MOVEMENT AND STATIC STRESSES IN DOLOSSE

1. In 1986 the seaward end of the mainstem of the outer breakwater at Crescent City, CA, was rehabilitated using 680 fiber reinforced, 42-ton dolosse. As part of the Crescent City Prototype Dolosse Study (CCPDS), twenty of the 680 dolosse were instrumented to measure loading on the armor units. The instrumented units were placed near the center of the rehabilitated area. Four of the dolosse were placed in the bottom layer and the remaining 16 were positioned in the top layer. During the two years following the repair, a wealth of incident wave conditions and dolos loading and movement data were collected. Details of the CCPDS are presented in Howell, et al. (in publication).

2. Strain gages were positioned on rebar rosettes inside the instrumented dolosse in such a manner that two moments and a torque could be measured at the fluke-shank interface on one end of the dolosse, Figure 1 (Howell 1988). For the CCPDS, Burcharth and Howell (1988) have proposed a concrete failure criteria for use in dolos design. The criteria compares maximum principal tensile stress to the concrete rupture strength. Melby (1989) discusses the calculation of the maximum principal tensile stress for a cross-section in the dolos shank, and limitations of this methodology, indicating that it can be used with confidence to calculate maximum principal stress in dolos armor units.

3. Pulsating waves, impacts between units and static loads make up the three principal categories of loadings on concrete armor units (Burcharth 1984). During the CCPDS, no impact loads were observed. The maximum principal stress data recorded were comprised of pulsating wave loads and static loads induced by self weight and loads from adjacent units which include interlocking and wedging effects. That portion of the maximum principal stress associated with pulsating short and long period loadings can, in principle, be separated from the total stress data. The average of a 20 min data signal is used to represent the mean. The mean is the static response. The signal minus the mean is the pulsating response. Burcharth, et al. (1991) describes this analysis technique in detail.

4. Another important element of CCPDS was the collection of cumulative dolos movement data. This was accomplished through the use of ground-truthed photogrammetric survey techniques described by Kendall (1980). Eighteen dolosse located in the instrumented dolos area and 8 additional uninstrumented dolosse located in the 1986 rehabilitation area were targeted so movement could be closely monitored and documented. The targeted instrumented and uninstrumented dolosse are indicated by alpha and numeric characters, respectively, in Figure 2.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 JUN 1992

2. REPORT TYPE

3. DATES COVERED
 00-00-1992 to 00-00-1992

4. TITLE AND SUBTITLE
 Movement And Static Stresses In Dolosse

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, 3909 Hails Ferry Road, Vicksburg, MS, 39180

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 Unclassified
 b. ABSTRACT
 Unclassified
 c. THIS PAGE
 Unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 10

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Bal Z39-18
Figure 1. Prototype Internal Dolos Instrumentation and Measurement Definition Sketch
Figure 2. Targeted dolosea for photogrammetric and land surveys.
5. At the close of the CCPDS, following the post construction nesting of the dolosse, Kendall and Melby (1989) reported the dolosse cumulative average movement was leveling off, but some consolidation was still occurring in response to storm wave conditions. A set of static loading data collected in July 1989 showed that the rate of increase in static loads had decreased, but overall average static loads were still increasing.

6. The concrete used in the Crescent City dolosse had a 28 day flexural tensile strength of 984 psi (Kendall and Melby, 1989). Static data collected up through July 1989 for Crescent City dolosse indicated tensile stress magnitudes as high as 469 psi, Table 1. (Note that the stresses in Table 1 are based on a 4-day moving window average and that dolosse A and O were assumed unreliable.) This meant that in some of the dolosse close to one half of the dolos tensile strength was being used to resist static loads. Howell, Rhee and Rosati (1989) have shown that pulsating wave loads for the Crescent City Breakwater could result in maximum principal stresses as high as 70 psi. Subsequent laboratory work by Markle (1989 and in publication) revealed maximum principal stresses of up to 110 psi due to pulsating wave loadings. When the probable maximum pulsating stresses, as measured in the prototype and recreated in the model, were added to measured prototype static stresses, well over half of the tensile strength was being used to resist load induced stresses.

7. As a result of the items discussed in paragraphs 5 and 6, it was determined in FY 89 that a low level dolos monitoring effort needed to be continued at Crescent City to define and document the continued cumulative dolos motions and changing static loads. Under the Monitoring Completed Coastal Projects Program, a work unit entitled Periodic Inspections had just begun and Crescent City was included in this effort through September 1992. Results of photogrammetric surveys through May 1991 show that dolos movement is still continuing, but the magnitude of recently measured movement is very low, Figure 3.

8. In July 1990, the seven instrumented dolosse still working at Crescent City were monitored for one week to record static stresses. One of these dolosse had a bad channel which made it impossible to resolve principal stress for that dolosse. Data from the six functional dolosse showed that there had been a significant increase in static stresses in 5 of the 6 dolosse (near bottom of Table 1). Note the 500 psi static stress level in dolos M and the 400 psi static stress levels in dolosse E, P, and C. When the probable pulsating or wave loading stresses are added to these static stress levels, there is little or no reserve strength to resist possible impact induced stresses or increased static stresses. The increase in static stress between 1989 and 1990 is reflected in the overall average static stress level. The average increase during this year was 32%.

9. Static stresses in the six functional dolosse were again measured for one day in June 1991. These data again showed increases in stress for 5 of the 6 dolosse with the associated overall average static stress level increasing again by 8%.
Table 1. Average Static Stresses in Crescent City Instrumented Dolosse.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time in days from 9/1/86</th>
<th>dd03</th>
<th>dd04</th>
<th>dd05</th>
<th>dd06</th>
<th>dd07</th>
<th>dd08</th>
<th>dd09</th>
<th>dd10</th>
<th>dd12</th>
<th>dd13</th>
<th>dd14</th>
<th>dd15</th>
<th>dd16</th>
<th>dd18</th>
<th>dd19</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/14/87</td>
<td>267</td>
<td>72</td>
<td>333</td>
<td>359</td>
<td>83</td>
<td>295</td>
<td>525</td>
<td>244</td>
<td>886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/26/87</td>
<td>179</td>
<td>75</td>
<td>294</td>
<td>374</td>
<td>106</td>
<td>309</td>
<td>255</td>
<td>392</td>
<td>224</td>
<td>892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/5/87</td>
<td>194</td>
<td>72</td>
<td>177</td>
<td>286</td>
<td>390</td>
<td>71</td>
<td>321</td>
<td>331</td>
<td>242</td>
<td>303</td>
<td>879</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/17/87</td>
<td>198</td>
<td>73</td>
<td>179</td>
<td>283</td>
<td>333</td>
<td>332</td>
<td>95</td>
<td>237</td>
<td>185</td>
<td>299</td>
<td>867</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/23/87</td>
<td>204</td>
<td>75</td>
<td>182</td>
<td>279</td>
<td>315</td>
<td>95</td>
<td>243</td>
<td>187</td>
<td>295</td>
<td>895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/26/87</td>
<td>209</td>
<td>171</td>
<td>273</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>4/4/87</td>
<td>216</td>
<td>164</td>
<td>274</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>4/10/87</td>
<td>222</td>
<td>161</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>6/27/87</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>11/21/87</td>
<td>447</td>
<td>254</td>
<td>357</td>
<td>359</td>
<td>98</td>
<td>318</td>
<td>252</td>
<td>296</td>
<td>337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/24/87</td>
<td>450</td>
<td>348</td>
<td>339</td>
<td>339</td>
<td>106</td>
<td>351</td>
<td>247</td>
<td>120</td>
<td>254</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/30/87</td>
<td>456</td>
<td>299</td>
<td>339</td>
<td>339</td>
<td>106</td>
<td>351</td>
<td>247</td>
<td>120</td>
<td>254</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/7/87</td>
<td>453</td>
<td>299</td>
<td>359</td>
<td>359</td>
<td>99</td>
<td>353</td>
<td>284</td>
<td>122</td>
<td>280</td>
<td>344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/13/87</td>
<td>459</td>
<td>658</td>
<td>117</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>12/15/87</td>
<td>472</td>
<td>325</td>
<td>130</td>
<td>660</td>
<td>107</td>
<td>426</td>
<td>282</td>
<td>130</td>
<td>254</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/22/87</td>
<td>478</td>
<td>285</td>
<td>128</td>
<td>676</td>
<td>132</td>
<td>448</td>
<td>286</td>
<td>141</td>
<td>267</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/30/87</td>
<td>463</td>
<td>705</td>
<td>132</td>
<td>705</td>
<td>132</td>
<td>427</td>
<td>300</td>
<td>142</td>
<td>260</td>
<td>363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/5/88</td>
<td>492</td>
<td>323</td>
<td>137</td>
<td>130</td>
<td>449</td>
<td>284</td>
<td>147</td>
<td>261</td>
<td>353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10/88</td>
<td>497</td>
<td>311</td>
<td>142</td>
<td>120</td>
<td>400</td>
<td>305</td>
<td>142</td>
<td>278</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/17/88</td>
<td>504</td>
<td>339</td>
<td>130</td>
<td>135</td>
<td>469</td>
<td>324</td>
<td>304</td>
<td>283</td>
<td>344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/30/88</td>
<td>517</td>
<td>351</td>
<td>129</td>
<td>144</td>
<td>400</td>
<td>346</td>
<td>130</td>
<td>277</td>
<td>339</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/18/88</td>
<td>536</td>
<td>344</td>
<td>146</td>
<td>146</td>
<td>467</td>
<td>342</td>
<td>148</td>
<td>270</td>
<td>348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4/88</td>
<td>551</td>
<td>145</td>
<td>152</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td>4/19/88</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>7/1/89</td>
<td>1055</td>
<td>321</td>
<td>155</td>
<td>124</td>
<td>253</td>
<td>171</td>
<td>337</td>
<td>385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/22/89</td>
<td>1056</td>
<td>322</td>
<td>155</td>
<td>124</td>
<td>253</td>
<td>171</td>
<td>337</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/13/89</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>7/10/90</td>
<td>1409</td>
<td>368</td>
<td>176</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>7/16/90</td>
<td>1410</td>
<td>369</td>
<td>177</td>
<td>92</td>
<td>392</td>
<td>430</td>
<td>396</td>
<td>496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/3/91</td>
<td>1737</td>
<td>336</td>
<td>209</td>
<td>140</td>
<td>448</td>
<td>464</td>
<td>554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/18/91</td>
<td>1614</td>
<td>370</td>
<td>171</td>
<td>173</td>
<td>420</td>
<td>356</td>
<td>452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Each column presents static stress time history for one dolos (Example: dd03 and E are symbols for one dolos).
Figure 3. Survey dates correlated with wave power and average cumulative dolos translations and rotations.
10. During the period 13 July 1991 through 19 August 1991 four earthquakes were reported along the northern California coast with epicenters approximately 65 miles west of Crescent City and magnitudes from 5.8 to 6.9 on the Richter scale. A team of CERC personnel visited the Crescent City breakwater in September 1991 and collected static stress data for a one day period. According to several Crescent City locals, little ground movement was noted in the Crescent City area during these earthquakes and that a seasonal storm with approximately 20 ft waves had hit the breakwater subsequent to the earthquakes. The data in Table 1 show that the average static stress had decreased in four of the six working dolosse since June 1991.

11. Out of the fourteen dolosse that were successful in producing maximum principal stress data, only four of those working in September 1986 were still working in September 1991 and none of these four dolosse worked continuously. It is therefore impossible to construct a continuous long term average time series for even a small number dolosse. For this reason, two alternative approaches, Figures 4 and 5, have been used to present long term trends of static stresses in the Crescent City dolosse. Figure 4 presents, for each four day window, the average static stress for all working dolosse plotted against time. Figure 5 presents the four day window, average static stress for the four continuously working dolosse plotted against time. The best fit straight lines through these data show that static stresses are increasing with time. The best fit line for all working dolosse, Figure 4, shows an 8% per year static stress increase while that for the 4 continuously functional dolosse, Figure 5, shows a 33% per year increase.

12. In summary, before the CCPDS, it was postulated that dolosse go through a post construction nesting period and then movement tends to slow down. The CCPDS and subsequent MCCP data confirm this. Prior to CCPDS, it was also felt that dolosse breakage was largely due to combined impact loads between dolosse and pulsating wave loadings which over stressed the dolosse and that static loads did not play a significant role. The CCPDS and MCCP data show that for larger sized dolosse, static stresses can use up a significant portion of a dolos's tensile strength and that the added pulsating loads in some cases could push the maximum principal stress levels near the postulated Crescent City 700 psi design tensile limit (Kendall and Melby 1989). Continued monitoring of Crescent City will aid in understanding and defining post construction movement and static stress responses of dolosse. The information obtained in this study is being incorporated into the dolos design procedure developed for Crescent City, and it will also be used in the development of a general hydraulic and structural design procedure for concrete armor units (Melby, in preparation). The latter will be developed under work units in the Coastal Research and Development Program and the Repair, Evaluation, Maintenance and Rehabilitation Program II. These work units include additional mid- and large-scale model tests to develop an understanding of impact induced stresses and to gain more insight into combined hydraulic and structural stability of slender concrete armor units.

13. Based on current scopes of work in the "Periodic Inspections" work unit, static stress measurements will be made during the summer of 1992 and photogrammetric work will continue through the end of FY 92. These data are being used to define and correlate dolos movement and static stress levels over a seven year post construction period.
AVERAGE STRESS FOR ALL DOLOSSE

ALL DATA USED AS COMPUTED

Figure 4. Average static stress versus time for all dolosse data.
Figure 5. Average static stress versus time for the four dolosse that have functioned throughout monitoring program.
14. This CETN will periodically be revised when additional static stress and movement data become available. If there are questions relative to the information contained herein, please contact Mr. Jeff Melby, 601-634-3218, Jeffrey.A.Melby@erdc.usace.army.mil.

REFERENCES

Howell, G. L., Rhee, J. P. and Rosati, J., III 1989. "Stresses in Dolos Armor Units Due to Waves." Proceeding of Stresses in Concrete Armor Units, Vicksburg, Miss. ASCE.

Markle, D. G. 1989. "Crescent City Instrumented Model Dolos Study." Proceeding of Stresses in Concrete Armor Units, Vicksburg, Miss., ASCE.

