INTRODUCTION

From the moment that a writer conceives an idea which he desires to communicate to his fellow men, sizable stumbling blocks are strewn in the path of the future translator. For the ability to shape one’s thought clearly, or even completely, is not granted to many; rarer still is the gift of expressing the thought—precisely, concisely, unambiguously—in the form of words. There is no guarantee, therefore, that the author’s written text is a reliable image of his original idea.

Furnished with this more or less distorted record, the translator is expected to perform a number of amazing feats. In the first place, he has to discern—often through the dim mist of the source language—the writer’s precise intention. This requires not only a perfect knowledge of both the source language and the subject matter treated in the text, but also the mental skills customarily exercised by the professional sleuth. In addition, these newly reconstructed ideas must be rendered into a target language which is so unequivocal and so faithful to the source—as to convey, to every reader of the translator’s product, the exact meaning of the original foreign text!

Small wonder, then, that a fabulous achievement like Fitzgerald’s translation of the Rubaiyat is regarded in the nature of a miracle. For the general case, it would seem that characterizing a sample of the translator’s art as a good translation is akin to characterizing a case of mayhem as a good crime: in both instances the adjective is incongruous.

If, as a crowning handicap, we are asked to replace the vast capacity of the human brain by the paltry contents of an electronic contraption, the absurdity of aiming at anything higher than a crude practical translation becomes eminently patent.

Perhaps we are belaboring this point; we do so to avoid later arguments about the “quality” of our work. If, for example, a translated article enables a scientist to reproduce an experiment described in a source paper and to obtain the same results,—such a translation may be regarded as a practical one. Perhaps the translation is not couched in elegant terms; here and there several alternative meanings are given for a target word; a word or two may appear as a mere transliteration of original source words. Nevertheless, this translation has served its main purpose: a scholar in one land can follow the work of his colleague in another.

This limited scope has been set for us by our own as well as the machine’s deficiencies. The heartbreaking problem which we face in mechanical translation is how to use the machine’s considerable speed to overcome its lack of human cognizance. We do not yet really understand how the human mind associates ideas at its immense rate of speed; for example, how does it differentiate seemingly instantaneously between the two meanings of calculus in the following sentences: (1) The surgeon removed the staghorn calculus from the patient’s kidney, and (2) The professor announced a new course in advanced calculus. And yet, a scheme for discerning such differences is what we must impart to the machine.

Even if there now existed a completely satisfactory method for machine translation, today’s machines would not be adequate tools for its implementation. They lack automatic transformers of printed text into coded signals, and their external storage devices are not up to the mark.

Before coming to grips with the mechanical translation problem, we investigated the types of difficulties we might encounter. We found that they fall into ten groups; so far, we have been able to cope—more or less successfully—with only the first five, which depend mainly on syntactic analysis. Some thought has been given to the far more difficult points involving semantic considerations, but the short time spent in this area has not allowed us to transform the mathematical “existence solutions” into practical machine application. Thus, discussion of semantic problems is deferred.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOV 1961</td>
<td></td>
<td>00-00-1961 to 00-00-1961</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A New Approach to the Mechanical Syntactic Analysis of Russian</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Bureau of Standards, Gaithersburg, MD, 20899</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>20. DISTRIBUTION STATEMENT</th>
<th>21. DISTRIBUTION STATEMENT</th>
</tr>
</thead>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
In this paper we are concerned mainly with syntactic analysis.

The Glossary
One of the indispensable accessories of MT is the construction of a specialized source-to-target glossary. The conventional publications would not suffice for MT, because their authors presume, on the part of the prospective user, (1) a wide acquaintance with the basic principles of the source language, (2) an excellent knowledge of the target language, and (3) a considerable familiarity with the terminologies—in both languages—relating to the special subject of the source text. These assumptions are hardly justified even in the case of the professional translator. It follows that a glossary, designed for use with an electronic processor, must embody an immense amount of information in addition to the material culled from the best existing dictionaries. But there is a limit to the amount of data that can be handled by even the most advanced type of electronic processor, if MT is to be at all expedient. It is imperative, therefore, that utmost care be used to select (1) the absolutely minimum quantity of information which would suffice for our needs, (2) the most economical (space and time-saving) form for representing it, and (3) the most suitable external media for its storage and retrieval.

Of far greater concern is the fact that we are not fully aware of the mental processes involved in the performance of the translation task. Yet a routine, paralleling these processes, must be prepared for insertion into the machine’s memory. Unfortunately, the form of the glossary depends upon, and varies with, the particular translation scheme which is being developed. We would not venture to predict the date when our own glossary might assume its final—or even “passable”—shape. We are constrained, for the present, to use a small sample glossary, sufficient for trial runs on the computer. It is stored in the external memory and is arranged in groups, each of which lists the Satellites of a source Pseudo-root.* Each satellite is an entry corresponding to a source Stem which contains the pseudo-root in question. The temporary form, which each Glossary Entry has assumed so far, consists of the following items:

1. The Source Transform, which is a greatly contracted form of the original source stem.
2. Morphological information, designed to aid in the syntactical analysis of each sentence, as illustrated in Section B of Part II.
3. Predictions regarding future Occurrences. For instance, the Russian verb with stem СЛУЖК is marked as frequently followed by an indirect object in the dative case and/or a complement in the instrumental; also sometimes by a verb in the infinitive.
4. One or more target correspondents (T) to the source stem.

* The List of Terms and List of Symbols at the end of the paper may enable the reader to identify unfamiliar expressions. Technical words to be found therein are capitalized when first encountered in the text.
Each pseudo-prefix and pseudo-suffix (if any) is replaced by a single character, consisting of 6 bits, and the combination of these characters (probably no more than 8) constitutes the transform \(A \) of the original source word; \(y \) and \(z \), the number of pseudo-prefixes and pseudo-suffixes, as well as \(A \), are stored in \(S_{r} \).

The remaining portion of the current word, constituting the pseudo-root, may have no characters at all. The glossary contains a group of satellites for a null pseudo-root, whose Extended Address, \(\alpha_{o} \), is used to represent it in the next step.

If the pseudo-root contains at least one character, it may not have been found in the list of pseudo-roots. In that case, the transliteration subroutine dictates the form of the correspondent to be stored in the normal position of the target \(T \) for the final printout. A suitable Signal of Peculiarity \(\delta \) is stored in \(G_{S} \). The Correspondence Flag \((c) \) in \(G_{S} \) is set to zero.

If the pseudo-root has been located in the list, its counterpart is accompanied by an extended address, \(a \), indicating where its group of satellites starts in the externally stored glossary.

5. The extended address, \(\alpha \), accompanied by the identification tag \(t \), is intersorted with similar combinations, corresponding to the previously processed source words, in the Sorting File.

6. When all the internal space allotted for the sorting file is filled, a search is made throughout the entire glossary for the indicated entries. Since the time for such a transit throughout the glossary is formidable, and remains practically constant irrespective of the number of words to be looked up, it is obvious that an appreciable increase in internal storage space would result in a corresponding reduction in the look-up time per word. However, considering the high cost of internal storage devices, it might be more expedient to utilize inexpensive non-erasable external storage media with suitable buffering devices which allow for the simultaneous retrieval of information along several channels.

7. When the extended address \(\alpha \) attached to \(t \) is reached during transit of the glossary, the routine searches for the entry corresponding to the \(y, z, \Delta \) of the occurrence \(t \). The correspondence flag \(c \) is set to 1 or 0 in \(G_{S} \), according to whether the search has been successful or not. In the latter case, the pertinent peculiarity signal is stored in \(G_{S} \) and the tag \(t \) is placed in the normal position of the target \(T \) for final printout.

ILLUSTRATION 1.

As an example of the performance of this section of the program, we offer the text word РАСПОЛОЖЕНИЕ. Suppose this word occurs as the 7th word of the 4th sentence on page 1. The corresponding symbol for \(t \) is 1.4.7. The occurrence is examined and found to be a word (not a punctuation mark etc.) composed of 12 letters. The Word Flag \((w) \) in \(G_{S} \) would be set to 1. The machine determines that no such word appears in the special list of frequently used words. The occurrence is therefore examined for pseudo-prefixes. In this case, the combinations РАС and ПО happen to be true prefixes. By referring to the stored list of pseudo-prefixes, the routine would replace РАС by the letter \(V \) and ПО by the letter \(R \). Unable to discover more prefixes, the routine would isolate the ending ИЕ. Suppose that the list of endings indicates that information on this ending is stored in internal memory beginning at address 357; the machine then sets \(\beta = 357 \). The routine would proceed to identify ЕИ as a suffix and replace it by the letter \(K \). Finding no more pseudo-suffixes, the routine would store in \(S_{1,4,7} \) the numerals 2 and 1, to indicate the number of prefixes and suffixes \(y \) and \(z \); these would be followed by the transform \(\Delta \), which is VRK. The machine would then enter the subroutine for identifying the pseudo-root. In the present case, no difficulties would be encountered, as ЛОЖ would be located at once in the list of pseudo-roots. In actual practice, a number of complications may arise. The given word may contain a polyroot; or what we assumed to be an ending may actually be part of the pseudo-root; or we may not be able to locate the root at all. The sub-routine takes note of all these possibilities.

The root ЛОЖ is replaced by \(\alpha \) which would be, say, 2.47.3097, if the first member in the group of this root’s satellites has the position number 3097 in the 47th block on the 2nd tape. To \(\alpha \) we attach the tag \(t \) and intersort the result with the other contents of the sorting file. The entry in the internal memory, corresponding to the occurrence РАСПОЛОЖЕНИЕ, now has the two forms:

Storage
\[\begin{array}{cccc}
G_{S} & \beta & y & z & \Delta \\
S_{1,4,7} & \text{Orthographic description} & 357 & 2.1 & VRK \\
& \alpha & t & \\
& 2.47.3097 & 1.4.7 \\
\end{array} \]

After a specified number of successive occurrences have been analyzed in this way, a transit will be made through the glossary. When the position 3097 of the 47th block on the 2nd tape is reached, the machine will locate and extract all the material corresponding to 2. 1. VRK, i.e. all the information pertinent to the stem РАСПОЛОЖЕН. In \(G_{S} \), the correspondence flag \(c \) would be set to 1 to indicate that the search had been successful.

Section B.

In this section we examine each word-occurrence of a sentence with two aims in view:

1. To assign to it all possible grammatical interpretations, which we call Temporary Choices, TCj. These are arranged roughly in order of most probable appearance; \(f \) indicates the serial number. Information common to all TCj is labeled with \(f = 0 \).
To accomplish the first aim we distinguish three types of words:
 a. If a source word is found in the special list of frequently used words, its various TC\j\j are explicitly listed there.
 b. For a word whose transform is found in the glossary, the TC\j\j are obtained by finding the common intersection between the possibilities given by its ending in the Table of Endings and those given by the morphological information of the stem's glossary material.
 c. When a source word is represented merely by its transliteration, the TC\j\j must be made on the basis of its ending (and, possibly, its suffixes) only.

As regards the second aim, the TC\j\j which accompany a current word may reveal that it could be a possible indicator of a main clause, or subordinate clause, or a phrase. If such is the case, an appropriate signal is added to the profile skeleton, in which the nature of the non-word occurrences has previously been stored. The profile skeleton will be subjected to a crude analysis in Section A of Part II.

ILLUSTRATION 2.

Let us use again the word РАСПОЛОЖЕНИЕ, belonging under the heading 2b above. The glossary's morphological information indicates that its stem, РАСПОЛОЖЕН\І, could represent either
 1. An inanimate neuter noun, belonging to a declension class which is identified by the ending \ІЕ in the nominative singular; or
 2. An adjective, of verbal origin, belonging to a declension class which is identified by the ending \ЫЙ in the masculine nominative singular.

This material, used in conjunction with the information listed for the ending \ІЕ leads the machine to eliminate the second possibility given by the glossary and to list the following two temporary choices:
 TC_0 Noun, inanimate, neuter (common to both)
 TC_1 nominative, singular
 TC_2 accusative, singular

This word does not call for the insertion of a signal into the profile skeleton (PS).

PART II

Part II of the projected scheme, now in process of being programmed, has the purpose of analyzing the syntactical structure of each source sentence and of constructing a corresponding target sentence. While Part I works on at least several hundred source words in one pass—the number of such words is determined by the internal memory capacity of the machine—Part II, which is made up of three sections, works on one sentence at a time.

Section A determines, as far as possible at this stage, the clausal and phrasal structure within the sentence. Section B is an iteration scheme for examining syntactical relations among the Strings of a sentence. It processes each string in turn from the beginning to the end of each sentence, repeats this process if necessary and decides whether a translation has been effected. Thereafter Section C takes over, composes a target sentence, and prints it out.

Types of Difficulties.

We shall list, in order of increasing complexity, the ten difficulties which obstruct our path toward such a goal:
 1. The stem of a source word is not listed in our glossary. This will occur quite often in our translation scheme, as we intend to omit from the glossary the majority of non-Slavic stems.
 2. The target sentence requires the insertion of key English words, which are not needed for grammatical completeness of the source sentence. For instance, the complete Russian sentence: ОН БЕДНЫЙ (literally He poor) should be translated as He (is) (a) poor (man).
 3. The source sentence contains well-known idiomtatic expressions.
 4. The occurrences of a source sentence do not appear in the conventional order. Sober writing, without color or emphasis, employs few inversions. Our method, which consists of predicting each occurrence on the basis of the preceding ones, works quite well in that case. But such orderliness cannot be expected to hold for long stretches of the text.
 5. The source sentence contains more than one clause.
 6. Corresponding to an occurrence in the source sentence, more than one target word is listed in the glossary. Polysemy is, of course, recognized as a most formidable obstacle to faithful translation, whether human or mechanical. Hilarious (or heartbreaking, depending on your point of view) “malaprops” can be cited by the score to uphold the conviction of many linguists that the MT task is a hopeless one. Our faith in the inventiveness of the human brain makes us reject such gloomy forebodings.
 7. The source sentence is grammatically incomplete. Such a situation is frequently the result of carrying on the thought from one or more previous sentences. To succeed, any MT scheme will have to be able to transcend the boundaries of a sentence (or a paragraph, or a section).
 8. The source sentence contains ambiguous symbols. Since we are planning to confine our efforts to mathematical texts, such occurrences will be legion.
 9. The syntactic integration of the source sentence results in an ambiguity. It is often of a type that could be resolved by semantic considerations; but sometimes, it is inherent and thus not removable by any process.
 10. A combination of difficulties is listed in this category. They are quite annoying but fortunately rare: misprints; grammatical errors; localisms; peculiar nuances; comments based upon the sound (or the spelling) of source occurrences, such as puns whose sense it is impossible to render into the target language.
We have thus grouped Russian sentences into 2^{10}, i.e. 1024, types. A sentence possessing none of the ten difficulties would be represented by type number 00000 000002 whereas—at the other end—a sentence exhibiting all the difficulties would belong to type 11111 111112 = 102310.

Our scheme is able to cope successfully—we believe—with the first five types of difficulties, which involve only monosemantic occurrences, or at most idiomatic expressions. We can thus handle 32 types of sentences ranging in type number from 00000 000002 to 00000 111112.

Section A.

In both sections of Part I we kept up, for each source sentence, a profile skeleton which consists of a set of signals denoting to which special class (if any) each occurrence belongs. This tentative outline serves to indicate where the clauses and phrases of the sentence might have their inception. The routine in the present section carries out an iterative process which aims to set rough limits to these ranges, based upon the position in the sentence of its (1) punctuation marks, (2) conjunctions, (3) actual, or possible, starters of main clauses, (4) actual, or possible, starters of subordinate clauses, (5) actual, or possible, predicates for each clause, and (6) actual, or possible, phrase starters.

As a result of this iterative scheme, the profile skeleton PS is replaced by a Temporary Profile (TP), in which each occurrence is associated with four designators:

1. Its clause number (C),
2. A Status Flag (w) to indicate whether the predicate of the clause has or has not occurred,
3. Its phrase number (P), and
4. A Backward Flag (b) to indicate a particular manner in which the string is to be handled during the process of syntactic integration.

In the event that the routine does not succeed in determining a clause or phrase number, it will insert a Signal of Uncertainty (X), which the routine in Section B will attempt to resolve.

Section B.

At the conclusion of the preceding section, each source occurrence has been replaced by a string of information which will expand as we progress in the integration scheme. The string, at this point, contains several sets of data:

1. A set of general specifications, GS, consisting of
 a. a word flag, w, indicating whether the occurrence was or was not a Word-utterance (W),
 b. a correspondence flag, c, indicating whether or not the occurrence (or its transform) was located in the storage,
 c. a peculiarity signal, δ, pointing out any significant feature of the occurrence.
2. A set of four designators, belonging to the temporary profile, TP.
 3. If the occurrence was a W, its string will have in addition
 a. a set of temporary choices, TC, giving all possible grammar interpretations of the source word.
 b. a set of target correspondents, T, if the word (or its transform) has been located in the memory; otherwise the correspondent will be either
 1) the transliteration of all, (or part) of the word-utterance, if its pseudo-root is not listed; or else
 2) the identification t, if its transform is not in the glossary.
 c. a set of Glossary Predictions (GP), retrieved from the memory if such exist, each consisting of
 1) a Grammar Essential (GE), indicating the predicted type of agreement with a temporary choice.
 2) a Signal of Urgency (μ), indicating the probability of fulfillment.
 3) In many cases, a Pretarget Insert (PI), indicating—in coded form—the English word(s) which is (are) to precede the target(s).

In addition to the above items, there may be available at any stage of the iterative process the following information, which has been generated during the preceding portion of Section B:

1. Foresight Predictions (FP). Expectations for future strings, based on past occurrences; e.g. a direct object is governed by a transitive verb. A foresight prediction contains at least three specifications:
 a. Serial number, k, to distinguish the different foresights generated by the same string.
 b. Urgency Code (μ), designating the degree of necessity—or the proximity—of the expected string, (e.g. a code of 1 indicates: next occurrence or not at all).
 c. Sentence Element (SE), such as Subject, Predicate, Complement, etc.

In addition to the above items, which are always present, a foresight prediction may contain data, in the form of
 d. Morphological Specifications (MS) regarding animation, gender, number, etc.
 e. An Insert Flag (e) to indicate whether or not an English preposition is to be inserted before the target correspondent, T.

2. Hindsight (H$_i$) regarding troublesome strings, When a Predictable Choice does not agree with any of the previous FP, Hindsight Entries about this Unexpected Choice are stored together with a Chain Flag (f) in H$_i$ to be considered with subsequent strings. Such apparent inconsistencies must all be resolved at the conclusion of the sentence, as a necessary (but not sufficient) criterion of successful syntactical integration. Here, too, are stored queries about strings whose syntax is questionable, even though they seemly fulfill previous predictions. Entries in H$_i$ concerning these Doubtful Choices are not flagged.
3. Hindsight (H2) regarding predicted alternate temporary choices. It may happen that more than one of the temporary choices TCj agree with previously made predictions. In this case, one is selected as a link in the sentence structure and the others are stored for future consideration in the current (and subsequent) iterations.

4. Hindsight (H3) regarding the remaining unpredictable temporary choices TCj. These are “pigeonholed” for possible use in subsequent iterations.

5. Chain number (L). Whenever the machine, in proceeding through a sentence, encounters a string which it is unable to link with any previous predictions, it starts a new Chain. There exist, however, five types of Unpredictable Choices which do not cause a new chain to be started. They represent (a) punctuation marks, (b) conjunctions, (c) adverbs, (d) particles, and (e) prepositions.

The Routine of Section B begins with the following steps:
1. The routine examines the unfulfilled FPQk within the current clause or phrase, in decreasing order of Q and increasing order of K. Each of them is tested for agreement with any of the TCj. The first TC which fits an FP is taken as the Selected Choice (SC) for this iteration. The successful FP is deleted. If there are several TCj and none of them fit any FPQk, the hindsight information is examined for possible clues regarding the selection of a TCj to act as the SC. If no clue is found, TCj becomes the SC. If, however, the string was marked by a backward flag, the examination of foresight predictions is omitted. In this case the routine examines—in reverse order—the previous selected choices, SC, for agreement with TCj. If the string is of the unpredictable type, TC1 is taken as the SC.

2. The selected choice is indicated by Q.K.j, where Q is the number of the string where the successful prediction (if any) was made and K is the serial number of that prediction. If there is no such prediction for SC, both Q and K are designated as 0. The letter j, of course, represents the serial number of the chosen TC in the current string.

3. The chain number L is left unchanged, if the string has been predicted or is of the unpredictable type; otherwise L is raised by unity.

4. The designators C, v, and P of the temporary profile TP are revised—in the light of the SC—to form the Selected Profile (SP). The status flag v furnishes clues for the subsequent revision of the clause number C, and the syntactical integration determines the bounds of each phrase.

5. New predictions for the foresights are culled from three sources:
 a. The temporary profile, TP, of the next string. If the TP indicates that a new clause is starting, the predictions of a new subject and predicate are entered as foresights.
 b. The main routine. This may yield predictions of a general nature on the basis of the SC. For example, if the SC is a noun, one such prediction states that the noun might be followed by a complement in the genitive case. If the SC is the subject, we examine whether the predicate has been found previously; if not, we add to the FP of the predicate the information that it must agree with the subject in person, number, gender, etc. Similarly, if the SC is the predicate, the FP of the subject—if unfulfilled—is amplified.
 c. The glossary predictions, GP, accompanying the chosen TC. Such predictions, if any, would arise from the peculiar nature of the original occurrence. For instance, a particular verb may govern the dative case.

6. The predictions yielded by a string are appraised against the entries previously placed in hindsight, in order to ascertain whether the former throw any light upon the difficulties and conflicts represented by the latter. If a partial explanation is obtained, a suitable notation is made alongside the corresponding entry. Whenever such an entry is completely explained away, it is deleted. If such a deletion takes place in H1, the chain number L is reduced by one, provided the entry bears the chain flag f. Sometimes, a rearrangement in order of the strings is indicated, as a result of the above appraisal.

7. The SC may indicate that a key target word, such as a noun or a verb, has not been explicitly stated in the source sentence. If such be the case, the routine determines the required Target Insert (TI) and constructs a corresponding New String. On the other hand, the SC may dictate the suppression of (a) target correspondent(s).

8. A target order number R is assigned to the string, to indicate the arrangement of occurrences in the target language. In general, the R’s are consecutive. If, however, the appraisal in Step 6 calls for a rearrangement of strings, or if Step 7 resulted in the insertion of a new string (or the suppression of an Old String)—the affected R’s are renumbered in accordance with the desired sequence. Pretarget Inserts (PI), such as prepositions and articles, are not assigned an R. Their handling will be discussed in Section C.
9. The TC, which do not become the SC may, under certain circumstances, be disregarded. In the cases where the routine directs the machine to retain them, they are entered into hindsight H_2 or H_3, according to whether they do or do not agree with any FP.

10. If the chain number L was raised in Step 5, an appropriate query is entered into hindsight H_1 with a chain flag f. If the SC is a doubtful choice, suitable queries—unaccompanied by the chain flag—are also entered into H_1.

When the end of the sentence is reached, we need not embark upon another iteration if (1) the foresights do not contain unfulfilled predictions of urgency 6 and 7, and (2) the chain number is 1. (In that case H_1 should be clear of flagged entries.)

In this event, the selected choices for all strings are considered as Final Choices (FC) and the routine proceeds to Section C. If however, another iteration is indicated, it investigates the H_2 information where resolution signals were placed during the previous iteration whenever some partial light was thrown upon any of its entries. As a result, one of the former selected choices is replaced by a more promising one, and the effect of that change is investigated. It is obvious that, if the number of unresolved entries in H_2 is high, it would be prohibitive to pursue all the possible combinations of selected choices. We therefore set a limit to the number of iterations we allow the machine to execute. In the unlikely event that all the possibilities inherent in the H_2 entries have been exhausted, the H_3 entries are attacked in the same manner.

Failure is conceded when the number of iterations already performed has reached the limit we had set for ourselves, or when the current set of selected choices repeats any of the previous sets (which are stored in the internal memory). In that case, the routine records a failure signal and indications of the types of errors encountered, to be printed out at the conclusion of Section C.

Section C.

This section is devoted to the construction and printing of the target sentence.

1. The target correspondents listed with the final choices are arranged in the sequence given by R.

2. A subroutine supplies new pretarget inserts PI, in addition to those supplied by the foresights. These may be either English articles or prepositions. The set of PI (if any) are inserted in front of the proper correspondent for eventual printout.

3. A second subroutine affixes Pidgin Endings (E) to target correspondents whenever needed. (To conserve precious internal space, we regard—for the present—all English targets as grammatically regular. Thus the plural of foot will appear as foot-s.)

4. A count is made of all unresolved hindsight entries.

5. The resulting information is printed out. All inserts, whether PI or TI are printed in parentheses. Words for which there are no target correspondents are enclosed in brackets. They may appear as some combination of the following word-sections:
 a. a translated initial prefix
 b. a transliterated full or partial stem
 c. a transliterated full or partial word.

If the iterative routine failed to satisfy our criteria, this fact would be indicated by the failure signal and by the notations of the error types encountered. On the other hand, the satisfaction of the criteria is no guarantee that the result is a faithful translation, unless all three hindights are clear and all occurrences are monosemantic. Since such eventualities will be extremely rare, we shall regard the tallies for the hindsight entries and the multiplicity of the printed meanings as a measure of the “goodness of fit” of our version.

ILLUSTRATION 3.

The chart given on the next pages outlines the syntactic integration of a sentence possessing the five types of difficulty which our routine is able to handle with some degree of success. On the other hand, it contains a number of polysemantic words, of which only a few can be resolved at present. For the remaining polysemantic words, we are forced to print out all the meanings contained in our glossary.

The chart incorporates all of the steps entailed in carrying out the first (major) iteration cycle involving the entire sentence. The reader may need guidance as regards the temporal sequence of these steps; we shall, therefore, review this sequence from the start of the process on through the handling of the first String of the sentence. The Notes following the chart are designed to clarify situations which do not come up in String 1. The two Lists appended to this report will furnish all pertinent definitions. All terms mentioned therein are capitalized in the material which follows.
1. The portions headed "Part I" and "T" list the material obtained prior to the initiation of the syntactic process.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wo.</td>
<td>I</td>
<td>Cap</td>
<td>Vb</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Heading Explanation

Occurrence
- This portion, although overwritten in Part II, is retained here for the convenience of the reader. It indicates, on separate lines, the 1) Pseudo-prefixes, 2) Pseudo-roots, 3) Pseudo-suffixes, and 4) Ending of a Word-utterance which is listed in the Glossary.

GS
- The General Specifications of this Occurrence indicate that 1) it is a Word-utterance, 2) its correspondent (T) is an English word retrieved from storage, and 3) it starts with a capital letter. (Cf. the headings in the List of Symbols).

TC:
- The index j remains at 1; this indicates that the given Occurrence has given rise to only one Temporary Choice.

TC:
- The Morphological Specifications indicate that the Occurrence represents a verb (Vb) in the infinitive mood (if).

GP
- The Glossary Predictions accompany the Stem of the Occurrence in Storage. The numbers in the various columns are Urgency Signs (u). Each of these, with the exception of the number headed by x, will give rise to Foresight Predictions to be stored in String 2. Their computation is explained in the List of Terms, and will be clarified at the time they will be utilized.

PS
- The Profile Skeleton, although overwritten in Part II, is kept in the chart for the convenience of the reader. It serves as a basis for determining the boundaries of the clauses and phrases within the source sentence.

PART II

Section C

<table>
<thead>
<tr>
<th>Heading</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>The number 1 indicates that the given Occurrence forms part of the first clause.</td>
</tr>
<tr>
<td>v</td>
<td>This flag remains at the zero level until the Prediction of a predicate is fulfilled.</td>
</tr>
<tr>
<td>P</td>
<td>The zero indicates that the given Occurrence is not part of a phrase.</td>
</tr>
</tbody>
</table>

2. The portion headed "TP" lists the components of the Temporary Profile, resulting from the iterative process performed on the data in the Profile Skeleton (PS) involving the entire sentence.

3. The following preliminary steps are executed by the routine prior to entering the (minor) iterative cycle involving the first String:
 a. The Chain number (L) is set to 1.
 b. The Hindsight is cleared of all content.
 c. The Foresight Predictions (FPx) stored within String q are made by String q-1. When q is equal to 1, FPx and FPx-1 are made by the routine in response to signals indicating the start of the first clause. They predict with utmost assurance (shown by U = 7) that a Subject and Predicate will occur within the clause.
 d. The Selected Profile (SP) is temporarily set equal to the Temporary Profile.
4. The portion headed "Section B" indicates how the routine attempts to incorporate the given Occurrence as a link of a unifying Chain, representing the sentence structure.

PART II

Section B

<table>
<thead>
<tr>
<th>Forest Prds. (FP<sub>qk</sub>)</th>
<th>Sel. Ch. (SC)</th>
<th>L</th>
<th>SP</th>
<th>Hindsight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>r</td>
<td>k</td>
<td>U</td>
<td>SE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>Sbj</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>Cpl</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>Cpl</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>Cpl</td>
<td>5</td>
</tr>
</tbody>
</table>

#### Heading	Explanation
SC:FP | The Q and K under this heading indicate that FP_{qk}, calling for a Subject, has been responsible for the Selected Choice.
SC:f | The index 1 indicates that TC_f, a verb in the infinitive—fulfilling the above prediction, was selected.
L | The Chain number remains unchanged because the SC fulfilled a Foresight Prediction.

Hindsight

- **Entries**
 - This information is derived by, and stored in, String <i>q</i> to be investigated by subsequent Strings.
 - The unfagged Entries in String 1 indicate that the SC was a Doubtful Choice. They are to be interpreted as follows:
 - **First Entry**
 - a. The <i>j</i> is blank to indicate that the Entry concerns the SC.
 - b. The <i>k</i> indicates that this part of the SC contains the doubtful item.
 - c. The <i>s</i> gives the specific Element of the SC which is doubtful.
 - **Second Entry**
 - a. The <i>j</i> indicates that TC_f may be governed, not by FP_f, as chosen, but by some future FP.

 - b. The <i>k</i> indicates the part of some future FP which may govern TC_f.
 - c. The <i>s</i> indicates that TC_f may be the fulfillment of a Prediction for a verb in the infinitive mood.

- **Resol.**
 - In general, the TC_f of the Current String, and the newly made FP_f, stored in the next String, are examined to ascertain whether they throw any light on the perplexities, doubts, and conflicts recorded in the Hindsight columns. For <i>q</i> = 1, however, the Hindsight is empty at this stage of the process. (The resolutions indicated on the chart for String 1 will, of course, have been made by subsequent Strings.)

H₁ Entries

- In general, the doubts recorded in the selection of the components of the Profile are resolved in light of the SC and of the Hindsight resolution. For <i>q</i> = 1, this is seldom necessary.

H₂, H₃ Entries

- The remaining four Predictions came from the Glossary information, accompanying the Temporary Choice selected as SC for String 1. They predict that with utmost necessity a direct object (in the form of either a single word in the accusative case or of a clause) will occur and that a slight probability exists for the appearance of complements (i.e. indirect objects) in the dative and/or instrumental case, each followed by a suitable preposition (<i>x</i> Flag = 1).

Since the <i>x</i> Flag in String 1 is unity, a suitable signal will be set to indicate that the next Positional Preposition will govern the locative case, unless the signal is turned off by an <i>x</i> equal to zero in a subsequent String.

41
5. The portion headed "Section C" indicates the order and form in which the target correspondent will appear in the translated sentence.

<table>
<thead>
<tr>
<th>q</th>
<th>R</th>
<th>PI</th>
<th>T</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(To)</td>
<td>demonstrate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heading

Explanation

R: The order in which the correspondents will appear in the printed translation in general follows closely the order of the original Occurrences. On occasion, a particular Selected Choice (SC) and/or a Hindsight resolution may effect a deviation from the sequence. The routine in Section B indicates the proper order (R) of every correspondent in the printed sequence.

PI: A subroutine makes these crude Pretarget inserts. They are printed in parentheses.

E: The Pidgin Endings assume all English words to be regular.

PART I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preds.</td>
<td>FS</td>
<td>Forest Prds. (FPg)</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>0</td>
<td>Esp</td>
</tr>
</tbody>
</table>
Note no. | q | Headings | Explanation
---|---|---|---
1 | 2 | TP | The preposition starts a new phrase, as indicated by P = 1.
2 | FP₁ₙ | The first Prediction is FP₁ₙ, revised in the light of the chosen Subject. The number 3 in the Y column indicates the 3rd person. The remaining FP were culled from GP in String 1. The Flag e indicates that a crude PI will be inserted before a T which fulfills a predicted dative or instrumental Complement.
3 | SC | The Q and K are zero, because a preposition is an Unpredictable Choice.
4 | 3 | TCₖ | The j is set to zero to indicate that the information will be common to all the TC listed in String 3.
5 | GP | The Grammar Essential g is not used for nouns or adjectives, since the routine always makes the prediction of a Complement in the genitive for these parts of speech. In Russian, adjectives may act as nouns.
6 | Hₐ, Hₙ | When the Complement of a preposition is fulfilled, the other TC are disregarded and not entered in Hindsight.
7 | 4 | Occurrence | The prefix and first suffix are non-Slavic.
8 | TCₖ:G | The encircled F means Masculine or Neuter.
9 | TP and SP | The routine resolves the Uncertainty Signal X, in TP, concerning the phrase number P.
10 | FP | The first two Predictions are made by the routine anent the noun in the preceding String. They were deleted simultaneously because, whether fulfilled or not, FP's with Urgency 1 or 0 are not kept beyond one String. (Cf. Urgency code in List of Terms). The third FP throws some light on the second query in H, but does not resolve it, as indicated by the negative sign in h.
11 | Hₐ | Two alternate choices are noted here:
 | | First conflict. | a. The SP indicates the part of some future SC which may throw light on the conflict.
 | | | b. The Mat indicates the fact that the conflict will be resolved, if a future SC will supply a Master for the current SC.
 | | Second conflict. | a. The A indicates the part in a future SC which may throw light on the conflict.

Note no.	q	Headings	Explanation
12	E	b. The rm indicates the fact that the conflict will be resolved, if a future SC will supply an inanimate Master for the current SC.	
13	5	TCₖ:G	The Pseudo-suffix /B with a non-Slavic root will be taken as denoting a masculine noun. Any required non-Slavic feminine or neuter noun with this Pseudo-suffix will be included in the Glossary.
14	FP	These Predictions are supplied by the routine anent the adjective in the preceding String.	
15	SC and Hₐ resol.	The Master prediction was satisfied, thus resolving the first Entry in Hₐ. (Cf. Note 11). Unfortunately the Occurrence was a non-Slavic word and not represented in our Glossary. There was no information about its animation, and therefore the second Entry cannot be resolved.	
16	Hₐ Entry	The Entry of the form 5.2.1, to indicate that FP₁ₙ is also satisfied by TCₖ, is omitted for the following reason: When a Master prediction is satisfied, there is at present no way to resolve this ambiguity, since considerations of semantics and of context would be involved.	
17	6	SP and FP₁ₙ	Since none of the Predictions made by the Strings in phase 1 are fulfilled by the current String, whereas a Prediction in the main clause is, the phrase number P is set to zero again. The unfulfilled Prediction in Phase 1, namely FP₁ₙ, which bears a low U, is deleted.
	Since TCₖ could serve as Subject, the fact is noted in the resolution column of the first Entry in Hindsight Hₐ (in String 1).		
	The SC throws partial light on the conflict in the Hₐ column. (Cf. Note 11.)		
18 | TCₖ and Hₐ resol. | SC and Hₐ | SC and Hₐ
19 | 7 | TCₖ:G | The suffix EM with a non-Slavic root will be considered as belonging to feminine nouns. (Cf. Note 13.)
<table>
<thead>
<tr>
<th>Note no.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>TC and H: resol. Although TC could serve as the subject, note is made of this fact in the resolution of the first entry in H, because it would be the master of TC in the previous string, which has already been recorded. (Cf. Note 18.)</td>
</tr>
<tr>
<td>22</td>
<td>TC and H: resol. Partial light is thrown on the first entry in H. This choice is pigeonholed. There is no way to resolve the polysemy at the present stage of our investigation.</td>
</tr>
<tr>
<td>23</td>
<td>TC and H: T This choice is indicated in the list of terms under the heading "Urgency Code".</td>
</tr>
<tr>
<td>24</td>
<td>FP This prediction deletes FP, as explained in the list of terms under the heading "Urgency Code".</td>
</tr>
<tr>
<td>25</td>
<td>FP This prediction deletes FP, as explained in the list of terms under the heading "Urgency Code".</td>
</tr>
<tr>
<td>26</td>
<td>TC and H: The iterative scheme in Section A of Part II established the fact that this string did not start a new clause (since the old clause still had the status zero). The current string could therefore represent either a coordinate conjunction binding two related SC or an adverb. Since both choices are unpredictable, they are recorded as doubtful (unlagged entries in H).</td>
</tr>
<tr>
<td>27</td>
<td>GS:8 This string represents an idiom, which constitutes a single word-utterance.</td>
</tr>
<tr>
<td>28</td>
<td>b The Backward Flag was placed by the profile routine in Section A of Part II. It indicates that, instead of examining the FP's, the routine will scan the previous SC in reverse order to establish a new link in the structural chain. The entry in this column indicates that the SC in String 6 is conjunctively related to the current string, and the true nature of String 10 is thus established, as indicated by the resolution in H.</td>
</tr>
<tr>
<td>29</td>
<td>SC:B This prediction deletes FP, as explained in the list of terms under the heading "Urgency Code".</td>
</tr>
<tr>
<td>30</td>
<td>GS:8 The source word might under certain conditions be treated like a prepositional possessive modifier rendered in English by "their". The number 3 indicates the person.</td>
</tr>
<tr>
<td>31</td>
<td>TC:D These Predictions were caused by the change in the clause number C of the previous string. Similar entries have been explained in Notes 28, 29, and for String 1.</td>
</tr>
<tr>
<td>32</td>
<td>FP These Predictions were caused by the change in the clause number C of the previous string. Similar entries have been explained in Notes 28, 29, and for String 1.</td>
</tr>
<tr>
<td>33</td>
<td>b; B; H,</td>
</tr>
<tr>
<td>34</td>
<td>TP:v The Profile routine indicated that the current string must be followed by a new string representing a copulative verb. The status flag v was set to 1 in order to effect the proper insertion. (Cf. Note 35.)</td>
</tr>
<tr>
<td>35</td>
<td>GS:o This string was inserted because of the v flag in the previous string (Cf. Note 34.)</td>
</tr>
<tr>
<td>36</td>
<td>FP These Predictions were made by the routine and the copulative verb in the preceding string.</td>
</tr>
<tr>
<td>37</td>
<td>TC:e The locative case cannot be considered, since it is governed only by a preposition. The chain is broken, as the routine cannot account for the dative. (The FP's cannot be considered, since the two strings are not in the same clause.) The Entry is flagged, since the Choice is Unexpected. The rearrangement in the target string will be explained in Note 47.</td>
</tr>
<tr>
<td>38</td>
<td>L This prediction throws partial light on the H, Entry in String 27. The r is indicated in the light of Note 47. Since the noun is animate, only one concatenation of the preposition is used.</td>
</tr>
<tr>
<td>39</td>
<td>H:o This part is used in obtaining the signal "of" (proper word).</td>
</tr>
<tr>
<td>40</td>
<td>R The appearance of an initial calls strongly for another proper noun. Hence the inversion of the usual order of Predictions after a noun.</td>
</tr>
<tr>
<td>41</td>
<td>b; B; R Cf.Notes 28, 29, 47.</td>
</tr>
<tr>
<td>42</td>
<td>FP:n This prediction throws partial light on the H, Entry in String 27. The r is indicated in the light of Note 47. Since the noun is animate, only one concatenation of the preposition is used.</td>
</tr>
<tr>
<td>43</td>
<td>PI The fact that the capitalized word does not start a sentence causes A to become "of".</td>
</tr>
<tr>
<td>44</td>
<td>GS:o This prediction throws partial light on the H, Entry in String 27. The r is indicated in the light of Note 47. Since the noun is animate, only one concatenation of the preposition is used.</td>
</tr>
<tr>
<td>45</td>
<td>FP This part is used in obtaining the signal "of" (proper word).</td>
</tr>
<tr>
<td>46</td>
<td>GS:o This prediction throws partial light on the H, Entry in String 27. The r is indicated in the light of Note 47. Since the noun is animate, only one concatenation of the preposition is used.</td>
</tr>
<tr>
<td>47</td>
<td>FP The fact that the capitalized word does not start a sentence causes A to become "of".</td>
</tr>
</tbody>
</table>

End of Iteration 1. Since no FP's with U of 6 or 7 remain and the chain number L is equal to 1, no other iteration is necessary. The translation is printed out as indicated in the last three columns of the chart, followed by the tally of unresolved Hindsight Entries.
Appendix I. List of Terms

ADDRESS, extended (a). The locator of an item on an external storage medium. Its form depends on the machine used. On the IBM 704 it consists of (1) a number, (2) block number, (3) serial position of item in the block.

CHAIN. A group of consecutive SC's characterized by the same chain number (1).

CHOICE.

doubtful. A Selected Choice which entails the recording of an unflagged query in Hindsight H, final (FC). The Selected Choice in the last iterative cycle.

predictable. Not belonging to class of Unpredictable Choices.

selected (SC). A Temporary Choice selected as a link in the Chain during a current iteration.

unpredicted. A Predictable Choice which does not agree with any of the Foresight Predictions (FP).

unpredictable. A TC containing one of the following parts of speech: (1) a conjunction; (2) an adverb; (3) a particle; and (4) a preposition; or else (5) it is a punctuation mark.

element, sentence. Cf. Sentence.

ENDING.

source. The true inflectional ending of a word in the source text.

pidgin (E). Regular ending affixed to stem of target correspondent, regardless of correct usage.

ENTRY.

glossary. A complete set of Glossary items corresponding to a source text.

Hindsight. A record of an Unexpected String, a Doubtful Choice, or a surplus Temporary Choice (cf. Hindsight).

ESSENTIAL, grammar (GE). A grammatical form called for by a glossary Prediction (e.g. an accusative called for by a transitive verb). Each type of GE has a separate location in the string reserved for it. A GE is predicted by storing an Urgency Signal in this location.

EXTENDED Address. Cf. Address.

FILE, sorting. The internal space allotted for sorting the Extended Addresses (e).

FLAG. A binary digit (i.e. either a 0- or 1-bit).

Backward (b). A 1-bit alerting the machine to examine the foregoing Selected Choices in order to establish the linkage of the current String.

Correspondence (c). A bit indicating whether the String contains target correspondents or not.

Insert (e). A 1-bit accompanying a Foresight Prediction to indicate that a suitable English position is to be used as a Pre-target Insert (PI).

Locative (r). A 1-bit in Glossary Predictions to indicate that the locative case is, 1) if the String represents a preposition, one of the cases governed by the preposition; or 2) if the String does not represent a preposition, to be used after the next Positional Preposition encountered in the sentence.

Status (c). A bit indicating whether the predicate of the current clause has turned up or not.

Word (w). A bit indicating whether the String represents a word or not.

glossary. The externally stored source-to-target dictionary used by the MIT group at NBS. It is stored in a greatly compacted form and contains dialectal material designed to aid in the syntactic-analysis of source sentences.

Hindsight. Internal space allotted for storing in H, Entries concerning Unexpected Choices or Doubtful Choices.

H, Temporary Choices (TC), other than the Selected one, which fulfill Foresight Predictions (FP).

H, Temporary Choices (TC), other than the Selected one, which do not fulfill any of the Foresight Predictions (FP).

INSERT.

pretarget (PI). A word inserted before a target correspondent.

list. Internally stored one-to-one correspondences, yielding for each of the endings, an address B for each Source Ending, enabling the machine to find, subsequently, the corresponding morphological information in the Table of Endings.

pseudo-prefix, a 6-bit character, as a substitute for each Pseudo-prefix.

pseudo-suffix, a 6-bit character, as a substitute for each pseudo-suffix.

symbol, a definition (to be found in Appendix II).

terms, a definition (to be found in Appendix I).

special words, dictionary information. The arguments in this List consist of conjunctions, prepositions, particles, idioms, abbreviations, some adverbs, and words with ambiguous endings.

occurrence, source. A combination of one or more characters in a source text. It may represent: (1) a Word-utterance (2) a punctuation mark or a set of such; (3) a symbol or a set of such; (4) a diagram or a set of such; etc.

Predictions.

foresight (FP), information concerning TC's which are expected to occur somewhere in the sentence under consideration. Such information is derived either from rules of grammar incorporated in the machine instructions, or from Glossary Predictions, or from the Temporary Profile.

glossary (GP), partial information, retrieved from the Glossary or Special List and stored as part of a String, indicating what kinds of TC's are expected to occur somewhere before or after the current SC in the same sentence. A GP is recorded by assigning an Urgency Signal to a Grammar Essential. One String may contain several GPs.
PREPOSITION.

One of a set of Russian prepositions which govern either the accusative or locative case.

PROFILE. The sequence of sets of designations, incorporated in each String of a sentence, which may throw light upon the ranges of its clauses and phrases.

Selected (SE). The Temporary Profile, revised during an iterative cycle in the syntactic integration process.

Skeleton (PS). The initial stage of a Profile, which bears one signal for each Occurrence, indicating the latter's significance in determining the clauses and phrases of the current sentence.

Temporary (TP). A sequence of sets of four preliminary designators assigning a rough clause (C) and phrase (P) number, as well as a Status (c)—and possible Forward (f) and Backward (b)—Flag, to each Occurrence.

PSEUDO-ROOT. That portion (if any) of a word-Occurrence remaining after the Pseudo-prefixes, Ending, and Pseudo-suffixes are stripped off.

PSEUDO-PREFIX. One of a set of combinations of source letters which are frequently found at the beginning of words in the source language.

PSEUDO-SUFFIX. One of a set of combinations of source letters which are frequently found before the Source Ending of words in the source language.

SENTENCE element (SE). One of the following ingredients of a sentence: Subject, Predicate, Complement, Modifier, Master, Clause and Phrase.

Appendix II. List of Symbols

1. Extended Address
2. Heading in TC, and FP
3. Accusative case
4. Adjective, a Ps
5. Animate
6. Adverb, a Ps
7. Address of argument in Table of Endings
8. Signal in SC to indicate the String where concatenation was established during backward examination
9. Backward Flag
10. For all Strings other than the first in a sentence, C is the clause number in the Profile. For the first string of a sentence (since all sentences start with clause number 1), we shall use this symbol as a code:
11. Correspondence Flag

TAG, identification (t). A serial number attached to each Source Occurrence of a text sentence. It consists of (1) page number, (2) sentence number, and (3) Occurrence number.

TRANSFORM, source (s). A contraction representing the Stem of a Source Occurrence in the external memory.

URGENCY code (U). One of the numbers 0 to 7, denoting the probability of a Foresight Prediction (FP) as follows:
1. must occur sometime
2. very likely to occur sometime
3. may occur sometime. An FP bearing this U is erased by a subsequent FP identical to it
4. will be the next Choice or won't occur at all. It is erased after the next SC
5. A code of 6, 4, 2, and 0, indicates the same degree of Urgency as 7, 5, 3 and 1 respectively. Moreover, the even-numbered codes denote an FP alternate to the last preceding odd-numbered FP in the same String (e.g. successive U's of 5, 4, 2 indicate that the second and third predictions are alternates for the first, so that if one of them occurs, all three could be erased). An FP with $U > 4$ is not erased until the end of the iterative cycle, unless it, or one of its alternates is satisfied. An FP with $U = 5$ or $U = 7$, left unsatisfied at the end of a cycle, calls for another iteration.

URGENCY signal—cf. Signal

UVEREANCE, word—cf. Word

WORD—utterance (W). One word or a set of consecutive words—in complete or abbreviated form—used as an entity (e.g. an initial, compound word, an idiom, etc.).

1. declarative sentence
2. interrogative sentence
3. exclamatory sentence, etc.

This is possible because the Temporary Profile is obtained as a result of an iterative routine, and the nature of the sentence is known before Part II is undertaken.