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A Large Scale, High Resolution Agent-Based Insurgency Model 

Abstract  
 
Concurrently with Department of Defense interests and requirements, recent years have seen the 
growth of technologies developed to model the complex political, military, economic, social, 
infrastructure, and informational systems in which we operate. In particular, agent-based models 
have garnered considerable attention for their ability to simulate large numbers of heterogeneous 
actors operating in complex environments. This report introduces an agent-based insurgency 
model capable of simulating hundreds of thousands of agents with complex cognitions and 
behaviors. Novel innovations for this model include the use of a hidden Markov process for 
simulating agent decision-making, the ability to actively or passively aid insurgency or 
counterinsurgency efforts, and the incorporation of environmental constraints on agent actions. 
To significantly improve performance, the distributed processing capability of a graphics 
processing unit was utilized. With this model, we are able to show several emergent behaviors 
such as localized outbursts of insurgent activity, dynamics representative of punctuated 
equilibrium, and tipping points leading to major insurgent activities. In addition, realistic 
historical data was generated and correlated with simulation results to demonstrate how these 
models can portray real insurgent environments. 
 
Keywords simulation · agent based model · insurgency · civil violence · graphics processing 

unit · distributed computing  
 
 
 
 
1.  Introduction  
 
There has been increasing Department of Defense (DOD) interest in developing human, social, 
cultural, and behavioral (HSCB) models for understanding the complex human terrain in which 
many operations take place (Joint Warfighting Center, 2007). HSCB Models can be employed 
for simulating mission scenarios, determining optimal strategies for disrupting terrorist networks, 
or training and mission rehearsal (Zacharius et al., 2008). Models can also be used for 
understanding or predicting the effects of diplomatic, military, and economic courses of action 
on the attitudes and behaviors of a population in a region of interest.  
 
For example, these models can provide a tool for assessing the response of both insurgent and 
civilian populations to the presence of friendly forces in a given military area. HSCB models for 
these types of social conflicts have been constructed in a variety of forms. These forms include 
statistical analyses of historical data (Gulden, 2002; Mannes, 2008), game theoretic models 
(Myerson, 1997; Goh et al., 2006), social network analyses (Krebis, 2002; Carley, 2004), and 
agent-based models (ABMs) (Epstein, 2002; Kuznar and Sedlmeyer, 2005). Although there are 
advantages and disadvantages to each approach (Parunak et al., 1998; Axtell, 2004), ABMs have 
seen considerable attention from the research and defense communities.  
 
ABMs permit valuable insights into the workings of complex dynamic systems that may not be 
otherwise adequately captured by other methods. However, the utility of such models is 
implicitly tied to their ability to accurately and realistically portray the real world. Computational 
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restrictions may prohibit the ability to simulate an environment featuring large numbers of 
heterogeneous agents responding to complex influences. Recent modeling efforts (Chaturvedi et 
al., 2005; Holcombe et al., 2006; Parker, 2007) have made started using distributed clusters of 
computers to simulate large quantities of agents. However, this approach requires expensive, 
immobile resources with often limited availability. A novel approach has been introduced 
(D’Souza et al., 2007; Lysenko et al., 2007) that makes use of the distributed processing 
capability of a graphics processing unit (GPU).  
 
In this report, we take advantage of this technique for simulating large-scale ABMs for a military 
regional insurgency application. The developed model simulates hundreds of thousands of agents 
that can exhibit a variety of cognitive and behavioral states as well as actions. The characteristics 
of this model are loosely based on the demographic and geophysical characteristics of Ramadi, 
Iraq, between April 2003 and August 2008.  
 
This model introduces several innovations aimed at increasing realism versus real world human 
behavior. A hidden Markov process is used to model agent cognitive and behavioral states. 
Participation in insurgency and counterinsurgency efforts can be both active and passive. In 
addition, agents interact with the environment through constraints imposed by the incorporation 
of satellite imagery. Combining these novel behavioral elements with the high-performance, 
large-scale capabilities offered through the GPU leads to a model that can simulate realistic 
insurgent and counterinsurgent activities. Further, with this improved realism, the potential of 
such models is improved for operations planning and analysis needs.. 
 
 
2.  Materials and Methods  
 
2.1. Background and General Framework 
 
ABMs employ a “bottom-up” approach (Epstein, 2006) to modeling, where heterogeneous 
entities (e.g. agents) are individually governed by personality- and cognition-dependent 
behavioral rule sets. Each agent responds to inputs from its local environment and some subset of 
other agents without centralized control. This approach to modeling offers an intuitive way of 
representing a large number of individual, distributed, and decentralized active objects, while 
making the complex human terrain explicitly more tractable. ABMs provide a flexible structure, 
whereby differing, complex, and nonlinear global behaviors can manifest through simple 
changes to an agent’s cognition, relationship with other agents, or ability to adapt through its 
observations. In addition, ABMs can more easily incorporate local (in space or time) 
characteristics in a system than a model based on aggregate statistical properties with centralized 
control. 
 
Recently, Epstein (2002) introduced the idea of using ABMs for understanding and analyzing 
human behavior in a civil violence paradigm. This model employed two types of agents: an agent 
that can become either an active insurgent or quiet, and a police agent that can arrest nearby 
active insurgents. Epstein showed that by using even simple rules governing these agents’ 
behaviors, complex nonlinear behaviors could emerge. Although not explicitly coded into the 
model, Epstein was able to show instances of individual deceptive behavior, local (in space/time) 
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outbursts characteristic of mobs or riots (DeNardo, 1985), salami tactics of corruption, and 
tipping points (Kuran, 1989; Gladwell, 2002) leading to widespread insurgent activities. In this 
work, a second model was also introduced where there are two culturally-combative groups. In 
this extension, he was able to show emergent behaviors ranging from peaceful coexistence to 
ethnic cleansings, and how an active police force could result in the materialization of regional 
safe havens where one group was protected from the other.  
 
Several other research efforts (Yiu et al. 2002; Taylor et al., 2004; Bulleit and Drewek, 2005; 
Kuznar and Sedlmeyer, 2005; Goh et al. 2006; Cui and Potok, 2007) have followed aimed at 
modeling similar insurgent environments. These models have introduced different motivations 
affecting agent actions, more complex movement behaviors, or capabilities of agents to “learn” 
from past experience. While these efforts are progressions toward more realistic simulations of 
social conflict, there are still limitations in these models.  
 
For this report, we attempt to address some of these shortfalls through several advancements. We 
similarly build upon the Epstein civil violence model to incorporate more complex decision-
making processes and behaviors of individual agents. In addition, the environment in which 
agents operate has geophysical characteristics previously unaccounted for in other insurgency 
models. Furthermore, the introduced model is capable of simulating very large numbers of 
agents within a very large regional environment by taking advantage of GPU distributed 
computing capabilities. The geophysical environment, agent demographics, and historical data 
are loosely connected to the social conflict environment in Ramadi, Iraq between April 2003 and 
August 2008. These novel extensions increase the viability of the model for portraying such a 
real world environment. 
 
2.2. Agent-based insurgency model 
For the created model, two different categories of actors are specified. One category makes up 
the general population of the region, and represents both those who are and are not actively 
rebellious. The other category represents the “peacekeeper” forces, which seek out and arrest 
actively rebellious agents. Agents making up the general population can dynamically and 
heterogeneously make decisions about whether they choose to participate in insurgency or 
counterinsurgency efforts. The peacekeeping force is modeled more simply with the constant 
objective to arrest active insurgents. Both categories of agents are capable of moving and 
performing actions against other agents in the system. 
 
2.2.1. Initial agent states 
As in Epstein (2002), an agent’s tendency to become an insurgent is governed by its feelings of 
grievance and its proclivity to take risks. We represent the agents’ personal decision-making 
process by a hidden Markov model (Schrodt, 2000; Weaver et al., 2001; Liu and Salvucci, 2001), 
whereby an agent has a hidden state and an observed (exposed) state (Figure 1). Markov 
processes have advantages for representing human decision-making in that they have a dynamic 
and stochastic structure, such that they are specifically designed to deal with the uncertainties 
common to human cognition and the influences of past behaviors (Schrodt, 2004). 
 
For this model, the hidden state represents an agent’s perceived grievance, while the exposed 
state determines its behavior at any given time. At the beginning of a simulation, an agent’s 
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grievance is a function of two parameters, meant to simply encapsulate an agent’s cognition. An 
agent’s initial perceived hardship H0 (e.g. physical, economic, social, or educational privation) is 
heterogeneously initialized as: 
 

( )HHUH ,= α β , (1) 0
 

where U(α,β) describes a random uniform distribution from α to β, such that -1 ≤ α ≤ β ≤ 1. 
Another crucial factor affecting grievance is the exogenous perceived legitimacy L0 (-1 ≤ L0 ≤ 1) 
of the regime or peacekeeping force (if some element of the peacekeeping force is of foreign 
origin). The initial grievance of an agent is: 
 

( )000 1 LHG = − , (2) 
 

where L0 is constant across all agents. From an agent’s initial grievance, the hidden state decision 
rule can be defined as: 
 

if , agent is disgruntled (D) D0 TG >

G0S TG
 

if T <<

S0 TG
, agent is neutral (N)  

if < , agent is satisfied (S)  
 

where TD and Ts are grievance thresholds, such that 0 ≤ TS < TD ≤ 1.  
 

 
Figure 1.  Decision-making process of agents in the general population, represented as a hidden Markov process. 

Each agent has a hidden state governed by its grievance, and an exposed state that determines its behavior, and 
governed by its hidden state and its willingness to take risks. The exposed state determines an agent’s actions at each 

discrete time. 
 
Given an agent’s perceived grievance, an agent must decide if it wishes to act upon that 
grievance. It is therefore useful to define an agent’s heterogeneous risk aversion R, which can be 
assumed (like H) to range from U(αR,βR). However, even those with a penchant for risk will be 
cautious if the circumstances of their local environment make action quite dangerous. An 
aggrieved agent will estimate the likelihood of getting arrested before determining whether they 
choose to actively rebel. Alternatively, a satisfied agent will choose whether to aid peacekeepers 
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based on the chance of getting attacked by an insurgent. Given an agent’s local environment, 
limited by its vision V (defined as the radial Euclidean distance an agent can inspect), we can 
describe an agent’s arrest (by a peacekeeper) and attack (by an active insurgent) probabilities 
based on the number and proximity of other agents nearby: 
 

( )Vnn AIPKke 111arrest
−−−−=iP , , 

(4) ( )Vii CAIk
i eP 11attack,

−−= , 
 

where k is a constant set to ensure a plausible probability estimate. PKn-1 is a measure 
representing the proximity of peacekeeper agents; similarly, AIn-1 represents the proximity of 
active insurgents and Cn-1 represents the rest of the population. These parameters are each 
computed for a given agent i with vision V. To ensure both the quantity and distance to the other 
agent types are considered, these terms are computed as: 
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where NPK, NAI, and NC are the respective numbers of peacekeeper, active insurgent, and other 
general population members within an agent’s vision. ri is the current position vector of the 
given agent i, and pj are the positions of the other types of agents within agent i’s vision. 
 
The exposed (behavior) state decision is determined based on these four factors: an agent’s 
hidden (grievance) state, risk aversion R, likelihood of getting accosted P, and a homogeneous 
risk activity threshold TR (Table 1). As such, the root causes of agent behavior are delineated 
based on their sympathies toward insurgent or peacekeeper activities (grievance) and willingness 
to take action (net risk). A disgruntled agent identifying with insurgent activities must decide 
whether to act covertly or openly. Conversely, a satisfied agent must weigh the risks of assisting 
peacekeeper actions. A neutral agent may lean toward one group or another if safety concerns 
lend prudence to such leanings. 
 
It should be noted that all of these agent attributes are abstractions. For example, the hardship 
could be qualitatively defined as some cumulative combination of various regional demographic 
features such as age, income, religion, ethnicity, tribe, education, occupation, or ideology 
(Chaturvedi et al., 2005). As a homogeneous and exogenous attribute, the perceived legitimacy 
can similarly take a variety of analogous global factors into effect. For this work, more focus was 
placed on the distinction in how these parameters are defined within the context of the model 
(e.g. homogeneously vs. heterogeneously across agents), and less what these parameters 
abstractly represent relative to real world statistics or demographics. If one were to try to 
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incorporate real world statistics into agent attributes, the semantic relationships between these 
attributes and these statistics would have to be well-defined. 
 

Table 1.  Agent exposed state decision, based on their hidden state (grievance), risk aversion R, probability of risk 
P, and risk threshold TR.  

Grievance State Decision Exposed State 

Disgruntled (D)  RParrest < T
R
  Active Insurgent (AI)  

Disgruntled (D)  RParrest ≥ T
R
  Quiet Insurgent (QI)  

Neutral (N)  RParrest < RPattack Quiet Insurgent (QI)  

Neutral (N)  RParrest ≥ RPattack  Quiet Civilian (QC)  

Satisfied (S)  RPattack < T
R
  Active Civilian (AC)  

Satisfied (S)  RPattack ≥ T
R
  Quiet Civilian (QC)  

 
2.2.2. Agent cognitive dynamics 
Over time, an agent can come across prosperity, or their estimation of perceived governmental 
activities can change. Therefore, we define terms for the dynamic change in an agent’s grievance 
by: 
 

( ) GGLH nGG nn Δ+=Δ− −11 , (6) Δ+= −1
 

such that Gn is constrained between zero and one. Gn-1 is a given agent’s previous grievance, Gn 
is an agent’s current grievance, and ΔH, ΔL, and ΔG are the respective changes in perceived 
hardship, legitimacy, and grievance. Like the initial hardship, the change in hardship is modeled 
as a stochastic process such that ΔH = U(αΔH,βΔH). This change will typically be much smaller 
than the initial hardship, but always between -1 and +1. The perceived legitimacy in the model is 
allowed to change either linearly in time or instantaneously triggered by some extreme or 
catastrophic event. The changes in perceived legitimacy were varied in different simulation runs 
to show how these changes can result in different behaviors. 
 
Though risk aversion R in this model remains constant for each heterogeneous agent throughout 
the simulation, each agent reassesses its probability of danger based on changes to agents in its 
local neighborhood using Eqn (4). In addition, agent’s movements and other actions will affect 
simulation dynamics, as will be seen in the next subsections. 
 
2.2.3. Agent Movement 
Like Epstein (2002), the constructed model consists of a two-dimensional lattice structure. 
Others have developed ABMs in a continuous space with agents represented by infinitesimal 
particles (Reynolds, 1999; Mitchell, 2008). There are advantages and disadvantages to both 
approaches, however, a lattice approach was chosen for this model so that movement decisions 
are represented through the appropriate level of granularity desired for a regional insurgency 
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application. The model involves a very fine grid (1184 x 611), where high resolution can still be 
achieved despite the lattice structure. 
 
The lattice is backed by an image of a geospatial region. In this case, a satellite image was taken 
from Google Maps (www.maps.google.com) of the region around Ramadi, Iraq (Figure 2). A 
black and white mask of the city and surroundings was created such that the density of white 
pixels is higher in the more densely populated urban regions (Figure 3). Also in the mask, 
obstacles such as rivers were colored black. Agent spawning points were determined by 
(randomly) uniformly allowing agents to inhabit any white area of the lattice. Thus, agents will 
be initialized primarily in high density regions of the map (Figure 4), with agents allowed to 
occupy the same grid space. 
 

 
Figure 2.  Google maps image employed of Ramadi, Iraq and surrounding regions. 

 
The Epstein (2002) model incorporated a relatively small (40x40) lattice with toroidal structure, 
such that agent movement that extended beyond a grid edge would appear on the opposite side of 
the lattice. This was necessary for that simulation, as the number of movement positions is 
severely limited by the smaller grid size. However, people in the real world can leave a region 
that is represented by a model as a closed system. Therefore, the model developed for this work 
allows agents to walk off grid edges as well as return; yet, they will not be visually displayed 
within the lattice boundaries and will not be able to “see” (in their vision) other agents also 
outside this boundary. Hence, agents can choose to leave the simulated region, for example, to 
flee from an oppressive environment. Nevertheless, agents do possess an impetus to remain 
within the grid region, as will be explained later in this section. In addition, a second image mask 
was created that defines available movement locations (Figure 5). Thus, agents are prevented 
from moving into grid locations containing obstacles such as rivers. 
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Figure 3.  Black and white mask of the simulation region such that urban areas have a higher density of white 

pixels, while rural areas and obstacles such as rivers are primarily black. 
 

 
Figure 4.  Sample spawning distribution of agents, where agents are uniformly positioned in any white region of the 

image from the mask shown in Figure 3.  
 
In ABMs, movement is typically defined by one of three methods. An agent’s movement can be 
based purely on a random walk through available movement locations (Epstein, 2002). 
Alternatively, movement can be defined by velocity vectors in desired directions (Reynolds, 
1999). Thirdly, an agent’s movement can be based on the relative attractiveness of various 
candidate movement positions (Gill and Grieger, 2003).   
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The “random walk” approach may be practical for models where movement is considered less 
imperative than other simulation characteristics. The relative importance of directed movement is 
often determined by its sensitivity to key model outputs or based on the desired fidelity of the 
model to be constructed. The other two approaches rely on incorporating this directed 
movement, defined through attractive and repulsive forces. The vector-based approach typically 
assumes a continuous, particle-based model. This approach has the highest granularity in that it 
incorporates physical dynamic properties of the moving agents. However, for an insurgency 
model where discrete time is more likely to be measured in weeks rather than seconds, this level 
of sophistication in the movement dynamics may be computationally infeasible.  
 

 
Figure 5.  Black and white mask of the simulation region where obstacles such as rivers are not permissible 

movement locations (represented by black pixels). 
 
Consequently, we employ movement rules based on the lattice-based distillation algorithm 
introduced by Gill and Grieger (2003). This approach computes the fitness of nearby lattice 
positions. For each agent position, the same vision used in cognition determines the radius of 
available movement locations. For each of these available lattice positions, a penalty function 
can be calculated based on each agent’s desire to seek out certain types of agents (i.e. agents of a 
certain exposed state) and flee from other types (i.e. agents of different exposed states). In 
addition, an impetus to move toward “home” (their initial spawning point) is also integrated into 
the movement penalty function, such that agents are always attracted to some extent to where 
they live. The complete penalty function for a given agent i and movement position move is as 
follows: 
 

home,,homeundesired,,fleedesired,,seek, moveimoveimoveimovei DwDwDwf +−= , (7) 
 

where the w parameters represent relative weights of influence on movement and the D 
parameters reflect distance measures to desired agents, undesired agents, and an agent’s home. 
The distances are fully described by:  
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such that there are N agents (within vision) of either desired or undesired states at lattice 
positions pj. Likewise, phome is the lattice position of an agent’s home (initial position at the 
beginning of the simulation). ri,move is the candidate position an agent can move to, and ri,stay is an 
agent’s current position. Thus, each distance computation inside the sum is the relative change in 
proximity to other agents or to home. Summing these distance computations allows both the 
density and proximity of agents to factor into the penalty function. The penalty for staying in the 
same place will always be zero. A negative penalty represents a lattice position that is preferable 
based on this proximity to other agents. Conversely, a positive penalty is undesirable. It should 
be noted that an agent’s assessment of available lattice positions is based on local knowledge of 
other agent positions, and a lattice point with a lower penalty may actually be worse because 
undesired agents are nearby but just outside an agent’s current vision.  
 
 The agent types sought and fled from will depend on the agent state decisions described in 
Section 2.2.1. For this model, an agent of a given state will have an impetus to either seek or flee 
a certain other agent type, but not both. The implemented agent movement influences are shown 
in Table 2. 
 

Table 2.  Agent movement influences based on agent exposed state decision (agent type). 

Agent Type Desired Agents Undesired Agents Seek Home? 

Active Insurgent (AI) None PK Yes 

Quiet Insurgent (QI) AI, QI None Yes 

Quiet Civilian (QC) None AI Yes 

Active Civilian (AC) PK None Yes 

Peacekeeper (PK) PK, AI None Yes 

 
To introduce a random element into agent movements, a binary tournament selection algorithm 
(Miller et al, 1995) is implemented. This approach is applied regularly in optimization problems 
to avoid getting trapped in local optimal conditions, when a better global condition is achievable 
(Mitchell, 1998). Furthermore, allowing a stochastic element permits agents to act more like 
realistic entities, where motivations may not be fully captured by the abstracted parameters 
represented in the model. For a binary tournament, two of the possible movement positions are 
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randomly and uniformly selected. The agent then moves to the position of the two selected that 
“wins the tournament” by having the lower penalty function.  
 
2.2.4. Agent Actions 
Agents from the general population can act in four possible ways, completely determined by 
their exposed states (Figure 1). Active insurgents can attack other agents, either civilians or 
peacekeepers. Whom they attack is decided based on chance and opportunity. An active 
insurgent decides to attack a peacekeeper or civilian each with a probability of 0.5. If no agents 
of that type are within their vision, they will do nothing. If their vision finds only one agent of 
that type, they will attack that agent. If two or more agents are present, a binary tournament 
selection approach is employed as with movement (Section 2.2.3), where the closer agent is 
more likely to be attacked. 
 
Quiet insurgents will aid active insurgents by providing an abstraction of “intelligence” 
information. For every quiet insurgent, an active insurgent’s vision is increased during the 
current time by an increment ΔA, where: 
 

πAVV Δ+= oldnew , (9) 
 

such that the new vision radius Vnew is incremented proportional to the two-dimensional area 
described by this vision. Active civilians will similarly inform peacekeepers to increase their 
vision. Meanwhile, passive civilians will remain neutral and do nothing, although they are still 
susceptible to attack by active insurgents. 
 
Peacekeeper agents will arrest active insurgents within their vision, and keep them for the jail 
time specified by the parameter J. Their decision on whom to arrest also uses a binary 
tournament selection algorithm where closer active insurgents are preferred. 
 
2.3. Programming with a GPU 
Compute Unified Device Architecture (CUDA) is NVIDIA Corporation’s software development 
model for General Purpose Programming on Graphics Processing Units (GPGPU) (NVIDIA 
Corporation, 2008). With CUDA, general purpose applications written in C or C++ may offload 
computationally intensive tasks to the GPU, exploiting the significant parallel processing 
capabilities that these low-cost devices provide. 
 
A typical mid-range GPU currently has between 14 and 16 multiprocessors, with each 
multiprocessor comprised of 8 streaming processor cores. In Flynn’s taxonomy of processor 
architectures (Wilkinson and Allen, 2005), each multiprocessor has a Single Instruction, Multiple 
Data architecture as opposed to multi-core central processing units (CPUs) which have a 
Multiple Instruction, Multiple Data architecture. Thus, CUDA allows the GPU to handle 
problems that involve large amounts of data that can be partitioned into many separate chunks, 
and then processed using identical instructions. Common examples of such problems include 
large matrix transforms, data mining algorithms, and simulation of particle systems. In CUDA, 
all streaming processor cores of a given multiprocessor must execute the same instruction on 
separate chunks of data; otherwise the instructions must be serialized for each processor. 
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ABMs share much in common with simulations of particle systems. Each agent can be thought 
of as a particle that interacts with other agents according to a predefined set of rules. If a GPGPU 
solution could be implemented, it would allow the simulation to scale upward from only a few 
hundred agents, as is common in open-source ABM frameworks such as Repast (North et al., 
2005), Swarm (Minar et al., 1996), or MASON (Luke et al., 2004), to tens or hundreds of 
thousands of agents. 
 
To achieve this, we implemented a number of non-trivial parallel algorithms. An example of this 
is the vision (V) algorithm (Section 2.2.1) that allows agents to sense the presence of other agents 
in their environment. A brute force approach to this algorithm would involve each agent 
examining every other agent in the simulation and then testing whether the other agent was close 
enough to detect: an O(n2) solution. Our implementation, which is based on a number of 
techniques found in (LeGrand, 2008), results in an O(n log n) solution, allowing a significant 
reduction in processing time. 
 
The most obvious solution would be to create an array of length equal to the number of lattice 
points in the model, where each index contains a pointer to the agent located in the 
corresponding lattice point. Assuming threads are allocated on a per-agent basis, each thread 
need only reference indexes relative to its agent’s position. However, since this model allows 
varying numbers of agents to occupy a single lattice point at any time, another approach is 
required, as shown in Figure 6.  
 

 
Figure 6.  Data structures implementing the parallel agent vision algorithm. 
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This example shows a 4x4 model lattice occupied by a total of eight agents.  Each agent has a 
unique Agent ID, numbering 1 to n, and each lattice point, or cell, is given a unique integer value 
based on its x and y coordinates according to the function: 
 

( ) ( ) widthlattice*, yxyxf += . (10)
 

To allow each thread to properly reference nearby agents, two arrays are created: a Cell ID array 
of length equal to the number of agents in the model and a Cell Index array of length equal to the 
number of lattice points in the model. 
 
Indexes in the Cell Index array contain an index into the Cell ID array and an offset describing 
how many agents may be indexed from that position. In the example from Figure 6, lattice point 
6 which is located in column 2 of row 1, is occupied by two agents whose IDs are 2 and 7. Index 
6 of the Cell Index array declares that lattice point 6 has two agents, and that these may be found 
beginning at index 4 of the Cell ID array. 
 
During execution, each thread associated with a given agent traverses the Cell Index Array to 
examine nearby lattice points for the presence of other agents. If a presence is indicated in the 
Cell Index Array, then a thread may examine the agent(s) present there via the Cell ID Array. 
 
 
3.  Results  
Simulation results will be presented by showing some interesting examples of manifest behaviors 
the model is capable of capturing. These examples will be presented to show the breadth of 
emergent insurgency characteristics that can be demonstrated and their associations to real life. 
The advantage of using the GPU approach to model development can be illustrated by the 
massive agent population and lattice size. Six different simulation runs will be presented (see 
Table 3 for simulation parameters for each run).  
 
3.1. Run A: Localized Outbursts 
Many interesting local spatial system behaviors can be captured in the agent-based insurgency 
model. For example, in zones with a limited peacekeeper presence, high densities of active 
insurgents can concentrate. This behavior can be visualized in Figures 7 and 8. Although active 
insurgents are not implicitly motivated to move toward other active insurgents, the presence of 
other actives in the nearby vicinity reduces the risk of arrest from peacekeepers. To be the first 
active insurgent, one must have a high grievance and low risk aversion. However, the presence 
of active insurgents provides a perpetual feedback mechanism for bolstering other aggrieved 
agents to also become active within their vicinity. Quiet insurgents in this region are more likely 
to become active, and civilians are likely to flee to safer areas. 
 
Another interesting property in this depiction is the tendency for these localized assemblies to 
produce fronts near geographically isolated borders, such as along river banks with limited 
inland access. These regions have reduced access for peacekeeper agents to enter, thus the 
density of peacekeepers in their vicinity will tend to be inherently low. Thus, the self-organizing 
active insurgent zones are more likely to be formed in these environments with low risk of arrest. 
Likewise, peacekeeper agents searching out active insurgents will have only limited access 
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points from which to travel into these local zones, bottlenecking infiltration efforts. Thus, the 
numbers and locations from which peacekeepers can disrupt the formation of these active 
assemblies are limited. What emerges is “siege”-like behaviors, whereby a small number of 
peacekeepers gather outside these isolated locales while active insurgents cluster tightly inside 
these bordered regions. 
 

Table 3.  Model parameters for the various simulation cases used in Sections 3.1 – 3.6. 

Parameter Run A Run B Run C Run D Run E Run F 

Agent Population Size, 
N 100,000 100,000 100,000 100,000 100,000 100,000 

Initial Peacekeeper 
Density, NPK/N 10% 10% 

1: 10% 
2: 20% 
3: 10% 

10% 10% 2% 

Peacekeeper Vision, 
VPK 5.0 3.5 

1: 3.5 
2: 3.5 
3: 7.0 

3.5 3.5 3.5 

Other Agent Vision, V 5.0 3.5 3.5 3.5 3.5 3.5 

Perceived Legitimacy, 
L0 

0.15 0.87 0.80 1: 0.90 
2: 0.89 0.25 3.5 

Min & Max Initial 
Hardship, αH and βH [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] 

Satisfied Threshold, TS 0.25 0 0 0 0.25 0 

Disgruntled Threshold, 
TD 0.5 0.1 0.1 0.1 0.5 0.1 

Min & Max Risk 
Aversion, αR and βR [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] 

Risk Threshold, TR 0.01 0.01 0.01 0.01 0.01 0.01 

Min & Max Hardship 
Change, αΔH and βΔH 

[-0.01, 
0.01] 

[-0.01, 
0.01] 

[-0.01, 
0.01] 

[-0.01, 
0.01] 

[-0.1, 
0.1] [-0.01, 0.01] 

Linear Legitimacy 
Change, ΔL N/A N/A N/A 1: -0.0005

2: N/A N/A -0.0001: for first 200 time steps
0.002439: for last 82 steps 

Instant Legitimacy 
Change, ΔL(n) N/A N/A N/A 1: N/A 

2. -0.2 N/A N/A 

Time for Instant 
Legitimacy Change, n N/A N/A N/A 1: N/A 

2: 400 N/A N/A 

Seek/Flee Movement 
Weight, wseek and wflee 

1.0 1.0 1.0 1.0 1.0 1.0 

Home Movement 
Weight, whome 

0 0 0 1.0 0 1.0 

Vision Increase Per 
Informing Agent, ΔA 0.01 0 0 0.01 0 0.01 

Jail Term, J 1 30 30 ∞ 1 1 
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Figure 7.  Regions with localized outbursts of active insurgent activities, indicated by red pixels (blue pixels are 
peacekeepers and green pixels are other members of the general population). Insert box corresponds to Figure 8. 

 

 
Figure 8.  Insert from Figure 7: Regions with localized outbursts of active insurgent activities, indicated by red 

pixels (blue pixels are peacekeepers and green pixels are other members of the general population). 
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3.2. Run B: Punctuated Equilibrium 
Figure 9 shows the number of active insurgents in time for a simulation run that spans a large 
number of time steps. The system tends to dwell predominately in a state of relative stability, 
where active insurgents typically number below about 50. However, there are sharp spikes of 
larger-scale insurgent activity throughout the simulated duration. This dynamic is representative 
of punctuated equilibrium, where the described periods of relative stability are punctuated by 
episodic outbursts of rebellious activity (Young, 1998). This corresponds with Epstein’s work 
(2002), who first showed how agent-based insurgency models could capture this type of 
nonlinear behavior. 
 

 
Figure 9.  Population dynamics often characterized by punctuated equilibrium. 

 
3.3. Run C: Effect of Peacekeepers 
Many noteworthy population dynamics can be generated through modifications to various model 
parameters. For example, if a model were developed for mission operations and planning, one 
may modify the locations and behaviors of peacekeepers to examine the effect of different 
strategies on the overall system behaviors. In this set of simulation runs, we compared 
simulations with peacekeeper agents representing 10% and 20% of the total population, 
respectively. Figure 10 shows the number of agents of various exposed states over time, as well 
as the number of active insurgents arrested by the peacekeepers. The number of quiet insurgents 
(Figure 10(a)) stays constant through both simulations, but the numbers are much lower with a 
higher percentage of peacekeepers. In this case, neutrally aggrieved agents weigh the risks of 
passively assisting insurgents or staying neutral, and tend to stay neutral when the density of 
peacekeepers is high.  
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Likewise, highly aggrieved agents are less likely to take the risk of becoming active when the 
probability of getting arrested is higher (Figure 10(b)), which in turn, prevents the perpetual 
feedback of described earlier, where the presence of actives leads to more actives. Despite the 
larger peacekeeping force, the number of arrests stays fairly similar because less members of the 
general population are willing to become active (Figure 10(c)). 
 
An alternative maneuver might be to supply the peacekeepers with better technology and 
resources for gathering intelligence information. This intelligence advantage is modeled 
abstractly as a relative increase in the peacekeeper’s vision V. In this case, the number of 
aggrieved agents and agents willing to aid peacekeepers is the same, as it is based on local sizes 
of the peacekeeper force (10% peacekeeper density). However, the number of active insurgents 
remains low. Because of their larger vision, peacekeeper agents can more quickly find and stamp 
down individual insurgent sparks before they escalate into larger outbursts. 
 

  

(a) (b)

 

(c) 

Figure 10.  Population dynamics when the peacekeeper parameters are different, where (a) number of quiet 
insurgents in time, (b) number of active insurgents in time, and (c) number of arrested insurgents in time. 

 
3.4. Run D: Salami Tactics of Corruption 
In Figure 11, the perceived legitimacy of the general population was decreased in two different 
ways. First, the initial legitimacy was decremented linearly through the simulation from L0 = 0.9 
to L = 0.4 at the end of the simulation. Second, the legitimacy was left at a constant L0 = 0.89, 
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and then instantaneously reduced to L = 0.7 after 400 time steps. It is quickly notable that the 
number of quiet insurgents reflects these changes (Figure 11(a)), as the grievance (assuming a 
fairly constant hardship) will be proportional to the legitimacy. Conversely, the number of 
civilians has the inverse relationship to the number of quiet insurgents (Figure 11(c)).  
 

 

(a) (b)

 

(c) (d)

Figure 11.  Population dynamics when there is a gradual or instantaneous perceived legitimacy decline, where (a) 
number of quiet insurgents in time, (b) number of active insurgents in time, (c) number of civilians in time, and (d) 

number of arrested insurgents in time. 
 
When the legitimacy declines very slowly, the number of active insurgents at any one time 
remains relatively small and steady (beyond an initial transient). Agent grievances increase very 
slowly, so active insurgents likewise appear incrementally. Peacekeeper agents are able to arrest 
these new actives as they appear, thereby preventing clusters of active insurgents from forming 
(in contrast to what was shown in Figures 7 and 8). The arrested population rises smoothly over 
time as actives appear, such that there are no significant spikes in the number of actives at any 
given time. 
 
Alternatively, when the population feels a sudden reduction in the perceived legitimacy of those 
in power, there is an immediate response in the number of quiet and active insurgents in the 
population. Consequently, pockets with dense active insurgent populations appear quickly, and 
cannot be stamped down efficiently by the peacekeeping force. There is a steep rise in the 
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number of actives and the number of arrests by peacekeepers until stability can be regained much 
later in the simulation. Even though the absolute legitimacy reduction is smaller in the second 
scenario, the insurgency event is much greater.  
 
This result corroborates the notion that a corrupt regime is more likely to be accepted by the 
majority if it chips away at the legitimacy of a government. These types of “salami tactics” were 
employed by Adolf Hitler’s Nazi Party in the early 1930s and by Stalinist Mátyás Rákosi of the 
Hungarian Communist Party in the late 1940s. Alternatively, one can surmise how dramatic 
“triggering events” such as assassinations (Kuran, 1989; Epstein, 2002) can result in a flood of 
civil violence. 
 
3.5. Run E: Effect of Geography 
One element that is often left out of other ABMs is the effect of geography. We have already 
showed how movement constraints can lead to more localized outbursts at distinct locations 
(Section 3.1). For this model, the initial agent positions and allowable movement locations are 
determined by masks as explained in Section 2.2.3. To examine what happens when different 
spawning and movement masks are utilized, we conducted a scenario where parameters were 
unvaried but different geographical masks were used. Figure 12 shows simulation runs executed 
with the same parameters but different agent spawning location and movement masks. Figure 
12(a) displays a screen capture of the simulation run using the masks shown previously, created 
from the image of Ramadi. Figures 12(b) and (c) utilize a spawning mask from a different city 
(Kirkuk), where 12(b) strictly constrains agent movements and 12(c) allows very free movement. 
The numbers, concentrations, and locations of active insurgents during a simulation can be 
greatly affected by the masks that are chosen. Here, when agents are freer to move to nearly any 
lattice position, the amount of insurgent activity is much greater (Figure 13). This result occurs 
because quiet and active insurgents are more able to congregate together within their visions. In 
this simulation, when agents are forced to separate, either through geography or through 
counterinsurgency efforts, the strength of the insurgency can be reduced. 
 
3.6. Run F: Matching Historical Data 
To demonstrate the capabilities of this model, a realistic scenario was envisaged based on the 
events in Ramadi, Iraq (Figure 2) in the Al Anbar province, between April 2003 and August 
2008. Ramadi is considered to be the southwest point of what is termed the “Sunni Triangle,” a 
region in Iraq occupied largely by Sunni Muslims and deemed to be an early focal point of the 
resistance to United States (US) forces during the War in Iraq.  Unclassified documentation puts 
US operations in this area starting around March of 2003. From this time until the fall of 2006, 
the violence continued to escalate in this region, as the general population built an ever-
increasing grievance against the US occupation.  
 
During early 2007, US forces began to have success stamping down the rebellion, a reversal 
primarily attributed to an event called the “Anbar Awakening.” In late August 2006, insurgents 
shifted their tactics, and attacked an Iraqi Police Station. They murdered the Sheikh of the tribe 
primarily responsible for manning this station, and then violated Arab custom by leaving the 
body where it could not be found for days. This dramatic “triggering event” enraged rather than 
intimidated cooperative tribal leaders. These leaders met with US forces and formed the Al 
Anbar Awakening movement. This movement spurred an increase in the number of Iraqi 
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Security Forces recruits, while insurgent attacks dropped dramatically and cooperation with 
Coalition forces spread throughout the province. These events represented a prominent success 
story for the Iraq War counterterrorist campaign (Fumento, 2006; Smith and MacFarland, 2008). 
 

 
(a) 

   

(b) (c)

Figure 12.  Simulation screen capture at time step 250 using the same parameters but different geographical 
elements, where (a) Ramadi, Iraq spawning mask and movement mask, (b) Kirkuk spawning mask and movement 

restrictive movement mask, and (c) Kirkuk spawning mask and unrestrictive movement mask. Red pixels are active 
insurgents, blue pixels are peacekeepers, and green pixels are other members of the general population. 

 
It is easy to ascertain that the complexity of real historical events make trying to fit a model to 
these events quite challenging. Although the simulation run described here is still an abstraction 
of the real historical event, it can be shown that even face validated model parameters can re-
create a scenario similar to what may happen in the real world. Because the Ramadi region is 
fairly homogeneous in terms of religion and tribe, we did not create a second category of actor to 
represent a different demographic of the general population. In a region populated by both Sunni 
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and Shi’a Muslims, or multiple tribes, it may be more important to distinctly model differing or 
opposing categories of agents. 
 

 

(a) (b)

 

(c)

Figure 13.  Population dynamics when the geographies are varied, represented by masks that determine initial agent 
positions and allowable movement locations, (a) number of quiet insurgents in time, (b) number of active insurgents 

in time, and (c) number of agents that leave the lattice during the simulation. Masks 1,2, and 3 correspond to the 
geographies represented by Figures 11(a), (b), and (c), respectively. 

 
The events occurring in Ramadi were simply abstracted to just changes in the legitimacy 
parameter for this model. The effect of the initial presence of US forces in the region was 
modeled as a gradual decrease in the perceived legitimacy of the government, as dissention 
toward these US forces escalated. However, the Anbar Awakening represented a significant shift 
in the perceived legitimacy of Al Qaeda. To model this event, the same legitimacy parameter 
was increased, representing the increased favor garnered by Coalition forces and Iraqi Security 
forces as the insurgency lost esteem. 
 
Increased complexity could of course be achieved to better match the events of this region and 
time period. For example, the locations and sizes of US and Coalition forces could be historically 
retrieved and integrated into the simulation. Other demographic and detailed event-driven 
aspects could also be incorporated. However, to make the model results described here fairly 
generic, these types of detailed customizations were not made. 
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To validate the model simulation results, a representative time series of significant insurgent acts 
was created. Although this “historical data” does not correspond with real historical data, it 
matches both the anecdotal account of the events that transpired, and is proportional to open-
source significant event data corresponding to the region. The representation of historical data 
that was created counts weekly insurgent acts from April 2003 through August 2008. The trends 
in the data show a gradual increase in the number of uprisings until the Anbar Awakening, at 
which point the attacks against US and Coalition forces began to taper off. To match these trends 
in the simulation, agent behavioral parameters were empirically “tuned” under some constraints. 
The result can be seen in Figure 14. Although the data used here is partially fabricated, the 
application toward realistic data is evident. Given constraints imposed by information such as 
demographics and intelligence data, an agent-based model may be derived to match global 
behaviors exhibited in the real system, such that it can be employed as a useful tool for analysts. 
 

 
Figure 14.  Example empirical match of simulation data with an example set of historical data: matching the number 

of insurgent acts in time. 
 
 
4.  Discussion 
 
In this work, an ABM was detailed, capable of simulating large numbers of agents in a complex 
insurgency environment. The key contributions to the body of knowledge include the use of a 
GPU for distributed programming in an agent-based insurgency model, to dramatically improve 
performance capability. In addition, human cognition was modeled based on a hidden Markov 
process, where agent grievances represent the hidden state, and agent behaviors represent the 
exposed (observed) state. Agents were able to make decisions to actively or passively participate 
in insurgency or counterinsurgency activities. These agents also possess directed movement 
based on their exposed state and nearby environment, including constraints. The development of 
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these attributes for an ABM in an insurgency application signifies a movement toward more 
realistic simulations that can be employed for operations planning and analysis. 
 
As demonstrations of the capability of this model, several example simulation results were 
shown. Several representative emergent behaviors were achieved, such as localized outbursts, 
states of punctuated equilibrium, tipping points for massive insurgent activities, and slow 
corruption leading to passivity of populations. The utility of the model was demonstrated by 
showing how simulation runs can generate different behaviors based on varied 
counterinsurgency efforts, and how geography can also have an impact on insurgent activities. In 
addition, realistic “historical data” was generated by examining historical accounts and limited 
open-source data corresponding to Ramadi, Iraq between April 2003 and August 2008. This data 
was then compared to outputs from the ABM simulation. By empirically tuning the micro-level 
behavioral parameters of agents, simulations were achievable that match the characteristics of 
the existing “historical data.” 
 
Although the model developed for this work can achieve both fairly realistic simulations and a 
wide breadth of behaviors, the task of modeling and/or predicting human behavior is still a 
challenging and often uncertain proposition. There is a need for continued development of HSCB 
models, such that improvements can continue to be made in regard to producing validated 
models that can realistically portraying the real world. 
 
Immediate attention should be given to a more rigorous validation of the model, to include work 
with more detailed historical data. The large number of tunable parameters in the model as well 
as the complexity of their interactions may make traditional validation techniques involving 
design of experiments difficult to accomplish. Therefore, techniques from the field of 
evolutionary computation, such as genetic algorithms (Mitchell, 1998) may be useful. Data could 
also be integrated by constraining agent attributes based on demographic or intelligence 
information. Such a model could be validated both heuristically, by updating agent 
characteristics at the front end, and statistically, by matching results to actual global behavioral 
data at the output. 
 
Another possible improvement could be made by incorporating the model into a larger federation 
of models by means of the High Level Architecture (HLA) or by exposing the model as a service 
in a Service Oriented Architecture (SOA). One possible SOA platform for integration is aXiom, 
a system that is currently under development at the Space and Naval Warfare Systems Center 
Atlantic. Integration into these platforms would also require research into a semantic approach 
for connecting historical data and/or intelligence information with the model federation such that 
it can be updated autonomously. 
 
Finally, the use of GPUs to provide high performance computing power also provides the 
opportunity to exploit their graphics processing capabilities for Graphical User Interface (GUI) 
improvements. The current 2D graphical representation of the model does not fully capture the 
complex interactions that occur between agents; therefore there are still a number of emergent 
properties that cannot be interactively visualized. The incorporation of three-dimensional 
graphical elements would allow analysts to perceive much greater detail in the complex web of 
social interactions among agents. 
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