Capability Maturity Model Integration (CMMI) V1.3 and Architecture-Centric Engineering

Abstract

Capability Maturity Model Integration (CMMI) is a process improvement approach that provides the essential elements of effective processes that ultimately improve organizational performance. It is estimated that over 1,200,000 people worldwide work in organizations that have conducted process appraisals using CMMI. Early versions of the CMMI paid little attention to architecture, agility, product lines, and other modern engineering practices. A significant change to the CMMI V1.3 models (released in November 2010) is the new emphasis on the role of architecture in the design process. This presentation will address the basics of architecture-centric engineering and show where and how these practices are now reflected in the CMMI models. Topics will include: process improvement and CMMI, structure of the CMMI models, essential architecture-centric engineering practices, architecture-centric engineering practices in CMMI V1.3, and additional modern engineering practices in CMMI V1.3.
Presentation Learning Outcomes

After completing this presentation, attendees should

• know that a process discipline is a powerful enabler of product quality
• be familiar with the structure and purpose of CMMI models
• be familiar with essential architecture-centric engineering activities
• know where architecture-centric activities and work products are described in CMMI V1.3
• know where to find out more about architecture-centric engineering practices and CMMI V1.3
Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion
What Is a Process?

A **process** is a set of interrelated activities, which transform inputs into outputs, to achieve a given purpose.

Process Improvement flows from and extends the general management theories developed over the past ~50 years (Juran, Deming, Crosby, etc.)
Process! Are You Serious?

You’re going to
 • stifle my creativity!
 • bog us down with bureaucracy!

It doesn’t have to be that way.
Yes, I’m Serious.

Process discipline

• helps coordinate team efforts
 • prevents tripping over each other
 • can pay for itself
• doesn’t have to be heavyweight and bureaucratic
• is central to agility

If you’ve had a bad experience, please remember …

“There is no idea so good that it can’t be poorly implemented.”

Scott Adams
CMMI in a Nutshell

CMMI is a collection of characteristics of effective processes that provides guidance for improving an organization’s processes and ability to manage the development, acquisition, and maintenance of products or services.

CMMI organizes these practices into structures that help an organization

- assess its processes
- establish priorities for improvement
- implement these improvements
- learn what works and make further changes to improve performance

“Improving processes for better products”
CMMI Models for Three Constellations

CMMI-SVC provides guidance for those providing services within organizations and to external customers.

CMMI-DEV provides guidance for measuring, monitoring and managing development processes.

CMMI-ACQ provides guidance to enable informed and decisive acquisition leadership.

16 Core Process Areas (PAs), common to all
CMMI-DEV PAs by Category

Process Management
Organizational Innovation and Deployment (OID)
Organizational Process Definition (OPD)
Organizational Process Focus (OPF)
Organizational Process Performance (OPP)
Organizational Training (OT)

Support
Causal Analysis and Resolution (CAR)
Configuration Management (CM)
Decision Analysis and Resolution (DAR)
Measurement and Analysis (MA)
Process and Product Quality Assurance (PPQA)

Project Management
Integrated Project Management (IPM)
Project Monitoring and Control (PMC)
Project Planning (PP)
Quantitative Project Management (QPM)
Requirements Management (REQM)
Risk Management (RSKM)
(+) Supplier Agreement Management (SAM)

Engineering
Product Integration (PI)
Requirements Development (RD)
Technical Solution (TS)
Validation (VAL)
Verification (VER)

For the V1.3 release, REQM was moved from “Engineering” to “Project Management.”
Some CMMI ABCs

The models are built to apply to both systems engineering and software engineering.

The process areas are crafted to be independent of a life-cycle model.

• Engineering process areas should be interpreted as applying to engineering at any level of design.
 – Think of the process areas as being “callable” at any point from high-level design to detailed design.

The models support both *staged* and *continuous* representations.

• generally, these representations have different philosophies about the implementation sequence of the process areas.

The “I” in CMMI refers to integration of disparate source models and disciplines.
Process Area Components

- Process Area (PA)
- Specific Goals (SG)
 - Specific Practices (SP)
 - Example Work Products
 - Subpractices
- Generic Goals (GG)
- Introductory Notes
- Related Process Areas
 - Subpractices
 - Generic Practice Elaborations

Legend:
- Required
- Expected
- Informative
The purpose of Configuration Management (CM) is to establish and maintain the integrity of work products using configuration identification, configuration control, configuration status accounting, and configuration audits.

The Configuration Management process area involves the following activities:
- Identifying the configuration of selected work products that compose baselines at given points in time
- Controlling changes to configuration items
- Building or providing specifications to build work products from the configuration management system
- Maintaining the integrity of baselines
- Providing accurate status and current configuration data to developers, end users, and customers
Summary of Generic Goals and Practices

<table>
<thead>
<tr>
<th>Generic Goals</th>
<th>Generic Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG1: Achieve Specific Goals</td>
<td>GP 1.1: Perform Specific Practices</td>
</tr>
<tr>
<td>GG2: Institutionalize a Managed Process</td>
<td>GP 2.1: Establish an Organizational Policy</td>
</tr>
<tr>
<td></td>
<td>GP 2.2: Plan the Process</td>
</tr>
<tr>
<td></td>
<td>GP 2.3: Provide Resources</td>
</tr>
<tr>
<td></td>
<td>GP 2.4: Assign Responsibility</td>
</tr>
<tr>
<td></td>
<td>GP 2.5: Train People</td>
</tr>
<tr>
<td></td>
<td>GP 2.6: Control Work Products</td>
</tr>
<tr>
<td></td>
<td>GP 2.7: Identify and Involve Relevant Stakeholders</td>
</tr>
<tr>
<td></td>
<td>GP 2.8: Monitor and Control the Process</td>
</tr>
<tr>
<td></td>
<td>GP 2.9: Objectively Evaluate Adherence</td>
</tr>
<tr>
<td></td>
<td>GP 2.10: Review Status with Higher Level Management</td>
</tr>
<tr>
<td>GG3: Institutionalize a Defined Process</td>
<td>GP 3.1: Establish a Defined Process</td>
</tr>
<tr>
<td></td>
<td>GP 3.2: Collect Process Related Experiences</td>
</tr>
</tbody>
</table>

Adapted from Cepeda Systems & Software Analysis, Inc.
CMMI Coverage of Modern Engineering Approaches

Much of the engineering content of CMMI-DEV V1.2 is ten years old. As DEV was a starting point for the other two constellations, no V1.2 model adequately addressed modern engineering approaches.

- For example, both Requirements Development Specific Goal 3 and Specific Practice 3.2 emphasized functionality and not non-functional requirements.

Also, Engineering and other Process Areas rarely mentioned these concepts:

- Quality attributes
- Allocation of product capabilities to release increments
- Product lines
- Technology maturation (and obsolescence)
- Agile methods
Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion
What is Architecture-Centric Engineering?

Architecture-Centric Engineering (ACE) is the discipline of using architecture as the focal point for performing ongoing analyses to gain increasing levels of confidence that systems will support their missions.

Architecture is of enduring importance because it is the right abstraction for performing ongoing analyses throughout a system’s lifetime.

The SEI ACE Initiative develops principles, methods, foundations, techniques, tools, and materials in support of creating, fostering, and stimulating widespread transition of the ACE discipline.
Formal Definition of Software Architecture

“The software architecture of a computing system is the set of structures needed to reason about the system, which comprise software components, relations among them and properties of both.”

System Development

If function were all that mattered, any monolithic implementation would do, **but other things matter**…

The important quality attributes and their characterizations are key.

- Modifiability
- Interoperability
- Availability
- Security
- Predictability
- Portability

The Non-functional Requirements

Quality Attribute Drivers

Software & System Architectures

Software & System

has these qualities

analysis, design, development, evolution
Specifying Quality Attributes

Quality attributes are rarely captured effectively in requirements specifications; they are often vaguely understood and weakly articulated.

Just citing the desired qualities is not enough; it is meaningless to say that the system shall be “modifiable” or “interoperable” or “secure” without details about the context.

The practice of specifying quality attribute scenarios can remove this imprecision and allows desired qualities to be evaluated meaningfully.

A quality attribute scenario is a short description of an interaction between a stakeholder and a system and the response from the system.
Parts of a Quality Attribute Scenario

SOURCE

Stimulus

ENVIRONMENT

Artifact:
Process, Storage, Processor, Communication

Response

RESPONSE
MEASURE

Software Engineering Institute Carnegie Mellon
CMMI V1.3 and Architecture-Centric Engineering
© 2011 Carnegie Mellon University
Example Quality Attribute Scenario

A “performance” scenario: A remote user requests a data base report under peak load and receives it in under 5 seconds.
Architecture-Centric Activities

Architecture-centric activities include the following:

• creating the **business case** for the system
• understanding the **requirements**
• creating and/or selecting the architecture
• documenting and communicating the architecture
• analyzing or evaluating the architecture
• implementing the system based on the architecture
• ensuring that the implementation **conforms** to the architecture
• evolving the architecture so that it continues to meet business and mission goals
Some SEI Techniques, Methods, and Tools

<table>
<thead>
<tr>
<th>Activity</th>
<th>Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>creating the business case for the system</td>
<td></td>
</tr>
</tbody>
</table>
| understanding the requirements | Quality Attribute Workshop (QAW) *
 | Mission Thread Workshop (MTW) * |
| creating and/or selecting the architecture | Attribute-Driven Design (ADD)
 | and ArchE |
| documenting and communicating the architecture | Views and Beyond Approach; AADL |
| analyzing or evaluating the architecture | Architecture Tradeoff Analysis Method (ATAM) *; SoS Arch Eval *; Cost Benefit Analysis Method (CBAM); AADL |
| implementing the system based on the architecture | |
| ensuring that the implementation conforms to the architecture | ARMIN |
| evolving the architecture so that it continues to meet business and mission goals | Architecture Improvement Workshop (AIW)* and ArchE |
| ensuring use of effective architecture practices | Architecture Competence Assessment |

* = indicates a software engineering method that has been extended to systems engineering
Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion
Modern Engineering Practices in CMMI

For Version 1.3, CMMI provides better guidance in support of architecture-centric practices (where the practice is addressed in CMMI V1.3 is shown in parentheses).

- creating the **business case** for the system (partially in RD)
- understanding the **requirements** (RD)
- creating and/or selecting the architecture (TS)
- documenting and communicating the architecture (RD, TS)
- analyzing or evaluating the architecture (RD, TS, VAL, VER)
- implementing the system based on the architecture (TS; A/PL notes)
- ensuring that the implementation **conforms** to the architecture (VER)
- evolving the architecture so that it **continues to meet business and mission goals** (implicit in the changes made for V1.3 to the term “establish and maintain”)

RD = Requirements Development

VER = Verification

TS = Technical Solution

VAL = Validation
Requirements Development

SG 1: Develop Customer Requirements
 SP 1.1 Elicit Needs
 SP 1.2 Transform Stakeholder Needs into [Prioritized] Customer Requirements

SG 2: Develop Product Requirements
 SP 2.1 Establish Product and Product Component Requirements
 SP 2.2 Allocate Product Component Requirements
 SP 2.3 Identify Interface Requirements

SG 3: Analyze and Validate Requirements
 SP 3.1 Establish Operational Concepts and Scenarios
 SP 3.2 Establish a Definition of Required Functionality and Quality Attributes
 SP 3.3 Analyze Requirements
 SP 3.4 Analyze Requirements to Achieve Balance
 SP 3.5 Validate Requirements

In SP 1.2, added that customer requirements should be prioritized based on their criticality to the customer and other stakeholders “representing all phases of the product’s lifecycle … including business as well as technical functions.”

In SP 2.1, added a focus on architectural requirements and quality attribute measures.

In SP 2.2, added a subpractice allocating requirements to delivery increments.

Addressed “Quality attributes” (QAs) as well as functionality in SG3 and SP 3.2 statements.

In SP 3.1, broadened emphasis to “operational, sustainment, and development” scenarios.

In SP 3.2, determined architecturally-significant QAs from mission and business drivers.
Technical Solution

SG 1: Select Product Component Solutions
 SP 1.1 Develop Alternative Solutions and Selection Criteria
 SP 1.2 Select Product Component Solutions

SG 2: Develop the Design
 SP 2.1 Design the Product or Product Component
 SP 2.2 Establish a Technical Data Package
 SP 2.3 Design Interfaces Using Criteria
 SP 2.4 Perform Make, Buy, or Reuse Analyses

SG 3: Implement the Product Design
 SP 3.1 Implement the Design
 SP 3.2 Develop Product Support Documentation

Intro Notes: “QA models, simulations, prototypes or pilots can be used to provide additional information about the properties of the potential design solutions to aid in the selection of solutions. Simulations can be particularly useful for projects developing systems-of-systems.”

In SP 1.1, Added an example selection criterion, “Achievement of key quality attribute requirements” and a new subpractice: “Identify re-usable solution components or applicable architecture patterns.”

In SP 2.1, described architecture definition tasks such as selecting architectural patterns and formally defining component behavior and interactions using an architecture description language.

In SP 2.2, added subpractice to determine views to document structures and address stakeholder concerns.

In SP 2.3, mentioned exception and error handling,
Product Integration

SG 1: Prepare for Product Integration
 SP 1.1 Establish an Integration Strategy
 SP 1.2 Establish the Product Integration Environment
 SP 1.3 Establish Product Integration Procedures and Criteria

SG 2: Ensure Interface Compatibility
 SP 2.1 Review Interface Descriptions for Completeness
 SP 2.2 Manage Interfaces

SG 3: Assemble Product Components and Deliver the Product
 SP 3.1 Confirm Readiness of Product Components for Integration
 SP 3.2 Assemble Product Components
 SP 3.3 Evaluate Assembled Product Components
 SP 3.4 Package and Deliver the Product or Product Component

Revised the purpose to ensure proper behavior instead of proper function, thereby more implicitly including quality attributes as well as functionality.

Changed emphasis from integration sequence to an emphasis on integration strategy, i.e., the approach to receiving, assembling, and evaluating product components. The architecture will significantly influence the selection of a product integration strategy.

In the PA notes, addressed: interfaces to data sources and middleware; APIs, automated builds, continuous integration
Validation

SG 1: Prepare for Validation
 SP 1.1 Select Products for Validation
 SP 1.2 Establish the Validation Environment
 SP 1.3 Establish Validation Procedures and Criteria

SG 2: Validate Product or Product Components
 SP 2.1 Perform Validation
 SP 2.2 Analyze Validation Results

Reinforced when validation occurs in the product lifecycle: “validation is performed early (concept/exploration phases) and incrementally throughout the product lifecycle (including transition to operations and sustainment).”

In VAL SP 1.1, included access protocols and data interchange reporting formats as examples of what to validate. Also, included incremental delivery of working and potentially acceptable product as an example validation method.
Verification

SG 1: Prepare for Verification
 SP 1.1 Select Work Products for Verification
 SP 1.2 Establish the Verification Environment
 SP 1.3 Establish Verification Procedures and Criteria

SG 2: Perform Peer Reviews
 SP 2.1 Prepare for Peer Reviews
 SP 2.2 Conduct Peer Reviews
 SP 2.3 Analyze Peer Review Data

SG 3: Verify Selected Work Products
 SP 3.1 Perform Verification
 SP 3.2 Analyze Verification Results

In SP 1.1, added example verification methods: software architecture evaluation and implementation conformance evaluation and continuous integration.

In SP 1.3, added example sources of verification criteria: customers reviewing work products collaboratively with developers.

In SP 2.1, added example type of peer review: architecture implementation conformance evaluation.

In SP 2.3, added examples of peer review data that can be analyzed: user stories or case studies associated with a defect and the end-users and customers who are associated with defects.
Allocated requirement

DEFINITION

Requirement that results from levying all or part of the performance and functionality of a higher level requirement on a lower level architectural element or design component.

More generally, requirements can be allocated to other logical or physical components including people, consumables, delivery increments, or the architecture as a whole, depending on what best enables the product or service to achieve the requirements.

The improvements to the definition make the substance of the solution space and allocation of requirements to it more explicit, allowing for superior architectures and more insightful analyses (including verification) of requirements and technical solutions.
Changes in CMMI Terminology - 2

Architecture

DEFINITION

The set of structures needed to reason about a product. These structures are comprised of elements, relations among them, and properties of both.

In a service context, the architecture is often applied to the service system.

Note that functionality is only one aspect of the product. Quality attributes, such as responsiveness, reliability, and security, are also important to reason about. Structures provide the means for highlighting different portions of the architecture. (See also “functional architecture.”)

This term and its use throughout the rest of the model is intended to encourage use of proven, architecture-centric practices and the recognition of “architecture” as a principal engineering artifact.
Changes in CMMI Terminology - 3

Definition of required functionality and quality attributes

DEFINITION

A characterization of required functionality and quality attributes obtained through “chunking,” organizing, annotating, structuring, or formalizing the requirements (functional and non-functional) to facilitate further refinement and reasoning about the requirements as well as (possibly, initial) solution exploration, definition, and evaluation.

As technical solution processes progress, this characterization can be further evolved into a description of the architecture versus simply helping scope and guide its development, depending on the engineering processes used; requirements specification and architectural languages used; and the tools and the environment used [snip].

The term “definition of required functionality” that appeared in V1.2 has been removed from CMMI because of the implicit suggestion that functionality be addressed first or has higher priority. The term has been replaced with the one above, which is intended to help ensure a sufficiently balanced focus (functional and non-functional) in requirements analysis.
Changes in CMMI Terminology - 4

“Functional analysis” and “functional architecture”

These terms, which appeared in V1.2, are now “cul de sacs” in the model.

The only place these terms now appear in CMMI-DEV V1.3 outside the Glossary is in the first note of RD SP 3.2 and as an example work product.

The note contrasts the approaches implied by these terms with “modern engineering approaches” that encourage a more balanced treatment of requirements, both functional and non-functional.
Product line

DEFINITION

A group of products sharing a common, managed set of features that satisfy specific needs of a selected market or mission and that are developed from a common set of core assets in a prescribed way.

The development or acquisition of products for the product line is based on exploiting commonality and bounding variation (i.e., restricting unnecessary product variation) across the group of products. The managed set of core assets (e.g., requirements, architectures, components, tools, testing artifacts, operating procedures, software) includes prescriptive guidance for their use in product development. Product line operations involve interlocking execution of the broad activities of core asset development, product development, and management.

Many people use “product line” just to mean the set of products produced by a particular business unit, whether they are built with shared assets or not. We call that collection a "portfolio," and reserve "product line" to have the technical meaning given here.
Quality attribute

DEFINITION

A property of a product or service by which its quality will be judged by relevant stakeholders. Quality attributes are characterizable by some appropriate measure.

Quality attributes are non-functional, such as timeliness, throughput, responsiveness, security, modifiability, reliability, and usability. They have a significant influence on the architecture.

This term is now included in the Glossary for the first time. This term is intended to supplant others – especially those focusing on only a few dimensions (e.g., “performance”) – to encourage a broader view of non-functional requirements. The term was refined through much effort, as neither ISO 25030 (SQuaRE) nor the original SEI definitions were quite satisfactory. In addition, uses of the term “performance” throughout the model were reviewed for clarity, and where appropriate, revised or qualified.
Establish and maintain

DEFINITION

Create, document, use, and revise . . . as necessary to ensure it remains they remain useful.

The phrase “establish and maintain” means more than a combination of its component terms; . . . plays a special role in communicating a deeper principle in CMMI: work products that have a central or key role in work group, project, and organizational performance should be given attention to ensure they are used and useful in that role.

This phrase has particular significance in CMMI because it often appears in goal and practice statements . . . and should be taken as shorthand for applying the principle to whatever work product is the object of the phrase.

The above term appears in many CMMI practices. This term was changed in V1.3 to support the evolution of key artifacts so that they remain useful. Example from RD SP 2.1 note: “The modification of requirements due to approved requirement changes is covered by the “maintain” aspect of this specific practice…” Likewise for architecture (TS SP 2.2).
V1.3 Includes Notes on How to Address Agile Methods and Product Lines

Other Informative Material Changes
Special notes for Agile and for Product Lines have been inserted in the Intro Notes of various PAs in V1.3.

Changes Supporting Use of Agile Methods
Because CMMI practices are written for use in a broad variety of contexts, business situations, and application domains, it is not possible (even if it were appropriate) to advocate any specific implementation approach.

However, Agile methods and approaches are now in wider use, and so for V1.3, it seemed appropriate to identify how Agile approaches can address CMMI practices and conversely, identify the value that CMMI can bring to Agile implementations. And likewise for Product Lines.
Addressing Agile – Example PA Notes

A note added in the RD Intro Notes:

In Agile environments, requirements are communicated and tracked through mechanisms such as product backlogs, story cards, and screen mock-ups. Traceability and consistency across requirements and work products is addressed through the mechanisms already mentioned as well as during start-of-iteration or end-of-iteration activities such as “retrospectives” and “demo days.”

A note added in the TS Intro Notes:

In Agile environments, the focus is on early solution exploration. By making the selection and tradeoff decisions more explicit, the Technical Solution process area helps improve the quality of those decisions, both individually and over time. When someone other than the team will be working on the product in the future, release information, maintenance logs, and other data are typically included with the installed product. To support future product updates, rationale (for trade-offs, interfaces, and purchased parts) is captured so that why the product exists can be better understood.
Addressing Product Lines – Example Notes

An example of a note added in the RD Intro Notes:

For product lines, engineering processes (including requirements development) may be applied to at least two levels in the organization. At an organizational or product line level, a “commonality and variation analysis” is performed to help elicit, analyze, and establish core assets for use by projects within the product line. At the project level, these core assets are then used as per the product line production plan as part of the project’s engineering activities.

An example of a note added in the TS Intro Notes:

For product lines, these practices apply to both core asset development (i.e., building for reuse) and product development (i.e., building with reuse). Core asset development additionally requires product line variation management (the selection and implementation of product line variation mechanisms) and product line production planning (the development of processes and other work products that define how products will be built to make best use of these core assets).
Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering Practices Changes

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion
Summary & Conclusions

The quality and longevity of a software-intensive system is largely determined by its architecture.

Early identification of architectural risks saves money and time.

There are proven practices to help ensure that suppliers and acquirers can develop and acquire systems that have appropriate architectures.

CMMI V1.3 has a new emphasis on architecture.

The efficacy of the architecture has a direct impact on program or mission success, and customer satisfaction.
References - 1

Software Architecture in Practice, Second Edition

Evaluating Software Architectures: Methods and Case Studies

Documenting Software Architectures: Views and Beyond, Second Edition

Software Product Lines: Practices and Patterns
References - 2

You can find a moderated list of references on the “Software Architecture Essential Bookshelf”
http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm

Grady Booch: Handbook of Software Architecture (currently only an on-line reference):
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

CMMI for Development, Version 1.3
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
(also available as a book from the SEI Series on Software Engineering)

The SEI Software Architecture Curriculum

<table>
<thead>
<tr>
<th>Six Courses</th>
<th>Three Certificate Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Architecture Principles and Practices*</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Documenting Software Architectures</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Software Architecture Design and Analysis</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Software Product Lines</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>ATAM Evaluator Training</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>ATAM Leader Training</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>ATAM Observation</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
</tbody>
</table>

✓: required to receive certificate
*: available through e-learning
Contact Information

Larry Jones
Research, Technology, and Systems Solutions Program
Telephone: 719-481-8672
Email: lgj@sei.cmu.edu

Mike Konrad
SEPM
Telephone: 412-268-5813
Email: mdk@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/productlines
SEI Fax: 412-268-5758
Questions
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.