Award Number: W81XWH-10-1-0452

TITLE: tRNA and its activation targets as biomarkers and regulators of breast cancer.

PRINCIPAL INVESTIGATOR: Tao Pan, Ph.D. Marsha Rosner, Ph.D.

CONTRACTING ORGANIZATION: The University of Chicago
Chicago, IL 60637

REPORT DATE: September 2013

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
4. TITLE AND SUBTITLE
tRNA and its activation targets as biomarkers and regulators of breast cancer.

6. AUTHOR(S)
Tao Pan, Marsha Rosener

E-Mail: taopan@uchicago.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Chicago
Chicago, Illinois 60637

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

14. ABSTRACT
Breast cancer refers to a variety of types that each derive from distinct causes and merit different treatments. It is crucial to develop new classes of molecules that target heretofore unexplored cellular mechanisms, so that tumors not responsive to current treatments might be responsive to new routes of therapy. We are exploring a previously underappreciated avenue that can lead to precise identification of breast cancer sub-types to improve treatment options and identify new therapeutic targets. The genetic code is decoded by transfer RNA (tRNA). We discovered that breast tumors have high levels of tRNA and tRNA over-expression has an aberrant pattern suggesting that tumors use tRNA over-expression to mis-regulate the synthesis of some crucial proteins. Further, we found that a specific tRNA is an oncogene in breast cells suggesting that tRNA over-expression could even originate the development of breast cancer. We have been identifying the mis-regulation targets of tRNA over-expression in breast cancer to serve as biomarkers and establishing the potential of targeting tRNA as a new route for breast cancer treatment.

15. SUBJECT TERMS
tRNA, target, biomarker, breast cancer

16. SECURITY CLASSIFICATION OF:

a. REPORT	U
b. ABSTRACT	U
c. THIS PAGE	U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
16

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>BODY</td>
<td>1</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>5</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>N/A</td>
</tr>
<tr>
<td>Appendices</td>
<td>7</td>
</tr>
</tbody>
</table>
INTRODUCTION
Transfer RNAs (tRNAs) are small non-coding RNAs that read the genetic code in protein synthesis. They are essential for the proliferation, fitness, and adaptation of the cell. Previously, we showed that elevated tRNA levels are characteristic of breast cancer cells (Pavon-Eternod, M., Gomes, S., Geslain, R., Dai, Q., Rosner, M.R. and Pan, T. (2009) tRNA over-expression in breast cancer and functional consequences. *Nucleic Acids Res.*, **37**, 7268-7280). Furthermore, over-expression of one specific tRNA - the initiator methionine tRNA - leads to increased cell proliferation and altered tRNA expression in a non-cancer breast epithelial cell line. Based on these results, we hypothesized that tRNA over-expression alters the translational regulation of key genes involved in cancer development and progression. We aim to identify the protein or RNA targets that are mis-regulated upon tRNA over-expression, and to determine the effect of tRNA over-expression on tumor initiation and progression.

BODY
This collaborative project involves equal efforts between the labs of both PIs. In general, the molecular work was performed in the Pan lab, and the cellular work was performed in the Rosner lab.

Task 1 – Identify gene targets whose translation is mis-regulated upon tRNA over-expression.

a) Establish the method: ribosome profiling. → Completed successfully.

We adapted ribosome profiling to identify gene targets whose translation is mis-regulated upon tRNA over-expression. This method, first developed and published in 2009, has been highly successful in the simultaneous identification and quantitation of the translational activity for all mRNAs in the cell.

Our ribosome profiling protocol in human cells includes the following steps: 1) Prepare cell lysate from human cells at ~90% confluency. 2) Digest the cell lysate with a ribonuclease that degrades only the mRNA segments not bound by the ribosome. mRNA segments bound by the ribosome, typically 30-40 nucleotides long, are protected from degradation. 3) Load the digested cell lysate on a sucrose gradient to separate the ribosome protected mRNA segments from other RNAs. The ribosome protected mRNA segments are found in the

Fig. 1. *The experimental workflow of ribosome profiling.* Sucrose density gradient traces at step 3 and the gel images at steps 4 and 5 are our actual experimental data for a breast epithelial cell line.
monosome peak. 4) Isolate total RNA from the monosome peak. 5) Purify RNA fragments between 30 and 40 nucleotides long, the expected size for ribosome protected mRNA segments. 6) Deep-sequence these RNA fragments to identify sites of active translation (Figure 1).

We first applied this protocol to a breast epithelial cell line, 184 B5. The sequencing statistics are very similar to those obtained in a previous application, confirming the method has been successfully adapted in our laboratory (Figure 2A). We obtained approximately 13 million reads, with 150,000 unique sequences. As expected, a large number of reads map to rRNA and tRNA sequences. About 6% of the reads mapped to mRNA sequences, similar to those in the literature (Figure 2B) – these reads will be the focus of our analysis.

Fig. 2. Ribosome profiling in breast cells: statistics and mapping to genome. (A) Statistics. (B) Pie charts showing all categories.

b) Identify gene targets whose translation is mis-regulated upon tRNA over-expression. ➔ Completed successfully.

To measure changes in translation upon tRNA over-expression, we initially planned to use stable cell lines over-expressing the initiator methionine tRNA (tRNA$_{i}^{\text{Met}}$) or the elongator methionine tRNA (tRNA$_{e}^{\text{Met}}$). Due to unexpected technical difficulties in maintaining these cell lines, we amended our experimental strategy to compare translation between non-tumorigenic breast cell lines and breast cancer cell lines. From our previous studies, we know that tRNA levels are highly elevated in the breast cancer relative to the non-cancer breast cell lines. We applied ribosome profiling to two non-cancer breast epithelial cell lines – 184 B5 and 184 A1 – and three breast cancer cell lines – BT-474, MDA-MB-231 and 1833 (Figure 3). Furthermore, we focused our analysis on differences in the ribosome density of 5'UTR regions since tRNA levels could significantly affect translational

Fig. 3. Five cell lines used and ribosome profiling results. (A) Characteristics of the five cell lines, ranging from non-tumorigenic to metastatic. (B) Plots of mRNA matches showing the relative abundance of CDS versus UTR reads.
regulation for genes that contain upstream open reading frames (uORFs) in their 5’ UTR.

We found that the ribosome density in the 5’ UTR seems to vary significantly among the group of cell lines with similar tumorigenic properties (Figure 4). The five lines we studied can be classified into three groups: 184A1 and 184B5 are non-tumorigenic (NT), BT474 is from a primary, non-metastatic tumor (TP), MDA-MB-231 and 1833 are derived from metastatic tumors (TM). Comparing these three groups shows a surprising, unexpected result: the NT cells have similar ribosome density in 5’UTR among themselves, the TP cell has significantly lower ribosome density in 5’UTR than NT, but the TM cells have significantly higher ribosome density in 5’UTR than TP. Differential ribosome density in 5’UTR was also observed in the differentiation of mouse embryonic stem cells: compared to stem cells, differentiated cells have a significantly lower ribosome density, suggesting a lower degree of translational regulation through 5’ UTR after differentiation. Therefore, our result suggests that a primary tumor may also have decreased global regulation of translation when compared to non-tumorigenic or to metastatic breast cancer cells.

We next performed ribosome profiling of two cell lines derived from the same parent cell to directly address the idea of differential translation regulation as a function of tumorigenic status (Figure 5). This test was necessary because the five lines we used above for ribosome profiling are derived from different people and therefore may have significant genetic differences. The line shCTGL-5 is highly metastatic, whereas shHMAG-6 is similar to a primary tumorigenic cell. We observed the same global difference as our previous result predicted, indicating that translational regulation has decreased significantly in primary breast tumors.

We categorized genes that show significant density in the 5’ UTR. Figure 6
Fig. 6. Gene categories that show significant ribosome density in 5’ UTR. Hits in 5’UTRs of >1,400 different gene transcripts are present in this non-tumorigenic line.

shows such a list from a non-tumorigenic line. It is clear that these genes are distributed among a wide range of proteins performing distinct functions in the cell.

Task 2 – Validate results for selected genes identified in task 1. → Still in progress.

As described under task 1b, we are in the process of completing the analysis of 5’UTR-derived translational regulation across non-tumorigenic and tumorigenic cells. Our focus will be on these genes that are known to be involved in breast cancer development and proliferation.

We are validating changes in translational mis-regulation of several breast cancer relevant genes using luciferase reporter constructs. These results should enable validation of several potential gene regulation targets related to tumorigenic states.

Task 3 – Examine tumor initiating cell properties upon tRNA over-expression.

a) Test whether tRNA over-expression promotes cell proliferation and self-renewal in breast cells. → Completed successfully (publication attached).

Pavon-Eternod et al.: Overexpression of Initiator Methionine tRNA Leads to Global Reprogramming of tRNA Expression and Increased Proliferation in Human Epithelial Cells, RNA 19, 461-6 (2013).

Abstract: Transfer RNAs (tRNAs) are typically considered housekeeping products with little regulatory function. However, several studies over the past 10 years have linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we overexpressed tRNA\textsubscript{Met} in two human breast epithelial cell lines. We then determined tRNA abundance changes and performed phenotypic characterization. Overexpression of tRNA\textsubscript{Met} significantly altered the global tRNA expression profile and resulted in increased cell metabolic activity and cell proliferation. Our results extend the relevance of tRNA overexpression in human cells and underscore the complexity of cellular regulation of tRNA expression.

b) Test whether tRNA over-expression is associated with BT-IC differentiation. → Unable to complete due to unexpected difficulties maintaining tRNA overexpression.

Unexpectedly, we run into significant technical difficulties to maintain tRNA overexpression in our studies. We tried three approaches to over-express initiator-tRNA: transient transfection with tRNA transcripts (time required: one week), transient transfection with tRNA vector (time required: one week), and stable transfection with tRNA vector (time required: two months). Only stable transfection led to appreciable overexpression which enabled the characterization described under Task 3a. This result makes sense: tRNAs are derived from multiple
gene copies and are already expressed at very high levels, so that increasing the existing amount in a cell even by ~1.5-fold requires a very high and sustained level of expression. For example, the initiator-tRNA has ten copies in a human genome and a breast cancer cell has at least one million initiator-tRNA molecules to begin with. The 1.5-2 fold overexpression we were able to accomplish requires an additional expression of over 500,000 molecules per cell, several orders of magnitude higher than what is typically needed for endogenous mRNA expression.

To our surprise and dismay, these cells lost tRNA overexpression over a period of several weeks. We repeatedly attempted to re-establish cell lines that overexpress initiator-tRNA (we tried a total of four times, requiring ~ two months each time), and the same thing happened: initiator-tRNA overexpression was lost rapidly after several weeks. At this time, we do not understand the reason for this inability of maintaining overexpression of initiator-tRNA. Using our initial tRNA-transfected cells, we did a number of assays including soft agar growth and mammosphere assays which were consistent with the idea that overexpression of tRNA promotes anchorage-independent cell growth and tumor initiation. Therefore we did not attempt to proceed further with this task which required a much more elaborate treatment course of mammosphere cultured cells.

Task 4 – Examine the effect of tRNA over-expression on tumor formation and metastasis in mice.

⇒ **Unable to complete due to unexpected difficulties maintaining tRNA overexpression.**

a) Test whether tRNA over-expression promotes invasion.
b) Determine the effect of tRNA over-expression on human BT-IC tumor formation and lung metastasis in mice.

Please see the description under Task 3b.

KEY RESEARCH ACCOMPLISHMENTS

⇒ Established a ribosome profiling method to look at active translation in human breast cancer cells.
⇒ Demonstrated that over-expression of initiator-tRNA leads to increased cell proliferation in a breast epithelial cell line.
⇒ Applied the ribosome profiling method to a panel of cancer and non-cancer breast cell lines, in order to identify genes whose translation is mis-regulated upon tRNA over-expression.
⇒ Determined that cells at distinct tumorigenic states have significantly different translational regulation through 5’ UTR.

REPORTABLE OUTCOMES

⇒ A manuscript describing the results under Task 3a has been published in *RNA* 19, 461-466 (2013). Overexpression of Initiator Methionine tRNA Leads to Global Reprogramming of tRNA Expression and Increased Proliferation in Human Epithelial Cells. Authors: Pavon-Eternod, M., S. Gomes, M.R. Rosner & Tao Pan.
⇒ Poster presentation at the Era of Hope meeting in Orlando, FL, August 2011.
⇒ Ribosome profiling protocol for human breast cancer cells.
→ Constructs for the over-expression of tRNA_{\text{Met}}^{i} and tRNA_{\text{Met}}^{e} in human cells.

CONCLUSION
Our results show that tRNA over-expression results in increased cell proliferation and greater self-renewal potential in human breast cells. We have adapted a ribosome profiling method and have applied it to a panel of breast cancer and non-cancer breast cell lines. We have already determined that translational regulation through 5’ UTR is significantly different depending on the tumorigenic state of breast cells. We are working to validate genes whose translation is altered in breast cancer cells.

Chemotherapy, surgery, and radiotherapy are the current methods of choice to treat breast cancer. The effectiveness of these approaches is unquestionable, but they severely impact the physical and emotional health of the patient. Tremendous efforts are underway to precisely diagnose breast cancer subtypes and predict survival outcomes. This would allow the application of the most effective treatments possible while avoiding unnecessary therapies. We are working on identifying protein or RNA targets that are mis-regulated due to the high levels of tRNA found in breast cancer cells. These targets could serve as unique biomarkers in breast cancer. We also assess the physiological effects of tRNA over-expression on the development and progression of breast cancer. Our effort could establish the potential of tRNA and its regulatory targets as a new class of therapeutic targets.

Biography of all publications and meeting abstracts:
*Publication:
Pavon-Eternod, M., S. Gomes, M.R. Rosner* & Tao Pan*; Overexpression of Initiator Methionine tRNA Leads to Global Reprogramming of tRNA Expression and Increased Proliferation in Human Epithelial Cells, *RNA* 19, 461-466 (2013).

Meeting abstracts:
Era of Hope 2011: tRNA and its activation targets as biomarkers and regulators of breast cancer. Mariana Pavon Eternod, Suzana Gomes, Tao Pan, Marsha Rosner

List of personnel receiving pay from the research effort:
1. Tao Pan (PI).
3. Mariana Pavon Eternod (Graduate student, worked on Tasks 1, 2, and 3).
4. Dong-hui Zhou (Research Associate, worked on Task 2).
5. Guanquan Zheng (Graduate student, worked on Task 1).
6. Thomas Jones (Research Associate, worked on Task 2).
7. Susanna Gomes (Senior research tech, worked on Tasks 3 and 4)
8. Jiyoung Lee (Research Associate, worked on Tasks 3 and 4).
Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells

MARIANA PAVON-ETERNOD,1 SUZANA GOMES,2 MARSHA R. ROSNER,2,3 and TAO PAN1,3

1Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
2Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, USA

ABSTRACT

Transfer RNAs (tRNAs) are typically considered housekeeping products with little regulatory function. However, several studies over the past 10 years have linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we overexpressed tRNAi Met in two human breast epithelial cell lines. We then determined tRNA abundance changes and performed phenotypic characterization. Overexpression of tRNAi Met significantly altered the global tRNA expression profile and resulted in increased cell metabolic activity and cell proliferation. Our results extend the relevance of tRNA overexpression in human cells and underscore the complexity of cellular regulation of tRNA expression.

Keywords: initiator methionine tRNA; tRNA; tRNA microarrays

INTRODUCTION

Misregulation of components of the translation machinery is characteristic of many types of tumor cells and can lead to malignant transformation (Bjornst and Houghton 2004; Pandolfi 2004). Abnormally high levels of RNA polymerase III transcripts, including tRNA and 5S rRNA which are directly involved in translation, are found in a wide variety of transformed cell types (Marshall and White 2008). These cell types include cell lines transformed by DNA tumor viruses (such as hepatitis B virus), RNA tumor viruses (such as human T-cell leukemia virus 1), and chemical carcinogens. These observations have also been confirmed for tumors in situ by RT-PCR, Northern blot, and more recently by microarray analysis (Chen et al. 1997a,b; Winter et al. 2000; Pavon-Eternod et al. 2009). We have previously reported that tRNA levels are elevated in breast cancer and multiple myeloma cell lines (Pavon-Eternod et al. 2009; Zhou et al. 2009). Though abnormal RNA polymerase III activity has long been associated with cancer, it remains unclear whether it contributes to malignant transformation or is simply a byproduct of the cell’s cancer state.

Due to its unique function in translation initiation, we are particularly interested in the role of the initiator methionine tRNA (tRNAi Met) in cancer. An appealing possibility is that overexpression of tRNAi Met could alter the translational regulation of key genes involved in tumorigenesis. The effect may be both quantitative and qualitative: Overall protein synthesis may be increased, and mRNAs encoding cell-cycle or anti-apoptotic proteins (such as Myc or cyclin D1) may be preferentially translated. To explore this question in the context of breast cancer, we set out to overexpress tRNAi Met in human breast epithelial cell lines. Overexpressing tRNAs in human cell lines, however, proved more challenging than we had expected. Here we present our experimental approach to tRNA overexpression and a phenotypic characterization of the resulting cell lines (Fig. 1). We find that tRNA overexpression in human cells requires the generation of stable cell lines, and that only modest increases (1.4- to 2.2-fold) can be achieved. Remarkably, overexpression of tRNAi Met in both epithelial cell lines changed the levels of other tRNAs, reprogramming the global tRNA expression profile. tRNAi Met overexpression also resulted in increased metabolic activity and cell proliferation. Our results underscore the need for caution in interpreting the effects of individual tRNA overexpression, as little is known about the regulation of individual tRNA expression in the cell.
RESULTS AND DISCUSSION

Experimental strategies for tRNA overexpression

Because tRNAs are generally considered non-regulatory housekeeping genes, there are no well-established methods for manipulating the levels of specific tRNAs in mammalian cells. Furthermore, because tRNAs are highly abundant, overexpression even by twofold would require an additional transcription of \(\sim 1,000,000 \) molecules of tRNA\(_{\text{Met}}\) per cell (Pavon-Eternod et al. 2009). In the past, exogenous tRNA has been introduced into cells either as DNA or directly as RNA (Carbon et al. 1983; Buvoli et al. 2000). We tried three different approaches to increase tRNA\(_{\text{Met}}\) levels in two human cell lines: transient transfection with tRNA transcripts, transient transfection with a DNA vector containing the tRNA gene, and stable transfection with a DNA vector containing the tRNA gene. We selected the human breast epithelial cell lines 184A1 and MCF10A for these experiments for the following reasons: (i) They are non-tumorigenic cell lines, (ii) our previous work has shown 184A1 and MCF10A have relatively low levels of tRNA (Pavon-Eternod et al. 2009), and (iii) they are readily transfectable.

Our first approach relied on transient transfection of tRNA\(_{\text{Met}}^\text{184A1}\) and tRNA\(_{\text{Met}}^\text{MCF10A}\) transcripts. In vitro transcribed tRNAs have been reported to be active in translation when transfected into eukaryotic cells. Indeed, they have been used to insert unnatural amino acids into proteins and to induce amino acid substitutions resulting in widespread proteome damage in mammalian cells (Kohrer et al. 2001; Geslain et al. 2010). In vitro transcribed tRNAs are simple to synthesize and allow direct control over the amount of tRNA transfected. However, the question remains whether they are truly fully functional in the cell. In vitro transcribed tRNAs lack the post-transcriptional modifications characteristic of endogenous tRNAs that serve as identity determinants, contribute to tRNA stability, and impact translational accuracy (Alexandrov et al. 2006; Agris et al. 2007; Waas et al. 2007; Phizicky and Hopper 2010). This is particularly relevant for our tRNA of interest: tRNA\(_{\text{Met}}^\text{184A1}\) transcripts lacking the m\(^1\)A\(_8\) modification are subject to nuclear polyadenylation and rapid degradation (Kadaba et al. 2004, 2006; Vanacova et al. 2005).

In any case, we found that in vitro transcribed tRNAs were toxic to MCF10A cells when transfected at high enough concentrations to detectably increase cellular tRNA levels (data not shown).

Our second approach relied on transient transfection of a DNA vector containing a tRNA\(_{\text{Met}}^\text{184A1}\) or tRNA\(_{\text{Met}}^\text{MCF10A}\) gene into MCF10A cells. Fragments containing the tRNA gene were PCR-amplified from human genomic DNA and cloned into the pTarget Mammalian Expression Vector. The fragments contained 200 base pairs each upstream of and downstream from the endogenous tRNA gene, which should include all the regulatory elements necessary for tRNA transcription (Geiduscheck and Kassavetis 2001; Dieci et al. 2007). This approach is experimentally straightforward and allows the transfection of large amounts of DNA without inducing toxicity. High-copy plasmids have been successfully used to induce tRNA overexpression in yeast and bacteria (Borel et al. 1993; Anderson et al. 1998; Sorensen et al. 2005). Again, transfection with our tRNA vectors did not result in any detectable increase in tRNA levels (data not shown).

Our third approach involved the generation of stable cell lines after transfection with our tRNA\(_{\text{Met}}^\text{184A1}\) and tRNA\(_{\text{Met}}^\text{MCF10A}\) vectors, and empty control vectors. Using this approach, we successfully generated an 184A1 cell line and an MCF10A cell line overexpressing tRNA\(_{\text{Met}}\) relative to the control cell line (Fig. 2). From this point forward, we designate these cell lines 184A1–tRNA\(_{\text{Met}}^\text{184A1}\) and MCF10A–tRNA\(_{\text{Met}}^\text{MCF10A}\). The levels of tRNA\(_{\text{Met}}\) increased by 1.4- and twofold, respectively, as measured by tRNA microarrays. This level is comparable to that observed in breast cancer cell lines relative to non-tumorigenic breast epithelial cell lines (Pavon-Eternod et al. 2009). We were, however, unable to generate either a 184A1 or MCF10A cell line overexpressing tRNA\(_{\text{Met}}\) relative to the control cell line (Fig. 2A).

To confirm our microarray data, we analyzed tRNA\(_{\text{Met}}^\text{184A1}\) and tRNA\(_{\text{Met}}^\text{MCF10A}\) content in our 184A1 cell lines (control, 184A1–tRNA\(_{\text{Met}}^\text{184A1}\) and MCF10A–tRNA\(_{\text{Met}}^\text{MCF10A}\)) by dot blot (Fig. 2B). In all cases, the microarray and dot blot data were in very good agreement. Our selective fluorophore labeling method requires that all tRNAs measured by microarrays contain 3’CCA (Pavon-Eternod et al. 2009) which is characteristic of all mature tRNAs. The agreement between microarray, which measures mature tRNA, and dot blot data, which measure mature and precursor tRNA, indicates that the observed tRNA\(_{\text{Met}}^\text{184A1}\) overexpression is primarily derived from mature tRNA.

tRNA\(_{\text{Met}}^\text{184A1}\) overexpression generates unique tRNA expression profiles

Unexpectedly, tRNA\(_{\text{Met}}^\text{184A1}\) overexpression induced a significant change in the levels of other tRNAs. Compared with the corresponding control line, median nuclear-encoded tRNA abundance increased by 1.4-fold in 184A1–tRNA\(_{\text{Met}}^\text{184A1}\) and 2.2-fold in MCF10A–tRNA\(_{\text{Met}}^\text{MCF10A}\), whereas median mitochondrial-
FIGURE 2. tRNA^{Met} overexpression generates unique tRNA expression profiles. (A) Individual tRNA abundances in 184A1–tRNA^{Met} and 184A1–tRNA^{Met} cell lines. Individual tRNA abundance values are shown for 184A1–tRNA^{Met} (black) and 184A1–tRNA^{Met} (gray) relative to an empty vector control cell line (set to 1, red line). A value of 1 indicates no change, a value <1 indicates a decrease, and a value >1 indicates an increase in tRNA levels relative to the control cell line. Data are grouped according to amino acid type. The tRNA^{Met} and tRNA^{Met} probes are labeled Met-i and Met-CAU, respectively. Where error bars are present, values are averages from dye-swapped experiments and error bars indicate standard deviation. One sample t-test was performed to determine the statistical significance of the changes: *P*-value <0.05. (B) Validation of microarray data by dot blot. As in A, relative tRNA abundance is defined as the ratio between the indicated cell line and the control cell line. Relative tRNA abundance values obtained by microarray (white) and dot blot (black, average of three replicates, error bars indicate standard deviation) are plotted for tRNA^{Met} and tRNA^{Met} in the three 184A1 cell lines generated for this study (control, 184A1–tRNA^{Met} and 184A1–tRNA^{Met}). (C) Median tRNA abundance upon tRNA^{Met} over-expression. Median values for 184A1–tRNA^{Met} and MCF10A–tRNA^{Met} relative to control cell lines (set to 1, red line). Median values for nuclear-encoded tRNAs (gray) and mitochondrial-encoded (white) tRNAs are shown. The upper and lower bars indicate the range of individual tRNA abundances. (D) Heat map of tRNA abundances upon tRNA^{Met} overexpression. Relative tRNA abundance levels of nuclear and mitochondrial-encoded tRNAs in 184A1–tRNA^{Met} and MCF10A–tRNA^{Met} are shown as TreeView images. Data are grouped according to amino acid type. Green indicates a decreased level of expression, red indicates an increased level of expression, and black indicates no change in expression level relative to the reference sample. (E) Individual tRNA abundances in 184A1–tRNA^{Met} compared with MCF10A–tRNA^{Met}. Individual tRNA abundance values for 184A1–tRNA^{Met} and MCF10A–tRNA^{Met} are relative to the corresponding control cell lines. (F) Individual nuclear-encoded tRNA abundances in two breast cancer lines, MDA-MB-231 (left) and BT-474 (right) compared with 184A1–tRNA^{Met} and MCF10A–tRNA^{Met}. Individual tRNA levels for the two breast cancer cell lines, MDA-MB-231 and BT-474, are relative to the breast epithelial MCF10A cell line. Individual tRNA levels for the 184A1–tRNA^{Met} and MCF10A–tRNA^{Met} cell lines are relative to the corresponding control cell lines.
encoded tRNA abundance increased by 1.3-fold in 184A1–tRNA\textsubscript{Met} and 1.7-fold in MCF10A–tRNA\textsubscript{Met} (Fig. 2C). These changes are more striking for individual tRNAs (Fig. 2A,D). Due to the nature of our microarray measurements, we express individual tRNA abundances in 184A1–tRNA\textsubscript{Met} and MCF10A–tRNA\textsubscript{Met} relative to the corresponding control cell line. While some tRNAs are increased up to fourfold upon tRNA\textsubscript{Met} overexpression, others are not affected. Remarkably, tRNA\textsubscript{Met} overexpression generates very similarly altered expression profiles for nuclear-encoded tRNAs in both 184A1 and MCF10A cell lines (\(R^2 = 0.57\), Fig. 2E).

We also compared whether the tRNA expression profiles induced by tRNA\textsubscript{Met} overexpression in breast epithelial lines are similar to those measured in breast cancer cell lines. Our previous study of tRNA expression in breast cancer revealed that tRNA overexpression is characteristic of breast cancer cells, and that this overexpression is highly selective based on tRNA identity (Pavon-Eternod et al. 2009). We therefore plotted tRNA levels (relative to the breast epithelial cell line MCF10A) in two breast cancer cell lines, MDA-MB-231 and BT-474, vs. the tRNA levels (relative to the corresponding control cell line) in our 184A1–tRNA\textsubscript{Met} and MCF10A–tRNA\textsubscript{Met} cell lines. We find a very poor correlation between the tRNA levels in bona fide breast cancer cell lines and the tRNA levels induced by tRNA\textsubscript{Met} overexpression (\(R^2 < 0.15\) in all cases) (Fig. 2F). While the tRNAs carrying charged and polar amino acids were consistently among the most overexpressed tRNAs in the breast cancer cell lines examined, we observe no such trends in our 184A1–tRNA\textsubscript{Met} and MCF10A–tRNA\textsubscript{Met} lines.

Initiator methionine tRNA overexpression leads to increased cell metabolism and proliferation

Elevated tRNA levels are characteristic of breast cancer cells (Pavon-Eternod et al. 2009) which often exhibit altered metabolic activity and unregulated growth compared with non-cancer cells. We therefore measured the metabolic activity and cell proliferation of 184A1–tRNA\textsubscript{Met} relative to the 184A1–control cell line (Fig. 3). We also included the 184A1–tRNA\textsubscript{Met} cell line as an additional control: Even though tRNA\textsubscript{Met} expression was not increased in this line as we had expected, we detected punctual changes in the levels of several other tRNAs (such as tRNA\textsubscript{Leu(UAA)} and tRNA\textsubscript{Glu(CUC/UUC)}) (Fig. 2A), which may have an effect. We first measured the metabolic activity using two assays: Calcein AM, which relies on the activity of cytoplasmic esterases, and WST1, which relies on the activity of mitochondrial dehydrogenases. Cytosolic metabolic activity was measured by Calcein AM, which relies on the activity of cytoplasmic esterases. Where error bars are indicated, assays were performed in triplicate and the error bars indicate standard deviation. Cell proliferation was measured over 5 d by Hoechst DNA staining. The assays were performed in triplicate; error bars indicate standard deviation.

Concluding remarks

In our experience, overexpressing a specific tRNA in human cell lines is not trivial. Of three possible approaches attempted by us, only one was successful: the generation of stable cell lines after transfection with a DNA vector containing the tRNA gene. Even so, we were able to generate cell lines stably overexpressing the desired tRNA for only one of two tRNAs. While we successfully generated stable cell lines overexpressing tRNA\textsubscript{Met}, we were unable to generate stable cell lines overexpressing tRNA\textsubscript{Met} to any detectable level. This may be due to some intrinsic properties of tRNA\textsubscript{Met}, or other random factors such as the site of integration and copy number. Our results also indicate that manipulating the levels of one specific tRNA—in this case tRNA\textsubscript{Met}—significantly affects the levels of other tRNAs in the cell, suggesting some kind of feedback regulatory mechanism in the cell. Remarkably, tRNA\textsubscript{Met} overexpression in two different cell lines resulted in similar patterns of tRNA expression. We expect that the tRNA expression profile induced by overexpressing a specific tRNA is dependent on many factors, including but not limited to the identity of the tRNA being introduced, the genetic background of the cell, and the integration sites. Regardless, care must be taken in attributing phenotypic changes to overexpression of an individual tRNA. The increase in metabolic
activity and cell proliferation we measure in our 184A1–
tRNA_{1}^{\text{Met}} cell line may indeed be due to tRNA_{1}^{\text{Met}} overexpression,
but also to overexpression of a number of other tRNAs
or even to globally increased tRNA levels.

Our findings highlight the fact that little is known about
the regulation of individual tRNA expression in the cell,
and how cells respond to perturbations in tRNA levels. It is
generally believed that tRNA transcription via RNA polymer-
ase III is globally regulated in response to nutrient availability
and other environmental signals, in coordination with rRNA
transcription via RNA polymerase I. Current models hold
that transcription at tRNA genes is coordinately regulated
by shared transcription factors, acting at highly related pro-
moter sequences (Phizicky and Hopper 2010). This view
does not account for the tissue-specific differences in individ-
ual tRNA expression or the differential overexpression of indi-
vidual tRNA species in breast cancer cells (Dittmar et al.
2006; Pavon-Eternod et al. 2009). A systematic study of indi-
vidual tRNA expression is required to elucidate the function-
al significance and underlying regulatory mechanisms.

MATERIALS AND METHODS

DNA vectors

Fragments containing tRNA genes were PCR-amplified from hu-
man genomic DNA, using the following primer pairs: 5′-TGAG
TTGCGCAACCTGTTGGA and 5′-TTGGGCTGATCTCATGAAATCA
for tRNA_{1}^{\text{Met}}, 5′-AGCCGACCTCCCA and 5′-GTCCATT
CCTACACC for tRNA_{2}^{\text{Met}}. These fragments were cloned into the
pTarget Mammalian Expression vector (Promega) following the
manufacturer’s instructions.

Cell lines

All cell lines were purchased from American Type Culture Collec-
tion (ATCC). MCF10A and 184A1 were cultured in 1:1
DMEM/F12 with 2.5 mM L-Gln and 15 mM HEPES (Thermo
Scientific HyClone) supplemented with 10% FBS, 1% Penicillin/
Streptomycin, 5 μg/mL insulin, 10 ng/mL EGF, and 0.5
μg/mL hydrocortisone. MDA-MB-231 and BT-474 were cultured in RPMI
1640 1× medium (Thermo Scientific HyClone) supplemented
with 10% FBS and 1% Penicillin/Streptomycin.

To generate stable cell lines, cells were transfected using Amaxa
Nucleofector technology (LonzaBio). After 48 h, medium was sup-
plemented with 500 μg/mL G418 (Sigma) for selection. After 2–4
wk, G418 resistant colonies appeared and the G418 concentration
was scaled down to 200 μg/mL. Medium was supplemented with
200 μg/mL G418 for routine culture.

Transfer RNA microarrays

Total RNA for each cell line was obtained at 80%–90% confluency
using the miRVana miRNA Isolation Kit (Ambion). This procedure
isolates RNA species as short as 15 nt and is therefore not bias-
ed against tRNA. Total RNA quality was verified by agarose gel
electrophoresis.

The tRNA microarray experiment consists of four steps starting
from total RNA: (1) deacylation to remove any amino acids still at-
ached to the tRNA, (2) selective fluorophore labeling of tRNA, (3)
hybridization, and (4) data analysis. The tRNA microarray method,
including reproducibility and result validation by Northern blot, has
been extensively described in previously published papers (Dittmar

Dot blots

The following DNA probes, identical to those spotted on the tRNA
microarrays, were used to quantify tRNA_{1}^{\text{Met}} and tRNA_{2}^{\text{Met}} in total RNA:
5′-AGCAGAGTGGCCAGCCGAGGCTGCTGGCCCAT
AACCAGAGGCTGATGGATCGAAACCATCCTCTGCTA-3′ for
tRNA_{1}^{\text{Met}} and 5′-GCCYCCTTAAGCCAGYDGCCAGCTCA
GTCTCATATCTGAAGGCTCTGAGCCGCCCTCAGAGGGG
CA-3′ for tRNA_{2}^{\text{Met}}. Probes were 5′-radiolabeled using T4 polynucle-
otide kinase and γ–32P-ATP (Perkin-Elmer), followed by purification
on a denaturing urea polyacrylamide gel. To detect tRNA_{1}^{\text{Met}} and
tRNA_{2}^{\text{Met}} in total RNA, 10 ng total RNA was spotted and UV cross-
linked on a Hybond XL membrane (GE Healthcare). The membrane
was pre-hybridized in hybridization buffer (300 mM NaCl, 1% SDS,
20 mM phosphate buffer pH 7) for 30 min at room temperature, then
hybridized overnight at 60°C in hybridization buffer containing
100,000–300,000 cpm of the radiolabeled probe. The membrane
was then washed three times for 20 min at room temperature in
wash buffer (300 mM NaCl, 0.1% SDS, 20 mM phosphate buffer
pH 7, 2 mM EDTA). Phosphorimaging was used to quantify the
amount of tRNA_{1}^{\text{Met}} and tRNA_{2}^{\text{Met}} present in each sample.

Metabolic activity assays

Cells were plated in 100 μL medium in 96-well plate at the following
cell densities: 500, 1000, 2000, 4000, and 8000 cells/well. For WST
assays: 10 μL WST1 reagent (Roche 05 194 001) was added to each
well. Absorbance at 440 nm was read after 1 h incubation at
37°C. For Calcein AM assays: Cells were incubated in 200
μL Calcein AM (BD 354216) working solution (1 μM in HBSS) for
1 h at 37°C. Fluorescence was measured at 490ex/520em.

Cell proliferation assays

Cell proliferation was measured over 5 d using Hoechst DNA staining
(Invitrogen H1398). Cells were plated in 100 μL medium at 500
cells/well in 96-well plates. To stain DNA, cells were incubated in
100 μL of 0.1 μg/mL Hoechst solution in HBSS for 1 h at 37°C.
After washing with HBSS to remove any unbound dye, fluorescence
was measured 355ex/460em. Fluorescence is directly proportional to
the number of cells present, regardless of cell type.

Statistical significance

T-tests and one-sample t-tests were performed using GraphPad
QuickCalcs (http://www.graphpad.com/quickcalcs/contMenu/).

ACKNOWLEDGMENTS

This work was supported by a grant from CDMRP (W81XWH-10-
1-0452, 10-1-0453 to T.P. and M.R.R.). M.P.-E. was supported in

www.rnajournal.org 465
REFERENCES

Phizicky EM, Hopper AK. 2010. tRNA biology charges to the front.

