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1 Introduction

Engineering centers on estimating immediate and life-cycle costs, future system responses, levels of

damage, rates of deterioration, and numerous other quantities of interest. Invariably, these quantities

are uncertain due to unknown environmental conditions, load patterns, as well as cost and effect of

repair and retrofit actions, but their probability distributions and exceedance probability curves can

often be estimated by various models. Under these circumstances, engineers need to determine whether

a system is adequately safe, reliable, and inexpensive as compared to given requirements. When com-

paring multiple designs and plans, it becomes essential to identify the safest, most reliable, and least

costly design, maintenance plan, and retrofit action. In this paper, we discuss how to utilize distribu-

tional information about quantities of interest, obtained from models, to address these issues. Although

it is neither common nor required in most of today’s engineering practice to carry out a fully proba-

bilistic analysis, i.e., to determine the probability distribution of the cost and response of a system, the

methodology for such analysis is currently being developed (see for example [41, 18]) and it is our hope

and expectation that future engineering practice will adopt such analysis methods and thereby be able

to make decisions according to the principles laid out here.

Within a probabilistic framework, it is beneficial to view a quantity such as life-cycle cost, dis-

placement, and damage as a random variable with distribution estimated by (stochastic) models. The

difficulty arises then from the multitude of possible realizations of the random variable, which makes

comparison with code, regulatory, and owner-specified requirements difficult. In fact, the development

of such requirements faces the same challenge because the meaning of a requirement “at most $100

million in damage over the lifetime of the system” is ambiguous due the random nature of the damage

cost. Should the “at most” be considered over all possible realizations of the cost random variable, i.e.,

for all possible future scenarios of loads and structural deterioration? Alternatively, would it suffice

that the damage is “adequately” or “mostly” below $100 million, allowing for higher values in some

rare scenarios? A similar situation of ambiguity arises during comparison between competing designs,

retrofit plans, and other possible actions. It is unclear if a design with low expected cost, but large

variability in possible levels of cost, is preferable to a design with a somewhat higher expected cost that

has little variability in its cost. Still an engineer needs to make choices and recommendations prior to

learning the “true” cost that eventually will be realized.

The exclusive focus on the expected value of such a random variables provides a first, natural

way of addressing the issues of “adequately safe, reliable, and inexpensive” and “safest, most reliable,

and least costly.” For example, if a random variable Y gives the total (life-cycle) cost of a system,

which is required to not exceed a threshold c, then “adequately inexpensive” would mean that the

expectation E[Y ] ≤ c. Similarly, for two candidate designs of the system with associated costs, the

least costly will be the design with smaller expected cost. This emphasis on expected costs is advisable

for decision makers unconcerned about “risk,” i.e., the possibility of high cost or excessive response and

the associated consequences. Other decision makers, as laid out in Section 2, may be risk-averse and

be willing to forego a low expected cost and instead select a design with a small risk; see [37, 4, 5] and

references therein for recent examples and arguments for risk averseness. In this paper, we discuss how
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to address the case of a risk-averse decision maker. In contrast to the “risk neutral” case focused on

expectations, risk averseness can be represented in several ways and therefore is much more challenging

to model.

Of course, the issues we raise here are closely related to the numerical representations of preferences,

whose modern treatment was pioneered by von Neumann and Morgenstern [39], and goes much beyond

engineering to economics, finance, operations research, and other fields. In fact, we draw on these

fields to introduce a set of decision models that enable engineers to assess, compare, and optimize

random variables. We make no attempt to present a comprehensive picture of this immense field (see

[10, 24, 21, 23, 5] for engineering perspectives on risk modeling and design philosophy) and instead focus

on risk measures as a main tool for building decision models. As will become abundantly clear, risk

measures provide a tremendously broad class of models that includes common choices such as simply

letting random variables be represented by their expected values or by their probability of exceeding a

certain threshold. Expected utility theory and dual utility theory may even be considered to lead to

certain risk measures. Decision models based on risk measures are supported by a well-developed theory

[2, 35, 38, 27, 17, 33, 34] and extensive use in financial engineering [12, 11] and increasingly in other fields

[6, 28, 20]. They are also closely connected to stochastic dominance. Most of the concepts presented

here are known from the economics, financial engineering, and operations research literature. However,

we expose for the first time, with a number of simple examples, the possibilities and implications of

risk measures in reliability and structural engineering.

A choice of decision model must necessarily be driven by the need of a specific application and the

(financial) resources, responsibilities, and attitudes of the decision maker. We therefore shy away from

universally recommending one decision model and instead lay out the vast possibilities found within the

framework of risk measures, describe connections with utility theory, provide criteria “reasonable” risk

measures should satisfy, and highlight the difficulties and paradoxes that may arise when these criteria

are violated.

Although our perspective of modeling future cost, level of response, and other quantities as a random

variable captures many practical situations, it ignores the often intricate and gradual revelation of the

“true” cost and response over time, usually intertwined with decisions about maintenance and retrofit.

Modelling of this situation fully would lead to multi-stage risk-averse decision making and the need for

additional mathematical machinery such as those related to stochastic processes (see for example [34]).

To avoid obscuring the central tenets of the paper, we therefore focus exclusively on the situation where

we “today” must make an assessment and decision about a system with an uncertain (future) cost or

response, modelled as a random variable and typically associated with some time period. The random

variable will be realized only after the decision is made. In this case, there will be no opportunities

for corrective actions after some of the uncertainty has been resolved. Though, as we see in Section 4,

some risk measures implicitly capture a two-stage decision process. The general case leads to similar

developments, but is avoided here for conciseness of exposition.

We proceed in Section 2 with a description of the situation where a decision must be made in the

presence of uncertain cost and response, and give examples of when risk averseness may be warranted.

Section 3 reviews common decision models for addressing this situation and ends with the introduction of
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risk measures. Section 4 shows that most decision models can be interpreted in terms of risk measures

and provides further examples as well as supporting theory. These foundations allow us to address

the issue of how to optimally make decisions under uncertainty in Section 5. The paper ends with

conclusions in Section 6.

2 Random Variables and Risk-Averseness

We consider the situation where one or more (stochastic) models characterize the (future) “performance”

of a system in terms of a random variable Y that describes response quantities such as displacement,

stress, capacity exceedance, and crack size, or costs such as construction cost, maintenance cost, damage

cost, repair cost, and life-cycle cost. For example, a bar with random cross-section A, random yield

stress σmax, and random load S may have Y = S − σmaxA, which describes the difference between

load and capacity. Alternatively, Y could be the total life-cycle cost of a bridge or offshore structure,

including direct and indirect costs of “failures,” described by a series of complex models. We adopt the

convention that high realizations of Y are undesirable, which is natural as Y often represents monetary

cost. We maintain the convention in the case of response quantities also, which at most requires minor

adjustments. For example, in the simple example above one needs to consider S − σmaxA instead

of σmaxA − S. The exact meaning of Y varies of course with the application. In practice, multiple

response quantities and types of costs could be under consideration simultaneously. Section 5 provides

formulations of problems dealing with that situation, but the majority of the paper discusses a single

response or cost for simplicity of exposition. Regardless of the situation, a response or cost random

variable Y and its (estimated) distribution serve as the basis for decisions regarding the system. For

engineers, regulators, code-developers, and system owners, the following questions then arise:

How “risky” is Y ? Will Y be “adequately” ≤ c?

Here the constant c may be a budgeted amount of money or a threshold that a response most stay below

to avoid “failure.” When comparing a candidate design that results in the response or cost random

variable Y with a benchmark or alternative design with random variable Y ′, we may ask:

Is the design with Y preferable to that with Y ′?

These fundamental questions are best illustrated by an example.

Example: cost densities. We consider three alternative designs with costs described by the prob-

ability densities in Figure 1. (An interpretation in terms of system responses would follow similarly.)

The density given by a solid line has the lowest expected value and, under an expected-value criterion,

would be the preferred design. However, the dashed design has smaller variance at the expense of a

larger expected value. Depending on a decision maker’s preference, the benefits of a reduced variance

may more than outweigh the increased expected value. The dotted density has the same expected value

and variance as the dashed one, but the possibility of high costs is much smaller. A decision maker may
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Figure 1: Probability densities for various cost random variables

want to go beyond variance and look at variability in an asymmetric manner with deviations from the

mean on the high side viewed more unfortunate than deviations on the low side. With this perspective,

the dotted density may emerge as the “best.”

Decision models provide means for addressing the above fundamental questions in a systematic way.

Although the questions may at first appear distinct, with “adequately below c” leading to constraints

and “preferences” giving rise to objective functions, the difference is insignificant. The task of finding a

design with cost below c is essentially equivalent to minimizing the cost and then checking whether the

minimum value is below c. The task of minimizing cost is also achieved by finding a design with cost

below a threshold c and then repeating the process for successively smaller c. Consequently, there is no

valid reason for treating one question differently than the other. Both cases require a quantification of

the “risk” in a random variable Y .

The simplest decision model is to rely on expected values exclusively. As eluded to in Section 1,

the questions are then simply answered by replacing the random variables by their expectations and

then comparing the resulting numbers. The justification for such an approach is well-known: A decision

maker that will see many events, each causing an independent realization of a random variable, will face

an average cost or response per event that is close to the expectation of the random variable. A design

with the smallest average cost or response would then be “best,” on average. A governmental-type

decision maker dealing with monetary cost is often believed to fall in this category due to its large

portfolio of structures and/or its long time horizon. We believe that there are at least six situations

where this approach should be questioned and risk-averse approaches might be considered; see [37, 4, 5]

for related arguments:
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Response quantities related to safety, reliability, and functionality. If the focus is on a re-

sponse quantity Y such as stress level, displacement, or crack size, then it would make little sense to

impose the condition that E[Y ] ≤ c for some threshold c. To have tolerable response only on average

is usually unacceptable and, of course, a risk-averse approach using failure probability is in many areas

standard; see for example [10]. However, as we see in the next section, this is only one of several possible

quantities on which to base a risk-averse decision model.

Limited resources. The argument for relying on expected cost requires that not a single event,

regardless how costly, will deliver a vital blow to the decision maker. Although stable western govern-

ments may appear to have unlimited resources and an ability to handle any large cost, the situation is

different for poor countries, corporations, and individual developers. Such decision makers may except

slightly higher expected costs if it implies smaller chances for extremely high costs.

Predictability. The positive development of businesses and civic society relies on predictable and

stable conditions. A society may prefer to have slightly higher expected costs, but less volatility to

facilitate budgeting and long-term planning in both the public and private sectors. In particular, rela-

tively high probabilities in the upper tail of a cost distribution may be viewed undesirable. For example,

the negative effects and perceptions associated with budget overruns for infrastructure projects furnish

strong motivations for public decision makers to be risk averse. Predictability may also be important

when the focus is on system responses, not directly related to costs, for example when the responses

are input to other systems.

One-Off Structures. The design of special buildings, bridges, and other structures could warrant a

risk-averse approach as the real as well as symbolic effect of large damages may be simply to great.

Planning horizon and dependence. The averaging effect across events that provides the justifica-

tion for an expectation-based approach may also not be as great at usually perceived if the planning

horizon is moderate or significant dependence is present. Suppose that a decision maker will be respon-

sible for a portfolio of structures which can be built according one of two possible design with the same

initial building cost. All structures must be built according to the same design. The structures will be

located in a seismically active area and damaging events will occur according to a Poisson process with

intensity λ = 1/(200 years), i.e., the expected time between events is 200 years. Each time an event

occurs, the decision maker will repair the structures at a cost of $120 mil under design 2. If design

1 is selected for the structures, then the repair cost is a normal random variable with mean $100 mil

and standard deviation $20 mil. We assume that the repair cost of an event is independent of the cost

of previous events. It is apparent that if the decision maker relies on the expected cost, then design

1 is superior with an average cost of $25 mil per fifty years. Design 2 will cost on average $30 mil

per fifty years. However, during any 50-year period, a reasonable planning horizon for a government

agency, there is a significant chance that design 1 will be more costly, and possibly much more so. For
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density of total cost probability that
# events design 1 design 2 design 1 costlier

10 normal(1000,63.2) fixed(1200) 0.0007
2 normal(200,28.3) fixed(240) 0.0786
1 normal(100,20.0) fixed(120) 0.1587

Table 1: Densities of costs conditional on number of seismic events

example, it is easy to show that the total cost during 50 years under design 1 will exceed $120 mil with

a probability of 5.7%. In contrast, the probability for design 2 is only 2.4% as that will require two

events during the time span. The situation is further illustrated by Table 1, which in columns two and

three gives the densities of the total cost conditional on the number of events (column one) for designs

1 and 2, respectively. The last column shows the probability that design 1 will be more costly than

design 2, conditional on the number of events. It is clear that for many events, design 1 is superior

as the independence between events makes it unlikely that all events are costly and the total cost is

likely to be close to the mean total cost. In the case of one or two events, it is quite likely that design

1 becomes more costly and possibly much more costly than design 2, however. A decision maker with

a moderately long planning horizon that is concerned about the variability in costs and the possibility

of exceptionally large costs, may in this case prefer a risk-averse decision model that does not rely on

the expected cost exclusively and that recommends design 2. A similar argument can also be made for

situations with dependencies, which also reduce the “averaging effect” across many events and systems.

Unaccounted costs. One can argue that the costs of unpredictability, symbolic effects, and other

factors could be included in a total life-cycle cost for a system and thereby possibly reducing the need

for a risk-averse approach. However, it is clear that in practice this will be extremely difficult and

decision makers, even those with deep pockets, should perhaps be concerned about the upper tail of a

cost distribution as it may correspond to events having additional, unaccounted costs. In fact, as we

see in Section 4,

a risk-neutral decision maker uncertain about the distribution of costs is equivalent to a

risk-averse decision maker certain about the distribution of costs.

Consequently, an otherwise risk-neutral decision maker may be driven to risk averseness due to perceived

incompleteness of cost models.

3 Decision Models

Decision models provide the linkage between descriptive models of system response and cost, and actual

decision making. We here provide an overview of risk-averse decision models, starting with those relying

on the failure probability and expected utility theory. The section ends with the introduction of risk

measure and corresponding models that, to a large extent, encapsulate the previous models.
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Decision models deal with comparison of response and cost random variables. We therefore need

to consider a family of random variables corresponding to different design or alternatives. We let

x = (x1, x2, ..., xn) be a vector describing such alternatives, where the components may specify member

sizes, layout, material choices, maintenance schedules, retrofit actions, etc. The random variable Y (x)

then specifies the (random) response or cost, given design x. For example, if the response or cost is

given in terms of a function g that depends on the design x and a random vector V describing uncertain

parameters, then Y (x) = g(x,V ). When the discussion centers on a single random variable, we drop

(x) and simply write Y as before.

Failure probability. The failure probability of a random variable Y with respect to a threshold zero

is given by

p(Y ) = prob(Y > 0).

Often this quantity is considered for a response random variable Y describing stress level over capacity,

displacement over required thresholds, etc., but it also applies for cost random variables, maybe de-

scribing cost above a budget. In reliability-based design optimization over x in some set of admissible

design X , a standard approach is to minimize an objective function subject to x ∈ X and the reliability

constraint

p(Y (x)) ≤ 1− α,

where α is a number close to 1 often determined by code requirements and other regulations obtained

through calibration studies for example with existing structures. Another formulation is to minimize

p(Y (x)) subject to constraints on the design x. These decision models are well understood and widely

used; see for example [10, Chapter 12] for a discussion. Recent proposals centered on the capabilities

of individuals after disasters also rely on probabilities of exceeding thresholds specifying essential needs

[21, 22, 13, 23]. However, there are two immediate concerns with failure probability models. (A third

surfaces in Section 4.) First, there may be two design x and x′ with the same failure probability, i.e.,

p(Y (x)) = p(Y (x′)), but the distributions of Y (x) and Y (x′) may be different, especially in the critical

upper tail. For example, if Y (x) = g(x,V ) = 100− xV1 − (1− x)V2, where V1 is normally distributed

with mean 150 and standard deviation 15 and V2 is triangularly distributed on the range [98.40, 175.8],

with mode at 98.40, then the two designs x = 1 and x = 0 result in rather different distributions

Y (0) = g(0,V ) and Y (1) = g(1,V ). Figure 3 shows the tails of the corresponding densities. It is

clear that design x = 1 allows much larger values of Y (x), which may be of concern for a decision

maker as it indicates the possibility for more dramatic failures. Still, one can show that the designs

have identical failure probability. Consequently, the failure probability is insensitive to the tail of the

distribution and an exclusive focus on the corresponding decision models may hide significant risks.

The second concern when using the failure probability is its lack of convexity and smoothness as a

function of the design vector x. This deficiency dramatically increases the difficulty of solving design

optimization problems involving p(Y (x)). The absence of convexity makes it fundamentally harder to

obtain globally optimal designs as the standard, efficient algorithms can only be guaranteed to return

locally optimal designs. The lack of smoothness makes gradients of the failure probability with respect
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Figure 2: Tails of the densities of Y (1) = g(1,V ) and Y (0) = g(0,V )

to the design x unavailable and one is forced to rely on slower derivative-free algorithms. A solution

of such optimization problems also becomes unstable under perturbations and therefore further draws

into doubt the viability of the model; see Section 5 and also [28] for further details.

Expected utility theory. A range of decision models relies on

the expected utility = E[u(−Y )], (1)

where u is a utility function, typically nondecreasing and concave, and the minus sign is required

to convert a cost random variable Y into the orientation of utility theory where higher values are

preferred to lower ones. A cost random variable Y is preferred to Y ′ if its expected utility is at least

as large as that of Y ′. Although traditionally applied to random variables describing monetary values,

expected utility theory also applies to random variables describing system responses such as stresses

and displacements. A brief description of the axiomatic foundation of the associated decision model

requires the introduction of some additional notation and concepts. The theory was originally developed

in terms of probability distributions on the real line [39], but we here follow [34] and state axioms in

terms of random variables2.

For random variables X and Y , we denote by X ≼ Y that X is preferred over Y . We write X ≺ Y

if X ≼ Y , but Y ≼ X does not hold and then say that X is strictly preferred over Y . Indifference

2We observe that the probability distribution and random variable perspectives are equivalent if the underlying prob-
ability space is atomless; see [34] for details.
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between X and Y is denoted by X ∼ Y and takes place if X ≼ Y and Y ≼ X. We refer to ≼ as a

preference relation. We always assume that preferences are law-invariant, i.e., if the distribution of X

and Y are identical, then X ∼ Y . For random variables X,Y, Z, we say that Z is a lottery of X and Y

with probability α if there is an event with probability α such that the conditional distribution of Z,

conditional on that event, is the same as the distribution of X and that the conditional distribution of

Z, conditional on the complement of that event, is the same as the distribution of Y . That is, facing

the possible outcomes of Z is equivalent to facing the outcomes of X, with probability α, as well as

facing the outcomes of Y , with probability 1−α. The axioms of utility theory is given in terms of such

lotteries:

For any random variables X,Y, either X ≺ Y or Y ≺ X or X ∼ Y (completeness),

If X ≼ Y and Y ≼ Z, then X ≼ Z (transitivity),

If X ≺ Y, then the lottery of X and Z with probability α is strictly preferred to

the lottery of Y and Z with probability α, for any α (independence),

If X is strictly preferred over Y and Y strictly preferred over Z, then there exist

probabilities α, β such that the lottery of X and Z with α is strictly preferred to Y

as well as Y is strictly preferred to the lottery of X and Z with β (archimedean).

The completeness axiom simply states that we are able to express preference or indifference for any

pair of random variables in the set of random variables under consideration. The transitivity axiom

expresses the natural condition that if a decision maker prefers a first random variable over a second

one, and the second one over a third one, then it will also prefer the first random variable over the

third. The independence axiom postulates that a preference remains unchanged under the possibility of

another outcome. The archimedean axiom expresses that a strict preference is maintained under small

changes in the random variables.

A numerical representation U of a preference relation ≼ is a functional that for every random

variable X under consideration returns a real number U(X) and

X ≺ Y if and only if U(X) > U(Y ).

That is, a comparison of U(X) and U(Y ) suffices to determine a preference of X over Y . The funda-

mental theorem of von Neumann and Morgenstern [39] states that if a preference relation ≼ satisfies

the above axioms, then a numerical representation exists for that preference relation. Further charac-

terizations are possible under a continuity3 axiom:

For every X, the sets {Y : Y ≼ X} and {Y : X ≼ Y } are closed (continuity). (2)

3Closedness in the subsequent statement is with respect to convergence in distribution, i.e., for any sequence Zn of
random variables in a set under consideration that converges in distribution to a random variable Z, we have that Z is in
the set.
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We then have that under the completeness, transitivity, independence, and continuity axioms, there

exists a continuous and bounded function u such that

U(Y ) = E[u(−Y )]

is a numerical representation. In this case it is therefore sufficient to rely on expected utility for the

characterization of preferences. A monotonicity axiom provides additional details about the nature of

u:

If X ≤ Y with probability 1, then X ≼ Y (monotonicity).

Under the additional axiom of monotonicity, u is nondecreasing and one can limit the focus to such

utility functions.

Although the completeness, transitivity, and monotonicity axioms are natural, the independence,

continuity, and archimedean axioms are more restrictive. Expected utility theory also faces the signifi-

cant issue of determining and justifying a specific choice of utility function in a practical situation. The

theorems above provide no operational means for its construction. Still, a variety of techniques includ-

ing basic reference lottery ticket questions have been develop to elicit the utility of a given decision

maker. As the shortcomings of expected utility theory has emerged, a variety of related approaches

have been proposed; see for example [36] for an overview. We describe two of these next.

Prospect theory. In response to practical limitations of expected utility theory and observed behavior

of decision makers, cumulative prospect theory [15] ranks choices according to (1) under a modified

probability distribution for Y and with utility functions that are anchored at a specific threshold value

of particular significance to the decision maker. The modification of the probability distribution is

motivated by the observed fact that most decision makers overemphasize extreme events and a shift

in distribution towards heavier tails would response to this tendency. A challenge remains of how to

make these shifts in a practical setting. We refer to [4, 5] for recent use of this approach in engineering

applications.

Dual utility theory. Dual utility theory [26, 40] provides a range of decision models where preferences

are based on

D(Y ) =

∫ 1

0
qβ(Y )dw(β), (3)

for some bounded, nondecreasing, and continuous function w called the rank-dependent utility function

and qβ(Y ) is the β-quantile of the distribution function FY of Y . If FY is strictly increasing, then

qβ(Y ) = F−1
Y (β). More generally,

qβ(Y ) = the smallest y that has FY (y) no smaller than β.

If the rank-dependent utility function w(β) = β, then dw(β) = dβ and D(Y ) = E[Y ], and the pref-

erences rely on expected values only. If piecewise linear with w(β) = max{0, β/(1 − α) − α/(1 − α)},
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then

D(Y ) =
1

1− α

∫ 1

α
qβ(Y )dβ, (4)

which below plays a special role. This choice averages the quantiles in the upper tail above a probability

level α. Regardless of the specific form of the rank-dependent utility function, if D(X) ≤ D(Y ), then

X is preferred to Y .

In contrast to the axioms for expected utility theory, which are based on lotteries, the axioms of

dual utility theory rely on comparison of co-monotone random variables; see for example [34] for a

recent exposition which we follow here. The definition of co-monotone random variables requires us

to view the random variables as (measurable) functions from a common sample space Ω into the real

numbers and denote by X(ω) the realization of random variable X corresponding to outcome ω ∈ Ω.

Specifically, we say that random variables X and Y are co-monotone if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0 for every ω, ω′ ∈ Ω.

In essence, two random variables are co-monotonic if they move in tandem: if one outcome gives a

larger realization of X than another outcome, then Y also has larger realizations for the latter outcome.

One can view co-monotonicity as a “strong from” of positive correlation. We say that a set of random

variables are co-monotone if all the pairs of random variables in the set is co-monotone. Yaari postulated

the following axioms [40]:

For co-monotone random variables X,Y, Z, we have that if X ≺ Y,

then αX + (1− α)Z ≺ αY + (1− α)Z for all probabilites α (dual independence),

For co-monotone random variables X,Y, Z, with X ≺ Y ≺ Z, there exist probabilities

α, β such that αX + (1− α)Z ≺ Y ≺ βX + (1− β)Z (dual archimedean).

We observe that instead of lotteries, involving alternative outcomes which sometimes cause humans to

make “irrational” decisions, the axioms of dual utility theory involve only statements about random

variables moving in tandem. The dual independence axiom states that if X is strictly preferred over

Y , then “mixing” X with a random variable Z and Y with Z, when they all move in tandem, do

not change the preference. Since these axioms involve statements only over the co-monotone random

variables, they are in some sense weaker than those of expected utility theory.

If the completeness, transitivity, monotonicity, dual independence, and dual archimedean axioms

hold for a preference relation, then there exists a numerical representation D characterizing that rela-

tion and for any co-monotone random variables X,Y and nonnegative numbers λ1, λ2, D(λ1X+λ2Y ) =

λ1D(X)+λ2D(Y ). Further specification of the numerical representation is also possible. If a preference

relation is continuous4 and the consideration is limited to bounded random variables, then there exists

a bounded, nondecreasing, and continuous function w such that the numerical representation satisfies

4Now closeness in the continuity axiom (2) is taken with respect to convergence in the L1-norm, i.e., for any sequence
Zn of random variables in a set under consideration with E[|Zn − Z|] → 0 for a random variable Z, we have that Z is in
the set.
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(3) for all Y . Consequently, every preference relation over such random variables can be fully captured

by a rank-dependent utility function w and (3). Of course, as in the case of utility functions, it may

be challenging in practice to determine a representative rank-dependent utility function for a specific

decision maker, though again specific reference questions can be revealing. We refer to [9] for a modern

perspective on expected utility and dual utility theories.

Stochastic dominance. Stochastic dominance (see [14] and for example [19]) gives rise to a family of

decision models that avoids the need for specifying utility functions, but only provides a partial order

of preferences. In particular, we say that for response or cost random variables Y and Y ′,

Y dominates Y ′ in the first-order sense if

E[f(Y )] ≤ E[f(Y ′)] for every continuous bounded increasing function f .

Similarly,

Y dominates Y ′ in the second-order sense if

E[f(Y )] ≤ E[f(Y ′)] for every finite convex increasing function f .

The latter property is also known as “increasing convex order” [19]. It is immediately clear that if

Y dominates Y ′ in the first-order sense, then every decision maker with a continuous bounded and

increasing utility function would prefer Y over Y ′. A similar argument is available for second-order

dominance. Consequently, the use of stochastic dominance circumvents the practically significant issue

of determining a utility function for a given decision maker. However, since it only provides a partial

order, “completeness” is violated as some pairs of random variables cannot be classified as either “we

preferred one to the other” or “we are indifferent.” For example, a random variable with a certain value

of 0 does not dominate in the first-order sense a standard normal random variable, which is most easily

realized from the fact that X dominates Y in the first-order sense if and only if the distribution function

of X is always no smaller than that of Y [29]. But the normal random variable does not dominate in

the first-order sense the random variable with a certain value at 0 either. Consequently, we are not

indifferent about the two random variables and we do not strictly prefer one over the other. First-order

stochastic dominance is unable to rank the two random variables. For further discussion and use of

stochastic dominance, we refer to [8].

Risk measures. We end this section with the introduction of a broad class of decision models that

encapsulates all but the last one described above. They rely on measures of risk as defined next: A

measure of risk is a functional R that assigns to a response or cost random variable Y a number R(Y ),

which could be infinity, as a quantification of the risk in Y . The numerical representations U and D

(see (1) and (3), respectively) of expected and dual utility theory are special cases of R. The answer

to the question of how “risky” is Y , is therefore now simply defined to be R(Y ). We say that Y is

“adequately” ≤ c if R(Y ) ≤ c. The comparison of two choices Y and Y ′ then reduces to comparing

R(Y ) and R(Y ′); see [17, 33] for recent reviews. Examples and supporting theory for risk measures is

the topic of the next section.
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4 Theory and Examples of Risk Measures

The term “risk measure” originates from financial applications, but as its definition shows the concept

captures essentially all reasonable models for handling a response or cost random variable regardless of

its origin. We start with a list of examples of risk measures that illustrates the breadth of the framework

as well as its connections with the decision models of Section 3. We then proceed with axioms that

“good” risk measures should satisfy. The section ends with discussion of further connections with utility

theory and stochastic dominance.

4.1 Examples

Since a risk measure simply converts a response or cost random vector into a scalar, a large number of

possibilities exists, some of which we have seen above. We next describe the most natural choices; see

[29] for additional examples.

Expectation. The choice R(Y ) = E[Y ], the expected value, is simple, but not sensitive to the possi-

bility of high values as discussed above. Obviously, this choice incorporates no level of risk averseness.

Worst-case. The choice

R(Y ) = supY = smallest value that Y exceeds only with probability zero

is conservative, usually overly so as it is infinite for distributions such as the normal and exponential.

In fact, the corresponding decision model ignores all the information in the distribution of Y except its

highest “possible” realization. Still, in some applications there may be thresholds that simply should

not be exceeded as discussed in [23].

Failure probability. The choice R(Y ) = p(Y ), the failure probability, is a risk measure, though

convenient connections will emerge by considering the closely related quantile risk measure given next.

Quantile. The α-quantile of a random variable Y , qα(Y ), is equivalent to the failure probability in the

sense that

p(Y ) ≤ 1− α if and only if qα(Y ) ≤ 0. (5)

For probability α ∈ (0, 1), the risk measure R(Y ) = qα(Y ) is therefore essentially equivalent to the

failure probability risk measure.

Utility. For an expected utility function u, the choice R(Y ) = −U(Y ) = −E[u(−Y )] is a risk measure,

where the negative signs are necessitated by the need to convert the standard orientation of utility the-

ory, which prefers higher values over lower ones, to the present setting focusing on cost and response,

where lower values are desirable. With D from dual utility theory, we also obtain a risk measure
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R(Y ) = D(Y ).

Safety margin. A natural choice motivated by statistical confidence intervals is to set

R(Y ) = E[Y ] + λSD[Y ],

where SD[Y ] is the standard deviation of Y and λ a positive constant. Here the risk includes a notion

of variability, but does so in a symmetrical manner. Large variability on the high side can remain

undetected if it is compensated by small variability on the low side. For example, in Figure 1 the

dotted and dashed densities have the same expected value and standard deviation. Consequently, this

risk measure would assign the two cases the same risk. Figure 1 shows, however, that the possibility of

high costs is much larger for the dashed density, which could be disconcerting.

Superquantile. A risk measure that focuses primarily on the important upper tail of the distribution

of Y is the superquantile risk measure R(Y ) = q̄α(Y ); also called conditional value-at-risk [31], where

the α-superquantile of Y at probability α ∈ (0, 1) is given by

q̄α(Y ) =
1

1− α

∫ 1

α
qβ(Y )dβ, (6)

i.e., an α-superquantile is an average of the corresponding quantiles for the probability levels [α, 1] [1].

This expression coincides with (4) and is therefore a special case of those arising in dual utility theory.

The rank-dependent utility function w(β) = max{0, β/(1 − α) − α/(1 − α)} that furnishes this risk

measure incorporates indifference to realizations of Y less than the quantile qα(Y ). Higher outcomes

are “weighted” with the corresponding quantile.

When the cumulative distribution function of Y has no discontinuity at qα(Y ), we have the equivalent

formula

q̄α(Y ) = E[Y | Y ≥ qα(Y )],

i.e., the α-superquantile is simply the conditional expectation of Y above the α-quantile as illustrated in

Figure 3. A slightly more involved formula is available for the case of discontinuities; see [32]. Despite

its somewhat complicated definition, convenient expressions facilitate the computation of superquantiles

making them almost as accessible as an expectation. If Y is normally distributed with mean µ and

standard deviation σ, then q̄α(Y ) = µ+σφ(Φ−1(α))/(1−α), where φ and Φ are the probability density

and cumulative distribution functions for a standard normal random variable. Generally,

q̄α(Y ) = the minimum value of c+
1

1− α
E[max{0, Y − c}] across all scalars c, (7)

i.e., a superquantile is the minimum value of a one-dimensional convex optimization problem involving

an expectation easily solved when the distribution of Y is known. A superquantile risk measure depends

on the parameter α that represents the degree of risk averseness of the decision maker. For α = 0,

q̄α(Y ) = E[Y ] and therefore corresponds to the risk-neutral situation. An α = 1 gives q̄α(Y ) = supY

and therefore corresponds to the ultimate risk-averse decision maker. Simple reference questions, for
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Figure 3: Illustration of quantile and superquantile of random variable Y using cumulative distribution
function (CDF).

examples related to the newsvendor problem (see Section 3.2 in [30]) may help to determine α in a

specific setting.

The correspondence between a failure probability constraint p(Y ) ≤ 1−α and the quantile condition

qα(Y ) ≤ 0 is elaborated above. Analogously, a superquantile condition q̄α(Y ) ≤ 0 corresponds to the

condition p̄(Y ) ≤ 1 − α, where p̄(Y ) is the buffered failure probability of Y defined as the probability

α that satisfies q̄α(Y ) = 0. We refer to [28] for a discussion of the advantages that emerge from replac-

ing a failure probability by a buffered failure probability. The prominence of superquantiles becomes

apparent in the next subsection where we discussion properties required for “good” measures of risk.

Spectral risk measures. Risk measures of the form

R(Y ) =

∫ 1

0
q̄β(Y )dλ(β),

given as a weighted average, using weighting function λ, of superquantiles, are spectral risk measures

[1] that correspond to numerical representations of dual utility theory. This can be seen from the fact

that under weak assumptions on the weighting function,

R(Y ) =

∫ 1

0
qβ(Y )φ(β)dβ, with φ(β) =

∫ β

0
(1− α)−1dλ(α),

and therefore φ is simply the “derivative” of the rank-dependent utility function w of dual utility

theory; see for example [33]. Any spectral risk measure, including the special case of a superquantile

risk measure, where the weighting function λ places all weight at α, is therefore deeply rooted in dual
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utility theory. We refer to [16] for an approach to determining the weighting function in a specific

situation.

4.2 Coherency and Regularity

With the abundance of possible risk measures (and we refer to [33] and references therein for many

more), there is a demand for guidance on what would constitute a good and useful measure of risk.

There are two concepts that stand out in this regards: coherency and regularity. We discuss each in

turn.

A measure of risk R is coherent in the sense of Artzner et al.5 [2] (see also [7]) if it satisfies the

following axioms:

R(Y ) = c for constant random variables Y ≡ c (constant equivalence),

R(Y ) ≤ R(Y ′) when Y ≤ Y ′ with probability one (monotonicity),

R(Y + Y ′) ≤ R(Y ) +R(Y ′) (subadditivity),

R(λY ) = λR(Y ) for λ > 0 (positive homogeneity).

The constant equivalence simply requires that the risk of a random variable that is actually a determin-

istic constant is the value of that constant. The monotonicity says that we would deem Y ′ no less risky

than Y if every realization of Y ′ is no smaller than the corresponding realization of Y , with the possible

exception for an event with probability zero. Subadditivity expresses the requirement that combining

two random variables should not increase risk. The left-hand side in the expression gives the risk of

the combined cost or response, which of course depends on the joint distribution of Y and Y ′. The

right-hand side gives the sum of the risks for the two random variables separately, only relying on their

marginal distributions. Positive homogeneity expresses the desire to have invariance under scaling. If

the units of Y is converted from one currency to another, then the risk is also simply scaled with the

exchange rate.

Coherency holds for the choices R(Y ) = E[Y ], R(Y ) = supY , R(X) = q̄α(Y ), and spectral risk

measures, but it is absent in general forR(Y ) = −E[u(−Y )], because constant equivalence fails, R(Y ) =

E[Y ] + λSD(Y ) with λ > 0, because the monotonicity axiom fails, and for R(Y ) = qα(Y ), because the

subadditivity axiom fails. Since the quantile risk measure corresponds to a failure probability, this shows

that a decision model based on the failure probability is “incoherent” in this sense, which furnishes a

third concern eluded to in Section 3. We give two examples that illustrate these shortcomings.

First, we consider the lack of monotonicity of the risk measure R(Y ) = E[Y ] + λSD(Y ). For two

random variables Y and Y ′, with prob(Y = 0, Y ′ = 0) = 1/2 and prob(Y = −2, Y ′ = −1) = 1/2,

clearly, Y ≤ Y ′ with probability one, R(Y ) = E[Y ] + 2SD(Y ) = −1 + 2 · 1 = 1, with SD denoting

standard deviation, and R(Y ′) = E[Y ′] + 2SD(Y ′) = −1/2 + 2 · 1/2 = 1/2. However,

E[Y ] + 2SD[Y ]1 > E[Y ′] + 2SD[Y ′] = 1/2

5The statement here is slightly different, but equivalent, to that in Artzner et al.; see [33].
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Figure 4: Density of Y and Y ′ in subadditivity counterexample.

and monotonicity fails for the risk measure R(Y ) = E[Y ] + λSD(Y ) with λ = 2.

Second, we consider subadditivity of the quantile risk measure. Suppose that Y and Y ′ quantifies

the damage of bridge 1 and 2 under a future hazard, respectively. Let R(Y ) be the amount of money

deemed necessary to put aside to cover damage of bridge 1 and R(Y ′) the amount to cover damage

of bridge 2. R(Y + Y ′) is the amount of money deemed necessary to put aside to cover damage at

both. The following example is taken from [2]. Suppose that Y and Y ′ are independent and identically

distributed with probability density function illustrated in Figure 4. It is relatively straightforward to

compute that q0.9(Y ) = q0.9(Y
′) = 0, but q0.9(Y + Y ′) ≈ 0.5 and subadditive fails.

Another concept is that of regularity. A measure of risk R is regular in the sense of Rockafellar and

Uryasev [33] if it satisfies the constant equivalence axiom as well as:

R((1− τ)Y + τY ′) ≤ (1− τ)R(Y ) + τR(Y ′) for all Y, Y ′ and τ ∈ (0, 1) (convexity);

{Y | R(Y ) ≤ c} is a closed set for every constant c (closedness);

R(Y ) > E[Y ] for nonconstant Y (averseness).

The convexity axiom is closely related to subadditivity and in conjunction with positive homogeneity is

in fact equivalent to that property. The closedness axiom is included for technical reasons and requires

further limitation of the random variables under consideration, for example to those with finite second

moments where closedness then can be defined in terms of convergence of mean squares. Without

going into technical details (see [33]), we simply note that R(X) = q̄α(Y ) is regular for α ∈ (0, 1) as

well as certain spectral risk measures when we consider random variables Y with E[|Y |] < ∞. For

the other examples above, we find that R(Y ) = supY and R(Y ) = E[Y ] + λSD(Y ), with λ > 0, are

regular for random variables Y with E[Y 2] < ∞. The choice R(Y ) = E[Y ] fails the averseness axiom
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and R(Y ) = qα(Y ) the convexity axiom. The choice R(Y ) = −E[u(−Y )] for some utility function u

fails the constant equivalence axiom. In fact, a utility function distorts a deterministic Y in a possibly

undesirable manner: If Y is a deterministic constant, then a coherent or regular R(Y ) equals that

constant always. But, R(Y ) = −E[u(−Y )] could be far from that constant in general. Moreover, the

latter risk measure is sensitive to thresholds in the definition of Y (for example through a limit-state

function). Specifically, −E[u(−Y + c)] ̸= −E[u(−Y )]− c in general. In contrast, a coherent or regular

risk measure changes linearly with threshold, i.e., R(Y − c) = R(Y )− c for any constant c.

The coherency and regularity axioms overlap, but are not equivalent as the above examples illustrate.

Regularity insists on averseness, but coherency stresses positive homogeneity. Both notions impose

conditions that are natural in almost all situations and that are significantly weaker than those of

expected utility theory. Of course, within the class of coherent and regular risk measures there is much

flexibility and the axioms can simply be viewed as minimum requirements. The next subsection and

Section 5 highlight benefits derived from using regular measures of risk.

4.3 Further Connections with Utility Theory and Dominance

The connections between spectral measures of risk and dual utility theory became apparent in the

previous subsection. Now, we show that regular measures of risk can be viewed as the outcome of a

two-stage decision process involving a utility function providing fundamental connections also between

expected utility theory and risk measures. We give alternative expressions of regular risk measures

that connect with situations under distributional uncertainty. Moreover, we show that quantile and

superquantile risk measures lead to “relaxations” of first- and second-order stochastic dominance re-

quirements, respectively. We start with the connections to utility theory.

4.3.1 Utility, Regret, and Risk Measures

To avoid the awkward inconsistency between our orientation concerned with high values of Y with that

of utility theory, seeking high values, we define an analogous concept to a utility function in our context

where lower values are preferred to higher ones.

A measure of regret is a functional V that assigns to a random variable Y a number V(Y ), which

may be infinity, as a quantification of the displeasure with the mix of possible realizations of Y . It

could correspond to a utility function u through

V(Y ) = −E[u(−Y )], (8)

but we ensure that it is anchored at zero. Hence, we insists that V(0) = 0 and the correspondence

is therefore with relative utility that has u(0) = 0. Every expected utility function with u(0) = 0

gives a measure of regret through (8). Examples of measures of regret include V(Y ) = E[Y ] + λE[Y 2],

with λ > 0, and V(Y ) = 1
1−αE[max{0, Y }], with α ∈ (0, 1). The latter expression is illustrated in

Figure 5, where negative realizations of Y are assigned zero regret, but positive realizations are viewed

increasingly “regretable,” with the increase being linear. This expression corresponds to a piecewise

linear utility function with a kink at zero. A larger α implies a higher degree of risk averseness.
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Figure 5: Illustration of regret.

Analogously to the regularity of risk measures, we say that a measure of regret is regular if it satisfies

the closedness and convex axioms, and

V(0) = 0, but V(Y ) > E[Y ] when Y is not the constant zero.

If the random variable is not discrete, an additional technical condition is also required; see [33] for

details. The two examples given above are both regular regardless whether the random variable is

discrete.

Major advantages derive from the following fact [33]: A regular measure of riskR can be constructed

from a regular measure of regret V through the one-dimensional optimization problem

R(Y ) = the minimum value of c+ V(Y − c) across all scalars c. (9)

For example, a superquantile measure of risk R(Y ) = q̄α(Y ) derives from the measure of regret V(Y ) =
1

1−αE[max{0, Y }], which leads to the already claimed expression (7). A large number of other measures

of risk can be constructed in a similar manner; see [33]. With the connections between regret and relative

utility, this implies that every expected utility function u, with u(0) = 0, is in correspondence with a

regular measure of risk through (8) and (9). These connections also provide a path to determine the

risk averseness for a specific decision maker. If a basic reference lottery ticket question can elicit a

relative utility function for the decision maker, then the conversion of that function into regret yields a

risk measure for the decision maker through (9).

The trade-off formula (9) provides important interpretations of a regular measure of risk as the

result of a two-stage decision process involving a regular measure of regret (and therefore also a relative

utility function). We first consider an interpretation in terms of costs. Suppose that Y gives the damage
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cost of a system and the measure of regret V(Y ) quantifies our displeasure with the possible damage

costs. In (9), view c as the money put aside today to cover future damage costs and Y − c as the net

damage cost in the future. Then, c + V(Y − c) becomes the total cost consisting of the sum of the

money put aside today plus the current displeasure with future damage costs. The risk R(Y ) is then

simply the smallest possible total cost one can obtain by selecting the amount to put aside today in

the best possible manner.

A second interpretation in terms of strength of a structure is also possible. Now suppose that Y

is given by a load minus a capacity and therefore describes the possible capacity shortfall. A measure

of regret V(Y ) quantifies our displeasure with possible shortfalls. Let c in (9) be interpreted as the

additional capacity added to the structure now. Then Y − c is the capacity shortfall of the improved

structure. Consequently, c + V(Y − c) sums the additional capacity c and the current displeasure

with future shortfalls, and can therefore be interpreted as the current displeasure with future effective

shortfall. A risk measure R(Y ) is then simply the smallest possible effective shortfall obtained by

optimally selecting the additional capacity implemented.

With the close connection between regret (and therefore also relative utility) and risk, one may be

led to believe that a decision model based on regret (or equivalently relative utility) would be equiva-

lent to one based on the corresponding risk measure. A simple example shows that this conclusion is

incorrect.

Example: regret and risk based decisions. We consider the regret V(Y ) = 1
1−αE[max{0, Y }] and

the corresponding superquantile risk measure R given by (9). Suppose that Y is uniformly distributed

on [a, b] with a < 0 < b. Then it is easy to show that

V(Y ) =
b2

2(1− α)(b− a)
and R(Y ) =

a+ b+ α(b− a)

2
.

Now consider two possible designs with Y and Y ′ uniformly distributed on [−3/2, 1] and [−8, 2], respec-

tively. Using the above expression and with α = 4/5, we find that V(Y ) = V(Y ′) = 1. Consequently, a

regret-based (or equivalently a utility-based) decision model of this kind would consider the two designs

equivalent. However, R(Y ) = 3/4 and R(Y ′) = 1, and therefore Y is strictly better than Y ′ in a deci-

sion model relying on the corresponding superquantile risk measure. In some sense, the consideration

of R instead of V directly provides a deeper representation of preferences as it allows for the (optimal)

shifting of a threshold through (9). In this specific example, Y allows for a more effective mitigation of

risk through a shift in threshold than Y ′.

4.3.2 Risk-Neutrality under Distributional Uncertainty

Since regular measures of risk and regret are proper convex functionals on a space of random variables,

duality through the Legendre-Fenchel transform provides important insight and alternative avenues to

utilize; see for example [35, 25, 3, 33]. Specifically, every regular measure of risk that is positively

homogeneous can be express in the form

R(Y ) = the maximum value of E[Y Q] across Q ∈ Q, (10)
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where Q is a random variable that is taken from a set Q of random variables called a risk envelope

associated with the risk measure. For example, if R(Y ) = q̄α(Y ), then Q consists of those random

variables with realizations between zero and 1/(1 − α) and that has expectation one; see [33, 34] and

references therein for background.

Since in the positively homogeneous case every risk envelop must exclusively contain random vari-

ables with expectation one, the expression can be interpreted as a change of probability distribution for

Y . Specifically, R(Y ) becomes the worst-case expectation of the random variable over a set of possible

changes in distributions. For example, in the case of a superquantile risk measure and a discrete prob-

ability distribution of Y , we obtain the interpretation that it is simply the worst-case expectation of Y

when considering all probability distribution changes such that the probability of a realization is scaled

with a number between zero and 1/(1 − α). Consequently, the use of a regular measure of risk builds

in robustness to uncertainty in the distribution of Y for a decision maker centered on an expectation

decision model. A specific example helps illustrate this further.

Example: uncertainty about distribution. We consider the simple situation where the random

variable Y of a system takes the value 1 with probability 0.1 and the value 0 with probability 0.9,

with expected value 0.1. A risk-neutral decision maker centered on the expectation would use 0.1 in

numerical comparisons with other systems and requirements. Next, we consider a risk-averse decision

maker that has adopted the superquantile risk measure with α = 0.8. Since qβ(Y ) = 0 for β ≤ 0.9 and

qβ(Y ) = 1 for β > 0.9, the formula (6) gives that R(Y ) = 0.5. A risk-averse decision maker with this

decision model would use 0.5 in comparison with other designs. We now consider the dual expression.

In this case, with the scaling 1/(1− α) = 5, (10) simplifies to

R(Y ) = the maximum value of 0.9 · 0 · q1 + 0.1 · 1 · q2 such that 0 ≤ q1, q2 ≤ 5 and 0.9q1 + 0.1q2 = 1,

which has the optimal solution q1 = 5/9 and q2 = 5. The maximum value then becomes 0.9 · 0 ·
5/9 + 0.1 · 1 · 5 = 0.5 that confirms the previous calculation of R(Y ). More interestingly however, the

expression can be interpreted as the assessment made by a risk-neutral decision maker that has the

nominal distribution with probabilities 0.9 and 0.1 for the realizations 0 and 1, respectively, but that

is uncertain about the validity of this distribution. To compensate, she allows the probabilities to be

scaled up with a factor of at most 5, while still making sure that they sum to one, in a manner that

is the least favorable. This risk-neutral decision maker then makes the exact same assessment of the

situation as the risk-averse decision maker.

The above dual expression also points to an approach for determining the risk averseness of a specific

decision maker. The decision maker could be asked to provide a nominal distribution of costs and then

to identify the level of uncertainty associated with that distribution. From these pieces of information

a set Q can be constructed for a family of risk measures that then leads to a specific measure of risk

through (10).
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4.3.3 Stochastic Dominance

We end this section with a brief discussion of connections with stochastic dominance. From [29], we

find that first-order stochastic dominance of Y over Y ′ takes place if and only if qα(Y ) ≤ qα(Y
′) for

all probability levels α ∈ (0, 1). Moreover, second-order stochastic dominance is similarly equivalent

to q̄α(Y ) ≤ q̄α(Y
′) for all α ∈ (0, 1). Consequently, the focus on risk measures R(Y ) = qα(Y ) and

R(Y ) = q̄α(Y ) for a specific value of α corresponds to “relaxing” the requirements of first- and second-

order stochastic dominance, respectively. Instead of considering all values of α, the focus is on a single

value.

5 Risk Measures in Design Optimization

With the possibility of not only a few but a large, uncountable, number of designs, it becomes essential

to enrich decision models with a specific formulation of optimality involving an objective function, to be

minimized, and a series of constraints to be satisfied. The resulting canonical optimization formulation,

relying on risk measures, takes the form

minimize R0(Y0(x)) subject to Ri(Yi(x)) ≤ bi, i = 1, 2, ..., I, and x ∈ X ,

where Ri, i = 0, 1, ..., I, are risk measures, possibly different, applied to a collection of response and/or

cost random variables Yi(x), i = 0, 1, ..., I, each dependent on the design vector x. The right-hand sides

bi, i = 1, 2, .., I, are constants. As a special case, one may simply have that Yi(x) is a deterministic

function fi(x). If Ri is regular, then Ri(Yi(x)) = fi(x). Another case is a failure probability constraint

p(Yi(x)) ≤ 1 − α, where, for example, Yi(x) = gi(x,V ), with gi a limit-state function parameterized

by the design variables x and a random vector V . In that case, in view of (5), the constraint takes the

form Ri(Yi(x)) ≤ bi, with Ri = qα and bi = 0. Consequently, the formulation includes the possibility

of minimizing some deterministic cost subject to reliability-type constraints and many other cases, for

examples involving multiple costs and responses simultaneously. The set X highlights the flexibility

by also including constraints that are “simple,” i.e., are deterministic and require no special treatment

in the implementation. We again stress that the choice of random variable to include in the objective

function is somewhat arbitrary as a formulation in terms of a constraint is essentially equivalent.

A key property of regular measures of risk is that the canonical formulation is a convex optimization

problem whenever Yi(x), i = 0, 1, ..., I, are affine functions of x for every realization, possibly except for

an event with probability zero, and X is a convex set. If Ri is monotone, then linearity can be relaxed

to convexity; see the convexity theorem of [33]. The value of convexity of an optimization problem

cannot be overestimated as it dramatically improves the ability of algorithms to obtain globally optimal

solutions efficiently. In the absence of convexity, a globally optimal solution is usually inaccessible unless

x only involves a small number of variables and a huge computational effort is employed. The result

also provides an incentive for constructing linear or convex models (in x) for the random variables

Yi(x), possibly through approximations. If successful, the benefits for such an effort will be plentiful

when solving the canonical formulation.
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The trade-off formula (9) allows a simplification of the canonical formulation into the following

equivalent form (see the regret theorem of [33]):

minimize c0 + V0(Y0(x)− c0) subject to ci + Vi(Yi(x)− ci) ≤ bi, i = 1, 2, ..., I, and x ∈ X ,

where Vi are the regular measures of risk corresponding to the regular risk measures Ri through (9)

and c0, c1, ..., cI are auxiliary design variables. This equivalent form is computationally beneficial as the

expressions for regret are usually simpler than those for risk. For example, if Ri(Yi(x)) = q̄α(Yi(x)),

i.e., using a regular and coherent superquantile risk measure, then Vi(Yi(x)) = 1
1−αE[max{0, Yi(x)}]

and the constraint Ri(Yi(x)) ≤ bi takes the following equivalent form

ci +
1

1− α
E[max{0, Yi(x)− ci}] ≤ bi,

which simply involves an expectation. If Yi(x) = gi(x,V ) for some function gi and the distribution of

V is discrete with realizations v1, ...,vJ and probabilities γj , then the constraint simplifies further to

the collection of constraints

ci +
1

1− α

J∑
j=1

γjaji ≤ bi,

gi(x,v
j)− ci ≤ aji , for all j = 1, ..., J

0 ≤ aji , for all j = 1, ..., J,

with aji , j = 1, ..., J , being auxiliary design variables. The conversion of a single constraint into this

collection of constraints involving additional variables may at first appear counterproductive, but the

simplicity of the reformulation more than outweighs the increase in problem size. In particular, the

development of derivative formulae with respect to x for the various constraints is now greatly simplified

as it only involves the gradient of gi with respect to its first argument.

In general, the use of regular risk measures significantly improves our ability to solve the canonical

formulation through its reformulations. The deviation from regularity, in contrast, causes difficulties as

illustrated by the comparison of a non-regular quantile risk measure, which corresponds to the failure

probability, and a regular superquantile risk measure, corresponding to a buffered failure probability.

The choice of the quantile risk measure results in a nonconvex optimization problems even if the un-

derlying gi-functions are linear in the design x, the prevalence of locally optimal designs, difficulties

with computing gradients with respect to x, and temptation to resort to approximations with unknown

accuracy. In contrast, a superquantile risk measure leads to convex optimization problems when un-

derlying functions are convex in x, globally optimal designs in the absence of other complications, and

simple derivative expressions. In fact, the focus on regular measures of risk allows design optimization

with little additional complication beyond what is inherent in the response and cost random variables.

In contrast, under non-regular measures of risk, the process of design optimization becomes essentially

intractable without a series of additional approximations that could seriously deteriorate the quality of

the obtained design.
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6 Conclusions

We have described possibilities in risk-averse decision making beyond traditional expected utility theory

for cost random variables and failure probability expressions for response random variables. The pos-

sibilities center on quantification of risk by risk measures, which, in fact, make no distinction between

cost and response random variables. Both kinds of random variables could be assessed by any of the

resulting decision models. The large number of possible models provides flexibility, but also the need for

guidance. In a specific situation, the narrowing down of this vast class is invariably necessary. We give

regularity, coherency, and other conditions that limit the choices by focusing on measures of risk that

are “reasonable.” Still, it is necessary to interview a decision maker, examine her ability to handle high

costs and responses, and calibrate with other decisions to quantify exactly the parameters in a selected

risk measure. This process is already standard in several areas where utility functions are regularly

elicited from decision makers and where limits for probabilities of failure are systematically determined

through calibration with existing systems. The connections we make between relative utility and risk

measure and between a risk-averse decision maker and a risk-neutral decision maker with distributional

uncertain provide further insight that may help in the process of determining a risk measure and its

parameters. Although the process of selecting a specific risk measure is undoubtable challenging, our

goal with the paper is to provide a solidly founded framework within which that process can be carried

out. By adhering to general recommendations such as regularity, significant benefits materialize. One

avoids paradoxes that counter our intuition of the meaning of “risk” and one obtains computational

tractability and stable solutions. Further benefits derive from relying on spectral risk measures that

correspond to rank-dependent utility functions of dual utility theory. Then, every decision maker sat-

isfying a set of axioms is guaranteed to be numerically represented by such a risk measure. In view

of the advantages emerging from these classes of risk measures, we are hopeful that they may lead to

improved procedures for risk-averse engineering design and decision making.
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