²
Results (continued)

3-D Plot of Roundtrip Amplitude as a function of Horizontal Translational Position and Time

PD Amplitude [V]

Position [mm]

Time [nanoseconds]
Results (continued)
Summary

• First bidirectional cavity for counter-propagating high energy laser pulses
 – Temporal superposition confirmed within cavity on every round trip
 – Spatial superposition confirmed on 1st R.T.
 – 40+ R.T. observed for 4 mJ initial pulse energy
 – Cavity indicates a dual-stability condition
 – 8.3 fold increase in energy deposition ‘opportunity’ over the single pulse/single pass case