
 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

CLOSING THE GAP BETWEEN RESEARCH AND FIELD 
APPLICATIONS FOR MULTI-UAV COOPERATIVE 

MISSIONS 
 

by 
 

Harn Chin Teo 
 

September 2013 
 

Thesis Co-Advisors:  Oleg Yakimenko 
 Paul Montgomery 
Second Reader: Gary Langford 
 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2013 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
CLOSING THE GAP BETWEEN RESEARCH AND FIELD APPLICATIONS 
FOR MULTI-UAV COOPERATIVE MISSIONS 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Harn Chin Teo 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943–5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
 
The ability to fly multiple unmanned aerial vehicles (UAVs) in collaboration has the potential to expand the scope of 
feasible UAV missions and could become the backbone of future UAV missions. However, despite having garnered 
significant research interest, there is no indication that systems supporting collaborative operation of multiple UAVs 
are close to achieving field deployment. The challenge of successfully deploying a quality system is inherently 
complex, and systems engineering offers an approach to handle the complexities. Effective application of systems 
engineering requires both knowledge breadth and depth. This thesis presents the results of a consolidation of 
information intended to support the conduct of systems engineering activities; and describes an experiment to 
ascertain the sensitivities of some key operational parameters, e.g., acquisition, pointing, and tracking. The experiment 
was conducted using Automatic Dependent Surveillance–Broadcast (ADS-B) and visual tracking equipment 
employing state-of-the-art technology to understand the operating challenges and requirements of using this 
equipment to provide situational awareness for a UAV pilot. 

14. SUBJECT TERMS System Engineering, UAV, UAVs, UAS, multi-UAV, collaborative, 
cooperation, ADS-B, situational awareness, mission, CONOP, video tracking, ISR, Urban, collision 
avoidance, automation, interoperability, swarm 

15. NUMBER OF 
PAGES  

125 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

CLOSING THE GAP BETWEEN RESEARCH AND FIELD APPLICATIONS 
FOR MULTI-UAV COOPERATIVE MISSIONS 

 
Harn Chin Teo 

Systems Engineer, ST Aerospace Ltd. 
B.E., Nanyang Technological University (Singapore), 2008 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN SYSTEMS ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2013 

 
 
Author:  Harn Chin Teo 

 
 
 

Approved by:  Oleg Yakimenko 
Thesis Co-Advisor 

 
 
 

Paul Montgomery  
Thesis Co-Advisor 
 
 
 
Gary Langford 
Second Reader 

 
 
 

Clifford Whitcomb  
Chair, Department of Systems Engineering 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

The ability to fly multiple unmanned aerial vehicles (UAVs) in collaboration has the 

potential to expand the scope of feasible UAV missions and could become the backbone 

of future UAV missions. However, despite having garnered significant research interest, 

there is no indication that systems supporting collaborative operation of multiple UAVs 

are close to achieving field deployment. The challenge of successfully deploying a 

quality system is inherently complex, and systems engineering offers an approach to 

handle the complexities. Effective application of systems engineering requires both 

knowledge breadth and depth. This thesis presents the results of a consolidation of 

information intended to support the conduct of systems engineering activities; and 

describes an experiment to ascertain the sensitivities of some key operational parameters, 

e.g., acquisition, pointing, and tracking. The experiment was conducted using Automatic 

Dependent Surveillance–Broadcast (ADS-B) and visual tracking equipment employing 

state-of-the-art technology to understand the operating challenges and requirements of 

using this equipment to provide situational awareness for a UAV pilot. 
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EXECUTIVE SUMMARY 

The use of unmanned aerial vehicle1 (UAV) for military, border security, coastal security, 

and disaster relief operations is increasing in the United States and other countries. In the 

past ten years, a number of reports have been released by the United States military and 

other United States government agencies that document the success of Unmanned 

Aircraft Systems (UAS), challenges and the vision for the future. The ability to fly 

multiple UAVs2 (multi-UAVs) in collaboration has the potential to expand the scope of 

feasible UAV missions and could become the backbone of future UAV missions. 

However, despite having garnered significant research interest, the literature reviewed did 

not present conclusive evidence that systems employing a multi-UAV collaborative 

approach for a common mission are close to achieving field deployment, and there are 

reasons to believe certain activities are still needed to complete the transition from 

research interest to deployed systems. The literature review indicates that there are design 

concepts, concepts of operations (based on a minimal set of requirements, i.e., Navy), 

advanced research and development work on critical items, early layout of a technology 

roadmap, and a development plan with risk factors. All of these are inferred through 

systems engineering analysis based on  [1], [2] and [3]. 

The challenge of successfully deploying a quality system is inherently complex. A 

system or a system of systems designed for cooperative/collaborative applications is 

likely to be complex. The system requires interoperability between systems. In addition, 

the United States Air Force UAS Flight Plan mentioned that future UAS should be multi-

                                                 
1 Many terms have been used to refer to systems involving unmanned aircraft (e.g., UAV, RPA and 

UAS). The terms UAV and UAS appear frequently in this thesis. In the context of this thesis, the term 
UAV is used loosely to refer to the unmanned aircraft. The UAV, together with other ground elements 
required to operate the UAV, is collectively termed the Unmanned Aerial System (UAS).  

A majority of the time, this thesis makes no clear distinction when using the term UAV and UAS. In 
the implementation level of details, functionalities can be implemented either on board the aircraft or on the 
ground station. The choice of where to implement the respective functions is important when making an 
assessment of the design. However, this level of detail is not required for the context of this thesis. 

2 The term multi-UAVs is used to refer to a concept or design involving the use of multiple UAVs. 
The use of the term does not imply the disregard of the ground and other components that form the 
complete system but is used to refer to the general concept, without dwelling on the details of the exact 
design of the complete system.  
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mission, all weather, net-centric, and modular, and should have an open architecture and 

employ leveraging of appropriate levels of autonomy. A similar view is echoed by the 

United States Army UAS roadmap. Collectively, the requirement for collaborative 

operations and multi-mission UAV platforms pose a design challenge that warrants 

elaborate study into needs, requirements, limitation and constraints, coupling and 

cohesion, and emergent behavior. Systems engineering offers a means to manage the 

complexity. However, the breadth and depth of a practitioner’s knowledge limits how 

“holistic” a view he could adopt when performing tasks, potentially affecting the quality 

success of the system. In addition, the process of moving from an idea to a deployed 

system would involve numerous studies, which not only requires domain knowledge, but 

also requires time and other resources to conduct the studies. This thesis attempts to 

consolidate  information, such as potential areas of application that have generated 

interest, technological enablers and associated research, and interpretation of the status of 

the technology with regard to deploying multi-UAVs cooperative systems. The intention 

is to lay the groundwork for future conduct of gap analysis and other systems engineering 

activities. An experiment was also conducted in a chosen technology area, situational 

awareness, as part of this thesis. The experiment was conducted using Automatic 

Dependent Surveillance – Broadcast (ADS-B) and visual tracking equipment employing 

state-of-the-art technology to understand the operating challenges and requirements of 

using this equipment to provide situational awareness for the UAV pilot.   

In Concept of Operations (CONOPs) for multi-UAVs operations that are 

published by military services or strongly supported through the conduct of a holistic 

assessment, the areas of applications that had generated a significant amount of research 

interest and discussion were narrowed to Urban Operations, Communications Support, 

Collaborative Sensing, Swarm (Wide area search, EW, Offensive and Defensive) and 

loyal wingman applications. The factors driving the interest for these applications (to 

address user needs) were the need for timely and updated intelligence regarding a 

dynamic urban environment, need for affordable connectivity with sufficient bandwidth 

and a desire to capitalize on opportunities made feasible with small UAS. In addition, the 

desire to do more with unmanned systems and the a need to reduce manpower and 
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logistics requirement associated with operating UASs also play a part in attracting 

operational and research interest. The primary technical areas, such as collision 

avoidance, Global Positioning System (GPS) denied navigation, autonomy, 

communication network, interoperability and power, were discussed in depth, including 

some of the algorithms being researched for the respective applications.  

There are a few remaining technical and political obstacles that need to be 

overcome for multiple UAV operations. The key technological elements include collision 

avoidance, GPS denied navigation, autonomy, communication network, interoperability 

and power. The political issues span the gamut of questions on the legality of use and 

regulations not keeping pace with UAS developments to pressure from human rights 

organizations and political leaders.  

The ADS-B, part of Federal Aviation Administration (FAA) larger airspace 

modernization efforts and an element with a significant amount of mention in discussion 

regarding integration of UAS into National Airspace System (NAS), seems to offer much 

promise as a platform to answer many questions regarding the requirements to safely 

operate UAS with other manned aviation elements. Successful integration of UAVs into 

commercial airspace will likely provide a design reference and serve as a platform that 

provides more opportunities to obtain relevant data for study. In addition, the success 

could help boost confidence and shape general acceptance of operating UAVs with other 

aircraft (including other UAVs) in no-segregated airspace [4]. The tasks for full 

implementation of ADS-B and other measures are planned to be completed over the years 

to follow. Conditions are probably still not right for an ambitious attempt at elaborate 

designs to handle multiple high risk requirements, a potential lesson learned from the 

Future Combat System (FCS) development. FCS was the United States Army’s major 

research, development and acquisition program, consisting of 14 manned and unmanned 

systems tied together by an extensive communications and information network [5]. FCS, 

a high-risk venture that was eventually halted in 2009 [5], was criticized in a GAO report 

for reasons such as critical technology demonstrated being well short of a program 

halfway through its development schedule and budget [6]. However, there are numerous 

research papers in various technical domains with relevance to multi-UAV applications 



 xx 

that have been published [7]–[13] suggesting there may be sufficient maturity across 

domains to begin assessment studies or conduct of experiments which take into 

consideration multi-dimensional constraints and to begin a progressive evolution towards 

the desired vision for multi-UAV applications.  

Several writers who follow military news and write about military applications, 

such as [3] and [14], discuss interest (for example, the U.S. Navy interest in Unmanned 

Carrier-launched airborne surveillance and strike) and capabilities for UAS, while there is 

an absence of published CONOPs from any military service in the public domain. A 

CONOPS is a description of how users will employ a product or service. This description 

is normally both qualitative and quantitative. CONOPS (or ConOps) are always included 

in any government request for information (according to a private communication with 

Professor Gary Langford, NPS). Validation of the information that comprises a CONOPS 

is merely to point out that the information is appropriate and fit for its stated use. The 

CONOPS is used to guide validation of the user’s needs and to help guide the validation 

planning, testing, and eventually the validation of the system. The other key obstacles to 

full disclosure on military interest in UAS are the human-related factors, regulations and 

legal restrictions. The “UAV revolution,” like any form of change, must overcome the 

tendency of humans to resist change. Although reports from military services [1] and 

other government agencies [15] and [16] have shown the operational value of UAVs, full 

scale adoption remains thwarted by the technical and political obstacles mentioned. 

Legislation, regulations and standards need to be considered and revised as along with the 

concerns of the regulatory and legal authorities.  

In the conduct of the experiment for this thesis, the author flew as a passenger on 

board a general aviation aircraft and attempted to visually spot and track other aircraft 

while being assisted with ADS-B data. In addition, the PerceptiVU and SkyIMD set-ups 

were used to attempt to manually steer the respective camera sensor onto aircraft of 

interest and activate the track function of the respective set-ups to track the aircraft. The 

PerceptiVU and SkyIMD set-ups were assembled on the roof of Spanagel Hall in NPS. 

The Flightradar24 application was also used to provide better awareness of the aircraft in 

the vicinity and to provide altitude and airspeed data of the aircraft being tracked. In the 
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conduct of both tasks, the author had significant advantages over the case where a UAV 

pilot situated remotely in a control station is trying to maintain awareness of the air traffic 

vicinity while aided only by a visual sensor. Nevertheless, both tasks were found to offer 

their share of challenges. Some lessons were learned from the experience. First, a visual 

sensor set-up alone is probably insufficient. Second, the mechanism requiring the pilot to 

perform steering and execute tracking is probably not feasible. Third, consideration for 

the position of the visual sensor is important. Lastly, design considerations to improve 

presentation of information and the mechanism to operate and control the equipment are 

required.  
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I. INTRODUCTION 

A. BACKGROUND 

The use of unmanned aerial vehicles (UAVs) for military, border security, coastal 

security, and disaster relief operations is common in the United States and other countries. 

Over the years, various UAVs have been designed and produced by the industry to meet a 

wide spectrum of missions. Well known UAV platforms employed by the United States 

military include the Raven (RQ-11B), Shadow 200 (RQ-7) and Predator (RQ-1/MQ-1) 

[17]. Globally, examples of platforms operated by the United Kingdom’s military include 

the Hermes 450 and T-Hawk. The North Atlantic Treaty Organization (NATO) is 

acquiring Global Hawk (RQ-4) as part of their Alliance Ground Surveillance System 

(AGS). Israel, India and Turkey operate the Heron UAV [18]. The Singapore Armed 

Forces have also invested in UAV related projects. The Heron 1 UAV is the new 

platform deployed and operated by that nation [19]. 

UAVs have been used with considerable success in recent deployments in Iraq 

and Afghanistan.  

Experiences in Operation Enduring Freedom (OEF) and Operation Iraqi 
Freedom (OIF) prove that UAS significantly augment mission 
accomplishment by reducing a Soldier’s workload and their exposure to 
direct enemy contact. The UAS serve as unique tools for the commander, 
which broaden battlefield situational awareness and the ability to see, 
target, and destroy the enemy by providing actionable intelligence to the 
lowest tactical level. [1]   

In the past ten years, a number of reports have been released by the United States 

military and other United States government agencies that document the success of 

Unmanned Aircraft Systems (UAS), challenges and the vision for the future. Examples of 

roadmaps are “”U.S. Army Roadmap for Unmanned Aircraft Systems 2010–2035: Eyes of 

the Army  [1] and United States Air Force Unmanned Aircraft Systems Flight Plan 2009–

2047  [20]. Examples of other reports include Unmanned Aircraft Systems–Improved 

Planning and Acquisition Strategies Can Help Address Operational Challenges and 
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Unmanned Aircraft Systems—DoD Needs to More Effectively Promote Interoperability 

and Improve Performance Assessments  [21]. 

In the context of the United States Army, various types of UAV platforms have 

been used support activities at each level of Army echelons. At the Battalion-level or 

lower, UAVs capable of close range (less than 25km), short duration (1 to 2 hours) 

missions are integrated as an organic asset to support tactical operations [1]. Brigade-

level operates UAVs capable of medium range (less than 125km), medium duration (5 to 

10 hours) missions that integrate with ground forces and other aviation assets [1]. 

Division-level and higher operates UAVs capable of extended range (200km or more), 

long duration (16 hours or more) missions that provide direct support or general support 

at the tactical or operational level [1]. Primary application of the UAS in the military 

context is within the area of Reconnaissance and Surveillance, and improving situation 

awareness of the battlespace. Examples of secondary roles include providing security for 

troop maneuvers, and administration of attack and target designation. Increasingly, the 

UAS is viewed as a component within a larger network of System of Systems in a 

Network Centric Warfare context, an integrated component for Command, Control, 

Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR). 

The ability to fly multiple UAVs in collaboration has the potential to expand the 

scope of feasible UAV missions and could become the backbone of future UAV missions. 

Researchers have noticed the potential and various papers have been written and 

published presenting results of studies in related areas. At the Naval Postgraduate School 

(NPS), Gerard Leng (NUS) and Oleg Yakimenko co-wrote “Situational Awareness in 

Urban Areas” to describe the first joint project between the National University of 

Singapore (NUS) and NPS, sponsored by Temasek Defence Science Institute (TDSI) [22]. 

Levi Jones and Chua Chee Nam completed their theses in related areas titled, 

“Coordination and Control for Multi-Quadrotor UAV Missions” [12] and “Integration of 

Multiple UAVs for Collaborative ISR 3  Missions in an Urban Environment” [23], 

respectively during their period of studies at NPS. Examples outside of NPS include 

                                                 
3 Intelligence, Surveillance and Reconnaissance  
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“Control and Guidance of Multiple Air-Vehicle Systems” [13], “An Analytic Model to 

Evaluate the Influence of Uncertainty on the Cooperative Search Behaviors of 

Autonomous UAVs” [24], “A Dynamic Path Generation Method for a UAV Swarm in 

the Urban Environment” [25] and “Collaborative UAV Exploration of Hostile 

Environments” [26].   

However, despite having garnered significant research interest, the literature 

review could only find evidence of development of testbeds to demonstrate a number of 

crucial technologies, with weak links suggesting how the products of these development 

efforts could be integrated. The United States Army has envisioned a single operator 

operating multiple UAVs in their UAS Roadmap [1] but stopped short of giving details as 

to how they envisioned the UAVs would collaborate, the nature of operations envisioned 

or the way such an operation is conducted. There are reasons to believe certain activities 

are still needed to complete the transition from research interest to a deployed system.  

The deployment of the UAS in cooperative/collaborative applications requires 

interoperability between systems. In addition, the United States Air Force UAS Flight 

Plan mentioned that future UAS should be multi-mission, all weather, network-centric, 

and modular and should have an open architecture and employ leveraging of appropriate 

levels of autonomy. A similar view is echoed by the United States Army UAS Roadmap. 

Collectively, the requirement for collaborative operations and multi-mission UAV 

platforms poses a design challenge which warrants detailed study of needs, requirements, 

limitations and constraints, coupling and cohesion, and emergent behavior. Without a 

doubt, the analysis to be conducted is characteristic of a Systems Engineering Study45. 

                                                 
4 Systems Engineering as defined by International Council on Systems Engineering (INCOSE): 

Systems Engineering is an interdisciplinary approach and means to enable the realization of successful 
systems. It focus on defining customer needs and required functionality early in the development cycle, 
documenting requirements, then proceeding with design synthesis and system validation while considering 
the complete problem: Operations, Cost & Schedule, Performance, Training & Support, Test, Disposal, 
Manufacturing. Systems Engineering integrates all the disciplines and specialty groups into a team effort 
forming a structured development process from concept to production to operation. Systems Engineering 
considers both the business and the technical needs of all customers with the goal of providing a quality 
product that meets the user needs. For more information, please see the INCOSE website at 
http://www.incose.org/practice/whatissystemseng.aspx. 



 4 

The complexity of the system 6 or system of systems 7 in consideration also requires 

analysis at various levels of abstraction, starting from the highest level “world view.” 

B. MOTIVATION OF STUDY 

The challenge of successfully deploying a quality system is inherently complex. 

Systems engineering is an interdisciplinary approach that advocates applying a holistic 

view to a system. The breadth and depth of a practitioner’s knowledge limits how 

“holistic” a view he can adopt, potentially impacting the quality of the design or the 

completeness of a feasibility study, gap analysis or assessment which contributes to the 

quality and success of a system.  

The task of accumulating knowledge is both challenging and time consuming, 

requiring consolidation of information from various sources and across various domains. 

For example, roadmaps and technical papers can provide information at different levels 

of depth. Roadmaps are a good source of information regarding desired state and 

envisioned usage. Technical papers can be a source of information at a greater level of 

resolution, such as specific designs that have been implemented and assessed, the pros 

and cons of each design approach, etc. Broad knowledge requires consolidation of 

information across various technical and non-technical domains. To add to the challenge, 

different areas of applications potentially require different sets of knowledge expertise. In 

addition, the process of translating ideas into deployed systems usually involves 

                                                                                                                                                 
5 Systems Engineering as proposed by Gary O. Langford in his book Engineering Systems Integration: 

Theory, Metrics, and Methods: The charter of systems engineering is to create and express ideas and 
integrate components into systems that are referred to as products or services. The essence of system 
engineering is to unbound the seemingly bounded, broaden the concepts to beyond recognition, open the 
solution domain to include the ridiculous, and consider the issues and problems in an abstract space rather 
than as they are posed or presumed to be real. No other discipline or field carries with it that worldview. 

6 The author adopts the description of a system as: “A system is a bounded, stable group of objects 
exhibiting intrinsic emergent properties that through the interaction of energy, matter, material wealth, and 
information provide functions different from their archetypes” in the  context of this discussion. This 
definition of system is proposed by Gary O. Langford in his book Engineering Systems Integration: Theory, 
Metrics, and Methods. 

7 System of systems is proposed by Gary O. Langford in his book Engineering Systems 
Integration:Theory, Metrics, and Methods. A system of systems is a set of systems that are both integrated 
and interoperable to achieve a set of metasystem functions in which all the component systems participate 
(to varying degrees). 
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conducting numerous studies which not only requires domain knowledge, but also time 

and other resources.   

This thesis attempts to conduct an ambitious consolidation of information with 

regard to deploying multi-UAVs in cooperative systems. The intention is to lay the 

ground work for future conduct of gap analysis and other Systems Engineering activities. 

Although many documents regarding UASs exist, the documents are either not explicitly 

written to address multi-UAV collaborative operations, or they are not written with the 

intention of supporting the conduct of systems engineering activities, or they warrant a 

significant price tag, or they represent a combination of the respective shortcomings. At 

the same time, this thesis also seeks to understand the current status of research, 

development and assessment efforts that impact the progress of systems adopting the 

multi-UAV cooperative concepts towards deployment. Finally, this thesis seeks to 

understand the operating challenges involved in using state-of-the-art technology to 

enhance situational awareness and potentially avoid collision.   

C. METHODOLOGY AND APPROACH 

1. System Engineering 

Many different definitions for Systems Engineering exists, some representative 

examples include the definition used by the International Council on Systems 

Engineering (INCOSE) [27] and the definition by Gary O. Langford [28]. 

Systems Engineering is an interdisciplinary approach and means to enable 
the realization of successful systems. It focus on defining customer needs 
and required functionality early in the development cycle, documenting 
requirements, then proceeding with design synthesis and system validation 
while considering the complete problem: Operations, Cost & Schedule, 
Performance, Training & Support, Test, Disposal, Manufacturing. Systems 
Engineering integrates all the disciplines and specialty groups into a team 
effort forming a structured development process from concept to 
production to operation. Systems Engineering considers both the business 
and the technical needs of all customers with the goal of providing a 
quality product that meets the user needs. [27] 

  The charter of systems engineering is to create and express ideas and 
integrate components into systems that are referred to as products or 
services. The essence of system engineering is to unbound the seemingly 
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bounded, broaden the concepts to beyond recognition, open the solution 
domain to include the ridiculous, and consider the issues and problems in 
an abstract space rather than as they are posed or presumed to be real. No 
other discipline or field carries with it that worldview. [28] 

Without being restricted to any single definition, Systems Engineering involves 

applying a holistic view or “worldview” and adopting multiple perspectives when 

performing tasks, anticipating issues and dealing with issues during life cycle of the 

system. Systems Engineering deals with the cost, planning, schedule and management 

aspect of a system development problem, as well as the actual design and development 

process. Within the context of system life cycle activities, the strategy and processes 

chosen for a group of activities has impact on other activities. For example, an 

incremental or evolutionary strategy to deploy a system will like require the design which 

is less complex to modify. A complex design will likely impact project management, 

requiring process and plans that facilitate feedback and testing. The complexity of 

Systems Engineering and the relationship of the systems engineering process with one 

another are shown in Figure 1.  
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Figure 1.  System Engineering Process. From [29]. 

Systems Engineering is the methodology accepted in this thesis as the approach to 

enable the realization of a successful system [27]. At the same time, the information 

consolidated within this thesis is also intended to assist the Systems Engineering 

practitioner involved in the “Multi-UAVs system” area of work in the conduct of systems 

engineering work. These activities include system design, system assessment, feasibility 

studies, system development, system integration, system validation and system testing.  

This thesis focuses on consolidating information that facilitates concept 

development and design development activities. If the objective is to facilitate project 

management and planning activities, additional information such as lessons learnt from 

past UAS development projects and schedule and cost related information of past UAS 

projects is likely required.    
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2. Gap Analysis 

The notion of a gap represents the difference between a desired state and the 

current state. Gary O. Langford explains a gap as “what you desire against what you have” 

[29]. The gap is manifested in the difference between what is perceived important against 

what you have or what exists in contrast to what is expected [29]. 

Gap analysis has been termed a structured approach to overcome dissatisfaction 

with current states, referenced to desired future states [29]. Gap analysis is a means to 

select the appropriate Systems Engineering process model and modify it to match the 

means and method and type of developing a product [29]. Gap analysis loosely defines a 

method for identifying the degree to which the current system satisfies a set of 

requirements, and the goal of the analysis is to align anticipated outcome with a future 

reality that can be achieved [29].  

The notion of gap in the context of the Department of Defense acquisition process 

and potential types of solutions to “close the gap” is described in Gap Analysis: 

Rethinking the Conceptual Foundations by Gary O. Langford et al. [30].  

For the Department of Defense, Gaps are defined in terms of functional 
areas; relevant span and domain of military operations; intended effects; 
temporal matters; policy implications and constraints. Further all gaps are 
defined in terms of capability. The Joint Capabilities Integration 
Development System (JCIDS – the formal U.S. DoD procedure which 
defines acquisition requirements and the criteria to evaluate weapon 
systems) was implemented to specifically address capability gaps. But not 
all capability gaps require a material solution set. Changes or enactments 
of Doctrine, Organization, Training, Materiel, Leadership and education, 
Personnel, and Facilities (DOTMLPF) are also considered to close Gaps. 
Such considerations are formally evaluated before recommending the start 
of a new acquisition effort (CJCSI 3170.01E and CJCSM 3170.01B). In 
essence functional capabilities are assessed to identify gaps. 

Gap analysis requires adopting multiple perspectives to view the problem and also 

to assess potential solutions (material solutions, changes or enactments of doctrine, 

organization, training, materiel, leadership and education, personnel, and facilities [30]) 

to achieve the desired state. Figure 2 shows the information inputs to a gap analysis and 

the types of analysis performed for gap analysis in the context of DoD acquisitions. 
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Figure 2.  Gap Analysis for DoD Acquisition. From [29].  

In the context of this thesis, the term gap8 refers to the difference between the 

current state for a multi-UAVs system and desired state (field deployed). The primary 

purpose of the report is to lay the groundwork for future analysis in multi-UAV analysis 

to close the gap between existing research and efficient multi-UAV operations. This 

report focuses upon blocks 1.0, 2.0, 3.0, 4.0, and 5.0.  

D. REPORT ORGANIZATION 

This thesis is divided into two major sections. The first section (Chapters II to IV) 

examines multi-UAVs cooperation, with a secondary focus on unmanned and manned 
                                                 

8 The term “gap” as used in the title Closing the Gap Between Research snd Field Applications for 
Multi-UAVs Cooperation Mission. 
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systems cooperation. Chapter II focuses on providing the overview information regarding 

the UAS and summarizes envisioned applications of the UAS, primarily based on various 

roadmaps found in public domain. Chapter III focuses on potential areas for collaborative 

applications and documents relevant information and references to various aspects within 

each area of application. Chapter IV seeks to document the challenges of the respective 

areas identified in Chapter III, understand and document the rationale behind the interest 

in the respective areas and document the factors that affect the perceived value of specific 

system designs. The same chapter also seeks to document relevant information relating to 

a number of technological enablers that were perceived as important and documents 

references providing description of greater details. Finally, the chapter also provides an 

interpretation of the status of a number of potentially important areas to be considered 

when performing systems engineering related activities, such as system design or 

development strategy.  

The second section (Chapter V) describes the conduct of the experiment to study 

the operating challenges in using the ADS-B and EO/IR camera for situational awareness. 

The chapter describes the components used in the conduct of the experiment and the 

design of the experiments and includes a discussion on operational requirements.        

E. RESEARCH QUESTIONS 

Main Question: 

• In order to set the stage for future Systems Engineering gap analysis, what 
is the state of research related to technology readiness and efficient 
deployment of multi-UAV operations? 

• Subsidiary Questions: 

• What are the operational areas of interest for multi-UAV operations? 

• What are the reasons justifying the interests and the needs addressed by 
the respective areas of interest? 

• What are the technical areas of interest for multi-UAVs operations? 

• What are the implementation challenges, both technical and non-technical, 
to deploying multi-UAVs systems? 



 11 

• Can a systems engineering perspective be adopted to study components 
for enhancing situational awareness and derive the operating challenges 
and operating requirements?  
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II. DESCRIPTION AND HISTORY OF UNMANNED AERIAL 
SYSTEMS (UAS) 

A. HISTORY OF UAS FOR UNITED STATES MILITARY APPLICATIONS 

The research and employment of UAVs by the United States military services 

date as far back as 1917 [31]. Other common descriptive terms for these aircraft are 

drones, robot planes, Remotely Piloted Aircraft (RPA). Collectively, the UAV and other 

ground components are commonly referred to as an Unmanned Aircraft System or 

Unmanned Aerial System (UAS). 

Historically, the first UAS was tested by the United States during World War I 

and deployed in combat during the Vietnam War. More recently, the United States 

procured UASs in significant numbers and deployed these systems in conflicts such as 

Kosovo (1999), Iraq (since 2003) and Afghanistan (since 2001) [31]. The success of UAS 

use by the Israeli military in Lebanon (1982) captured the interest of U.S. observers and 

encouraged then Navy Secretary to acquire UAS capability for the Navy [31]. Interest 

was also aroused in other parts of the Pentagon, marking the transition from experimental 

projects to acquisition programs [31]. 

The United States’ initial UAS capabilities were acquired from Israel [31]. 

Successful application of these platforms identified additional potential and encouraged 

new platforms to be acquired to perform new mission activities. 

Initial U.S. capabilities came from a platform acquired from Israel. One 
such UAS, Pioneer, emerged as a useful source of intelligence at the 
tactical level during Operation Desert Storm, when Pioneer was used by 
Navy battleships to locate Iraqi targets for its 16-inch guns. Gulf War 
experience demonstrated the potential value of UAS, and the Air Force’s 
Predator was placed on a fast track, quickly adding new capabilities. 
Debuting in the Balkans conflict, the Predator performed surveillance 
missions such as monitoring area roads for weapons movements and 
conducting battle damage assessment. Operations in Iraq and Afghanistan 
have featured the Air Force’s Global Hawk, as well as adding new 
missions that allows Predator to live up to its name—armed 
reconnaissance [31]. 



 14 

B. DESCRIPTION OF UAS 

1. Components of UAS 

A UAS typically comprises an aerial component (UAV) and the ground 

components. Figure 3 shows an overview of the components of one UAS (AAI Shadow 

200). 

 
Figure 3.  AAI Shadow 200 UAS System. From [32]. 

a. UAV / RPA 

The United States Department of Defense (DoD) defines UAVs as 

powered, aerial vehicles that do not carry a human operator, use aerodynamic forces to 

provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or 

recoverable, and can carry a lethal or nonlethal payload [31]. 

The aircraft is used as a platform to carry payloads according to 
operational needs. Examples of payloads can be cameras, radars, communication relay or 
offensive weapons. Numerous UAV platforms have been developed to meet different 
types of operational requirements. Three parameters commonly used to categorize UAVs 
are operating altitude, operating endurance (flight duration) and weight/size. The 



 15 

wingspan can range from 30cm or less for Micro UAVs to 35.4m or more in the case of 
the Global Hawk and other similar class UAVs. The aircraft can be fixed wing, quadrotor, 
helicopter and other hybrid forms as shown in Figure 4. Examples of common launch 
mechanisms are runway takeoff, launcher assisted, hand launched and vertical take-off. 
Examples of common recovery mechanisms are runway landing, arresting hook, vertical 
landing, parachute landing and airbag system (cushioned landing). 

 
Figure 4.  Example of fixed wing, quadrotor, helicopter and other hybrid forms of UAVs 

(clockwise from top left). From [33–36]. 

b. Payloads 

UAV payloads are generally sensors, communication terminals, and in 
some cases, offensive weapons. 

(1) Sensors 

Typical sensors payload are Electro-Optics/Infra-Red (EO/IR) 

camera and Synthetic Aperture Radar (SAR). Figure 5 shows an example of each of the 

respective sensor payloads. 
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Figure 5.  Example of SAR and EO/IR (left to right). After  [37] and [38]. 

(2) Communication Terminals 

Typical communication payloads are data terminals for a direct 

communication link with the Ground Control Station (GCS), data terminals to perform 

communication relay and satellite communication data terminals for indirect 

communication links over extended operational range.  

(3) Offensive Weapons 

A well-known offensive capable UAV platform is the Reaper 

UAV (MQ-9). The Reaper UAV is capable of carrying AGM-114P Hellfire missiles, 

GBU-12 Paveway II laser-guided bombs and GBU-38 Joint Direct Attack Munition 

(JDAM) [39]. 
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c. Ground Components 

(1) Logistics for UAV Launch/Takeoff and Recovery 

Logistics for UAV launch and recovery is only applicable to a 

UAV platform which requires specialized equipment for its launch and/or recovery 

operations and may not be applicable to some UAV platforms. Examples of specialized 

launch equipment are Automatic Takeoff and Landing equipment for UAVs capable of 

automated takeoff and landing and the UAV Launch System for UAVs requiring assisted 

launch. An example of specialized recovery equipment is an arresting hook system. 

Figure 6 shows an example of a UAV Launch System and a UAV Recovery System, 

respectively. 

 
Figure 6.  Example of UAV Launch System and UAV Recovery System (left to right). 

After [40] and [41]. 

(2) Ground Control Station (GCS) 

GCS refers to the component which allows the operator to operate 

the UAV and/or other components of the UAS. In the case of smaller class UAVs, the 

GCS can be a unit or mobile computing device (e.g., a rugged laptop), running operating 
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software that provides the interface for UAS operation. A GCS for the larger class of 

UAV is usually more complex, consisting of multiple operating consoles/terminals 

contained within an enclosed environment. Also considered as part of the GCS is support 

equipment such as a power generator, air conditioning, network switches and other 

network components, circuit breaker and computing servers. A complex GCS usually has 

at least two operating consoles which allows flight and payload operations to be handled 

by different operators. Consoles used by an Image Analyst to exploit and extract 

information out of raw sensor products can also be integrated as part of the GCS. 

(3) Ground Data Terminal (GDT) 

GDT refers to the component that allows communication between 

the ground components and the airborne components. A GDT establishes and maintains 

the link with the airborne communication terminals carried by the UAV. In the case of an 

indirect communication link (e.g., relayed by satellites), the GDT establishes and 

maintains the link with the relay component. 

2. UAV Categorization and Corresponding Examples of UAV Platform 

Various ways to categorize UAVs exist. A popular approach is to classify UAVs 

based on their technical specifications such as mass, operating altitude and endurance, 

and to refer to UAVs in loosely categorized groups such as Micro, Mini, Tactical, 

Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE). 

Ronald E. Weibel included a detailed description of these respective groups in his thesis 

[42] . It is recommended to refer directly to Weibel’s work for the description [42]. 

The United States Army and the United States Air Force use a similar classification 

method as the one shown in Table 1 in their respective roadmaps [1] and [20]. 
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Table 1.   UAS classification as presented in the United States Air Force UAS Flight 

Plan. From [20].   

C. APPLICATIONS OF UAS 

A traditional view regarding the advantage of the UAS over manned aircraft is in 

the area of “dull,” “dirty” or “dangerous” [31] and [43]. The United States Army 

identified three critical capabilities that the UAS can provide for current and future force. 

 Unmanned aircraft systems can provide three critical capabilities for the 
Army’s current and future force. First, UAS reduce risks to the Soldiers in 
the current fight (e.g., explosive hazard detection and neutralization). 
Second, UAS reduce the workload on the Soldiers by performing routine 
missions and enable sustained high tempo operations (e.g., routine 
surveillance of forward operating bases). Third, UAS provide emerging 
capabilities for extended range or standoff reconnaissance operations. [1] 

The UAS roadmap released by the United States Office of Secretary of Defense in 

2005 included a table summarizing UAS application up to the year 2005 (Table 2). The 
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same document also mentioned that UAS have matured to the point where one no longer 

needs to look for niche missions for these systems [43]. 

UA have matured to the point where one no longer needs to “look for 
niche missions”… The U.S. can develop a UA to accomplish almost any 
mission imaginable. Instead of asking “Can we find a mission for this 
UA?” one will ask “Why are we still doing this mission with a human?” 
[43] 

The types of missions that have been and can be fulfilled by UAS are adequately 

described in roadmaps published by the various military services. A quick list of 

examples of such roadmaps are Unmanned Aircraft Systems Roadmap 2005 – 2030 by 

Office of the Secretary of Defense [43], “Eyes of the Army” U.S. Army Roadmap for 

Unmanned Aircraft Systems 2010–2035 by U.S. Army UAS Center of Excellence [1], 

United States Air Force Unmanned Aircraft Systems Flight Plan 2009–2047 by 

Headquarters United States Air Force [20] and Unmanned Systems Integrated Roadmap 

FY2011–2036 by United States Department of Defense [2]. The next section will only 

highlight a number of well discussed or valued UAS mission areas that were identified as 

relevant to the context of the topic. It is by no means an adequate reference for the types 

of UAS mission areas being considered.  
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Table 2.   Example of UAS mission areas up to year 2005. From [43]. 
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1. Intelligence, Surveillance, Target Acquisition and Reconnaissance  

Intelligence, Surveillance, Target Acquisition and Reconnaissance (ISTAR) is 
probably the most recognized mission area for UAS. The UAV has been as a platform to 
carry a wide range of sensor payloads for ISTAR applications. Long endurance capabilities 
of MALE and HALE UAVs and the ability to rotate operating crews, located remotely on the 
ground, allowed these systems to be operated for long durations at an extended range and at 
low risk to the crew. Smaller UAVs are also recommended as an option to “get in close” to 
obtain high resolution imagery or to detect “weak signal” targets [43].  

2. Provide Battlespace Awareness 

Battlespace Awareness is based on knowledge and understanding of a prescribed 
area of operations (AO), usually obtained through means of ISTAR activities. It is 
focused on keeping combat commanders aware of recent and current events in their 
battlespace and assisting commanders in predicting near term events in the battlespace. 
According to the U.S. Army roadmap, Reconnaissance and Surveillance “remained the 
number one combatant commander priority for unmanned systems.  

Reconnaissance and Surveillance. This remains the number one 
combatant commander priority for unmanned systems. While the demand 
for full motion video (FMV) remains high, there is an increasing demand 
for wide-area search and multi-intelligence capability. Processing, 
exploitation, and dissemination (PED) remains a key area highlighting the 
need for interoperability. [1] 

The UAS is employed across all U.S. Army echelons as dedicated or organic 

support to tactical, operational and strategic operations [1].   

3. Target Designation and Strike 

A UAV can be used to perform laser designation on a target. Platforms such as 

the MQ-1 Predator are also capable of delivering strike capabilities. The value of such a 

capability was validated in Operation Enduring Freedom and Operation Iraqi Freedom 

where it made possible a rapid response to fleeting targets [43]. In the roadmap from the 

Office of Secretary of Defense, the terms “armed reconnaissance” or “persistent strike” 

were used to describe this capability. The development of the MQ-9 Predator introduced 

greater weapons capability. 
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4. Signals Intelligence (SIGINT) 

SIGINT refers to the gathering of intelligence by means of signal interception. 

Examples of a UAV platform with SIGINT capability are the Hermes 450, MQ-1 

Predator, RQ-4 Global Hawk and Shadow 200 (Electronic Intelligence, ELINT) [44]. 

5. Security and Risk Reduction to Force  

UAV use to detect a potential explosive hazard and other threats and to maintain 

surveillance for suspicious activities over convoy or ground patrol routes is an important 

aspect of providing security and reducing risk for ground forces movements. The 

successful use of the T-Hawk UAV for counter Improvised Explosive Device (IED) 

purposes in Afghanistan was shared by Major Thomas Donohoe in the UV Europe 2011 

Conference held in Brussels. The T-Hawk is part of the Talisman system employed by 

the UK military in Route Proving and Clearance Manoeuvre Support in Afghanistan [45].   
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III. MULTI-UAV COLLABORATION RESEARCH 

A. URBAN OPERATIONS 

The need for military forces to operate in an urban environment is undeniable. 

There were a number of papers that discuss improving areas of technology that could 

allow multi-UAVs to be the solution to some challenges faced when operating in the 

urban environment. Examples of popular areas, with adequate references in public 

literature, are discussions of improved autonomy, effects of the urban environment on 

communication, overcoming communication challenges and Global Positioning System 

(GPS) denied operations. 

Improving UAV autonomy can be further decomposed into sensing, path planning 

(collision avoidance and path optimization), task allocation, collaborative control and 

guidance, etc. “Control and Guidance of Multiple Air-Vehicle Systems” by a team of 

researchers from National University of Singapore and Nanyang Technological 

University documents the result of their investigation into three key areas of control and 

guidance of multiple air-vehicles [13], one of which is GPS-less, map-less, vision based 

navigation. Collaborative coverage and search and de-centralized formation flight control 

are the other two key areas of focus. Another example is “Collision-free Multi-UAV 

Optimal Path Planning and Cooperative Control for Tactical Applications” by Kevin P. 

Bollino and L. Ryan Lewis [9]. “Real-time Multi-UAV Task Assignment in Dynamic and 

Uncertain Environments” discuss a study using the Consensus Based Bundle Algorithm 

(CBBA) for task assignment with extension to handle obstacle avoidance and reduced 

task planner sensitivity to sensor measurement noise [8].  

Improving UAV autonomy can be further decomposed into sensing, path planning 

(collision avoidance and path optimization), task allocation, collaborative control and 

guidance, etc. “Control and Guidance of Multiple Air-Vehicle Systems” by a team of 

researchers from the National University of Singapore and Nanyang Technological 

University documents the results of their investigation into three key areas of control and 

guidance of multiple air-vehicles [13], one of which is GPS-less, map-less, vision-based 
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navigation. Collaborative coverage and search and decentralized formation flight control 

are the other two key areas of focus. Another example is “Collision-free Multi-UAV 

Optimal Path Planning and Cooperative Control for Tactical Applications” by Kevin P. 

Bollino and L. Ryan Lewis [9]. “Real-time Multi-UAV Task Assignment in Dynamic and 

Uncertain Environments” discusses a study using the Consensus Based Bundle Algorithm 

(CBBA) for task assignment with extension to handle obstacle avoidance and reduced 

task planner sensitivity to sensor measurement noise [8].  

Willy Lock studied the effects of radio wave propagation in urban areas on UAV-

GCS command and control in 2003 [46]. The thesis studied the effects of having up to 

three UAVs. Chua Chee Nam wrote about “Integration of Multiple UAVs for 

Collaborative ISR Missions in Urban Environments” in 2012 [23]. In his thesis, Chee 

Nam demonstrated and investigated a concept of operation involving up to two quadrotor 

UAVs, capable of dynamic reconfigurations and using the Inverse Dynamic in Virtual 

Domain method as control method in a laboratory environment. 

Other examples of urban UAV use include “Autonomous Surveillance in 

Complex Urban Environments” [47], “Network-Centric Systems for Military Operations 

in Urban Terrain: The Role of UAVs” [48], “A Dynamic Path Generation Method for a 

UAV Swarm in the Urban Environment” [49] and “Multi-UAV Sensing over Urban 

Areas via Layered Data Fusion” [50].  

B. COMMUNICATIONS SUPPORT 

The UAV can be used as a communication relay in multiple scenarios. 

Exploration of the UAV as a communication relay is a topic that has substantial history. 

Quoting the UAS roadmap published by the Office of the Secretary of Defense (United 

States) in 2005 [43], a detailed study, dated 4 November 1997, was conducted by the 

Office of Secretary of Defense/C3I on Unmanned Aerial Vehicles as Communications 

Platforms.  

Boeing announced the successful demonstration of their ScanEagle UAV as a 

communication relay as early as 2004 [51]. Northrop Grumman was awarded the contract 

to develop the Battlefield Airborne Communications Node (BACN) payload in 2005, 
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which was eventually integrated with the Global Hawk UAV produced by the same 

company [52]. BACN is an information gateway that bridges and extends voice 

communications and battlespace awareness information from numerous sources using a 

suite of computers and radio systems [52]. In the commercial domain, the Aerostar UAV 

has been successfully deployed to relay TV broadcasts for Israel’s Channel 2 [53]. 

Anders Holmberg and Per-Magnus Olsson in “Route Planning for Relay UAV” 

discuss their algorithm for solving the relay UAV positioning and planning problem for a 

scenario using a UAV as an intermediary node to bridge the communication between the 

surveillance UAV and the ground station [11]. A recent paper which discusses the 

application of UAV as communication support is “Communication Provision for a Team 

of Remotely Searching UAVs: A Mobile Relay Approach.” It discusses a study based on 

a scenario using of a relay UAV to bridge the communication between a team of small 

rotor-craft UAVs deployed for Wilderness Search and Rescue and the base station by 

providing a delay tolerant link [54]. The use of a relay UAV was also proposed in the 

scenario considered by Chua [23].  

One area of research focus is the use of multiple nodes to form a wireless mesh 

network. UAVs can be considered for application as communication mesh network nodes. 

Mark G. Richard documented his work with regard to developing self-tuning extremum 

control techniques developed for UAV communication relays to be used with multiple 

relay nodes in a distributed wireless sensor network [55]. 

C. COLLABORATIVE SENSING 

Lawrence Liang studied the effect of various parameters on the conduct of 

collaborative sensing (detection and classification) on Time Critical Targets using agent 

based simulation [56]. The three preceding theses by Raffetto [57], Berner [7] and 

McMindes [58] were mentioned as references. Our study made use of Map Aware Non-

uniform Automata (MANA) to construct a scenario modified from Raffetto’s thesis. 

Kevin K. McCadden and Christopher A. Nigus document an effort to create a 

decision aid, utilizing Dynamic Programming and Bayesian Updating, which 

recommends an efficient search path for multiple UAVs searching for multiple moving 
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targets [59]. An additional research example is a dissertation by Andrew G. Shem, which 

presents a framework within which it is possible to represent, model and measure 

uncertainty [24]. 

The key problem motivating this work was the need to understand how 
information uncertainty influences cooperative UAV performance. To 
gain this understanding, we developed a framework within which we 
could represent, model, and measure uncertainty. Such a framework gives 
a UAV system engineer useful tools to help represent, model, and 
understand information uncertainty in the context of cooperative UAVs 
searching for moving targets. The framework we derived in this thesis 
provides a theoretical, probabilistic description of how uncertainty 
influences performance of cooperative UAV teams searching for moving 
items. [24] 

D. SWARM 

UAV swarm is another popular area of research. UAV swarm typically refers to 

operating multiple collaborative small UAVs in close proximity to achieve a common 

mission objective. The United States Air Force expressed their interpretation of the near-

term concept of swarming in their UAS Flight Plan [20]. 

The near-term concept of swarming consists of a group of partially 
autonomous UAS operating in support of both manned and unmanned 
units in the battlefield while being monitored by a single operator. Swarm 
technology will allow the commander to use a virtual world to monitor the 
UAS both individually and as a group. A wireless ad-hoc network will 
connect the UAS to each other and the swarm commander. The UAS 
within the swarm will fly autonomous to an area of interest (e.g., 
coordinates, targets, etc.) while also avoiding collisions with other UAS in 
the swarm. These UAS will automatically process imagery from low level 
users and will “detect” threats and targets through the use of artificial 
intelligence (AI), sensory information and image processing. Swarming 
will enable the UAS network to deconflict and assign the best UAS to 
each request. [20] 

Although able to find a description of the guiding concept regarding swarm, no 

officially endorsed specific applications for UAV swarms in the documents reviewed. 

The potential use of UAV swarms can be inferred from the scenarios assumed in various 

papers published to discuss the result of various technological enablers. This following 
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section provides a brief summary of potential applications for UAV swarms, namely 

wide area search, electronic warfare, offensive and defensive.    

1. Wide Area Search 

Although organized as a separate section to indicate that UAV swarms can be 

applied for wide area search, UAV swarms for wide area search is viewed in the context 

of this thesis as an extension of Collaborative Sensing. Enabling technology such as 

methods to determine the search path to maximize the probability of target detection is 

expected to be applicable to both application domains. One possible differentiating factor 

might be the difference between centralized and distributed control for the UAVs 

involved in the search. 

UAV swarms can be used to improve the efficiency of a wide area search. 

“Collaborative UAV Exploration of Hostile Environments” describes a study conducted 

with the objective to minimize exploration time, avoid damage by sharing information 

about threats and be robust to the failures of individual UAVs [60]. In the same paper, 

results of simulations concluded that exploration time decreases with the number of 

UAVs used, up to an optimal number, above which the exploration time increased. It was 

concluded by the authors that the observation could be due to phenomena such as frontier 

starvation and additional communication needs.  

2. Electronic Warfare (EW) 

Use of UAVs for EW was briefly mentioned in a report released by the Library of 

Congress in 2006 [61].  

Miniaturized radio-frequency components and small-form processor 
boards have the potential to drive the development of EW payloads for 
small UAVs. Sweden’s Saab Technologies has worked with Australia’s 
Defense Science and Technology Organisation to develop EW payloads 
for UAVs. The Australian-built Aerosonde Mark III … has participated in 
EW experiments transmitting “real-time emitter bearings and pulse 
analysis data to the ground station. [61] 

Germany’s Rheinmetall Defense Electronics (RDE) also is working on 
EW applications for large UAVsAccording to RDE, its products provide 
superior information-gathering capabilities by detecting and jamming 



 30 

VHF/UHF radio, satellite communications systems, mobile radios, line-of-
sight radios, and radar activity…RDE also says its electronic warfare 
UAVs can be operated in a swarm of four units. [61]  

3. Offensive 

The Library of Congress research report cited Russian Major General Igor 

Sheremet’s description on how swarms of UAVs could be used to carry out attacks on an 

opponent’s Network Centric Warfare (NCW) systems [61]. The was also a thesis which 

quoted a Maritime Expeditionary Security Force Initial Capabilities Document 

mentioning the need for point defense against limited air threats (which includes small 

radar cross-section targets such as UAVs) that penetrate Sea Shield local air defense 

umbrellas [62]. The use of UAV swarms to overwhelm the defense of a single high value 

target through sheer numbers can be considered a credible threat. A group of NPS 

students conducted a study regarding the ability of the Arleigh Burke-Class Aegis 

Guided-Missile Destroyer (DDG) to defend against a swarm of UAVs fitted with IEDs 

and made recommendations regarding system alternatives to improve the DDG’s defense 

against such attacks [62]. 

One of the core capabilities identified in the MES Initial Capabilities 
Document (ICD) is to “detect, identify, engage, and destroy Level I and 
Level II hostile air, surface, subsurface, and ground targets, day and night, 
and in most weather conditions in the littoral battle space.” Currently, 
MES forces are unable to adequately fulfill this capability. An unmanned 
aerial vehicle (UAV) can carry missiles or act as an Improvised Explosive 
Device (IED), and could be employed by terrorists (Level I threat) or be 
part of irregular (Level II threat) forces. [62] 

4. Defensive 

The use of UAV swarms to defend against swarm attacks was the scenario 

considered by Michael Day, who wrote his thesis regarding the study of the effectiveness 

of various task assignment methodologies for a team of UAVs seeking to thwart an attack 

by another team of aggressor UAVs [63]. In his thesis he also studied the effects of other 

factors on the effectiveness of the defending UAV swarm [63]. A similar concept of 

UAV swarm against UAV swarm was also used by Umit Soylu as the scenario of 

reference for his thesis [64]. 
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E. LOYAL WINGMAN 

In the loyal wingman application, the United States Air Force UAS flight plan 

described the UAS as a loyal wingman for a manned aircraft.   

Loyal wingman technology differs from swarming in that a UAS will 
accompany and work with a manned aircraft in the AOR to conduct ISR, 
air interdiction, attacks against adversary integrated air defense systems 
(IADS), offensive counter air (OCA) missions, command and control of 
micro-UAS, and act as a weapons “mule,” increasing the airborne 
weapons available to the shooter. This system is capable of wingman UAS 
could also be a “large” UAS that acts as a cargo train or refueling asset. 
[20] 

The unmanned systems integrated roadmap by United States Department of 

Defense provided a quick summary of Manned Unmanned Teaming (MUM) [2]. 

MUM teaming refers to the relationships established between manned and 
unmanned systems personnel prosecuting a common mission as an 
integrated team. More specifically, MUM teaming is the overarching term 
used to describe platform interoperability and shared asset control to 
achieve a common operational mission objective. This term also includes 
concepts of “loyal wingman” for air combat missions and segments of 
missions such as MUM air refuelling. This capability is especially vital for 
missions such as target cueing and handoff between manned and 
unmanned systems, where the operators not only require direct voice 
communications between the participants, but also a high degree of 
geospatial fidelity to accurately depict each team member’s location with 
regard to the object being monitored. [2] 

MUM teaming was first employed in the late 1960s when the USAF flew 
AQM-34 equipped with Maverick missiles from airborne C-130 aircraft. 
Over the intervening years, other experimental UAS were flown from 
manned aircraft and during the Predator ACTD from a submarine. In 2002, 
the USAF demonstrated the ability to fly the MQ-1 from a flying C-130 
also equipped with a FMV camera to prove a rapid, small-footprint 
deployment capability, and the ability to cooperatively prosecute targets 
with onboard and offboard systems. The Army also conducted MUM 
demonstrations beginning with the Airborne Manned/Unmanned Systems 
Technology (AMUST) Demonstration in 2001 with a follow-on Hunter 
Standoff Killer Team (HSKT) ACTD in 2006. During that demonstration, 
an AH-64D executed level of interoperability (LOI) 4 control of a RQ-5B 
Hunter UAS during a live fire exercise where Apaches lased for their own 
Hellfire missiles with the Hunter payload.60 At these demonstrations, the 
Army Aviation Applied Technology Directorate successfully integrated a 
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Mobile Commander’s Associate61, including UAS control, Link 16, and 
other various data links, into an Army airborne C2 system. This 
integration enabled an airborne C2 system operator located in a UH-60 
Black Hawk helicopter to control a Hunter UAS and its sensor, for the first 
time, as well as send and receive tactical information in flight between 
strike aircraft such as the FA-18, and reconnaissance aircraft such as 
JSTARS. [2] 

Although the above discussion focused on MUM, there is no reason to doubt its 

relevance to an eventual unmanned unmanned teaming, especially when UAVs 

eventually evolve to having the functional capabilities to match that of manned aircraft. 
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IV. ANALYSIS ON FACTORS DRIVING THE NEED AND THE 
OBSTACLES TO BE OVERCOME 

A. FACTORS DRIVING THE NEEDS 

1. Urban Operations 

Operating in urban environments offers a number of unique challenges. 

Urban areas are conventionally viewed as a type of physical 
environment—essentially as complex terrain—which obviously they are. 
In this respect, urban areas are terrain complexes in which manmade 
constructions and a density of civil population are dominant 
features…From the U.S. perspective, urban terrain tends to restrict 
operations by counteracting most technological advantages in range, 
mobility, lethality, precision, sensing and communications. [65]   

The dense populations inherent to urban areas require that joint force commanders 

pay greater attention to the relationship between civilians and military operations than in 

any other types of operations [66]. The urban environment includes challenges such as 

combatant identification, propensity for collateral damage, preservation of infrastructure, 

restrictive rules of engagement, line of sight obstructions (to include targeting and 

communications), and freedom of maneuver [66]. 

The urban terrain differs from one urban environment to another. An urban 

environment is not only characterized by the attributes of permanent features such as 

height and separation of buildings and street width, it is also a dynamic environment. The 

dynamic nature of the urban environment can be summarized by a quote from an IEEE 

proceedings document, “Network-Centric Systems for Military Operations in Urban 

Terrain: The Role of UAVs:” 

Small buildings arise in a matter of weeks, and large buildings in months. 
Buildings that are rubbleized by bombs become impassible obstructions 
that do not appear on anybody’s map. Parked or abandoned vehicles and 
obstacles as simple as scrap metal can be effective blockages [48] 

The complex physical terrain inhibits the performance of some technologies 

supporting command and control, including Line of Sight (LOS) communications and 

overhead surveillance [66]. 
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Man-made terrain in urban areas degrades communications capabilities, 
particularly line of sight, over-the-horizon, long-haul, and air-to-ground 
capabilities….Terrain in urban environments can impede a land force’s 
ability to send and receive data directly to satellites. This can impact 
global positioning system receivers and inhibit their ability to provide 
accurate data. [66] 

Effective command and control in the urban environment requires the ability to 

rapidly collect and disseminate information. Knowledge is a perishable asset; speed and 

precision are necessary to get the right information in the right hands as expediently as 

possible [66]. 

The UAV offers an affordable solution to address some of the challenges 

identified for operations in the urban environment. Potential applications include using a 

UAV as a communication relay node to bridge communication and using multiple UAVs 

to overcome LOS challenges for the purposes of tracking a moving target. 

2. Communications Support 

Communication is an important aspect of military operations. Current emphasis 

on Network Centric Warfare (NCW) and Information Superiority without a doubt places 

a huge demand on connectivity and communication. UAVs are viewed as a means to 

meet constantly increasing communication needs.   

Quoting the UAS roadmap from the United States Office of Secretary of Defense 

(OSD), the major conclusions from a study conducted in 1997 on using UAVs as an 

Airborne Communication Node are [43]: 

• Tactical communications needs can be met much more responsively and 
effectively with ACNs than with satellites. 

• ACNs can effectively augment theater satellite capabilities by addressing 
the deficiencies in capacity and connectivity. 

• Satellites are better suited than UA for meeting high capacity, worldwide 
communications needs. 

The importance of timely information is mentioned previously in section 1 

discussing the factors driving the need for multi-UAVs in urban operations, and the 

importance of timely information is definitely not unique to the context of Urban 
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Operations. In their thesis, NPS students Kent A. Landreth and John C. Glass describe the 

Tactical Horizon Extension Project, tested through the USSOCOM-NPS Cooperative 

Field Experimentation Program, and the importance of timely information. The 

importance is emphasized via a reference to the conduct of the Son Tay raid during the 

Vietnam War [67]. In fact the importance of timely information and the relevance to a 

wide-spectrum of military operations is obvious and does not require further quotes to 

substantiate the claim. 

In Chapter II, we noted that the U.S. Army roadmap mentioned Reconnaissance 

and Surveillance as the number one combatant commander priority for unmanned 

systems. Landreth and Glass mentioned that Full Motion Video (FMV) is “king” at the 

tactical level of operations. 

At the tactical level of operations, FMV is king. It is the most desired 
medium through which decision makers can develop and assess a target or 
situation for action. FMV is real-time and requires little or no 
interpretation by a trained imagery analyst. It is essentially television. 
Virtually even asset which can provide FMV or even near-real-time 
imagery over the horizon or Beyond-Line-of-Sight (BLOS) falls into the 
category of Low Density High Demand (LD/HD) systems. [61] 

FMV is one of the many products of Reconnaissance and Surveillance activities 

that can be conducted by a UAS. The use of other UAVs to provide connectivity is one of 

the means to allow timely delivery of these high value products to desired destinations. In 

addition, connectivity is also an enabling factor for command and control. 

The UAS roadmap from the OSD anticipated that communication will need to exist 

in a multi-tier structure and provide a quick overview of the high level requirements [43]. 

It is anticipated that communication relays will need to exist in a multi-
tiered structure. For example, to create a wide communications footprint, 
the UA platform must have a capability of extremely long endurance, high 
altitude, and generate adequate power. It would provide an airborne 
augmentation to current tactical and operational beyond line-of-sight and 
line-of-sight retransmission capability. A more focused footprint to 
support brigade and below combat elements will require tactical 
communication relays to address urban canyon and complex terrain 
environment. Support of the communications relay mission will require 
continuous coverage in a 24 hour period, and sufficient redundancy to 
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meet “assured connectivity” requirements. Additionally, UA must be 
capable of relaying VHF-AM radio voice communications using an 
International Civil Aviation Organization (ICAO) standard and 
recommended procedures (SARPs) compliant radio operating with 8.33 
kHz channel spacing from the ground station to the airspace controller 
communication. [43] 

3. Collaborative Sensing 

Collaborative Sensing tries to minimize the time taken to search a given area 

through a means of divide and conquer. In a single UAV search situation, one factor that 

affects the time taken to complete coverage of a given area is the field of view projection 

on the ground at which the search is conducted. At a given level of zoom, the altitude at 

which an aircraft flies determines the corresponding field of view projection on the 

ground. However, quality image and video resolution varies inversely with altitude; for a 

given payload zoom level, the quality of the resolution reduces with an increase in the 

height at which the payload is placed. 

The use multiple UAVs allows greater area (number of UAVs multiplied by the 

area of the FOV ground projection) to be covered at a given time instance. The concept 

using of higher altitude UAVs to provide search cues for lower altitude UAVs tries to 

capitalize on the speed of a ‘quick scan’ using a bigger field of view and complements 

the loss of resolution with “close-in verification” of suspicion. 

4. Swarm 

The UAV Swarm has the potential to bring a wide range of benefits. One driving 

factor for operating UAVs in swarms is to reduce the manpower and logistics required to 

operate multiple UAVs. The ability to operate multiple UAVs in a collaborative manner 

to fulfill the same complex mission offers opportunity to increase efficiency (e.g., time 

spent) on tasks such as Wide Area Search. In addition, a UAV swarm has the potential to 

offer unique capabilities that cannot be fulfilled by any system operating only a single 

UAV. Creative ways that UAV swarms can be used includes acting as a decoy against 

radars and attacking high value targets by overwhelming their air defense. 
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One characteristic which allows the UAV swarm to be an attractive solution for 

creative applications is cost. Small UAVs are considered cheap relative to many other 

military systems. In fact, some small UAVs are marketed as dispensable. Operating 

multiple smaller UAVs also offers the potential advantage of operational flexibility and 

redundancy when compared to a single large UAV.    

5. Loyal Wingman 

Although the vision for the future is a multi-purpose, multi-mission capable UAV 

platform, there are definitely opportunities for a “loyal wingman” deployment concept 

due to physical and operational constraints. 

Regardless of aircraft type, there exists a maximum payload capacity (size, weight, 

etc.) that the aircraft is designed to handle. This maximum capacity directly limits the 

amount of payload (sensors, weapon, fuel, etc.) that can be carried by the aircraft. In 

addition, the platform sensitivity to weight distribution also limits the amount of 

flexibility in changing configurations to tailor to specific situations. 

A truly multi-purpose UAV will probably be very complex and, hence, costly. 

There is probably wisdom in not trying to place “all the eggs in one basket” where the 

loss of one platform can have a serious impact on operational capabilities. In addition, 

functional capabilities of an aircraft that are not used in its mission deployment carry an 

opportunity cost of not being able to deploy these functional capabilities elsewhere. 

Operational constraints will probably limit the amount of functional capability 

that a single UAV platform can possess. Even after years of history in manned military 

aviation, there are still opportunities for manned aircraft to operate in a collaborative 

manner. Such opportunities also exist within the context of UASs. It is also reasonable to 

see a future “loyal wingman” concept come true for unmanned systems. 

The same technologies that keep UAS from any airborne collision will 
also enable UAS formation flight. Coordinated missions and cooperative 
target engagement will provide the same mission efficiencies as manned 
aircraft. [20] 
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B. TECHNOLOGICAL ENABLERS 

The technology “round up” represents the toughest portion of our effort to gather 

the elements required to perform a holistic assessment of multi-UAV operations. The 

various roadmaps provided a good description for current (current with respect to the 

years of release of the roadmaps) technology, way of use, lessons learned, desired state 

for the future, research and development initiatives, etc. [1], [2], [20] and [43]. Typical 

domains described include, but are not limited to, the UAV platform, sensors technology, 

communication infrastructure, interoperability. This thesis will not attempt to repeat all 

the information in those roadmaps in this section but will highlight specifics deemed 

significant to the context of multi-UAVs. It is strongly recommended to refer directly to 

the original roadmap documents for a good general overview of current constraints and 

future needs. 

Although UAS roadmaps generally provide sections summarizing the types of 

technology required or types being developed, the descriptions are usually not technically 

detailed enough to allow individuals concerned about implementing and integrating these 

technologies to develop an adequate understanding of how individual technological parts 

integrate together, much less conduct a proper assessment or study of emergence based 

on potential system of systems implementations. Information such as algorithms that are 

in study, the logistics/infrastructure that needs to be assumed, constraints and limitations 

of respective algorithms or underlying infrastructure that was assumed, pros and cons of 

respective implementations, etc., are spread across large volumes of technical papers 

across a huge spectrum of broad category technical domains and their respective sub-

domains. Examples of these domains include communication, autonomous technology, 

sensor technology, human systems integration. In addition, within each domain, relevant 

information could be further spread across different perspectives such as study of relevant 

parameters (e.g., what are the measure of effectiveness and measure of performance, 

what are the factors affecting performance, etc.) for assessment, reliability studies, cost 

estimation, etc. 

This section summarizes the references that were studied and the information 

directly obtained or derived after reading the references in the duration of the thesis. The 
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information from this section is by no means all inclusive but is sufficient to present an 

individual looking into conducting assessment with the general direction for proceed and 

literature references to lead into further in-depth research. 

1. Collision Avoidance 

Collision avoidance is an important area of focus from the perspective of airspace 

integration. Integration of UAVs into civil airspace has been an area receiving significant 

attention. There is urgency to allow the UAS to make use of civil airspace for testing new 

systems and training UAS operators. The United States DoD Unmanned Systems 

Integrated Roadmap showed that the demand for airspace to test new systems and train 

UAS operators has quickly exceeded the current airspace available for military operations 

[2]. The same roadmap also showed many of the projected DoD UAS locations (up to 

year 2017) are without access to airspace compatible for military operations under the 

current (2011) regulatory environment [2].  

The U.S. Air Force UAS Flight Plan revealed that the current (2009) combat 

airspace procedures for UAS were developed for uncontested airspace, which provides 

justification for an urgent need for technologies that allow UAS to access the civil 

airspace. The plan also provides brief insights into the amount of regulations to overcome 

[20]. 

Current combat airspace procedures for UAS were developed for 
uncontested airspace. Our forces can dictate deconfliction procedures and 
create segregation airspace for operations at will. This cannot be taken for 
granted since host nations in theater may have restrictions on UAS 
operations that reduce their effectiveness. They could be limited by the 
same type of approval and procedures as they face in the NAS or under 
current International Civil Aviation Administration Organization (ICAO) 
rules. The issue of clearance to launch UAS sorties when well outside the 
combat zone is related also. The combat urgency of the CCDR will not 
necessarily be shared by the host nation outside the combat zone, resulting 
in approvals for flight not being expedited. UAS support to combat may 
be thwarted by lack of airspace integration capability. [20]  

The most recent document found that come across that gives a comprehensive 

overview of the topic of airspace integration is NextGen Unmanned Aircraft Systems 
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Research’s Development and Demonstration Roadmap (NextGen UAS R&D Roadmap), 

which documents the plans for responsive, efficient, timely, coordinated multiagency 

Research and Development efforts that will enable the U.S. to realize fully the benefits of 

UAS in the National Airspace System (NAS) [68]. A European effort that was presented 

at the UV Europe 2011 Conference was the MIDCAS project by Jens Fehler, Principal 

UAV Officer, European Defence Agency [4]. MIDCAS, a project signed during Le 

Bourget Air Show in June 2009, is the biggest project funded by the European Defense 

Agency, supported by the Ministries of Defense from five European countries and led by 

a consortium including 13 European companies that hold a large portion of European 

knowledge on Sense & Avoid as well as other technologies relevant to the project [69]. 

The mission of MIDCAS is to demonstrate the baseline of solutions for the UAS Mid-air 

Collision Avoidance Function (including separation), acceptable to the manned aviation 

community and compatible with UAS operations in non-segregated airspace by 2015 [4]. 

Although multi-UAV operations do not directly rely on successful integration into 

NAS or other civil airspace in general, there are merits to pay attention to and 

developments relating to airspace integration because: 

• Collision avoidance, a major concern for airspace integration, is also a 
fundamental enabling requirement for collaborative scenarios that requires 
UAVs to operate in close proximity to other UAVs, other aircraft or even 
in dynamic environments with abundant structural obstacles (e.g., urban 
environment). 

• Lessons learned from integrating UAS into civil airspace (e.g., the 
equipment and infrastructure required) may have relevance for an attempt 
to operate UAS with other military aviation assets. 

• Successful integration or even major progression could have significant 
impact on the general public perception and acceptance regarding the 
ability of a UAS to operate safely and freely in an environment with other 
air traffic.  

“Sense and avoid (SAA)” is described as an alternative means to meet FAA 

regulations to “see and avoid” [1]. The U.S. Army UAS Roadmap mentioned two 

approaches to address this functional need are ground-based sense and avoid (GBSAA) 

radar where the Army is the lead service and the airborne sense and avoid (ABSAA) 

radar where the Air Force is the lead service [1]. The Army’s GBSAA plan is to develop 
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a near-term solution called zero conflict airspace (ZCA), followed by a near-to-mid-term 

effort that is self-separation [1]. The same roadmap divided possible technical approach 

into passive or active techniques and subdivided into cooperative and non-cooperative 

traffic environments [1]. The active cooperative scenario involves detection through 

means of using interrogator and transponder, the active non-cooperative scenario relies 

on radar to scan the desired sector, passive cooperative scenario relies on all aircraft 

carrying a transponder than broadcast relevant information and the passive non-

cooperative scenario relies on sensor (e.g., EO/IR camera) to detect traffic. 

a. Automatic Dependent Surveillance – Broadcast (ADS-B) 

The ADS-B corresponds to the passive cooperative scenario. The ADS-B 

(Figure 7) is a Global Navigation Satellite Systems reliant solution that allows desired 

parties (e.g., Air Traffic Control centers, pilots of aircraft, etc.) to observe the air traffic 

within the airspace. Each aircraft equipped with ADS-B OUT broadcasts its position and 

other data (e.g., flight number, airspeed, altitude and whether the aircraft is turning, 

climbing, or descending) via a wireless communication link. ADS-B equipment 

broadcasts multiple times per second at 978 MHz or 1090 MHz. Ground stations and 

other aircraft (equipped with ADS-B IN) within 150 miles receive the broadcast 

information. Air traffic control centers receive the information relayed via the ground 

stations. Air traffic information received is visually presented to human operators (e.g., 

air traffic controllers, pilots of aircrafts, etc.). 
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Figure 7.  ADS-B Operational View. From [70]. 

b. Due Regard Radar (DRR) 

DRR corresponds to active non-cooperative scenario. The U.S. DoD is 

funding the development of an affordable common, autonomous ABSAA system for the 

Airforce RQ-4B Global Hawk and Navy Triton (formerly known as BAMS) [68]. 

General Atomics Aeronautical Systems, Inc. (GA-ASI) has a prototype DDR which is 

being matured [71].  

c. Visual Detection 

Visual detection corresponds to a passive non-cooperative scenario. It is 

probably the closest to the “See” of the “See and Avoid” method of collision avoidance 

for manned aircrafts. Visual detection can be performed through the use of EO/IR 

cameras to search the surroundings for awareness of other aircraft.  
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2. GPS Denied Navigation 

GPS denied navigation is a valid consideration in the urban environment where 

environment and other factors interfere with the GPS signals, resulting in a GPS denied 

environment. Intentional jamming is another valid scenario for considering GPS denied 

navigation. Feng Lin et al. [13] provided a good overview of alternatives to navigation 

methods in the absence of GPS.  

Due to the size and price limitation, light-weight and low-cost inertial 
measurement units (IMUs) are widely adopted for navigation of small-
scale UAVs. Low-costs IMUs are characterized by high measurement 
noises and large measurement biases. Hence pure initial navigation using 
low-cost IMUs drifts rapidly. In practice, inertial navigation usually is 
aided by the global positioning system (GPS) to realize drift-free state 
estimation…Computer vision techniques have been successfully applied 
to various UAV navigation tasks. These navigation tasks can be generally 
divided into two categories according to whether prior knowledge of the 
environment is available or not. In the first category, certain prior 
knowledge of the environment is available. For example, an artificial 
landmark with known structure is placed in the environment. An onboard 
camera can take images of the landmark during flight. By matching the 
images with the real landmark structure, the pose (position and altitude) of 
the UAV relative to the landmark can be estimated…Another typical task 
in the first category is the map-based navigation. By using image 
registration techniques, the absolute UAV position can be estimated from 
geo-referenced aerial or satellite images. In the first category, the UAV 
states (position, velocity and altitude) can be estimated without drift. In 
the second category the environment is unknown….Two types of 
approaches are predominant in UAV navigation in unknown environments: 
(i) visual odometry (VO), and (ii) simultaneous localization and mapping 
(SLAM)….VO can estimate the UAV states with respect to the initial 
states by accumulating inter-frame motion information. Due to the error of 
inter-frame motion estimation, the state estimation given by VO drifts 
over time. As a comparison, SLAM not only estimates the UAV states, but 
also simultaneously builds up a map of the environment. In SLAM, past 
visual measurements are stored in the map and consequently used for 
refining current state estimation. So SLAM potentially can give more 
precise state estimation than VO….SLAM requires large computational 
and storage resources to maintain a large-scale map. By trading off 
navigation performance and resources required, VO is a more practical 
navigation approach than SLAM especially for the tasks where mapping is 
unnecessary. [13] 
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The same article by Feng Lin et al. [13] went further to provide an in depth 

discussion of their work and a quick comparison with existing work on vision-based 

navigation using homography. This thesis will not attempt to summarize that portion of 

the description and will instead recommend direct reference to the original article. 

3. Autonomy 

DoD’s Unmanned Systems Integrated Roadmap cited “Technology Horizons,” a 

2010 U.S Air Force study that mentions the potential for increased autonomy to improve 

effectiveness through reduced decision cycle time, manpower efficiencies and cost 

reductions [2]. Figure 8 shows the DoD autonomy roadmap for unmanned systems. 

 
Figure 8.  Autonomy Roadmap. From [2]. 

A key driver for autonomy is a desire to capitalize on the benefits of reduced 

manpower required to operate a UAS, reducing human operators to supervisory positions 

and increasing their span of control [43]. In the context of multi-UAVs, especially in 

swarm scenario, the application of autonomy to allow a small number of operators or 

even one operator to operate the entire swarm is the foundation which makes the concept 

feasible. Understandably, a majority of the papers describing UAV autonomy are 

discussions related to UAV swarm. The “Mini, Micro, and Swarming Unmanned Aerial 

Vehicles: A Baseline Study” report by the Library of Congress [61] is a useful reference 

which discusses some of the research being done and provides references to the related 

technical papers.  
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a. Collision-free Path Generation 

Path generation can be centralized or de-centralized. A centralized 

approach is criticized for significant communication overhead and over reliance on a 

central decision maker and is hence susceptible to failure [8]. An argument to support the 

de-centralized approach is a perceived increase in robustness; a disadvantage is its 

sensitivity to information discrepancies across the UAV team [8]. Kevin et al. [9] 

demonstrated collision-free multi-UAV optimal path planning and cooperative control 

based on pseudospectral methods. The modeling approach used lends itself well to an 

architecture involving an offboard computational engine responsible for supervising the 

UAV operations [9] (centralized). David et al. [25] presented a hierarchical system for 

swarming where an initial globally optimal path is generated offline and trajectory 

replanner based on model predictive algorithms. Luca et al. [8] presented an extension to 

the Consensus Based Bundle Algorithm (CBBA) for task assignment to handle collision 

avoidance (and noise churning). Assigned tasks were checked for collision, and 

corrections were made through adding intermediate waypoints for obstacle avoidance 

after solving the shortest path problem using Dijkstra’s algorithm. In the thesis of Chua 

Chee Nam [23], a direct method in exploiting the inverse dynamics of a vehicle in the 

virtual domain is used. In the context of collaborative search and coverage and 

collaborative sensing, a Bayesian update method approach can be used to dynamically 

determine search paths. 

b. Task Assignment 

Task assignment can be centralized or de-centralized. An article by 

Hyunjin Choi et al. [10] mentioned a few approaches to handle task assignment and 

provided a brief overview of the advantages and disadvantages. 

Task assignment has been regarded as a combinatorial optimization 
problem in which combinations between UAVs and various tasks must be 
deciphered. Examples of combinatorial optimization problems include the 
traveling sales problem or the vehicle routing problem. Finding exact 
solutions are very difficult because combinatorial optimization problems 
possess non-deterministic polynomial time, which results in computational 
complexity. Two approaches have been developed to overcome this 
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complexity. One approach is mathematical programming approach such as 
mixed integer linear programming. The second approach is a meta-
heuristic algorithm such as the genetic algorithm and particle swarm 
optimization. Mathematical programming approaches often provide 
solutions that are better in quality than solutions derived from meta-
heuristic algorithms, but mathematical programming usually requires 
much more computation time than its counterpart. Conversely, the meta-
heuristic approach obtains solutions quickly, however the quality of the 
solution may be poor. [10] 

CBBA is another example of approach for task assignment. CBBA lends 

itself to the decentralized task assignment approach. 

4. Communication Network 

a. Communication Infrastructure   

Previous sections discussed the importance of the UAS role in ISR and the 

importance of timely information. The communication infrastructure is the foundation 

that will allow the right information to get in the right hands as expediently as possible. 

Lieutenant Colonel Duane T. Carney (2008) mentioned in his strategy research project 

that the UAS requires network resources to operate in order to realize their maximum 

potential, and DoD cannot progress on the path to implement its vision to Network 

Centric Warfare without fully integrating the UAS into the theater communications 

network [72]. The maturity of the communication infrastructure directly affects the value 

of UASs. 

The OSD and U.S. Air Force roadmaps mentioned the need to connect the UAS to 

the Global Information Grid (GIG) [20] and [43]. According to the United States 

National Security Agency website, GIG is the globally interconnected, end-to-end set of 

information capabilities for collecting, processing, storing, disseminating and managing 

information on demand to warfighters, policy makers and support personnel [73]. 

Understandably the technical details and status of integration was not readily available in 

public literature. 

A multi-UAV system (including consideration for cooperation with manned 

elements or other unmanned systems) will likely require even greater emphasis to be 
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placed on the communication infrastructure. A deployed system or system of systems will 

likely require network interoperability between the elements instead of traditional dedicated 

point-to-point communication between respective UAVs and the control stations. The 

United States Army Future Combat System (FCS) is a significant effort of reference to 

integrate UAVs with other elements into a complete System of Systems. FCS was 

originally planned to consist of 18 systems linked by an advanced information network but 

was later reduced to 14, consisting of eight new types of ground vehicles, two classes of 

UAV, several unmanned ground vehicle and an attack missile (Figure 9) [6]. Although 

eventually halted in 2009 9 [5], the FCS offered a good case study for technological 

maturity assessment and lessons learned (both in terms of acquisition and technical 

insights). Research into the Joint Tactical Radio System (JTRS) and the Warfighter 

Information Network – Tactical (WIN-T) [6], two critical elements of the FCS, will 

probably also be meaningful.  

                                                 
9 Succeeded by Army Brigade Combat Team Modernization (ABCTM) program. 
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Figure 9.  United States Army Future Combat System (14 systems). From [6].  

In addition, paying attention to developments in the Distributed Common Ground 

System (DCGS) of the respective services may provide reference for the operational 

requirement, technical design and other information such as User Interface (UI) and 

lessons learned. Army Battle Command System (ABCS) and the United States Navy’s 

Cooperative Engagement Capability (CEC) are examples of other systems for reference 

and study. Examples of references for CEC are an article from Johns Hopkins Applied 

Physics Laboratory [74] and a case study report by National Defense University [75]. 

b. Spectrum and Bandwidth 

Frequency and bandwidth are traditional challenges for UAS operations. 

Examples of operational issues from the Global War on Terror relating to frequency 

spectrum and bandwidth that are mentioned in the OSD UAS roadmap [43] include: 
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• Despite having the capability to operate multiple UAs per system 
simultaneously, the limited number of frequencies available often 
restricted the number to one UA airborne at a time. 

• Frequency interference (loss of UA link) was more often from 
friendly than hostile. 

• Urban combat is hostile to high bandwidth wireless data 
communications and can result in loss of connectivity even at short 
distances.  

Cognitive Radio (CR) and Dynamic Spectrum Access (DSA) techniques 

may offer potential solution to frequency congestion problem. DSA is mentioned in the 

DoD Unmanned Systems Integration Roadmap, although the same document also 

mentioned that a study by the United States Air Force Scientific Advisory Board 

evaluated DSA as far from being a proven technology [2]. An article by authors from the 

University of Pittsburgh mentioned that although a large volume of research has been 

conducted on the area of CR in the last decade, the deployment of a commercial CR 

network has yet to emerge; the paper also discussed some challenges in the real world 

scenarios that were not included in research literature [76]. 

A collaborative environment will further stress bandwidth requirements, 

adding overhead for collaborative communication on top of the need to communicate 

sensor products and ISR information. In addition to the bandwidth capacity of dedicated 

equipment for point-to-point communication between the UAVs and between the UAV 

and other collaborative elements, the bandwidth capacity of equipment to extend the 

range (such as commercial satellites) should also be considered and assessed. In addition, 

the cost associated with the use of commercial satellites is potentially significant and 

should also be a factor considered during design and assessment. Issues regarding 

satellite communication (SATCOM), spectrum management and bandwidth management 

are discussed in the United States Air Force UAS Flight Plan [20]. 

Commercial SATCOM: While today’s UAS almost exclusive use 
commercial SATCOM, it has some major drawbacks. First and foremost, 
commercial SATCOM is an open commodity where the DoD competes 
with numerous other communications users (i.e., TV, international 
telephone, data, and facsimile). Also, commercial SATCOM transponders 
are sized for the community they intend to support which ranges typically 
from 36–54MHz. While that transponder size is sufficient for 
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Predator/Reaper it is less than adequate to support Global Hawk’s Block 
20/30/40 full throughput needs. Finally, while figures vary with each lease, 
commercial SATCOM bandwidth typically costs approximately $40K per 
MHz per year. If 50 Predator/Reaper caps remained on commercial 
SATCOM, the annual recurring cost would be approximately $25M 
assuming an individual cap data growth to 12.8 Mbps. [20] 

Compression offers a means to reduce bandwidth requirement. The video 

quality required for unmanned systems would nominally be levels 4M/4H and 3M/3H of 

the motion imagery systems matrix (MISM10) [2]. Bandwidth limit potentially is a major 

constraint when selecting the architecture/design/algorithm for a collaborative system. 

5. Interoperability 

Traditionally UASs are acquired and operated largely as an “isolated system” by 

respective services [31]. These systems therefore are not designed for interoperability. 

The following statement from the DoD Unmanned Systems Integration Roadmap, 

regarding collaborative autonomy, captures the importance of interoperability for 

unmanned systems.  

The collaborative autonomy that is developed must be scalable to both 
larger numbers of heterogeneous systems as well as increased mission and 
environment complexity. Collaborative autonomy must be able to adapt to 
the air, ground, and maritime traffic environment and to changes in team 
members, operators, and the operational environment. [2]   

The vision for the future collaborative environment involves flexibility to quickly 

put together teams to meet different operational needs. This requires the ability to work 

with other systems – interoperability to be engineered into the systems. The tenets of 

common definitions for plug-and-play interoperability are systems functionality 

descriptions and architectures, messaging standards (e.g., STANAG 4586, JUAS, 

USMTF) [2]. The same roadmap advocates overarching principle involving open 

architecture (OA) and service-oriented architecture (SOA) to facilitate interoperability. 

The section describing and justifying the approach is cited in this section. 

                                                 
10 See Motion Imagery Standards Profile (MISP) Recommended Practice 9720d, MISM, Standard 

Definition Motion Imagery 
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OA utilizes a common set of interfaces and services; associated data 
models; robust, standard data busses; and methods for sharing information 
to facilitate development. OA involves the use of COTS components with 
published, standard interfaces, where feasible, at all levels of system 
design. This approach avoids proprietary, stove-piped solutions that are 
vendor-specific and enables innovation to be better captured and 
integrated into systems design. The OA approach allows for expanded 
market opportunities, simplified testing and integration, and enhanced 
reusability throughout the program life cycle. The Navy’s Cruiser 
Modernization Program is one such effort. 

The OA process encourages innovation, allows information sharing 
among competitors, and rewards Government and industry for this 
collaboration. It allows programs to include small businesses in systems 
acquisition activities as a valuable, affordable, and innovative source of 
technologies and capabilities. The result is a better product. 

DoD unmanned systems consist of a wide range of programs, architectures, 
and acquisition approaches. To create a common framework for 
development and acquisition, DoD adopted principles of OA and service-
oriented architecture (SOA). While the OA is the contracting, architecture, 
and business process methodology used to develop and acquire systems, a 
SOA is a specific way of designing software, in a standardized 
architecture, that uses interchangeable and interoperable software 
components called services. When coupled together, the result is a 
business approach to acquiring software developed within a common 
engineering construct that promotes reuse, cost reduction, competition, 
growth opportunity, expandability, innovation, and interoperability among 
similar systems. 

SOA provides a set of principles or governing concepts that are used 
during the phases of systems development and integration. This type of 
architecture attempts to package functionality as interoperable services 
within the context of the various business domains that use it. SOAs 
increase functionality by incorporating new services, which are developed 
separately but integrated within the system’s common framework as a new 
capability. Their interfaces are independent of application behavior and 
business logic, and this independence makes the interfaces agile in 
supporting application changes and enables operations across 
heterogeneous software and hardware environments. [2] 

Figure 10 shows the DoD interoperability roadmap for unmanned systems and 
Figure 11 shows the roadmap for manned unmanned teaming. The OSD UAS roadmap 
includes a discussion and list of standards for interoperability which are provided in 
Appendix E [43]. 
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Figure 10.  Interoperability Roadmap. From [2]. 

 
Figure 11.  Interoperability (Manned Unmanned Teaming) Roadmap. From [2].  

6. Power 

Although not an area that was focused on for this thesis, no study regarding the 

effects of various collaborative algorithms/designs on endurance was found. A huge 

increase in communication requirements is likely to have significant impact on endurance. 

Power/endurance is a candidate area for close scrutiny when assessing any collaborative 

design that is proposed. 
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C. FACTORS TO CONSIDER DURING SYSTEM ENGINEERING 
ACTIVITIES 

1. Technology 

The technological assessment (2009) for the status of collision avoidance 

technology is summarized in the U.S Air Force UAS Flight Plan [20].  

See and avoid has not been defined in terms of minimum detection 
distance, minimum field of view, or minimum scanning rates/patterns. 
There are many variables that affect this analysis including pilot skill, pilot 
flight currency, density of traffic, and flight speeds. Further, the level of 
acceptable risks has not been defined. Additionally, there are no 
development standards for Sense and Avoid. Technological solutions are 
being matured in the labs, but have not been approved yet because the 
standards do not exist and the modeling and simulation to make the safety 
case is just beginning. [20]  

From the near-term (2010) GBSAA goals 11  given in the U.S Army UAS 

Roadmap, the current state of technology for SAA seems far from matured. The 

information from the NextGen UAS Research, Development and Demonstration 

Roadmap [68] seems to support this assessment. The compliance date for all aircraft 

flying in United Sates class A, B and C airspace to carry ADS-B is set at 1 January 2020 

[77]. GA-ASI announced the successful flight test of their DDR prototype on Predator B 

UAV in February 2013 [71] but technical details regarding the prototype system are not 

available for reference. 

The DoD Unmanned Systems Integration Roadmap [2] describes the technical 

challenges for manned unmanned teaming. Although the statement was framed for the 

context of manned unmanned teaming in the maritime environment, the challenges 

described are nevertheless expected to be true even in the general context of collaborative 

missions.  

Some of these challenges are technical. They range from near-term issues 
such as the limited ability to integrate and deconflict various radio across a 

                                                 
11 GBSAA near-term goals given as: a) develop, text, employ, and field ZCA – Zero Conflict Airspace 

b) develop initial SAA requirements and standards c) develop self-separation algorithms d) develop and 
test GBSAA self-separation capability e) expansion and definition of the USAIC sensor network f) initial 
integration work to integrate the capabilities of GBSAA and ABSAA g) initial semi-autonomous flight h) 
expand GBSAA to possible deployable system supporting disaster relief and theater combat roles. 
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secure communications network… This ability requires a high degree of 
hardware and software interoperability, scalable autonomy, human system 
interfaces, new collaborative algorithms, and network mission tools. The 
platform must do significant levels of onboard processing to not only 
reduce bandwidth required, but also collaborate with other unmanned 
vehicles without operator input. [2]  

In the context of autonomy, there is an abundance of papers regarding respective 

specialized areas and papers justifying the validity of various approaches and algorithms. 

However, the conduct of experiments and simulations considering the entirety of the 

context is important to prove the maturity and expose undiscovered technical challenges. 

For example a team of UAVs deployed for collaborative sensing will likely require auto 

separation, task assignment, path generation, obstacle sensing and avoidance. 

Environmental factors causing occlusion, range and endurance limits, communication 

overhead from collaborative communication, bandwidth limits, onboard processing 

capability, etc., are factors that constrain the design or limit the maximum number of 

UAV in a team, and these needs to be considered and assessed in entity. Unfortunately, 

papers describing studies of such a broad scope was not found. 

Arguably the value of the UAS in its top priority role of C4ISR depends on the 

ability to deliver timely required information to the right places. In other words, the 

maturity of the communication infrastructure is the backbone for UAS and collaborative 

operations. The amount of information available regarding communication infrastructure 

is insufficient for a conclusive assessment, but the inference from the status of various 

programs referred to and the general tone of discussion regarding architecture and 

interoperability, is the infrastructure is not matured. 

Although not the focus of our review of the literature, human factors related 
studies and results seem to be heavily lacking. Development of concepts for the human 
machine interface (HMI) and graphical user interface (GUI) and for assessment of these 
areas might be warranted. 

Consolidating the impression from literature review into various areas of 
technological enablers, there is no conclusive evidence that technology to put together a 
deployable complex collaborative system or system of systems, with ambitious vision 
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such as plug and play interoperability, is matured. The failure of the Army’s Future 
Combat System and the criticism toward it may be a representative indication that the 
conditions are not ready for an ambitious complex system. Nevertheless are indicators 
that suggest that the design of a system or system of systems that has limited 
functionality and limited interoperability outside of the original design context is not very 
far from technologically feasible, if not already feasible. Technology for the respective 
domains seems relatively developed for assessment studies to begin. The value of a 
deployed collaborative system may not be just the operational value but also additional 
benefits such as accumulating confidence for eventual acceptance.  

2. Concept of Operations (CONOPs) 

Limited CONOPs description for multi-UAV context was found despite reading 
through various UAV related roadmaps found in the public domain. Several writers who 
follow military news and write about military applications [3] and [14], discuss interest 
(for example the U.S. Navy interest in Unmanned Carrier-launched airborne surveillance 
and strike) and capabilities for UAS, while there is an absence of published CONOPs 
from any military service in the public domain. Research papers were used as reference 
for possible applications. However, the scenarios may sometimes be limited in scope or 
does not adequately incorporate all real-life challenges associated with the scenario. The 
objective of identifying strongly supported12 CONOPs was likely not met. The closest to 
a validated CONOP was a high level desire to network a UAS as one of the components 
in a collaborative information sharing environment for information dominance and a 
short discussion on manned unmanned teaming. The system or system of systems to meet 
this desire is probably the most complex. Arguably the limited scope scenarios present a 
high amount of risk for industry to focus time and effort to conduct comprehensive 
feasibility studies or determine detailed complete designs, and the high level desire is at 
too high a level of abstraction for any single organization or expert to conduct 
comprehensive feasibility studies. Strongly validated CONOPs/applications may have 
been kept away from the public domain because of security classification or the current 
state of progress had not reached the stage where system implementation level of details 
is available. 
                                                 

12 The author defines strongly supported as either described in formal documents from 
operating/acquiring authorities or has been reasonably validated for feasibility.  
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In a typical systems engineering approach, analysis of stakeholder needs and 

operational requirements provides the foundation for downstream process and analysis. 

The presence of assessable CONOPs could arguably focus efforts for feasibility studies.  

3. Human Factors / Regulations / Legal Restriction 

Human resistance can play a significant role in hindering the deployment of UAS 

technologies. Example of evidence of human resistance to UAS or application of UAS 

for certain operational purpose is mentioned in Navy launches unmanned aircraft from 

carrier for first time [3] by Fox News, which cite concerns over the development of 

systems that could become weaponized and have less and less human control over 

launching attack. An informal discussion between the author and others within the UAV 

community, including individuals involved in managing UAS projects, revealed that 

convincing the relevant authorities on issues such as safety is a major hurdle regarding 

UAS use and exploration of new ideas regarding how the UAS could be deployed. 

Two statements, relating to integrating the UAS into NAS, from the Air Force 

UAS Flight Plan [20] was interpreted as an illustration of human resistance as an obstacle 

for UAS development. 

A challenge to fully integrate UAS is NAS access. Over the years as 
manned aircraft operations increased, rules were developed to increase the 
safety of flight. The most basic method of deconfliction is to see and avoid 
other aircraft (14 CFR 91.113). This is assumed as the most basic 
universal means when all other procedures and equipment have not 
prevented a conflict situation. See and avoid also hold the pilot as the one 
ultimately responsible in any visual environment. This is a major 
consideration and therefore, this precedent that has served us well in the 
past, is not easily changed or replaced. [20] 

The sense and avoid technological solutions coupled with the DoD and 
FAA rulemaking can serve as a model for international airspace solutions. 
Part of the reason the FAA has delayed the development of rules and 
standards, is due to pressure from other NAS users. [20] 

An article by Hoffman et al. [78] also expressed similar sentiments where cultural 

resistance at senior and midlevel leadership may become a cultural impediment to the 

UAV “revolution.” A typical concern about UAS related operations is safety related 
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concerns. Lacher et al. [79] discussed the possibility of operating small a UAS in non-

navigable airspace (for manned aircraft) that poses an acceptable risk to both other 

aircraft and people on the ground. In the article, aviation risk is discussed using three 

major categories. The first category refers to death or injury of persons on board subject 

aircraft, resulting from a mishap. The second category refers to death or injury of persons 

on board another aircraft resulting from a mid-air or surface collision between two or 

more aircraft/ground vehicles. The last category refers to death or injury of persons on 

the ground (not in an aircraft or vehicle involved with a collision) resulting from a 

mishap or collision. Much work needs to be done convincing stakeholders such as 

regulators, military leaderships and the public about the safety aspects of UAS operations. 

Regulations and standards need to be revised to handle the UAS “revolution,” as 

illustrated by the efforts to integrate UAS into NAS. In addition, legal and morals issues, 

some of which are discussed by Anderson [80], are additional constraints on UAS 

operations, and concrete guidelines need to be established.   

Success stories such as successful integration of UAS into NAS could play a 

significant part in breaking down human resistance. Progressive evolution of deployed 

systems could potentially be another means. Conducting a comprehensive and 

meaningful system assessment, such as a safety related assessment, and the consolidation 

and availability of these results could probably encourage greater participation from a 

wider audience. 
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V. SITUATIONAL AWARENESS FOR UAS 

Situational awareness is essential to operate a UAV safely. Situational awareness 

generally refers to the understanding of what is happening in the vicinity and also making 

use of that information to anticipate what might happen next. In the context of UAV 

safety, situational awareness allows the pilot to decide on the best course of action and 

also to evaluate his options. In LOS operations, the pilot has visual awareness of both the 

UAV and the environment. In BLOS operations, which are typical for a large number of 

UAS applications, the pilot is deprived of the ability to directly see his aircraft or its 

surroundings. In such cases, there is a challenge regarding how to provide situational 

awareness to the pilot. While operating in the NAS or other commercial airspace, 

situational awareness can be in the form of air traffic advice from ATC components. 

Active methods, such as scanning the environment with onboard radar, offer another way 

to obtain information of the elements within the vicinity. Cooperative communication to 

update elements within the vicinity is another approach. The ADS-B implementation is 

an implementation of the cooperative communication approach. However, when 

operating in areas where ATC facilities are not available and transmission is not desirable, 

situational awareness through passive sensing (e.g., EO/IR cameras) becomes the only 

approach that remains feasible. 

Later in this chapter we introduce some current cooperative and non-cooperative 

systems that can potentially be used for providing situational awareness in the context of 

UAV operation.  

This section describes the author’s experience handling ADS-B and EO/IR 

camera tracking systems with the intent to explore the concept of collision avoidance 

using visual detection.  

A. SITUATIONAL AWARENESS 

1. Situational Awareness with ADS-B 

Figure 12 shows the context and the interaction between components for collision 

avoidance when ADS-B is used to enhanced situational awareness. The figure 
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summarizes three levels of abstraction (ADS-B as a system, aircraft as a system and the 

full collision avoidance context involving multiple aircrafts) into one diagram (illustrated 

by the boundaries drawn). In one aircraft (right), the full details of components and their 

interactions with one another are shown. In the other aircraft (left), only details relevant 

to illustrate the interaction between aircrafts (for collision avoidance context level of 

abstraction) are shown, and duplicated details relevant only to within the boundary of the 

aircraft are intentionally omitted. The diagram is intended to illustrate the general context 

and does not include variations that need to be considered in more specific scenarios. For 

example, the operator/pilot is intentionally drawn within the boundary of the aircraft such 

that the diagram is relevant to both UAV and manned aircraft. In the context of UAV, the 

pilot will be situated remotely and connected by a communication link. This difference 

needs to be considered when dealing specifically with UAVs but is not explicitly shown 

in the diagram. Similarly, in the context of smaller UAVs and for swarm implementation, 

the desired implementation will likely be autonomous avoidance. This difference is also 

not explicitly illustrated in the diagram.     

The context of ADS-B is described in Chapter IV. Within the context of a single 

aircraft, the pilot or an operator monitors the airspace situation display for potential 

collision threats and make counter measures (such as warning the pilot of the other 

aircraft of potential intrusion or maneuvers to prevent a potential collision). Advice from 

the ATC or advice from another pilot or operator is another avenue where the pilot or 

operator is made aware of a potential collision threat. Within the collision avoidance 

system of systems context, multiple aircraft exist and exhibit the same interactions 

concurrently with each other, ATC, ADS-B ground station and GPS satellites, as 

described in the context of a single aircraft. 
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Figure 12.  Context Diagram for Collision Avoidance with ADS-B 
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Index Interface Description 
1 ADS-B IN with Aircraft Information exchange. ADS-B IN sends received airspace traffic 

data (consolidated information received from each 
aircraft within the vicinity) to the aircraft. 

2 ADS-B OUT with ADS-B 
Ground 
Stations 

Information exchange. ADS-B OUT sends aircraft ADS-B data 
(consolidation of position and other aircraft data 
such as aircraft attitude and flight number) to the 
ADS-B Ground Stations by broadcast. Broadcast is 
sent in clear (not encrypted). 

3 ADS-B OUT with ADS-IN Information exchange. ADS-B OUT sends aircraft ADS-B data 
(consolidation of position and other aircraft data 
such as aircraft attitude and flight number) to the 
ADS-B IN of another aircraft in the vicinity by 
broadcast. Broadcast is sent in clear (not 
encrypted). 

4 ADS-B OUT with Aircraft Information exchange. ADS-B OUT obtains relevant aircraft 
information (e.g., Attitude data and flight number) 
from the aircraft. 

5 ADS-B OUT with GPS 
Satellites 

Information exchange. ADS-B OUT determines aircraft location 
information based on the GPS receiver (built-in) 
interaction with the GPS satellites network. 

6 Aircraft with Operator/Pilot Information exchange. The Operator provides control inputs to 
the aircraft via control interfaces. The aircraft 
provides attitude information feedback and display 
the Airspace Traffic Data received from the ADS-B 
IN as an Airspace Situation Picture to the Operator. 

7 Operator with Voice 
Communicatio
n (Radio) 

Information exchange. The Operator sends outbound audio 
messages to the ATC or other aircrafts via the radio. 
The Operator receives inbound audio messages 
from the ATC or other aircraft operators via the 
radio. 

8 Voice Communication 
(Radio) with 
Voice 
Communicatio
n (Radio) 

Energy exchange. The radio receives signal wave (encoded audio 
messages) transmitted by another radio.   

9 Voice Communication 
(Radio) with 
ATC 

Energy exchange. The radio receives signal wave (encoded audio 
messages) transmitted by ATC. The radio transmits 
encoded audio messages (signal wave) to the ATC. 

10 ATC with ADS-B Ground 
Stations 

Information exchange. ATC receives airspace traffic data 
(consolidated information received from each 
aircraft within the vicinity of the Ground Stations) 
from ADS-B Ground Stations. 

Table 3.   Interface Description for Collision Avoidance System of Systems context 
with ADS-B 
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2. Situational Awareness Supplement by Visual Detection 

In this scenario, the change to the context described in Figure 12 is an additional 

visual input (via visual sensor output) to the pilot/operator. 

B. SITUATIONAL AWARENESS COMPONENTS DESCRIPTION 

This section contains a description of the following four systems that can be used 

to provide situational awareness:  

• Appareo Stratus 2 ADS-B and ForeFlight Mobile 

• Flightradar24 

• PERCEPTIVU (PVU-Mariner and PVU-Tracker) and MOOG QuickSet 
GeminEye System 

• SkyIMD SkyFusion Pak 2000 

The first two systems of Appareo Stratus 2 ADS-B and Foreflight Mobile and 

Flightradar24 can be used for the cooperative implementation approach and the last two 

systems can be used for the non-cooperative approach.  

1. Systems for Cooperative Approach 

a. Appareo Stratus 2 ADS-B and ForeFlight Mobile 

Appareo Stratus 2 (Figure 13) is an ADS-B receiver that is able to deliver 

subscription-free weather, ADS-B traffic, GPS position and attitude information to an 

iPad installed with ForeFlight Mobile application (Figure 14). ForeFlight Mobile 

provides the GUI that presents the received information and allows the user to choose the 

information to display. Appareo Stratus2 integrates exclusively with ForeFlight Mobile. 

Information exchange between Appareo Stratus 2 and ForeFlight Mobile is through a 

WiFi connection (between Stratus 2 and iPad). Table 4 summarizes the technical 

specifications for the Appareo Stratus 2. 
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Figure 13.  Appareo Stratus 2 ADS-B receiver. From [81]. 

 
Figure 14.  ForeFlight Mobile Application. From [82]. 
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Index Parameter Specification 
1 Dimensions 2.6” x 6” x 1.25” 9.7 oz. 
2 Antenna Internal antenna for wire-free operation in most 

cockpits 
3 Cooling White case and built-in fan 
4 Battery Life Battery life up to 8 hours and recharges via micro 

USB 
5 GPS Active WAAS GPS for improved position information 

and support for speeds up to 900 KTAS 
6 ADS-B Dual band ADS-B receiver (978 MHz and 1090 

MHz).  
Receiving from ADS-B towers requires ADS-OUT in 
vicinity as most towers  

7 AHRS Stratus includes a complete Attitude Heading 
Reference System (AHRS) for supplemental attitude 
information in the cockpit 

8 Miscellaneous Tested to DO160F for magnetic effect and altitude, 
ESD via the 8kV Human Body Model, and vibration 
tested using 10–500–10Hz 1oct/min 1hr/axis (3 axis). 

Table 4.   Technical Data. After [82] and [81]. 

b. Flightradar24 

Flightradar24 (Figure 15) is an application that shows live air traffic from 

around the world. The application is available for a number of different operating systems, 

including iOS for iPad and iPhone and android OS. The primary source of information is 

ADS-B. Aircraft positions are also calculated using the Time Difference of Arrival 

method of Multilateration for areas where the ADS-B coverage is good. Radar data from 

the Federal Aviation Administration (FAA) in the United States is another source of 

information. The information is delivered to the user over the Internet. FAA data are 

delayed (up to 5 minutes) and displayed in a different color (orange) [83]. Flightradar24 

can be downloaded and installed from the application stores of the respective operating 

systems. Flightradar24 is available in licensed and free-to-use versions. 
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Figure 15.  Example of GUI for Flightradar24. From [84]. 

1. Systems for Non-Cooperative Approach 

a. PERCEPTIVU (PVU-Mariner and PVU-Tracker) and MOOG 
QuickSet GeminEye System 

Figure 16 shows the video and tracking set-up consisting of PVU-Mariner, 

PVU-Tracker and MOOG QuickSet GeminEye System. Most data about the PerceptiVU 

components are from the user manual [85]; the information summarized in this thesis is 

meant as a quick reference and is by no means sufficient to replace the manual itself.  

The PerceptiVU PVU-Mariner (Figure 20) is a Linux based system for 

video and radar tracking applications. PVU-Tracker is the embedded application within 

PVU-Mariner. PVU-Mariner can be used with a QuickSet pan/tilt to accomplish 

precision video and radar tracking while stabilizing the pan/tilt in two axes against host 

vessel yaw pitch and roll motion [85]. The QuickSet GeminEye system (Figure 17) is the 

pan/tilt controllable camera system that was used for our set-up. Table 5 and Table 6 

summarize the technical specifications for the PVU-Mariner and MOOG QuickSet 

GeminEye System (GVS-801) respectively. 
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Figure 16.  PERCEPTIVU (PVU-Mariner and PVU-Tracker) and MOOG QuickSet 

GeminEye System Context 

 
Figure 17.  MOOG QuickSet GeminEye System 
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Index Parameter Specification 
1 Processor Pentium M – 1.6 GHz 
2 Memory 512MB DDR-RAM 
3 Communication 

Interfaces 
2x USB V2.0 
COM 1, 2, 3 & 4 
LAN Ethernet 10/100Base-T 
RS232 for camera control (Pan/Tilt) 
TCP/IP for command input and information output 

4 Video Input Up to 4 video channels (NTSC/RS170) 
5 Video Output VGA output 
6 Standard Operating 

Temperature 
0 to 50 degree Celsius  

7 Weight < 3 kg 
8 Dimension 6.3 x 10.0 x 2.3 inches 
9 Power 10 – 16 VDC (3amps at 12V) 

Table 5.   PVU-Mariner Technical Specification. From [85]. 

Index Parameter Specification 
1 Camera Model Sony 1000 
2 Field of View 57.8 – 1.7 degrees 
3 Focal 4.7 – 122mm 
4 Pan Range 360 degrees (non-HD) / +-180 degrees (HD) 
5 Pan Speed 0.25 – 96 degrees per second 
6 Tilt Range +- 90 degrees 
7 Tilt Speed 0.25 – 96 degrees per second 
8 Weight Approximately 22lbs (1.0kg) with dual cameras 
9 Operating 

Temperature Range 
-40 degree to 50 degree Celsius  

10 Position Feedback 
Resolution 

0.01 degrees 

Table 6.   Consolidated MOOG QuickSet GeminEye System Technical Specification. 
After [86] and [87]. 

Figure 18 shows an illustration of the PerceptiVU set-up, and Figure 19 

shows a close-up of the QuickSet camera and Figure 20 shows the close-up of the rest of 

the equipment. Figure 21 shows the connection to the PVU-Mariner equipment. In our 

set-up, Video Number 2, Com 3 and 4 and Com 2 are not used. The MOOG QuickSet 

needs an external 12VDC power supply. The red and white wires out of the wire harness 

are connected to the positive and negative terminals of the power supply, respectively.  
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Figure 18.  PerceptiVU System set-up on building roof-top at NPS 

 
Figure 19.  Quickset pan/tilt 
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Figure 20.  PVU-Mariner and PVU-Tracker with display monitor and I/O devices 

 
Figure 21.  PVU-Mariner Connections. From [85]. 
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The PVU-tracker is capable of nine forms of video tracking, namely 

Dynamic-Centroid, Hottest Spot, Dynamic Correlation, Boat Tracking, Ground to Air 

Tracking, Motion, Threshold, Motion on Motion and Scene Track. 

(1) Dynamic-Centroid Tracking 

The centroid tracking algorithm tracks bounded objects within the 

track window base on contrast. The algorithm determines the threshold for target 

selection and also performs morphological processing and blob analysis on each object in 

the track window. The centroid of each object inside the track window is calculated based 

on a weighted sum of adjoining object pixels. The algorithm has an auto gate sizing 

option which allows the system to automatically adjust the size of the gate when tracking 

is engaged. The user is also able to set the contrast with which the algorithm searches for 

targets. White Hot dictates a higher intensity target against a lower intensity background; 

Black Hot dictates a lower intensity target against a higher intensity background; Auto 

Polarity allows the application to decide if the current target should be tracked based on 

White Hot or Black Hot by contrasting the average intensity inside the track window with 

the average intensity on the border of the track window, and Bipolar looks for large 

extremes from the average intensity within the window. Centroid tracking works well 

when dealing with a single object with significantly different intensity from the 

background and the background has little clutter. The algorithm attempts to continue 

tracking the target of interest, in the case of clutter or other potential targets entering the 

scene, by knowing the true height, width and trajectory of the target [85]. 

(2) Hottest Spot Tracking 

The hottest spot algorithm tracks the densest block of pixels within 

the tracker gate. This method is suitable for tracking small objects with high contrast to 

the background [85]. 

(3) Dynamic Correlation 

This method is best suited for tracking unbounded objects that are 

difficult to distinguish from the background clutter. Tracking is accomplished by taking a 

correlation pattern of the object inside the crosshairs when the user engages the tracker 

and scanning every subsequent frame for the “best match” to the correlation pattern. The 
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algorithm has the ability to realize when the system is tracking with decreasing certainty 

and re-learn the changed pattern in real-time, allowing tracking of objects even as they 

become partially occluded or change in scale, shape or orientation. The algorithm forces 

the system into “Auto-Reacquire” if a track is lost. In this mode, the system successively 

enlarges the region of search and “coast” for the camera in order to reacquire the object. 

The algorithm does not require the presence of “Hot Spot” and works even with a 

relatively high amount of clutter. However, the method requires the tracker to be engaged 

only when the desired pattern is directly in the crosshairs and can be difficult for fast 

moving targets. This method is best used when tracking a large target that has plenty of 

pixel texture [85]. 

(4) Boat Tracking 

The boat tracking algorithm is designed to track fast moving boats 

in standard EO daylight imagery and does not necessarily require a thermal IR imager. 

The algorithm finds man-made objects and attempts to disregard waves and the horizon. 

[85] 

(5) Ground to Air Tracking 

This algorithm is designed for tracking airplanes in the sky from a 

ground based camera. The algorithm is designed for standard EO daylight imagery and 

does not necessarily require a thermal IR imager. The algorithm searches the entire image 

and is not limited to a gate [85].  

(6) Motion Tracking 

This algorithm searches the entire image for motion (requires the 

camera position to be fixed) and can find up to 50 objects per frame. The algorithm draws 

green boxes around objects found, and the object data is available via TCP interface. It is 

recommended to refer directly to the original user manual document for a description of 

the TCP interface [85]. 

(7) Threshold Tracking 

The algorithm searches the entire image for objects either below or 

above the predefined pixel threshold level. The algorithm is capable of finding up to 50 
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objects per frame and draws green boxes around all objects found by the algorithm. The 

threshold level is set through the TCP interface and object data are also available through 

the TCP interface [85]. 

(8) Motion on Motion Tracking 

The motion tracking algorithm takes into account motion due to 

camera pan/tilt motion. The algorithm determines the effect of the camera movement and 

accounts for the difference before performing pixel subtraction for motion detection [85]. 

(9) Scene Tracking 

This algorithm is designed to track a scene. Previous images were 

compared to the current image to determine the amount shifted. The algorithm then 

commands the corresponding pan/tilt to compensate for the shift and attempt to maintain 

the track on the scene. The purpose of the algorithm is to stabilize the imagery when the 

platform on which the camera is placed has pitch and roll motion [85]. 

b. SkyIMD SkyFusion Pak 2000 

Figure 22 shows the components of the SkyFusion Pak 2000 and the 

connection between the components. The major components are the Camera Pod and 

Gimbal, Advanced Imaging System, Flight Laptop and USB controller. The AirCard was 

not used in our set-up. The sensor assembly within the camera pod and gimbal is a TASE 

200 (Figure 23) by Cloud Cap Technology. Table 7 summarizes the technical 

specifications for the TASE 200 system. 
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Figure 22.  SkyFusion Pak 2000. From [88].  

 
Figure 23.  TASE 200 Stabilized Gimbal and EO/IR Cameras. From [89].   
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Index Parameter Specification 
1 Camera Model EO: Sony FCB-EX 1020 

LWIR: FLIR TAU 640  
2 Field of View EO: 55.7 – 1.94 degrees 

LWIR: 10.5 degrees 
3 Focal EO: 36 x Optical 

LWIR: 59mm 
 Resolution EO: 380k pixels 

LWIR: 640 x 480 pixels 
4 Pan Continuous 
6 Tilt Range -203 degree to 23 degree 
7 Slew Rate 200 degrees per second 
8 Weight 1.06 kg (2.34 lbs.) 
 Dimension Gimbal: 122 x 115 x 192mm (4.7 x 4.5 x 7.5 inches) 

(4.7 x 4.5 x 7.5 inches) 
Turret (diameter): 115mm (4.5 inches) 

9 Operating 
Temperature Range 

-20 degree to 70 degree Celsius (not valid for camera) 

10 Position Feedback 
Resolution 

873 X 10–6 radians 

Table 7.   Consolidated TASE 200 Technical Specification. After [89] and [90]. 

C. EXPERIMENT DESCRIPTION 

1. Use of Stratus 2 Set-up 

In order to derive the requirements for situational awareness and avoidance of 
collision between UAVs or between UAV and manned aircraft, there is a need to have a 
reference for comparison. The operating requirement for manned aircraft in the context of 
avoiding collision is matured. For the manned aircraft, the most basic way to avoid 
collision is to see and avoid other aircrafts. An experiment was conducted to provide a 
better appreciation of the interactions in play in the reference method (see and avoid) and 
to understand the existing systems in place (ATC system and regulations) to mitigate the 
risk of mid-air collision. Another objective of the experiment was also to understand the 
benefits ADS-B information to the pilot in terms of situational awareness. 

The experiment with Stratus 2 involves using the Stratus 2 set-up to observe 
surrounding traffic while flying as a passenger beside the pilot on a general aviation 
aircraft. The attempt to visually locate aircraft that are reflected to be near the system was 
found to be considerably challenging. It would have been very beneficial if we had been 
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able to install the SkyIMD set-up on the plane, but the equipment was not pre-certified 
for the particular model of Cessna that we flew on, and hence we had to fly without the 
SkyIMD visual tracking equipment. 

2. Use of PerceptiVU and SkyIMD Set-ups   

In the context of piloting a UAV, the pilot is not onboard the aircraft. Situational 
awareness cannot be achieved through directly observing the environment using the 
pilot’s eyes and must be provides through other indirect means. 

ADS-B and DRR are examples of means to obtain information about the UAV 
surrounding. The information can then be present to UAV pilot to provide situational 
awareness. ADS-B in particular is a good system which allows a pilot to be aware of 
traffic within his aircraft vicinity at distances beyond visual line of sight range. An 
obvious requirement before ADS-B can perform its functions is the need to place all 
participating aircraft with at least ADS-B OUT.   

The experiment with the PerceptiVU and SkyIMD set-ups involves assembling 
both systems on the rooftop of Spanagel Hall in NPS and attempting to track general 
aviation aircraft taking off from or landing at the Monterey Peninsula Airport and other 
aircraft passing by NPS (Figure 24). The task involves using USB controllers to steer 
respective cameras onto the aircraft of interest and activating the tracking functions of the 
respective set-ups. The task proved to be challenging, and we had our fair share of 
success and failures. We quickly realized the task would have beeb much easier if we had 
indications of surrounding air traffic before potential targets to be tracked came within 
visual range. In addition, it would have been much more useful if we had the 
corresponding information regarding the model of the aircraft, the flying altitude, 
airspeed, etc., of the aircraft we were tracking. The Flightradar24 application was used to 
provide the information we required. Figure 25 shows the tracking of an Airbus A320, 
flying at 20,000 feet and at 370 knots, using the Dynamic-Centroid Tracking algorithm of 
the PerceptiVU equipment. Figure 26 shows the tracking of the same aircraft using a 
SkyIMD set-up. Figure 27 and Figure 28 show other examples of tracking general 
aviation aircraft, using the PerceptiVU and SkyIMD set-ups, respectively. Figure 29 
shows tracking of aircraft using images from the IR camera. 
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Figure 24.  Aircraft Tracking with PerceptiVU and SkyFusion Pak set-ups 

 
Figure 25.  Tracking of A320 aircraft with PerceptiVU set-up 
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Figure 26.  Tracking of A320 aircraft with SkyFusion Pak set-up 

 
Figure 27.  Tracking of general aviation aircraft using PerceptiVU set-up 
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Figure 28.  Tracking of general aviation aircraft using SkyIMD set-up 

 
Figure 29.  IR tracking using SkyIMD set-up 
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D. DISCUSSION ON OPERATIONAL REQUIREMENTS 

The major takeaways from the experiments are the difficulty involved in visually 

spotting other aircraft within the vicinity from the cockpit of an aircraft and the difficultly 

of tracking an aircraft using visual sensing equipment such as the PerceptiVU and 

SkyIMD set-ups.  

Regarding the difficulty involved in visually spotting other aircraft, two 

possibilities were considered. First, air traffic control elements ensured sufficient 

separation between aircraft, causing other aircraft to be beyond visual detection range. 

Second, significant challenges exist in trying to visually spot another aircraft flying 

within the vicinity. Both assumptions are probably concurrently valid for the context of 

this experiment. In the experiment, the aircraft that was flown and the class of airspace 

the aircraft was flown in limits the aircrafts that could be spotted (aircraft that are actually 

flying in the vicinity) to other general aviation aircraft. A Cessna general aviation aircraft, 

depending on model, can be around 27 feet in length and 36 feet in wingspan and having 

a maximum cruise speed of 124 knots13 [91]. The size of the aircraft and flying speed are 

similar to a larger UAV such as a Predator. The Predator UAV has a length of 26.7 feet 

and wingspan of 48.7 feet and a maximum loitering speed of 118 knots [43]. There is 

good reason to believe that the experience was a good representation of the context of 

trying to visually spot a UAV flying in the vicinity. 

Regarding the difficulty involved in tracking an aircraft using visual sensing 
equipment, two challenges were significant. The first challenge was associated with 
trying to manually steer the camera to obtain a view of the aircraft of interest and at the 
same time controlling the zoom to obtain a sufficiently large image of the aircraft for the 
tracking algorithm. The difficulty was caused in part by a disassociation between the 
location of the camera view and the location of the aircraft of interest from the 
perspective of the person performing the control. The other factor was the sensitivity of 
change in the location of the camera view when the camera set-up was commanded to a 
significant amount of zoom; the impact of this factor is reduced when the distance 
between the sensor and the aircraft of interest is short (requiring less zoom). However, 
                                                 

13 Specification based on Cessna Skyhawk aircraft. 
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the savings are usually offset by the need to complete the process of steering the camera 
onto the aircraft and executing the tracking function. Note that angular movement, and 
hence the rate of the angular change, required to follow an aircraft travelling at the same 
speed at a near distance is larger than if the aircraft is at a great distance (Figure 30. ). 
Although a number of attempts to track commercial aircraft that flew directly over the 
camera set-ups after taking off from the nearby Monterey Peninsula Airport were 
attempted, the task was never successfully completed until the aircraft had travelled 
significantly far and the rate of motion of the aircraft from the perspective of the author’s 
location was relatively slow. It would have been beneficial to have the aircraft altitude 
and airspeed information of those failed attempts for study of the rate of pan and tilt 
movement requirement to be successful in the tracking attempts; it was unfortunate that 
such opportunities no longer presented themselves after the Flightradar24 application was 
used. The other challenge was executing the track function on the aircraft. Factors such as 
the difficulty of moving the tracker gate onto the aircraft (required for certain tracking 
algorithms) and the inability of the algorithm to distinguish the object of interest or 
maintain track contributed to making the task a challenge. 

 
Figure 30.  Illustration of change in angular movement required with respect to change is 

distance between sensor location and object of interest 
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In the context of collision avoidance for a UAV pilot using visual sensor systems 

such as the cameras used for the PerceptiVU and SkyIMD set-ups, the author had a 

number of advantages over the UAV pilot situated remotely in his control station. 

Without going into issues regarding the possibility of communication loss and issues such 

as latency of the visual information due to communication delay or loss of quality of 

video due to compression (to keep the discussion general and relevant even in the context 

of implementing onboard collision avoidance capability using visual detection as the 

means for detection), it was possible to scan the surroundings with a wide field of view 

(approximate span of human vision is 120 degrees and greater), it was possible to scan 

the surroundings without losing a sense of the general direction of the view relative to the 

aircraft, and there was significant freedom to adjust the position of the author’s head to 

overcome potential obstruction of view. 

Summing up the experience, the following lessons were learned: 

• A visual sensor set-up alone is probably insufficient to give a UAV pilot a 
good interpretation of air traffic around the aircraft. 

• A system design requiring the pilot to perform steering and tracking 
controls of visual sensors for the purpose of potential collision threats is 
probably not feasible. 

• The location of visual sensor on the aircraft is an important consideration. 

• Substantial design consideration into HMI is needed, especially in the 
aspect of presentation of information and the mechanism for operation and 
control.  

A visual sensor alone is insufficient for a number of reasons. As mentioned 

previously, during the description of the experience in the cockpit, the author had a 

number of advantages over a UAV pilot sitting remotely in a control station. The wide 

field of view of human vision allowed efficient visual scan of the surroundings. It was 

also found to be much easier to relate the view with the surroundings and make 

interpretations (including estimated interpretation of relative speed of object of interest, 

distance of object, path of motion, etc.) compared to being limited to vision through a 

visual sensor. It was also much easier to reacquire the object of interest after losing sight 

of it when the author was viewing the surroundings directly through his eyes. For a UAV 

pilot assisted by only visual sensor, a rough estimation of distance probably needs to be 
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done by using judgment to relate the size of the aircraft on the video display to the 

numeric value of camera field of view (after zoom), and motion information needs to be 

inferred from a numeric value indicating angular velocity of camera movement. In the 

context of understanding the surroundings through the vision of a visual sensor, the 

limited FOV of the sensors (57.8 degrees and 55.7 degrees for the PerceptiVU and 

SkyIMD set-ups respectively), the difficultly of maneuvering the sensor onto the object 

of interest and executing a successful track, the disassociation between the task being 

performed and the information feedback will collectively put a UAV pilot in a highly 

unfavorable position. In the experiments involving tracking aircraft with the respective 

set-ups, there was luxury of having both the camera and the aircraft of interest in the 

author’s visual sight and it was possible to align the pointing direction of the camera to 

the aircraft of interest through estimation. The camera view was first placed on a point of 

reference (e.g., the top of a tree) and through judgment of the relative position of the 

aircraft of interest with the chosen point of reference, an interpretation of the control 

needed to adjust the camera onto the aircraft was then made. During the process of trying 

to acquire a view of the aircraft, the physical pointing direction of the camera was 

constantly compared with the direction of the aircraft of interest through visual inspection 

and estimation. This is a luxury that a UAV pilot situated remotely certainly will not have; 

and even with the mentioned advantage, it was a challenge to orient and reacquire a view 

of the aircraft of interest after losing sight of it on the camera view. Finally, it was not an 

easy task just trying to visually spot an aircraft in the vicinity while seated in the cockpit 

of a flying aircraft; the Stratus 2 set-up played a large part in providing the initial 

awareness. The challenge will definitely be greater for someone seated a distance away, 

looking at the camera view on a screen. It is recommended that visual detection needs to 

be supplemented by methods that provide “broad view” awareness (e.g., ADS-B), and the 

visual sensor can be used to investigate potential danger after being “cued” by the broad 

view implementation. 

The difficulty of performing the tasks of steering the camera onto the target and 

subsequently executing a successful track was already described. The author had an 

abundance of advantages over what a UAV pilot using a similar set-up would have, and 
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he was performing the respective tasks focusing at one task a time without having to 

worry about flying an aircraft. Nevertheless, the tasks had proven themselves challenging. 

The author’s limited experience as a sensor payload operator was considered, but better 

ways to perform the tasks are probably required was the conclusion that was drawn. The 

author would imagine, in the context that ADS-B information is available, having the 

system automatically handling the azimuth and elevation control after the user has 

indicated the desired aircraft to track would have been much easier. 

There was significant freedom to move the author’s head to overcome potential 

obstruction of view while being seated in the cockpit of the aircraft. The same luxury is 

unlikely applicable to a context where a visual sensor is used. The location to place the 

sensor and the rest of the payload to achieve unobstructed view of the desired area could 

be a significant design consideration. 

Finally, having emphasized the difficulty of performing the various tasks and 

explaining the disassociation of information feedback with the task being performed, 

improvement to the ways of performing the tasks and how information is presented is 

required. A way which could reduce the difficulty of the tasks was described. Intuitive 

visual presentation of data to aid the task of interpreting available information could 

definitely have a significant impact.  
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VI. CONCLUSION AND RECOMMENDATIONS 

A. SUMMARY 

This thesis provides a broad-based literature review into the topic of 

interest‒‒Field applications for Multi-UAVs cooperation missions‒‒from a high level of 

abstraction. The work summarized in this thesis is far from all-encompassing but 

nevertheless consolidates information from across various domains, supporting system 

assessment and design analysis in the context of multi-UAV cooperation/collaboration. 

There are a few remaining technical and political obstacles that need to be 

overcome for multiple UAV operations. The key technological elements include collision 

avoidance, GPS denied navigation, autonomy, communication network, interoperability 

and power. The political issues span the gamut of the questions on the legality of use 

regulations not keeping pace with UAS developments to pressure from human rights 

organizations and political leaders.  

The ADS-B, part of Federal Aviation Administration (FAA) larger airspace 

modernization efforts and an element with significant amount of mention in discussion 

regarding integration of UAS into National Airspace System (NAS), seems to offer much 

promise as a platform to answer many questions regarding the requirements to safely 

operate UAS with other manned aviation elements. Successful integration of UAVs into 

commercial airspace will likely provide a design reference and serve as a platform that 

provides more opportunities to obtain relevant data for study. In addition, the success 

could help boost confidence and shape general acceptance of operating UAVs with other 

aircraft (including other UAVs) in no-segregated airspace [4]. The tasks for full 

implementation of ADS-B and other measures are planned to be completed over the years 

to follow. Conditions are probably still not right for an ambitious attempt at elaborate 

designs to handle multiple high-risk requirements, a potential lesson learned from the 

Future Combat System (FCS) development. FCS was the United States Army’s major 

research, development and acquisition program, consisting of 14 manned and unmanned 

systems tied together by an extensive communications and information network [5]. FCS, 
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a high-risk venture that was eventually halted in 2009 [5], was criticized in a GAO report 

for reasons such as critical technology demonstrated being well short of a program 

halfway through its development schedule and budget [6]. However, there are numerous 

research papers in various technical domains with relevance to multi-UAVs applications 

that have been published [7]– [13], suggesting there may be sufficient maturity across 

domains to begin assessment studies or conduct of experiments which take into 

consideration multi-dimensional constraints and to begin a progressive evolution towards 

the desired vision for multi-UAV applications.  

Several writers who follow military news and write about military applications  

[3] and [14] discuss interest (for example, the U.S. Navy interest in Unmanned Carrier-

launched airborne surveillance and strike) and capabilities for UAS, while there is an 

absence of published CONOPs from any military service in the public domain. A 

CONOPS is a description of how users will employ a product or service. This description 

is normally both qualitative and quantitative. CONOPS (or ConOps) are always included 

in any government request for information (according to a private communication with 

Professor Gary Langford, NPS). Validation of the information that comprises a CONOPS 

is merely to point out that the information is appropriate and fit for its stated use. The 

CONOPS is used to guide validation of the user’s needs and to help guide the validation 

planning, testing, and eventually the validation of the system. The other key obstacles to 

full disclosure on military interest in UAS are the human-related factors, regulations and 

legal restrictions. The “UAV revolution,” like any form of change, must overcome the 

tendency of humans to resist change. Although reports from military services [1] and 

other government agencies [15] and [16] have shown the operational value of UAVs, full 

scale adoption remains thwarted by the technical and political obstacles mentioned. 

Legislation, regulations and standards need to be considered and revised along with the 

concerns of the regulatory and legal authorities.  

Some lessons were learned from the conduct of an experiment using ADS-B and 

visual tracking equipment to understand the operating challenges and requirements of 

using these equipment to provide situation awareness for the UAV pilot. First, a visual 

sensor set-up alone is probably insufficient. The combined effect of limited field of view, 
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difficulty of maneuvering the sensor onto the aircraft and executing a successful track, 

the disassociation between the task being performed and the feedback received will likely 

put the UAV pilot in a highly unfavorable position. In addition, having another 

mechanism (such as ADS-B information) to provide “a broad view” to supplement the 

“narrow view” from the visual sensor is probably beneficial. Second, the mechanism 

requiring the pilot to perform steering and execute tracking is probably not feasible. The 

task was challenging even when the author had both the aircraft and the equipment within 

his sight, and he was performing the task without having to worry about flying an aircraft. 

Third, consideration for the position of the visual sensor is important. The sensor needs to 

be placed at a location where unobstructed view of any location within the intended area 

to monitor is guaranteed. Lastly, design considerations to improve the presentation of 

information and the mechanism to operate and control the equipment are required. Even 

with his advantages, the author found the correlation between the tasks being performed 

and feedback to be low. The lack of significant variation in the background (the sky) 

caused the author to lose track of the orientation easily. All attempts to track commercial 

aircraft taking off from Monterey Peninsula Airport and flying directly over NPS failed. 

The time available to perform correlation between the task of steering and receiving 

feedback, while at the same time controlling the zoom and executing the track,was 

simply insufficient. 

B. CONCLUSION 

With regard to the primary research question on state of research related to 

technology readiness and efficient deployment, the thesis consolidated a large amount of 

information to facilitate the conduct of systems engineering activities, identified a 

number of areas perceived as potentially important to be considered when performing 

systems engineering related activities for multi-UAV area of applications, provided an 

interpretation of the status of the respective areas and finally conducted an experiment to 

study the operational challenges of using ADS-B and EO/IR cameras for situational 

awareness. 
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The operational areas of interest the areas of applications that had generated a 

significant amount of research interest and discussion were narrowed to Urban 

Operations, Communications Support, Collaborative Sensing, Swarm (Wide area search, 

EW, Offensive and Defensive) and Loyal Wingman applications. The factors driving the 

interest for these applications (to address user needs) were the need for timely and 

updated intelligence regarding a dynamic urban environment, need for affordable 

connectivity with sufficient bandwidth and a desire to capitalize on opportunities made 

feasible with small UAS. In addition, the desire to do more with unmanned systems and 

the a need to reduce manpower and logistics requirement associated with operating UASs 

also play a part in attracting operational and research interest. The primary technical areas, 

such as collision avoidance, Global Positioning System (GPS) denied navigation, 

autonomy, communication network, interoperability and power, were discussed in depth, 

including some of the algorithms being researched for the respective applications.  

There are a few remaining technical and political challenges. The key 

technological elements are still being matured. The political issues span the gamut of 

questions on the legality of use and regulations not keeping pace with UAS developments 

to pressure from human rights organizations and political leaders.  

The experiment conducted studied the operating challenges and operating 

requirements of using ADS-B and visual tracking equipment to provide situational 

awareness.   

C. RECOMMENDATIONS 

There are a number of models used in research from NPS students. It is 

recommended to look into using the integration of the models to introduce more 

constraints in the study of the respective areas of interest. For example, collision-free 

path generation needs to be incorporated into the mechanism for sensing and detection 

before the function is complete and could find applications. With regards to future 

improvement for the experiment, the SkyFusion Pak system is already intended to be 

installed and used on board a general aviation aircraft. For future research, it is 

recommended to ensure, when examining organic UAV collision avoidance, ADS-B data 
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(such as altitude and airspeed) of the aircraft being tracked and the corresponding 

airspeed information of the investigator’s own aircraft are recorded and related to the 

video recordings or image capture from the tracking activities. 

It is also recommended to expand the scope of information consolidation to 

address other aspects of Systems Engineering, such as Project Management. The conduct 

of Systems Engineering studies and Gap Analysis studies for different areas of multi-

UAVs system applications or assessment of detailed system design using the information 

consolidated with this thesis will be a desired outcome.     
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