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Abstract

We made three progresses in the field through mass estimation: First, we propose the first

adaptive version of mass estimation using a new nearest neighbor procedure which runs

significantly faster than existing nearest neighbor procedures, and it needs no indexing

schemes. Second, we propose the first mass-based Bayesian classifier which estimates the

likelihood directly in multi-dimensional space; unlike existing Bayesian classifiers which

estimate simplified surrogates of likelihood (e.g., one-dimensional likelihood). Third, we

have created the first mass-based similarity measure and show that it is an effective

alternative to distance-based similarity measure in content-based information retrieval

problems.
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In addition, we have extended the two previous works on mass estimation and published

them in Machine Learning Journal and Journal of Knowledge and Information Systems.

1 Introduction

The project deepens the research achieved in the pioneering mass estimation project

(supported by AOARD Grant FA2386-10-1-4052) to yield the next generation of mass

estimation and to enable mass estimation to be applied more widely to data mining

tasks. The project has been refined to achieve the following specific aims:

1. Create the second generation of mass estimation

2. Develop a new Bayesian Classifier using mass estimation

3. Propose the first mass-based similarity measure

In the previous project, mass estimation has been established to be a new paradigm

in data mining. Like density estimation in the existing paradigm, mass estimation has

influence in many aspects of data mining. We have previously shown that mass-based

approaches work more effectively and efficiently than density-based approaches in four

data mining tasks : information retrieval, regression, anomaly detection and clustering.

The second generation of mass estimation consolidates mass estimation’s fundamental role

in data mining in terms of algorithmic design, and demonstrate that the new paradigm

based on mass is applicable and effective in areas of data mining as widely as the existing

density paradigm has applied now.

This project broadens its application to an additional data mining task: classification in

the Bayesian framework. The resultant mass-based Bayesian classifiers can deal with very

large data sets which are infeasible with existing Bayesian classifiers.

The unexpected result of this project is the creation of the mass-based similarity measure.

The new measure is unique because it does not compute distance and it is a non-metric
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measure. It could potentially enhance similarity modelling envisaged by psychologists.

The ultimate goal of the work is to produce a complete theory of mass estimation that

enables mining of big data in all data mining tasks. This project has contributed to the

generalisation of the initial formulation of mass estimation and has affirmed its funda-

mental data modelling mechanism which has generic applicability to many areas of data

mining tasks.

We provide the theoretical analyses in Section 2, the results and discussion in Section 3,

and the final remark in Section 4.

2 Theoretical Analyses

This section provides the description of the theoretical analyses for the abovementioned

three aims in the following three subsections.

2.1 Create the second generation of mass estimation

We establish the properties of a good mass estimation method in guiding us to create the

second generation of mass estimation. The first generation of mass estimation is based

on a tree structure to partition the feature space into local regions. The work is guided

by answering the following questions:

• What are the characteristics of local regions necessary for good mass estimation?

• Are pair-wise calculations, as in the case of pair-wise distance calculations in existing

approaches, required to achieve good task-specific performance?

• What is the alternative to the tree-based approach for mass estimation?

We explored different ways to partition the space and identify the characteristics of the

local regions required for a specific task. We also created the first non-tree-based approach

for mass estimation.

As most existing algorithms are density based, we have designed our work to evaluate

the efficacy of mass estimation by first building new density estimators based on mass,
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and then replacing the density estimators in existing algorithms with the new density

estimators. In each case, the same algorithm is used; only the core modelling mechanism

used is different, i.e., either existing density estimator or the new density estimator based

on mass. We focus our investigation in two existing algorithms in two separate tasks, i.e.,

LOF in anomaly detection and DBSCAN in clustering.

2.2 Develop a new Bayesian Classifier using mass estimation

We have proposed the first mass-based classifier, a new Bayesian classifier called Mass-

Bayes which has constant training time complexity and constant space complexity. Un-

like existing Bayesian classifiers which must make some assumption that allows them to

estimate simplified surrogates of likelihood p(x|y), the new Bayesian classifier estimates

the likelihood directly without any assumptions. This is made possible by the use of mass

estimation to estimate the likelihood directly in multi-dimensional space. It aggregates

the multi-dimensional likelihoods estimated from random subsets of the training data us-

ing varying size random feature subsets.

The symbols used in the following description are provided in Table 1.

In Bayesian classifier learning, estimating the joint probability distribution p(x, y) or the

likelihood p(x|y) directly from training data is considered to be difficult, especially in

large multi-dimensional data sets. In order to circumvent this difficulty, existing Bayesian

classifiers such as Naive Bayes, BayesNet and AηDE have focused on estimating simplified

surrogates of p(x, y) from different forms of one-dimensional likelihoods.

Naive Bayes (NB) is the simplest generative approach that estimates p(x, y) by assuming

that the attributes are statistically independent given y:

p̂(x, y)NB = p(y)
d∏
i=1

p(xi|y) (1)

BayesNet learns a network of probabilistic relationship among the attributes including

the class attribute and learned the conditional probabilities from the training data. The
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Table 1: List of symbols used in Sections 2.2 and 3.2.

D Set of training instances
n Number of training instances in D
d Number of attributes
c Number of classes
| · | Cardinality of a set
p(·) Probability
x d-dimensional vector representing a data instance
y Class label of a data instance
xi The value of the ith attribute of the instance x
πi The set of parents of xi in a Bayesian network
πy The set of parents of y in a Bayesian network
η Number of privileged attributes in AηDE
v Average number of discrete values for an attribute
Sη The collection of all subsets of size η of the set of d attributes
s A subset of attributes of size η
xa |a|-dimensional vector of values of x defined by a ⊂ {1, · · · , d}(
d
η

)
A binomial coefficient of η out of d

t Number of trees in MassBayes
ψ Sub-sample size
Gt A collect of t subsets of varying sizes of d attributes.
g A random subset of attributes
D A subset of D of size ψ
T (·) A function that divides the feature space into non-overlapping regions
T (x) The region where x falls into
Dy The set of instances belonging to class y in D
Dy,xg The set of instances belonging to class y and having values xg in D

joint probability p(x, y) is estimated as:

p̂(x, y)BayesNet = p(y|πy)
d∏
i=1

p(xi|πi) (2)

In another simplification of BayesNet, AηDE relaxes the independence assumption by

allowing dependency between y and a fixed number of privileged attributes or super-

parents. The other attributes are assumed to be independent given the η super-parents

and y. AηDE avoids the expensive searching in learning probabilistic dependencies by

constructing an ensemble of η-dependence estimators. The joint probability p(x, y) is
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estimated as:

p̂(x, y)AηDE =
∑
s∈Sη

p(xs, y)
∏

j∈{1,2,··· ,d}\s

p(xj|xs, y) (3)

where Sη is the collection of all subsets of size η of the set of d attributes {1, 2, · · · , d};
and xs is a η-dimensional vector of values of x defined by s.

It has been shown that A1DE and A2DE produce better predictive accuracy than the

other state-of-the-art generative classifiers. However, it only allows dependencies on a

fixed number of attributes and y. Because of the high time complexity of O
(
n
(
d
η+1

))
and space complexity of O

(
c
(
d
η+1

)
vη+1

)
, where v is the average number of values for

an attribute, only A2DE or A3DE is feasible even for a moderate number of attributes.

Furthermore, selecting an appropriate value of n for a particular data set requires a search.

AηDE and many other implementations of BayesNet require all the attributes to be dis-

crete. The continuous-valued attributes must be discretised using a discretisation method

before building a classifier.

Rather than aggregating an ensemble of η-dependence single-dimensional likelihood esti-

mators, we propose to aggregate an ensemble of t multi-dimensional likelihood estimators

where each likelihood is estimated using different random subsets of d attributes from

data. The likelihood p(x|y) is estimated as:

p̂(x|y) =
1

t

∑
g∈Gt

p(xg|y) (4)

where Gt is a collection of t subsets of varying sizes of d attributes; and xg is a |g|-
dimensional vector of values of x defined by g; and 1 ≤ |g| ≤ d.

Each p(xg|y) is estimated using a random subset of training instances D ⊂ D, where

|D| = ψ < n.

p̂(xg|y) =
|Dy,xg |
|Dy|

(5)

where |Dy,xg | is the number of instances having attribute values xg belonging to class y

in D and |Dy| is the number of instances belonging to class y in D.
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Rather than relying on a specific discretisation method in the preprocessing step, we pro-

pose to build a model directly from data, akin to an adaptive multi-dimensional histogram,

to determine xg which adapts to the local data distribution. Let T (·) be a function that

divides the feature space into non-overlapping regions and T (x) be the region where x

falls. In a multi-dimensional space, each instance in D can be isolated by splitting only

on few dimensions i.e., only a subset of d attributes (g ⊂ {1, 2, · · · , d}) is used to define

T (x). Hence, |Dy,xg | is the number of instances belonging to class y in the region T (x).

Let p(T (x)|y) be the probability of region T (x) when only class y instances in D are

considered.

p(T (x)|y) = p̂(xg|y) =
|Dy,xg |
|Dy|

(6)

The new generative classifier, called MassBayes, estimates the joint distribution as:

p̂(x, y)MassBayes = p(y)
1

t

∑
g∈Gt

p(xg|y) = p(y)
1

t

t∑
i=1

p(Ti(x)|y) (7)

The average probability of t different regions Ti(x) (i = 1, 2, · · · , t), constructed using

Di ⊂ D, provides a good estimate for p(x|y) as it estimates the multi-dimensional like-

lihood by considering the distribution in different local neighbourhood of x in the data

space. An illustrative example is provided in Figure 1.

Figure 1: Different regions from different Ti(·) (i = 1, 2, · · · , 5) that cover x.
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MassBayes has the following characteristics in comparison with AηDE:

1. In each estimator, AηDE estimates one-dimensional likelihood given a fixed number

of super-parents and y, whereas MassBayes estimates multi-dimensional likelihood

using varying number of attributes.

2. In AηDE, the ensemble size is fixed to
(
d
η

)
. But, MassBayes allows the flexibility for

users to set the ensemble size.

3. AηDE requires continuous-valued attributes to be discretised before building the

model. The performance of AηDE is affected by the discretisation technique used.

In contrast, MassBayes builds models directly from data. It can be viewed as a

dynamic multi-dimensional discretisation where the information loss is minimised

by averaging over multiple models.

4. Each model in MassBayes is built with training subset of size ψ < n which gives

rise to the constant training time. In contrast, each model in AηDE is trained using

the entire training set.

5. AηDE is a deterministic algorithm whereas MassBayes is a randomised algorithm.

6. Like AηDE, MassBayes is a generative classifier without search.

2.3 Propose the first mass-based similarity measure

Data mining algorithms have traditionally relied on similarity measures to gauge the sim-

ilarity between two instances as the core operation to solve various data mining problems.

For example, anomaly detection requires ranking of instances in a database according

to their degrees of anomaly; an information retrieval task ranks instances in a database

which are most similar to a query. These ranking tasks are traditionally accomplished

by computing the distance between two instances as the key step to calculate the ranking.

The first mass-based similarity measure is motivated by our recent content-based multi-

media information retrieval (CBMIR) system called ReFeat [8].
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ReFeat is unique in two aspects. First, it uses a similarity measure which is primarily

based on data distribution in the local region. In contrast, commonly used distance mea-

sures are solely based on the positions of instances in the feature space. Second, at the

heart of ReFeat is an anomaly detector which provides a ranking score `(x) for an instance

x, independently of other instances. This is fundamentally different from most ranking

measures that rely on a distance measure to compute the distance of an instance relative

to another instance, dist(x,y) (e.g., ORCA, Qsim).

The use of such a unique similar measure is the key reason why ReFeat has produced bet-

ter retrieval performance than state-of-the-art CBMIR systems including manifold learn-

ing method MRBIR, Bayesian learning method BALAS, query-sensitive ranking methods

such as InstRank and Qsim.

Despite its unique approach and demonstrably excellent retrieval performance, the ReFeat

paper [8] does not provide a satisfactory explanation as to why a unary score function

could produce an appropriate ranking of database instances for a query which requires

a binary function. More to the point: ReFeat does not guarantee that two ‘similar’ in-

stances, having a similar ranking score `(·), are in the same local neighbourhood.

We investigate the source of the power of ReFeat. Note that the anomaly detector used

in ReFeat is a special case of mass-based approach, revealed in our journal paper on mass

estimation [1].

From a foundation in mass estimation, we derive a new mass-based similarity measure

that enables a new CMBIR system to significantly improve the retrieval performance of

ReFeat.

3 Results and Discussion

This section provides the results and discussion for each of the three aims in the following

three subsections.
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3.1 Create the second generation of mass estimation

3.1.1 Properties of a good mass estimation method

The most successful method for mass estimation thus far is to aggregate mass from mul-

tiple local regions. There are different ways in which local regions can be constructed,

using trees in our previous work [1, 2] and nearest neighbours in the current project [4].

They all have been shown to perform well in a number of different data mining tasks.

The trees could be built using random splits, equal-volume splits or equal-data-size split;

or the region could be grid-based or non-grid-based.

However, certain tasks demand some properties that need to be met. For example, in clus-

tering tasks, the local regions must be close regions, usually defined using all dimensions.

This is to avoid points, which are near in some dimensions but far in others, from linking

into one cluster. On the other hand, in classification tasks, the local regions must be open

to cover sufficiently large regions in order to provide a good estimation of probabilities in

the Bayesian classification context. In anomaly detection tasks, either open or close local

regions are found to work well.

The mass-based methods show that local regions are sufficient to determine the “neigh-

bours” required to accomplish classification, clustering and anomaly detection tasks, with-

out calculating pair-wise distance. This eliminates the need to compute pair-wise distance;

and it is the key contributor to the significant speedup and less memory requirement in

mass-based methods in comparison with existing methods which require distance calcu-

lations.

3.1.2 A new approach to nearest neighbour density estimator based on the

second generation of mass estimation

The first mass-based approach we have developed under this project has advanced the

mass-based approaches developed in the previous AOARD supported project in one key

important aspect: mass estimation is adaptive to the local data distributions. Previous

mass estimation approaches (published in IEEE ICDM-2010 and IEEE ICDM-2011) are

unable to adapt to differing local data distributions in a single data set.
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The new approach produces the first nearest neighbour procedure having O(n) time com-

plexity and constant space complexity. In contrast, existing nearest neighbor algorithms

have O(n2) time complexity and O(n) space complexity. It is the first nearest neighbour

density estimator to have linear time complexity and constant space complexity, as far as

we know.

Unlike existing algorithms which require some indexing scheme to speed up the nearest

neighbor search, the new approach has no such requirement. Replacing the nearest neigh-

bor procedure in existing algorithms with the new procedure, we have shown that this

enables two nearest neighbour algorithms, otherwise infeasible, to scale up to data sets

with millions of instances in anomaly detection and clustering tasks.

The new density estimator called LiNearN, for linear time nearest neighbour algorithm,

has the following distinctive nearest neighbor features:

• By rejecting the premise that a nearest neighbour algorithm must find the near-

est neighbour for every instance in the given data set, LiNearN finds the nearest

neighbour for every instance in a subsample.

• LiNearN defines local neighbourhood using nearest neighbours in each of the many

subsamples by building a region centered at each instance. This differs from the

existing nearest neighbour density estimators where the local neighbourhoods are

defined based on either k nearest neighbours or a fixed radius.

Our asymptotic analysis reveals that the new density estimator has a parameter which

trades off between bias and variance, as in existing density estimators such as k-nearest

neighbour density estimators.

We assess LiNearN in anomaly detection and clustering tasks and compare with three

state-of-the-art nearest neighbour algorithms, ORCA, LOF and DBSCAN. LiNearN pro-

duces similar results compared with these algorithms in terms of task-specific performance

measures, but it runs orders of magnitude faster than these algorithms in large data sets.

The advantages of the new nearest neighbour approach shown in these two tasks imply

that it can potentially be adopted, in place of existing nearest neighbour algorithms, to
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solve other data mining tasks.

The full details of the LiNearN results can be found in the attached paper [4].

3.2 Develop a new Bayesian Classifier using mass estimation

The new Bayesian classifier based on mass called MassBayes has been shown to have bet-

ter predictive accuracy than existing state-of-the-art Bayesian classifiers such as BayesNet

and AηDE, especially in large data sets. It also scales better than these classifiers in large

data sets because of its constant training time complexity. Unlike DEMassBayes [2], the

mass-based Bayesian classifier does not make use of a density estimator to estimate the

likelihood.

The average classification accuracies of MassBayes against the existing generative classi-

fiers and DEMassBayes over a 10-fold cross-validation are plotted in Figure 2. A total of

fifteen data sets were used in this experiment. The coordinate values of each point in the

plot are the accuracies of each pair of classifiers in a data set. If both the classifiers had

produced the same accuracies in a data set, the point representing that data set would

lie on the diagonal. In both the plots, many points lie below the diagonal line and only

a few points are above. This shows that MassBayes is better than the existing Bayesian

classifiers.

The runtime of MassBayes was an order of magnitude faster than some contenders (such as

A2DE and NB-KDE) in large data sets and it was competitive to many existing Bayesian

classifiers in many data sets. The runtime of MassBayes and the existing Bayesian clas-

sifiers in the three largest data sets - KDDCup99, YearPrediction and CoverType was

presented in Figure 3. It is interesting to note that BayesNet, A2DE and A3DE in the

KDDCup99 data set and BayesNet and A3DE in YearPrediction did not complete the

task because they required memory space more than 20GB. The memory requirement

in BayesNet and AηDE increases with d and c. ENNBayes is a version of MassBayes

implemented nearest neighbour; that is why it runs slower than MassBayes.

Note that the reported runtime results for AηDE, BayesNet and NB-Disc did not include
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Figure 2: Scatter plot of accuracies of MassBayes versus those of BayesNet, two variants
of Naive Bayes (NB-KDE and NB-Disc) and DEMass-Bayes.

the discretisation time that must be done as a preprocessing step, which give AηDE,

BayesNet and NB-Disc an unfair advantage over MassBayes. The discretisation cost is

significantly large in large and moderately high dimensional data sets. For examples,

the discretisation took 1290 seconds in the KDDCup99 data set, and 467 seconds in the

YearPrediction data set. The discretisation time itself was of the same order of magnitude

as the runtime of MassBayes.

Figures 4 and 5 show the increase in training time and space required to store the clas-

sification model of MassBayes and three variants of AηDE when the number of training

instances (n) and the number of attributes (d) are increased by factors (5, 10, 50, 100,

500) and (2, 4, 8, 12 16) respectively. In MassBayes, both the runtime and memory

requirement were constant when the training size was increased, whereas they varied sub-

linearly when number of attributes were increased. In contrast, the runtime and memory

requirement of AηDE increase exponentially as training size increases. With respect to

the increase in the number of attributes, the runtime and memory requirement of AηDE

also increase exponentially.

The details of the results are reported in the attached papers [3, 6].
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Figure 3: Runtime of MassBayes, ENNBayes and the other contenders in the three largest
data sets: KDDCup99, CoverType and YearPrediction. The vertical axis is on a logarith-
mic scale of base 10. For ease of reading, the classifiers are organised into groups of three:
the first group has three classifiers (MassBayes, ENNBayes and DEMassBayes) based on
the proposed ensemble approach; the second group has three variants of AηDE (A3DE,
A2DE and A1DE); and the last group has BayesNet, NB-KDE and NB-Disc. Note that
the discretisation time was not included in the runtime of AηDE, BayesNet and NB-Disc.
Histograms with star which have the maximum height indicate that the classifiers did not
complete the tasks.

.
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Figure 4: Increase in training time and memory requirement to learn a classification model
with the increase in training size in a subset of KDDCup99 data set with three largest
classes (i.e., c = 3, d = 32). The horizontal axes are on a logarithmic scale of base 10.
A3DE did not complete when the training size was increased to five million. The base of
the training size ratio is 10000 instances.
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Figure 5: Increase in training time and memory requirement to learn a classification model
with the increase in the number of attributes in a subset of KDDCup99 data set with
three largest classes (i.e., c = 3, n = 5125369). The number of attributes is increased from
2 to 32. The horizontal and vertical axes in Figures (a) and (b) are on a logarithmic scale
of base 2 and 10, respectively. A3DE did not complete when the number of attributes
was increased to 32.
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3.3 Propose the first mass-based similarity measure

This section describes the preliminary result of the first mas-based similarity measure.

The key results at this point in time are summarised as follows:

• Introducing a unique similarity measure, Massim, and establishing its theoretical

foundation based on mass.

• Creating a new CMBIR system called MassIR based on this similarity measure.

• Empirically evaluating MassIR in comparison with ReFeat and systems which em-

ploy commonly used similarity measures, and showing its superiority in image and

music information retrievals.

Massim has the following characteristics:

• Unlike the similarity measure used in ReFeat, Massim guarantees that two similar

instances are in the same local neighbourhood.

• Unlike distance-based similarity measures, it does not compute distance and pri-

marily based on data distribution in the local region.

• It is a generalisation of mass estimation. Under certain conditions, it reduces to

mass estimation.

The key result of the evaluation is provided here, and the aim is to compare MassIR with

state-of-the-art systems ReFeat, Qsim, InstRank, MRBIR and BALAS, all in the context

of content-based information retrieval.

Two databases, which were previously used in other studies: GTZAN music database and

COREL image database, are employed in this experiment.

Figure 6 shows the comparison of MassIR with ReFeat, Qsim, InstRank, MRBIR and

BALAS. Results of Qsim, InstRank, MRBIR and BALAS were taken from [8]. The result

shows that MassIR performs significantly better than all other existing methods. Also

note that the performance gap increases as the number of feedback rounds increases, in-

dicating that MassIR utilizes feedback instances more effectively than other methods.
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Figure 6: Comparison of retrieval performance in terms of MAP(Mean Average Precision).

The full description of Massim and MassIR and the complete evaluation results are pro-

vided in the attached paper [5].

This preliminary result provides the foundation for further investigation in a new project

to establish the theory and evidence that non-metric similarity measures can work better

than commonly used similarity measures based on a metric in data mining tasks.

4 Final Remark

The successful creation of the second generation of mass estimation using nearest neigh-

bour approach represents a milestone that will have significant influence in the future

development of mass estimation. While developing the new Bayesian classifier using the

first generation of mass estimation reported here, we had also spent a substantial amount

of time to generalise the approach which incorporates the second generation of mass es-

timation. This has yielded ENNBayes reported in paper [6].

The work on the first mass-based similarity measure, though envisaged and described

briefly in the initial research proposal of this project, was not one of the original aims

of this project. However, I am glad that the progress in this project has enabled the

research team to produce the preliminary findings of this new similarity measure. I have

the opinion that the finding represents the beginning of the next phase of mass estimation
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research—the research team has shown that the new similarity measure is a generalisation

of mass estimation. This is an exciting development.

The work on the generalisations of both mass-based Bayesian classifier approach and mass

estimation mentioned above had unfortunately taken time away from the research initially

planned for data streams and high dimensional issues. However, I believe that the results

the research team has produced form a better foundation for researching these and other

issues in the future.

5 List of Publications and Significant Collaborations

that resulted from AOARD supported projects

5.1 List of peer-reviewed journal publications:

[1] Kai Ming Ting, Guang-Tong Zhou, Fei Tony Liu and Tan Swee Chuan (2013). Mass

Estimation. Machine Learning Journal. Vol. 90, Issue. 1, pp. 127-60.

[2] Kai Ming Ting, Takashi Washio, Jonathan R. Wells, Fei Tony Liu and Sunil Aryal

(2013). DEMass: A New Density Estimator for Big Data. International Journal of

Knowledge and Information Systems. Vol. 35, Issue. 3, pp. 493-524

5.2 List of peer-reviewed conference publications

[3] Sunil Aryal and Kai Ming Ting (2013). MassBayes: A new generative classifier with

multi-dimensional likelihood estimation. In Proceedings of the 17th Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining. Lecture Notes in Computer Science.

Springer Berlin Heidelberg. pp. 136-148

5.3 Papers currently submitted for review

[4] Jonathan R. Wells, Kai Ming Ting and Takashi Washio. LiNearN: A New Approach

to Nearest Neighbour Density Estimator. Submitted to Pattern Recognition
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[5] Kai Ming Ting, Thilak Laksiri Fernando and Geoffrey I. Webb. Mass-based Similarity

Measure: An Effective Alternative to Distance-based Similarity Measures. Submitted

to 2013 IEEE International Conference on Data Mining

[6] Sunil Aryal and Kai Ming Ting. An ensemble approach to estimate multi-dimensional

likelihood in Bayesian classifier learning. Submitted to Machine Learning

5.4 Significant collaboration with industry and research insti-

tutions

Collaboration with two colleagues, Takashi Washio (Osaka University) and Geoff Webb

(Monash University) have resulted three papers in mass estimation [2, 4, 5].

As a result of the work on mass estimation, the following collaborations have produced

one industry grant and two publications:

A. Toyota InfoTechnology Centre (Japan) has provided a grant in 2012 to work on an

application to a vehicle warning system and produced the following publication:

[7] Jonathan R. Wells, Kai Ming Ting and Naiwala P. Chandrasiri (2012). A non-time

series approach to vehicle related time series problems. In Proceedings of the Tenth

Australasian Data Mining Conference. Volume 134 in the Conferences in Research and

Practice in Information Technology Series. Australian Computer Society.

B. Research collaboration with Shandong University (China) has produced paper [1] and

the following publication:

[8] Guang-Tong Zhou, Kai Ming Ting, Fei Tony Liu and Yilong Yin (2012). Relevance

Feature Mapping for Content-based Multimedia Information Retrieval. Pattern Recog-

nition. Vol.45, pp. 1707-1720.
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Note

Paper [1] is an extension of the work previously published in KDD-2010. It includes

an extension from single-dimensional mass estimation to multi-dimensional mass estima-

tion; and their empirical evaluations in three tasks in regression, information retrieval

and anomaly detection; and an in-depth analysis and comparison with a closely related

method called data depth.

Paper [2] extends the work previously published in IEEE ICDM-2011 to include (i) a con-

trast between point-based definitions and set-based definitions of the proposed mass-based

density estimator; and (ii) an application of mass-based density estimator to Bayesian

classifier and an in-depth comparison with existing state-of-the-art Bayesian classifiers.

Paper [6] extends the work previously published in PAKDD-2013 [3] to present the first

generic approach to estimate multi-dimensional likelihood p(x|y) directly by aggregating

pi(x|y) estimated from an ensemble of estimators where each estimator is constructed

from a small fixed-size random sub-sample of data Di ⊂ D (i = 1, 2, ..., t). This is a

generic approach because pi(x|y) can be estimated using different data modelling meth-

ods. DEMass-Bayes [2] and MassBayes [3] are two realisations of the proposed generic

approach. In this paper, we introduce an additional realisation of the proposed generic

approach called ENNBayes along with MassBayes. ENNBayes estimates pi(x|y) from Di
using a nearest neighbour density estimator.

Software Downloads

The source codes of multi-dimensional mass estimation, DEMass-DBSCAN, DEMass-

Bayes and MassBayes, algorithms proposed in papers [1, 2, 3], are made available at

http://sourceforge.net/projects/mass-estimation/

Attachments

Papers [1, 2, 3, 4, 5, 6] are attached.
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Abstract This paper introduces mass estimation—a base modelling mechanism that can
be employed to solve various tasks in machine learning. We present the theoretical basis of
mass and efficient methods to estimate mass. We show that mass estimation solves problems
effectively in tasks such as information retrieval, regression and anomaly detection. The
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1 Introduction

‘Estimation of densities is a universal problem of statistics (knowing the densities one
can solve various problems).’ —Vapnik (2000).

Density estimation has been the base modelling mechanism used in many techniques
designed for tasks such as classification, clustering, anomaly detection and information
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retrieval. For example in classification, density estimation is employed to estimate the
class-conditional density function (or likelihood function) p(x|j) or posterior probability
p(j |x)—the principal function underlying many classification methods; e.g., mixture mod-
els, Bayesian networks, Naive Bayes. Examples of density estimation include kernel density
estimation, k-nearest neighbours density estimation, maximum likelihood procedures and
Bayesian methods.

Ranking data points in a given data set in order to differentiate core points from fringe
points in a data cloud is fundamental in many tasks, including anomaly detection and in-
formation retrieval. Anomaly detection aims to rank anomalous points higher than normal
points; information retrieval aims to rank points similar to a query higher than dissimi-
lar points. Many existing methods (e.g., Bay and Schwabacher 2003; Breunig et al. 2000;
Zhang and Zhang 2006) have employed density to provide the ranking; but density estima-
tion is not designed to provide a ranking.

We show in this paper that a new base modelling mechanism called mass estimation
possesses different properties from those offered by density estimation:

• A mass distribution stipulates an ordering from core points to fringe points in a data
cloud. In addition, this ordering accentuates the fringe points with a concave function
derived from data, resulting in fringe points having markedly smaller mass than points
close to the core points.

• Mass estimation is more efficient than density estimation because mass is computed by
simple counting and it requires only a small sample through an ensemble approach. Den-
sity estimation (often used to estimate p(x|j) and p(j |x)) requires a large sample size
in order to have a good estimation and is computationally expensive in terms of time and
space complexities (Duda et al. 2001).

Mass estimation has two advantages in relation to efficacy and efficiency. First, the con-
cavity property mentioned above ensures that fringe points are ‘stretched’ to be farther from
the core points in a mass space—making it easier to separate fringe points from those points
close to core points. This property in mass space can then be exploited by a machine learning
algorithm to achieve a better result for the intended task than applying the same algorithm
in the original space without this property. We show the efficacy of mass in improving the
task-specific performance of four existing state-of-the-art algorithms in information retrieval
and regression tasks. The significant improvements are achieved through a simple mapping
from the original space to a mass space using the mass estimation mechanism introduced in
this paper.

Second, mass estimation offers to solve a ranking problem more efficiently using the
ordering derived from data directly—without expensive distance (or related) calculations.
An example of inefficient application is in anomaly detection tasks where many methods
have employed distance or density to provide the required ranking. An existing state-of-the-
art density-based anomaly detector LOF (Breunig et al. 2000) (which has quadratic time
complexity) completes a job involving half a million data points in more than five hours;
yet the mass-based anomaly detector we have introduced here completes it in less than 20
seconds! Section 6.3 provides the details of this example.

The rest of the paper is organised as follows. Section 2 introduces mass and mass es-
timation, together with their theoretical properties. We also describe methods for one-
dimensional mass estimation. We extend one-dimensional mass estimation to multi-
dimensional mass estimation in Sect. 3. We provide an implementation of multi-dimensional
mass estimation in Sect. 4. Section 5 describes a mass-based formalism which serves as a
basis of applying mass to different data mining tasks. We realise the formalism in three
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different tasks: information retrieval, regression and anomaly detection, and report the em-
pirical evaluation results in Sect. 6. The relations to kernel density estimation, data depth and
other related work are described in Sects. 7, 8 and 9, respectively. We provide conclusions
and suggest future work in the last section.

2 Mass and mass estimation

Data mass or mass, in its simplest form, is defined as the number of points in a region. Any
two groups of data in the same domain have the same mass if they have the same number
of points, regardless of the characteristics of the regions they occupy (e.g., density, shape
or volume). Mass in a given region is thus defined by a rectangular function which has the
same value for the entire region in which the mass is measured.

To estimate the mass for a point and thus the mass distribution of a given data set, a more
sophisticated form is required. The intuition is based on the simplest form described above,
but multiple (overlapping) regions covering a point are generated. The mass for the point
is then derived from an average of masses from all regions covering the point. We show
two ways to define these regions. The first is to generate all possible regions through binary
splits from the given data points; and the second is to generate random axis-parallel regions
within the confine covered by a data sample. The first is described in this section and the
second is described in Sect. 3.

Each region can be defined in multiple levels where a higher level region covering a
point has a smaller volume than that of a lower level region covering the same point. We
show that the mass distribution has special properties: (i) the mass distribution defined by
level-1 regions is a concave function which has the maximum mass at the centre of the data
cloud, irrespective of its density distribution, including uniform and U-shape distributions;
and (ii) higher level regions are required to model multi-modal mass distributions.

Note that mass is not a probability mass function, and it does not provide a probability,
as the probability density function does through integration.

In Sect. 2.1, we show (i) how to estimate a mass distribution for a given data set through
binary splits and (ii) the theoretical properties of mass estimation. Section 2.2 describes an
approximation to the theoretical mass estimation which works more efficiently in practice.
The symbols and notations used are provided in Table 1.

Table 1 Symbols and notations

Ru A real domain of u dimensions

x A one-dimensional instance in R
x An instance in Ru

D A data set of x, where |D| = n

D A subset of D, where |D| = ψ

z An instance in Rt

D′ A data set of z

c The ensemble size used to estimate mass

h Level of mass distribution

t Number of mass distributions in m̃ass(·)
mi(·) Mass base function defined using binary split si

mass(·) Mass function which returns a real value in one-dimensional mass space

m̃ass(·) Mass function which returns a vector of t values in t-dimensional mass space
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2.1 Mass distribution estimation

In this section, we first show in Sect. 2.1.1 a mass distribution estimation that uses binary
splits in the one-dimensional setting, where each binary split separates the one-dimensional
space into two non-empty regions. In Sect. 2.1.2, we then generalise the treatment using
multiple levels of binary splits.

2.1.1 Mass distribution estimation using binary splits

Here, we employ a binary split to divide the data set into two separate regions and compute
the mass in each region. The mass distribution at point x is estimated to be the sum of all
‘weighted’ masses from regions occupied by x, as a result of n − 1 binary splits for a data
set of size n.

Let x1 < x2 < · · · < xn−1 < xn on the real line,1 xi ∈ R and n > 1. Let si be the binary
split between xi and xi+1, yielding two non-empty regions having two masses mL

i and mR
i .

Definition 1 Mass base function: mi(x) as a result of si , is defined as

mi(x) =
{

mL
i if x is on the left of si

mR
i if x is on the right of si

Note that mL
i = n − mR

i = i.

Definition 2 Mass distribution: mass(xa) for a point xa ∈ {x1, x2, . . . , xn−1, xn} is defined
as a summation of a series of mass base functions mi(x) weighted by p(si) over n− 1 splits
as follows, where p(si) is the probability of selecting si .

mass(xa) =
n−1∑
i=1

mi(xa)p(si)

=
n−1∑
i=a

mL
i p(si) +

a−1∑
j=1

mR
j p(sj )

=
n−1∑
i=a

ip(si) +
a−1∑
j=1

(n − j)p(sj ) (1)

Note that we have defined
∑r

i=q f (i) = 0, when r < q for any function f .

Example For an example of five points x1 < x2 < x3 < x4 < x5, Fig. 1 shows the resultant
mi(x) due to each of the four binary splits s1, s2, s3, s4; and their associated masses over four
splits are given below:

mass(x1) = 1p(s1) + 2p(s2) + 3p(s3) + 4p(s4)

mass(x2) = 4p(s1) + 2p(s2) + 3p(s3) + 4p(s4)

mass(x3) = 4p(s1) + 3p(s2) + 3p(s3) + 4p(s4)

mass(x4) = 4p(s1) + 3p(s2) + 2p(s3) + 4p(s4)

mass(x5) = 4p(s1) + 3p(s2) + 2p(s3) + 1p(s4)

1In data having a pocket of points of the same value, an arbitrary order can be ‘forced’ by adding increasing
multiples of an insignificant small value ε to each subsequent point of the pocket, without changing the
general distribution.
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Fig. 1 Examples of mass base function mi(x) due to each of the four binary splits: s1, s2, s3, s4

For a given data set, p(si) can be estimated on the real line as p(si) = (xi+1 − xi)/

(xn − x1) > 0, as a result of a random selection of splits based on a uniform distribution.2

For a point x /∈ {x1, x2, . . . , xn−1, xn}, mass(x) is defined as an interpolation between two
masses of adjacent points xi and xi+1, where xi < x < xi+1.

Theorem 1 mass(xa) is maximised at a = n/2 for any density distribution of {x1, . . . , xn};
and the points xa , where x1 < x2 < · · · < xn−1 < xn on the real line, can be ordered based
on mass as follows.

mass(xa) < mass(xa+1), a < n/2

mass(xa) > mass(xa+1), a > n/2

Proof The difference in mass between two consecutive points xa and xa+1 differs in only
one term, i.e., the mass associated with p(sa); and ∀i �= a, the terms for p(si) have the same
mass.

2The estimated mass(x) values can be calibrated to a finite data range Δ by multiplying a factor (xn −x1)/Δ.
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mass(xa) − mass(xa+1) =
n−1∑
i=a

ip(si) +
a−1∑
j=1

(n − j)p(sj )

−
n−1∑

i=(a+1)

ip(si) −
a∑

j=1

(n − j)p(sj )

= ap(sa) − (n − a)p(sa)

= (2a − n)p(sa) (2)

Thus,

sign
(
mass(xa) − mass(xa+1)

) =
⎧⎨
⎩

negative if a < n/2
0 if a = n/2
positive if a > n/2

The point xn/2 can be regarded as the median. Note that the number of points with the
maximum mass depends on whether n is odd or even: When n is an odd integer, only one
point has the maximum mass at xmedian, where median = �n/2�; when n is an even integer,
two points have the maximum mass at a = n/2 and a = 1 + n/2. �

Theorem 2 mass(xa) is a concave function defined w.r.t. {x1, x2, . . . , xn}, when p(si) =
(xi+1 − xi)/(xn − x1) for n > 2.

Proof We only need to show that the gradient of xa is non-increasing, i.e., g(xa) > g(xa+1)

for each a.
Let g(xa) be the gradient between xa and xa+1, and from (2):

g(xa) = mass(xa+1) − mass(xa)

xa+1 − xa

= n − 2a

xn − x1

The result follows: g(xa) > g(xa+1) for a ∈ {1,2, . . . , n − 1}. �

Corollary 1 A mass distribution estimated using binary splits stipulates an ordering, based
on mass, of the points in a data cloud from xn/2 (with the maximum mass) to the fringe
points (with the minimum mass at either side of xn/2), irrespective of the density distribution
including uniform density distribution.

Corollary 2 The concavity of mass distribution stipulates that fringe points have markedly
smaller mass than points close to xn/2.

The implication from Corollary 2 is that fringe points are ‘stretched’ to be farther away
from the median in a mass space than in the original space—making it easier to separate
fringe points from those points close to the median. The mass space is mapped from the
original space through mass(x). This property in mass space can then be exploited by a
machine learning algorithm to achieve a better result for the intended task than applying the
same algorithm in the original space without this property. We will show that this simple
mapping significantly improves the performance of four existing algorithms in information
retrieval and regression tasks in Sects. 6.1 and 6.2.

Equation (1) is sufficient to provide a mass distribution corresponding to a unimodal
density function or a uniform density function. To better estimate multi-modal mass dis-
tributions, multiple levels of binary splits need to be carried out. This is provided in the
following.
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Fig. 2 Two examples of massL
i
(x,h = 1) and massR

i
(x,h = 1) due to si=7 and si=11 in the process to get

mass(x,h = 2) from a data set of 20 points with uniform density distribution. The resultant mass(x,h = 2)

is shown in Fig. 3(a)

2.1.2 Level-h mass distribution estimation

If we treat the mass estimation defined in the last subsection as level-1 estimation, then
level-h estimation can be viewed as localised versions of the basic level-1 estimation.

Definition 3 The level-h mass distribution for a point xa ∈ {x1, . . . , xn}, where h < n, is
expressed as

mass(xa, h) =
n−1∑
i=1

massi (xa, h-1)p(si)

=
n−1∑
i=a

massL
i (xa, h-1)p(si)

+
a−1∑
j=1

massR
j (xa, h-1)p(sj ) (3)

Here a high level mass distribution is computed recursively by using the mass distribu-
tions obtained at lower levels. A binary split si in a level-h(> 1) mass distribution produces
two level-(h-1) mass distributions: (a) massL

i (x,h-1)—the mass distribution on the left of
split si which is defined using {x1, . . . , xi}; and (b) massR

i (x,h-1)—the mass distribution
on the right which is defined using {xi+1, . . . , xn}. Equation (1) is the mass distribution at
level-1.

Figure 2 shows two (out of 19 splits) required to compute level-2 mass estimation,
mass(x,h = 2), from a data set of 20 points. Each split produces two level-1 mass estima-
tions: massL

i (x,h = 1) and massR
i (x,h = 1). Note that level-1 mass distribution is concave,

as proven in Theorem 2. This example shows the results of two splits si=7 and si=11, where
each level-1 mass distribution is concave.

Using the same analysis as in the proof for Theorem 1, the above equation can be re-
expressed as:

mass(xa+1, h) = mass(xa, h) +
{ [massR

a (xa, h-1) − massL
a (xa, h-1)]p(sa), h > 1

(n − 2a)p(sa), h = 1
(4)

As a result, only the mass for the first point x1 needs to be computed using (3). Note that
it is more efficient to compute the mass distribution from the above equation which has time
complexity O(nh+1); the computation using (3) has complexity O(nh+2).
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Fig. 3 Examples of level-h mass distribution for h = 1,2,3 and density distribution from kernel density
estimation: Gaussian kernel with bandwidth = 0.1 (for the first three figures) and 0.01 (for the last figure in
order to show the density spike). The data sets have 20 points each for the first three figures, and the last one
has 50 points

Definition 4 A level-h mass distribution stipulates an ordering of the points in a data cloud
from α-core points to the fringe points. Let α-neighbourhood of a point x be defined as
Nα(x) = {y ∈ D|dist(x, y) ≤ α} for some distance function dist(·, ·). Each α-core point x∗
in a data cloud has the highest mass value ∀x ∈ Nα(x

∗). A small α defines local core point(s);
and a large α, which covers the entire value range for x, defines global core point(s).

Examples of level-h mass estimation in comparison with kernel density estimation are
provided in Fig. 3. Note that h = 1 mass estimation looks at the data as a group, and it
produces a concave function. As a result, an h = 1 mass estimation always has its global
core point(s) at the median, regardless of the underlying density distribution—see the four
examples of h = 1 mass estimation in Fig. 3.

For h > 1 mass distribution, though there is no guarantee for a concave function any
more as a whole, our simulation shows that each cluster within the data cloud (if they ex-
ist) exhibits a concave function and it becomes more distinct (as a concave function) as h

increases. An example is shown in Fig. 3(b) which has a trimodal density distribution. No-
tice that the h > 1 mass distributions have three α-core points for some α, e.g., 0.2. Other
examples are shown in Figs. 3(c) and 3(d).

Traditionally, one can estimate the core-ness or the fringe-ness of non-uniformly dis-
tributed data to some degree by using density or distance (but not in uniform density distribu-
tion). Mass allows one to do that in any distribution without density or distance calculation—
the key computational expense in all methods that employ them. For example in Fig. 3(c)
which has a skew density distribution, the distinction between near fringe points and far
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fringe points are less obvious using density, unless distances are computed to reveal the
difference. In contrast, mass distribution depicts the relative distance from xmedian using the
fringe points’ mass values, without further calculation.

Figure 3(d) shows an example where there are clustered anomalies which are denser than
the normal points (shown in the bigger cluster on the left of the figure). Anomaly detection
based on density will identify all these clustered anomalies as more ‘normal’ than the normal
points because anomalies are defined as points having low density. In sharp contrast, h = 1
mass estimation will correctly rank them as anomalies which have the third lowest mass
values. These points are interpreted as points at the fringe of the data cloud of normal points
which have higher mass values.

This section has described properties of mass distribution from a theoretical perspective.
Though it is possible to estimate mass distribution using (1) and (3), they are limited by its
high computational cost. We suggest a practical mass estimation method in the next subsec-
tion. We use the term ‘mass estimation’ and ‘mass distribution estimation’ interchangeably
hereafter.

2.2 Practical one-dimensional level-h mass estimation

Here we devise an approximation to (3) using random subsamples from a given data set.

Definition 5 mass(x,h|D) is the approximate mass distribution for a point x ∈ R, defined
w.r.t. D = {x1, . . . , xψ }, where D is a random subset of the given data set D, and ψ 
 |D|,
h < ψ .

Here we employ a rectangular function to define mass for a region encompassing each
point x ∈ D. mass(x,h|D) is implemented using a lookup table where a region for each point
xi ∈ D covers a range (xi−1 + xi)/2 ≤ x < (xi+1 + xi)/2 and has the same mass(xi, h|D)

value for the entire region. The range for each of the two end-points is set to have equal
length on either side of the point. An example is provided in Fig. 4(a).

In addition, a number of mass distributions needs to be constructed from different sam-
ples in order to have a good approximation, that is,

mass(x,h) ≈ 1

c

c∑
k=1

mass(x,h|Dk) (5)

The computation of mass(x,h) using the given data set D costs O(|D|h+1) in terms of time
complexity; whereas mass(x,h|D) costs O(ψh+1).

Only relative, not absolute, mass is required to provide an ordering between instances.
For h = 1, because the relative mass is w.r.t. the median and the median is a robust estima-
tor (Aloupis 2006)—that is why small subsamples produce a good estimator for ordering.
While this reason cannot be applied to h > 1 (and multi-dimensional mass estimation to
be discussed in the next section) because the notion of median is undefined, our empirical
results in Sect. 6 show that all these mass estimations using small subsamples produce good
results.

In order to show that relative performance of mass(x,1) and mass(x,1|D), we compare
the ordering results based on mass values in two separate data sets: the one-dimensional
Gaussian density distribution and the COREL data set; each of the data sets has 10000
data points. Figure 4(b) shows the correlation (in terms of Spearman’s rank correlation
coefficient) between the orderings provided by mass(x,1) using the entire data set and
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Fig. 4 (a) An example of
practical mass distribution
mass(x,h|D) for 5 points,
assuming a rectangular function
for each point. (b) Correlation
between the orderings provided
by mass(x,1) and mass(x,1|D)

for two data sets:
one-dimensional Gaussian
density distribution and the
COREL data set used in Sect. 6.1
(whose result is averaged over 67
dimensions)

mass(x,1|D) using ψ = 8. They achieve very high correlations when c ≥ 100 for both
data sets.

The ability to use a small sample, rather than a large sample, is a key characteristic of
mass estimation.

3 Multi-dimensional mass estimation

Ting and Wells (2010) describe a way to generalise the one-dimensional mass estimation we
have described in the last section. We reiterate the approach in this section but the imple-
mentation we employed (to be described in Sect. 4) differs. Section 9 provides the details of
these differences.

The approach proposed by Ting and Wells (2010) eliminates the need to compute the
probability of a binary split, p(si); and it gives rise to randomised versions of (1), (3) and (5).

The idea is to generate multiple random regions which cover a point, and then the mass
for that point is estimated by averaging all masses from all those regions. We show that
random regions can be generated using axis-parallel splits called half-space splits. Each
half-space split is performed on a randomly selected attribute in a multi-dimensional feature
space. For a h-level split, each half-space split is carried out h times recursively along ev-
ery path in a tree structure. Each h-level (axis-parallel) split generates 2h non-overlapping
regions. Multiple h-level splits are used to estimate mass for each point in the feature space.

The multi-dimensional mass estimation requires two functions. First, it needs a function
that generates random regions covering each point in the feature space. This function is a
generalisation of the binary split into half-space splits or 2h-region splits when h levels of
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half-space splits are used. Second, a generalised version of the mass base function is used to
define mass in a region. The formal definition follows.

Let x be an instance in Rd . Let T h(x) be one of the 2h regions in which x falls into; T h(·)
is generated from the given data set D, and T h(·|D) is generated from D ⊂ D; and m be the
number of training instances in the region.

The generalised mass base function: m(T h(x)) is defined as

m
(
T h(x)

) =
{

m if x is in a region of T h having m instances
0 otherwise

In one-dimensional problems, (1), (3) and (5) can now be approximated as follows:

n−1∑
i=1

mi(x)p(si) ≈ 1

c

c∑
k=1

m
(
T 1

k (x)
)

(6)

mass(x,h) ≈ 1

c

c∑
k=1

m
(
T h

k (x)
)

(7)

mass(x,h) ≈ 1

c

c∑
k=1

m
(
T h

k (x|Dk)
)

(8)

where c > 0 is the number of random regions to be used to define the mass for x.
Here every T h

k is generated randomly with equal probability. Note that p(si) in (1) has
the same assumption.

Since T h is defined in multi-dimensional space, the multi-dimensional mass estimation
is the same as (8) by simply replacing x with x:

mass(x, h) ≈ 1

c

c∑
k=1

m
(
T h

k (x|Dk)
)

(9)

Like its one-dimensional counterpart, the multi-dimensional mass estimation stipulates
an ordering from core points (having high mass) to fringe points (having low mass) in a data
cloud, regardless of its density distribution. While we do not have a proof of this property
for multi-dimensional mass estimation, empirical results suggest that it is. This property is
shown in Fig. 5(a) using h = 1, where the highest mass value is at the centre of the entire data
cloud, when the four clusters are treated as a single data cloud; while the four clusters are
scattered in each of the four quadrants. Mass values become lower as they move away from
the centre. Note that though this implementation of multi-dimensional mass estimation does
not guarantee concavity, the approximation of the ordering is sufficiently close to a concave
function (in regions with data) to produce the required ranking for different purposes (see
Sect. 6).

Figure 5(b) shows the contour map for h = 32 on the same data set. It demonstrates that
multi-dimensional mass estimation can use a high h level to model multi-modal distribution.

We show in Sect. 6 that both mass(x,h|D) and m(T h(x|D)) (in (5) and (9), respectively)
can be employed effectively for three different tasks: information retrieval, regression and
anomaly detection, through the mass-based formalism described in Sect. 5. We shall de-
scribe the implementation of multi-dimensional mass estimation in the next section.
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Fig. 5 Contour maps of multi-dimensional mass distribution for a two-dimensional data set with four clusters
(each containing 50 points), where points in each cluster are marked with a distinct marker. The points are
randomly drawn from Gaussian distributions with unit standard deviation and means located at (2; 2), (−2; 2),
(−2; −2) and (2; −2), respectively. The two figures are produced using h = 1 and h = 32, respectively. Other
parameters are set as follows: c = 1000 and ψ = |D| = 64. The algorithm used to generate these contour
maps will be described in Sect. 4.2. The legend indicates the colour-coded mass values

4 Half-Space Trees for mass estimation

This section describes the implementation of T h using Half-Space Tree. Two variants are
provided. We have used the second variant of Half-Space Tree to implement the multi-
dimensional mass estimation.

4.1 Half-Space Tree

The motivation of the proposed method, Half-Space Tree, comes from the fact that equal-
size regions contain the same mass in a space with uniform mass distribution, regardless of
the shapes of the regions. This is shown in Fig. 6(a), where the space enveloped by the data
is split into equal-size half-spaces recursively three times into eight regions. Note that the
shapes of the regions may be different because the splits at the same level may not use the
same attribute.

The binary half-space split ensures that every split produces two equal-size half-spaces,
each containing exactly half of the mass before the split under a uniform mass distribution.
This characteristic enables us to compute the relationship between any two regions easily.
For example, the mass in every region shown in Fig. 6(a) is the same, and it is equivalent
to the original mass divided by 23 because three levels of binary half-space splits have been
applied. A deviation from the uniform mass distribution allows us to rank the regions based
on mass. Figure 6(b) provides such an example in which a ranking of regions based on mass
provides an order of the degrees of anomaly in each region.

Definition 6 Half-Space Tree is a binary tree in which each internal node makes a half-
space split into two equal-size regions, and each external node terminates further splits. All
nodes record the mass of the training data in their own regions.

Let T h[i] be a Half-Space Tree with depth level i; and m(T h[i]) or short for m[i] be the
mass in one of the regions at level i.

The relationship between any two regions is expressed using mass with reference to m[0]
at depth level = 0 (the root) of a Half-Space Tree.
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Fig. 6 Half-space subdivisions
of: (a) uniform mass distribution;
and (b) non-uniform mass
distribution

Under uniform mass distribution, the mass at level i is related to mass at level 0 as
follows:

m[0] = m[i] × 2i ,

or mass values between any two regions at levels i and j , ∀i �= j , are related as follows:

m[i] × 2i = m[j ] × 2j .

Under non-uniform mass distribution, the following inequality establishes an ordering be-
tween any two regions at different levels:

m[i] × 2i < m[j ] × 2j .

We employ the above property to rank instances and define the (augmented) mass for
Half-Space Tree as follows.

s(x) = m[�] × 2�, (10)

where � is the depth level of an external node with m[�] instances in which a test instance x
falls into.

Mass is estimated using m[�] only if a Half-Space Tree has all external nodes at the same
depth level. The estimation is based on augmented mass, m[�] × 2�, if the external nodes
have differing depth levels. We describe two such variants of Half-Space Tree below.

HS-Tree: based on mass only. The first variant, HS-Tree, builds a balanced binary tree
structure which makes a half-space split at each internal node and all external nodes have
the same depth. The number of training instances falling into each external node is recorded
and it is used for mass estimation. An example of HS-Tree is shown in Fig. 7(a).

HS*-Tree: based on augmented mass. Unlike HS-Tree, the second variant, HS*-Tree,
whose external nodes have differing depth levels. The mass estimated from HS*-Tree is
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Fig. 7 Half-Space Tree:
(a) HS-Tree: An HS-Tree for the
data shown in Fig. 6(a) has
mi = 4,∀i, which are m[� = 3]
(i.e., mass at level 3).
(b) HS*-Tree: An example of a
special case of HS*-Tree when
the size limit is set to 1

defined in equation (10) in order to account for different depths. We call this augmented
mass because the mass is augmented in the calculation by the depth level in HS*-Tree, as
opposed to mass only in HS-Tree.

In a special case of HS*-Tree, the tree growing process at a branch will only terminate
to form an external node if the training data size at the branch is 1 (i.e., the size limit is set
to 1). Here the mass estimated depends on depth level only, i.e., 2� or simply �. In other
words, the depth level becomes a proxy for mass in HS*-Tree when the size limit is set to 1.
An example of HS*-Tree, when the size limit is set to 1, is shown in Fig. 7(b).

Since the two variants have similar performance, we focus on HS*-Tree only in this
paper because it builds a smaller-sized tree than HS-Tree which may grow many branches
with zero mass—this saves on training time and memory space requirements.

4.2 Algorithm to generate Half-Space Trees

Half-Space Trees estimate a mass distribution efficiently, without density or distance cal-
culations or clustering. We first describe the training procedure, then the testing procedure,
and finally the time and space complexities.

Training. The procedure to generate a Half-Space Tree is shown in Algorithm 1. It starts
by defining a (random) range for each dimension in order to form a work space which
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Algorithm 1 T h(D, S,h)

Inputs: D—input data, S—data size limit at external node, h—maximum depth limit
Output: a Half-Space Tree

1: SizeLimit ← S

2: MaxDepthLimit ← h

3: (min,max) ← InitialiseWorkSpace(D)

4: return SingleHalf-SpaceTree(D,min,max,0)

covers all the training data. The InitialiseWorkSpace(·) function in Algorithm 1 is carried
out as follows. For each attribute q , a random split value (zq ) is chosen within the range
[Dminq , Dmaxq], i.e., the minimum and maximum values of q in the subsample. Then,
attribute q of the work space is defined to have the range [minq ,maxq ] = [zq − r, zq + r],
where r = 2 · max(zq − Dminq , Dmaxq − zq). The ranges of all dimensions define the work
space used to generate a Half-Space Tree. The work space defined by [minq ,maxq] is then
passed over to Algorithm 2 to construct a Half-Space Tree.

Constructing a single Half-Space Tree is almost identical to constructing an ordinary
decision tree3 (Quinlan 1993), except that no splitting selection criterion is required at each
node.

Given a work space, an attribute q is randomly selected to form an internal node of
an Half-Space Tree (line 4 in Algorithm 2). The split point of this internal node is simply
the mid-point between the minimum and maximum values of attribute q (i.e., minq and
maxq ), defined by the work space (line 5). Data are filtered through one of the two branches
depending on which side of the split the data reside (lines 6–7). This node building process
is repeated for each branch (lines 9–12 in Algorithm 2) until a size limit or a depth limit
is reached to form an external node (lines 1–2 in Algorithm 2). The training instances at
the external node at depth level � form the mass m(T h(x|D)) to be used during the testing
process for x. The parameters are set as follows: S = log2(|D|) − 1 and h = |D| for all the
experiments conducted in this paper.

Ensemble. The proposed method uses a random subsample D to build one Half-Space
Tree (i.e., T h(·|D)), and multiple Half-Space Trees are constructed from different random
subsamples (using sampling without replacement) to form an ensemble.

Testing. During testing, a test instance x traverses through each Half-Space Tree from the
root to an external node, and the mass recorded at the external node is used to compute its
augmented mass (see (11) below). This testing is carried out for all Half-Space Trees in the
ensemble, and the final score is the average score from all trees, as expressed in (12) below.

The mass, augmented by depth � of the region of Half-Space Tree T h in which x falls
into, is given as follows.

s(x, h) = m
(
T h(x|D)

) × 2� (11)

Mass needs to be augmented with depth � of a Half-Space Tree in order to ‘normalise’
the masses from different depths in the tree.

The mass for point x estimated from an ensemble of c Half-Space Trees is given as
follows.

mass(x, h) ≈ 1

c

c∑
k=1

sk(x, h) (12)

3However, they are for different tasks: Decision trees are for supervised learning tasks; Half-Space trees are
for unsupervised learning tasks.
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Algorithm 2 SingleHalf-SpaceTree(D,min,max, �)
Inputs: D—input data, min & max—arrays of minimum and maximum values for all at-

tributes in a work space, �—current depth level
Output: a Half-Space Tree

1: if (|D| ≤ SizeLimit) or (� ≥ MaxDepthLimit) then
2: return exNode(Size ← |D|)
3: else
4: randomly select an attribute q

5: midq ← (maxq + minq)/2 {midq is the mid-point value between the current minq and
minq values of q .}

6: Dl ← filter(D, q < midq) {Extract data satisfying condition: q < midq .}
7: Dr ← filter(D, q ≥ midq) {Extract data satisfying condition: q ≥ midq .}
8: {Build two nodes: Left and Right as a result of a split into two equal-volume half-

spaces.}
9: temp ← maxq ; maxq ← midq

10: Left ← SingleHalf-SpaceTree(Dl ,min,max, � + 1)

11: maxq ← temp; minq ← midq

12: Right ← SingleHalf-SpaceTree(Dr ,min,max, � + 1)

13: return inNode(Left,Right,SplitAtt ← q, SplitValue ← midq )
14: end if

Time and Space complexities. Because it involves no evaluations or searches, a Half-
Space Tree can be generated quickly. In addition, a good performing Half-Space Tree can
be generated using only a small subsample (size ψ ) from a given data set of size n, where
ψ 
 n. An ensemble of Half-Space Trees has training time complexity O(chψ) which is
constant for an ensemble with fixed subsample size ψ , maximum depth level h and ensemble
size c. It has time complexity O(chn) during testing. The space complexity for Half-Space
Trees is O(chψ) and is also a constant for an ensemble with fixed subsample size, maximum
depth level and ensemble size.

5 Mass-based formalism

The data ordering expressed as a mass distribution can be interpreted as a measure of rel-
evance with respect to the concept underlying the data, i.e., points having high mass are
highly relevant to the concept and points having low mass are less relevant. In tasks whose
primary aim is to rank points in a database with reference to a data profile, mass provides the
ideal ranking measure without distance or density calculations. In anomaly detection, high
mass signifies normal points and low mass signifies anomalies; in information retrieval, high
(low) mass signifies that a database point is highly (less) relevant to the query. Even in tasks
whose primary aim is not ranking, the transformed mass space can be better exploited by
existing algorithms because the transformation stretches concept-irrelevant points farther
away from relevant points in the mass space.

We introduce a formalism in which mass can be applied to different tasks in this section,
and provide the empirical evaluation in the following section.

Let xi = [x1
i , . . . , x

u
i ]; xi ∈ D of u dimensions; and zi = [z1

i , . . . , z
t
i ]; zi ∈ D′ in the trans-

formed mass space of t dimensions. The proposed formalism consists of three components:
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Algorithm 3 Mass_Estimation(D,ψ,h, t)

Inputs: D—input data; ψ—data size for Dk ; h—level of mass distribution; t—number of
mass distributions.

Output: m̃ass(x) → Rt —a function consists of t mass distributions, using either one-
dimensional or multi-dimensional mass estimation: mass(xd, h|Dk) or m(T h

k (x|Dk)).
1: for k = 1 to t do
2: Dk ← a random subset of size ψ from D;
3: d ← a randomly selected dimension from { 1, . . . ,u };
4: Build mass(xd, h|Dk);
5: end for

Note: For multi-dimensional mass estimation, steps 3 and 4 are replaced with one step:
Build m(T h

k (x|Dk));

Algorithm 4 Mass_Mapping(D, m̃ass)

Inputs: D—input data; m̃ass—a function consists of t mass distributions.
Output: D′—a set of mapped instances zi in t dimensions.

1: for i = 1 to |D| do
2: zi ← m̃ass(xi );
3: end for

C1 The first component constructs a number of mass distributions in a mass space. A mass
distribution mass(xd, h|D) for dimension d in the original feature space is obtained
using our proposed one-dimensional mass estimation, as given in Definition 5. A to-
tal number of t mass distributions is generated which forms m̃ass(x) → Rt , where
t � u. This procedure is given in Algorithm 3. Multi-dimensional mass estimation
m(T h(x|D)) (replacing one-dimensional mass estimation mass(xd, h|D)) can be used
to generate the mass space similarly; see note in Algorithm 3.

C2 The second component maps the data set D in the original space of u dimensions into
a new data set D′ in t -dimensional mass space using m̃ass(x) = z. This procedure is
described in Algorithm 4.

C3 The third component employs a decision rule to determine the final outcome for the task
at hand. It is a task-specific decision function applied to z in the new mass space.

The formalism becomes a blueprint for different tasks. Components C1 and C3 are
mandatory in the formalism, but component C2 is optional, depending on the task.

For information retrieval and regression, the task-specific C3 procedure is simply using
an existing algorithm for the task except that the process is carried out in the new mapped
mass space, instead of the original space. The MassSpace procedure is given in Algo-
rithm 5.

The task-specific C3 procedure for anomaly detection is shown in steps 2–5 in Algo-
rithm 6: MassAD. Note that anomaly detection requires C1 and C3 only; whereas the other
two tasks require all three components.

In our experiments described in the next section, the mapping from u dimensions to
t dimensions using Algorithm 3 is carried out one dimension at a time when using one-
dimensional mass estimation; and all u dimensions at a time when using multi-dimensional
mass estimation. Each such mapping produces one dimension in mass space and is repeated
t times to get a t -dimensional mass space. Note that randomisation gives different variations
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Algorithm 5 Perform task in MassSpace(D,ψ,h, t )
Inputs: D—input data; ψ—data size for D; h—level of mass distribution; t—number of

mass distributions.
Output: Task-specific model in mass space.

1: m̃ass(·) ← Mass_Estimation(D,ψ,h, t);
2: D′ ← Mass_Mapping(D, m̃ass);
3: Perform task (information retrieval or regression) in the mapped mass space using D′;

Algorithm 6 for Anomaly Detection: MassAD(D,ψ,h, t )
Inputs: D—input data; ψ—data size for D; h—level of mass distribution; t—number of

mass distributions.
Output: Ranked instances in D.

1: m̃ass(·) ← Mass_Estimation(D,ψ,h, t);
2: for i = 1 to |D| do
3: Mi ← Average of t masses from m̃ass(xi );
4: end for
5: Rank instances in D based on Mi , where low mass denotes anomalies and high mass

denotes normal points;

to each of the t mappings. The first randomisation occurs at step 2 in Algorithm 3 in selecting
a random subset of data. Additional randomisation is applied to attribute selection at step 3
in Algorithm 3 for one-dimensional mass estimation, or at step 4 in Algorithm 2 for multi-
dimensional mass estimation.

6 Experiments

We evaluate the performance of MassSpace and MassAD for three tasks in the following
three subsections. We denote an algorithm A using one-dimensional and multi-dimensional
mass estimations as A′ and A′′, respectively.

In information retrieval and regression tasks, the mass estimation uses ψ = 8 and t =
1000. These settings are obtained by examining the rank correlation as shown in Fig. 4(b)—
having a high rank correlation between mass(x,1) and mass(x,1|D). Note that this is done
before any method is applied, and no further tuning of the parameters is carried out after this
step. In anomaly detection tasks, ψ = 256 and t = 100 are used so that they are comparable
to those used in a benchmark method for a fair comparison. In all tasks, h = 1 is used for
one-dimensional mass estimation, and it cannot afford to use a high h because of its high
cost O(ψh). h = ψ is used for multi-dimensional mass estimation in order to reduce one
parameter setting.

All the experiments were run in Matlab and conducted on a Xeon processor which ran at
2.66 GHz and with 48 GB memory. The performance of each method was measured in terms
of task-specific performance measure and runtime. Paired t -tests at 5 % significance level
were conducted to examine whether the difference in performance is significant between
two algorithms under comparison.

Note that we treated information retrieval and anomaly detection as unsupervised learn-
ing tasks. Classes/labels in the original data were used as ground truth for evaluation of
performance only; they were not used in building mass distributions. In regression, only the
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training set was used to build mass distributions in step 1 of Algorithm 5; the mapping in
step 2 was conducted for both the training and testing sets.

6.1 Content-based image retrieval

We use a Content-Based Image Retrieval (CBIR) task as an example of information retrieval.
The MassSpace approach is compared with three state-of-the-art CBIR methods that deal
with relevance feedbacks: a manifold based method MRBIR (He et al. 2004), and two recent
techniques for improving similarity calculation, i.e., Qsim (Zhou and Dai 2006) and InstR
(Giacinto and Roli 2005); and we employ the Euclidean distance to measure the similarity
between instances in these two methods. The default parameter settings are used for all these
methods.

Our experiments were conducted using the COREL image database (Zhou et al. 2006) of
10000 images, which contains 100 categories and each category has 100 images. Each image
is represented by a 67-dimensional feature vector, which consists of 11 shape, 24 texture
and 32 color features. To test the performance, we randomly selected 5 images from each
category to serve as the queries. For a query, the images within the same category were
regarded as relevant and the rest were irrelevant. For each query, we continued to perform
up to 5 rounds of relevance feedback. In each round, 2 positive and 2 negative feedbacks
were provided. This relevance feedback process was also repeated 5 times with 5 different
series of feedbacks. Finally, the average results with one query and in different feedback
rounds were recorded. The retrieval performance was measured in terms of Break-Even-
Point (BEP) (Zhou and Dai 2006; Zhou et al. 2006) of the precision-recall curve. The online
processing time reported is the time required in each method for a query plus the stated
number of feedback rounds. The reported result is an average over 5 × 100 runs for query
only; and an average over 5 × 100 × 5 runs for query plus feedbacks. The offline costs
of constructing the one-dimensional mass estimation and the mapping of 10000 images
were 0.27 and 0.32 seconds, respectively. The multi-dimensional mass estimation and the
corresponding mapping took 1.72 and 5.74 seconds, respectively.

The results are presented in Table 2 where the retrieval performance better than that
conducted in the original space at each round has been boldfaced. The results are grouped
for ease of comparison.

The BEP results clearly show that the MassSpace approach achieves a better retrieval
performance than that using the original space in all three methods MRBIR, Qsim and In-
stR, for one query and all rounds of relevance feedbacks. Paired t -tests with 5 % signifi-
cance level also indicate that the MassSpace approach significantly outperforms each of
the three methods in all experiments, without exception. These results show that the mass
space provides useful additional information that is hidden in the original space.

The results also show that the multi-dimensional mass estimation provides better in-
formation than the one-dimensional mass estimation—MRBIR′′, Qsim′′ and InstR′′ give
better retrieval performance than MRBIR′, Qsim′ and InstR′, respectively; only some ex-
ceptions occur in the higher feedback rounds for InstR′, with minor differences.

The processing time for the MassSpace approach is expected to be longer than each
of the three methods because the number of dimensions in the mass space is significantly
higher than those in the original space, where t = 1000 and u = 67. Despite that, Table 3
shows that MRBIR′′, MRBIR′ and MRBIR all have similar level of runtime.

Figure 8 shows an example of performance for InstR′—BEP increases as t increases
until it reaches a plateau at some t value; and the processing time is linear w.r.t. the number
of dimensions of the mass space, t .
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Table 2 CBIR results (in BEP × 10−2). An algorithm A using one-dimensional and multi-dimensional mass
estimations are denoted as A′ and A′′, respectively. Note that a high BEP is better than a low BEP

MRBIR′′ MRBIR′ MRBIR Qsim′′ Qsim′ Qsim InstR′′ InstR′ InstR

One query 12.65 10.70 9.69 12.38 10.35 7.78 12.38 10.35 7.78

Round 1 16.58 14.24 12.72 19.18 15.46 10.59 13.88 13.33 9.40

Round 2 18.41 16.05 13.90 21.98 17.58 11.81 15.12 14.95 9.99

Round 3 19.69 17.34 14.75 23.67 18.71 12.59 16.19 16.07 10.36

Round 4 20.48 18.20 15.33 24.65 19.50 13.16 16.88 16.93 10.78

Round 5 21.15 19.86 15.71 25.42 19.96 13.55 17.49 17.58 11.05

Table 3 CBIR results (online time cost in seconds)

MRBIR′′ MRBIR′ MRBIR Qsim′′ Qsim′ Qsim InstR′′ InstR′ InstR

One query 0.714 0.785 0.364 0.715 0.822 0.093 0.715 0.822 0.093

Round 1 0.762 0.893 0.696 0.207 0.208 0.035 0.197 0.198 0.026

Round 2 0.763 0.893 0.696 0.228 0.231 0.058 0.200 0.200 0.028

Round 3 0.763 0.893 0.696 0.257 0.259 0.086 0.200 0.200 0.028

Round 4 0.764 0.893 0.696 0.291 0.294 0.122 0.200 0.200 0.028

Round 5 0.764 0.893 0.697 0.335 0.341 0.167 0.200 0.200 0.028

Fig. 8 An example of CBIR
round 5 result: The retrieval
performance and the processing
time as t increases for InstR′

6.2 Regression

In this experiment, we compare support vector regression (Vapnik 2000) that employs the
original space (SVR) with that employs the mapped mass space (SVR′′ and SVR′). SVR is
the ε-SVR algorithm with RBF kernel, implemented by LIBSVM (Chang and Lin 2001).
SVR is chosen here because it is one of the top performing models.

We utilize five benchmark data sets including four selected from UCI repository (Asun-
cion and Newman 2007) and one earthquake data (Simonoff 1996) from www.cs.waikato.ac.
nz/ml/weka/distribution. The data sizes are shown in the second column of Table 4. We only
considered data sets with more than 1000 data points, that contained only real-valued at-
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Table 4 Regression results (the
smaller the better for MSE) Data size MSE (×10−2) W/D/L

SVR′′ SVR′ SVR SVR′′ SVR′

tic 9822 5.56 5.58 5.62 18/0/2 17/0/3

wine_white 4898 1.08 1.21 1.36 20/0/0 20/0/0

quake 2178 2.87 2.86 2.92 17/0/3 18/0/2

wine_red 1599 1.50 1.62 1.62 19/0/1 11/0/9

concrete 1030 0.28 0.33 0.57 20/0/0 20/0/0

Table 5 Regression results (time in seconds)

#Dimension Processing time Factor increase

SVR′′ SVR′ SVR time(SVR′′) time(SVR′) #dimension

tic 85 23.4 26.6 11.9 2.0 2.2 12

wine_white 11 8.2 9.2 4.2 2.0 2.2 91

quake 3 2.5 3.4 1.0 2.5 3.4 333

wine_red 11 1.7 2.6 1.0 1.6 2.5 91

concrete 8 1.2 2.3 0.9 1.3 2.6 125

tributes and that had no missing values. we did this in order to get a result with a higher
confidence than those obtained from small data sets.

In each data set, we randomly sampled two-thirds of the instances for training and
the remaining one-third for testing. This was repeated 20 times and we report the aver-
age result of these 20 runs. The data set, whether in the original space or the mass space,
was min-max normalized before an ε-SVR model was trained. To select optimal param-
eters for the ε-SVR algorithm, we conducted a 5-fold cross validation based on mean
squared error using the training set only. The kernel parameter γ was searched in the range
{2−15,2−13,2−11, . . . ,23,25}; the regularization parameter C in the range {0.1,1,10}, and
ε in the range {0.01,0.05,0.1}. We measured regression performance in terms of mean
squared error (MSE) and runtime in seconds. The runtime reported is the runtime for SVR
only. The total cost of mass estimation (from the training set) and mapping (of training and
testing sets) in the largest data set, tic, was 1.8 seconds for one-dimensional mass estimation,
and 8.5 seconds for multi-dimensional mass estimation. The cost of normalisation and the
parameter search using 5-fold cross-validation was not included in the reported result for all
SVR′′, SVR′ and SVR.

The result is presented in Table 4. SVR′ performs significantly better than SVR in all
data sets in MSE measure; the only exception is in the wine_red data set. SVR′′ performs
significantly better than SVR in all data sets, without exceptions. SVR′′ generally performs
better than SVR′.

Although both SVR′′ and SVR′ take more time to run because each of them runs on the
data with a significantly higher dimension, yet the factor of increase in time (shown in the
last three columns of Table 5) ranges from 1.3 to 3.4 only, when the factor of increase in the
number of dimensions ranges from 12 to over 300. This is because the time complexity in
the key optimisation process in SVR is not dependent on the number of dimensions.
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Table 6 Data characteristics of the data sets in anomaly detection tasks. The percentage in brackets indicates
the percentage of anomalies

Data size #Dimension Anomaly class

Http 567497 3 Attack (0.4 %)

Forest 286048 10 Class 4 (0.9 %) vs class 2

Mulcross 262144 4 2 clusters (10 %)

Smtp 95156 3 Attack (0.03 %)

Shuttle 49097 9 Classes 2, 3, 5, 6, 7 (7 %) vs class 1

Mammography 11183 6 Class 1 (2 %)

Annthyroid 7200 6 Classes 1, 2 (7 %)

Satellite 6435 36 3 Smallest classes (32 %)

6.3 Anomaly detection

This experiment compares MassAD with four state-of-the-art anomaly detectors: isolation
forest or iForest (Liu et al. 2008), a distance-based method ORCA (Bay and Schwabacher
2003), a density-based method LOF (Breunig et al. 2000), and one-class support vector
machine (or 1-SVM) (Schölkopf et al. 2000). MassAD was built with t = 100 and ψ = 256,
the same default settings as used in iForest (Liu et al. 2008), which also employed a
multi-model approach. The parameter settings employed for ORCA, LOF and 1-SVM were
as stated by Liu et al. (2008).

All the methods were tested on the eight largest data sets used by Liu et al. (2008). The
data characteristics are summarized in Table 6, which include one anomaly data generator
Mulcross (Rocke and Woodruff 1996) and the other seven are from UCI repository (Asun-
cion and Newman 2007). The performance was evaluated in terms of averaged AUC (area
under ROC curve) and processing time (a total of training time and testing time) over ten
runs (following Liu et al. 2008).

MassAD and iForest were implemented in Matlab and tested on a Xeon processor ran
at 2.66 GHz. LOF was written in Java in ELKI platform version 0.4 (Achtert et al. 2008);
and ORCA was written in C++ (www.stephenbay.net/orca/). The results for ORCA, LOF
and 1-SVM were conducted using the same experimental setting but on a slightly slower
2.3 GHz machine, the same machine used by Liu et al. (2008).

The AUC values of all the compared methods are presented in Table 7 where the figures
boldfaced are the best performance for each data set. The results show that MassAD using
the multi-dimensional mass estimation achieves the best performance in four data sets, and
close to the best (the difference which is less than 0.03 AUC) in two data sets; MassAD
using the one-dimensional mass estimation achieves the best performance in three data sets,
and close to the best in one data set. iForest performs best in four data sets. The results
are close for these three algorithms because they share many similarities (see Sect. 9 for
details).

Again, the multi-dimensional version of MassAD generally performs better than the one-
dimensional version, with five wins, one draw and two losses. Most importantly, the worst
performance in the Mulcross data set can be easily ‘corrected’ using a better parameter
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Table 7 AUC values for
anomaly detection MassAD iForest ORCA LOF 1-SVM

Mass′′ Mass′

Http 1.00 1.00 1.00 0.36 0.44 0.90

Forest 0.90 0.92 0.87 0.83 0.56 0.90

Mulcross 0.26 0.99 0.96 0.33 0.59 0.59

Smtp 0.91 0.86 0.88 0.87 0.32 0.78

Shuttle 1.00 0.99 1.00 0.55 0.55 0.79

Mammography 0.86 0.37 0.87 0.77 0.71 0.65

Annthyroid 0.75 0.71 0.82 0.68 0.72 0.63

Satellite 0.77 0.62 0.71 0.65 0.52 0.61

Table 8 Runtime (second) for
anomaly detection MassAD iForest ORCA LOF 1-SVM

Mass′′ Mass′

Http 168 18 74 9487 18913 35872

Forest 63 10 39 6995 10853 9738

Mulcross 52 10 38 2512 5432 7343

Smtp 27 4 13 267 540 987

Shuttle 20 3 8 157 368 333

Mammography 21 1 3 4 39 11

Annthyroid 7 1 3 2 9 4

Satellite 13 1 3 9 10 9

setting—by using ψ = 8, instead of 256, the multi-dimensional version of MassAD im-
proves its detection performance from 0.26 to 1.00 in terms of AUC.4

It is also noteworthy that the multi-dimensional MassAD significantly outperforms the
traditional density-based, distance-based and SVM anomaly detectors in all data sets, except
two: one in Annthyroid when compared to ORCA; the poor performance in Mulcross was
discussed earlier. The above observations validate the effectiveness of our proposed mass
estimation on anomaly detection tasks.

Table 8 shows the runtime result. Although MassADwas run on a slightly faster machine,
the result still shows that it has a significant advantage in term of processing time over ORCA,
LOF and 1-SVM. The comparison with iForest is presented in Table 9 with a breakdown
of training time and testing time. Note that one-dimensional MassAD took the same time
as iForest in training, but it only took about one-tenth of the time required by iForest
in testing. On the other hand, the multi-dimensional MassAD took slightly more time than
iForest in training, but it took up to three times the time required by iForest in testing.

The time and space complexities for five anomaly detection methods are given in Ta-
ble 10. The one-dimensional MassAD and iForest have the best time and space com-
plexities due to their ability to use small ψ 
 n and h = 1. Note that the one-dimensional
MassAD (h = 1) is faster by a factor of log(ψ = 256) = 8 which shows up in the test-
ing time—ten times faster than iForest given in Table 9. The training time disadvan-

4Mulcross produces anomaly clusters rather than scattered anomalies. Detecting anomaly clusters are more
effective using a low ψ setting when the multi-dimensional version of MassAD is employed.
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Table 9 Training time and testing time (second) for MassAD and iForest, using t = 100 and ψ = 256

Training time Testing time

MassAD iForest MassAD iForest

Mass′′ Mass′ Mass′′ Mass′

Http 16.2 14.3 14.4 151.8 3.3 59.6

Forest 10.3 8.2 8.6 53.1 2.0 30.8

Mulcross 9.1 7.9 8.1 42.8 2.1 29.4

Smtp 5.4 3.9 3.5 21.9 0.6 9.9

Shuttle 6.1 3.1 2.8 14.1 0.3 5.6

Mammography 8.4 1.3 1.2 12.8 0.1 1.8

Annthyroid 3.1 1.3 1.1 3.4 0.1 1.5

Satellite 6.6 1.2 1.6 5.9 0.0 1.9

Table 10 A comparison of time
and space complexities. The time
complexity includes both training
and testing. n is the given data set
size and u is the number of
dimensions. For MassAD and
iForest, the first part of the
summation is the training time
and the second the testing time

Time complexity Space complexity

MassAD (multi-dimensional) O(t(ψ + n)h) O(tψh)

MassAD (one-dimensional) O(t(ψh+1 + n)) O(tψ)

iForest O(t(ψ + n) · log(ψ)) O(tψ · log(ψ))

ORCA O(un · log(n)) O(un)

LOF O(un2) O(un)

tage, compared to iForest, did not show up because of small ψ . The one-dimensional
MassAD also has an advantage over iForest in space complexity by a factor of log(ψ).
The multi-dimensional MassAD has similar order of worst-case time and space complexities
as iForest, though it might have a larger constant.

In contrast to ORCA and LOF (distance-based and density-based methods), the time com-
plexity (and the space complexity) for both MassAD and iForest are independent of the
number of dimension u.

6.4 Constant time and space complexities

In this section, we show that mass(x,h|D) (in step 4 of Algorithm 3) takes only constant
time, regardless of the given data size n, when the algorithmic parameters are fixed. Table 11
reports the runtime time for sampling (to get a random sample of size ψ from the given data
set—steps 2 and 3 of Algorithm 3) and the runtime for one-dimensional mass estimation—
to construct mass(x,h|D) t times, for five data sets which include the largest and smallest
data sets in regression and anomaly detection tasks.

The results show that the sampling time increased linearly with the size of the given
data set, and it took significantly longer (in the largest data set) than the time to construct
the mass distribution—which was constant, regardless of the given data size. Note that the
training time provided in Table 9 includes both the sampling time and mass estimation time,
and it is dominated by the sampling time for large data sets.

The memory required for each construction of mass(x,h|D) is to store one lookup table
of size ψ which is constant.

The constant time and space complexities apply to multi-dimensional mass estimation
too.
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Table 11 Runtime (second) for
sampling, mass(x,1|D) and
mass(x,3|D), where t = 1000
and ψ = 8

Data size Sampling mass(x,1|D) mass(x,3|D)

Http 567497 138.30 0.33 10.96

Shuttle 49097 16.16 0.39 10.97

COREL 10000 1.23 0.27 11.03

tic 9822 1.09 0.43 11.14

concrete 1030 0.18 0.31 10.95

Fig. 9 Runtime comparison:
One-dimensional mass
estimation versus
multi-dimensional mass
estimation for different values of
h in the COREL data set, where
both are using ψ = 8 and
t = 1000. In this experiment, we
set h to the required value for
multi-dimensional mass
estimation, rather than h = ψ

which was used in all
experiments reported in the
previous sections

6.5 Runtime comparison between one-dimensional and multi-dimensional mass
estimations

In terms of runtime, the comparison so far in the experiments might give the impression that
multi-dimensional mass estimation is worse than one-dimensional mass estimation. In fact,
the opposite is true because the above results are obtained from h = 1 for one-dimensional
mass estimation and h = ψ for multi-dimensional mass estimation. Figure 9 shows the head-
to-head comparison for different h values in the COREL data set. When h increases from
1 to 5, the runtime for the one-dimensional mass estimation increases by a factor of 33. In
contrast, the runtime for the multi-dimensional mass estimation increases by a factor of 1.5
only.

6.6 Summary

The above results in all three tasks show that the orderings provided by mass distributions
deliver additional information about the data that would otherwise hidden in the original
features. The additional information, which accentuates fringe points with a concave func-
tion (or an approximation to a concave function in the case of multi-dimensional mass esti-
mation), improves the task-specific performance significantly, especially in the information
retrieval and regression tasks.

Using Algorithm 5 for the information retrieval and regression tasks, the runtime is ex-
pected to be higher because the new space has much higher dimensions than the original
space (t � u). It shall be noted that the runtime increase (linearly or worse) is solely a char-
acteristic of the existing algorithms used, and is not due to the mass space mapping which
has constant time and space complexities.
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Table 12 A comparison of kernel density estimation and mass estimation. Kernel density estimation requires
two parameter settings: kernel function K(·) and bandwidth hw ; mass estimation has one: h

Kernel density(x) = 1
nhw

∑n
i=1 K(

x−xi
hw

)

mass(x,h) =
{∑n−1

i=1 massi (x,h-1)p(si ), h > 1∑n−1
i=1 mi(x)p(si ), h = 1

We believe that a more tailored approach that better integrates the information provided
by mass (into the C3 component in the formalism) for a specific task can potentially fur-
ther improve the current level of performance in terms of either task-specific performance
measure or runtime. We have demonstrated this ‘direct’ application using Algorithm 6 for
the anomaly detection task, in which MassAD performs equally well or significantly better
than four state-of-the-art methods in terms of task-specific performance measure, and the
one-dimensional mass estimation executes faster than all other methods in terms of runtime.

Why does one-dimensional mapping work when tackling multi-dimensional problems?
We conjecture that if there is no or little interaction between features, then the one-
dimensional mapping will work because the ordering that accentuates the fringe points
for each original dimension making it easy for existing algorithms to exploit. When there
are strong interactions between features, then one-dimensional mapping might not achieve
good results. Indeed, our results in all three tasks show that multi-dimensional mass esti-
mation does perform better than one-dimensional mass estimation in general, in terms of
task-specific performance measures.

The ensemble method for mass estimation usually needs only a small sample to build
each model in an ensemble. In addition, in order to build all t models for an ensemble, tψ

could be more than n when ψ > n/t .
The key limitation of the one-dimensional mass estimation is its high cost when a high

value of h is applied. This can be avoided by implementing it using a tree structure rather
than a lookup table, as we have done using Half-Space Trees which reduces the time com-
plexity to O(th(ψ + n)) from O(t(ψh+1 + n)).

7 Relation to kernel density estimation

A comparison of mass estimation and kernel density estimation is provided in Table 12.
Like kernel estimation, mass estimation at each point is computed through a summation

of a series of values from a mass base function mi(·), equivalent to a kernel function K(·).
The two methods differ in the following ways:

• Aim: Kernel estimation is aimed to do probability density estimation; whereas mass esti-
mation is to estimate an order from the core points to the fringe points.

• Kernel function: While kernel estimation can use different kernel functions for probability
density estimation; we doubt that mass estimation requires a different base function for
two reasons. First, a more sophisticated function is unlikely to provide a better ordering
than a simple rectangular function. Second, the rectangular function keeps the computa-
tion simple and fast. In addition, a kernel function must be fixed (i.e., having user-defined
values for its parameters); e.g., the rectangular kernel function has fixed width or fixed per
unit size. But the rectangular function used in mass has no parameter and no fixed width.

• Sample size: Kernel estimation or other density estimation methods require a large sample
size in order to estimate the probability accurately (Duda et al. 2001). Mass estimation



Mach Learn

Table 13 CBIR results (in BEP × 10−2)

(a) Compare with QsimK (using kernel density estimation), QsimD (using data depth), QsimLD (using
local data depth)

Qsim′′ Qsim′ QsimK QsimD QsimLD Qsim

One query 12.38 10.35 2.90 10.39 7.60 7.78

Round 1 19.18 15.46 3.01 15.02 10.95 10.59

Round 2 21.98 17.58 2.74 17.16 12.50 11.81

Round 3 23.67 18.71 2.54 18.37 13.42 12.59

Round 4 24.65 19.50 2.42 19.20 14.03 13.16

Round 5 25.42 19.96 2.34 19.74 14.36 13.55

(b) Compare with InstRK , InstRD and InstRLD

InstR′′ InstR′ InstRK InstRD InstRLD InstR

One query 12.38 10.35 2.90 10.39 7.60 7.78

Round 1 13.88 13.33 2.91 13.05 8.71 9.40

Round 2 15.12 14.95 2.55 14.73 9.68 9.99

Round 3 16.19 16.07 2.25 15.98 10.28 10.36

Round 4 16.88 16.93 2.06 16.82 10.78 10.78

Round 5 17.49 17.58 1.99 17.50 11.17 11.05

using mass(x,h|D) needs only a small sample size in an ensemble to accurately estimate
the ordering.

Here we present the results using a Gaussian kernel density estimation, replacing the
one-dimensional mass estimation, using the same subsample size in an ensemble approach.
The bandwidth parameter is set to be the standard deviation of the subsample; and all the
other parameters are the same.

The results for information retrieval and anomaly detection are provided in Tables 13
and 15. Compared to mass, density performed significantly worse in information retrieval
tasks in all experiments using Qsim and InstR, denoted as QsimK and InstRK , respec-
tively. They were even worse than those run in the original space. In anomaly detection,
DensityAD, which used a Gaussian kernel density estimation, performed significantly
worse than MassAD in six out of eight data sets in the anomaly detection tasks, and better
in the other two data sets.

8 Relation to data depth

There is a close relationship between the proposed mass and data depth (Liu et al. 1999):
they both delineate the centrality of a data cloud (as opposed to compactness in the case of
the density measure). The properties common to both measures are: (a) the centre of a data
cloud has the maximum value of the measure; (b) an ordering from the centre (having the
maximum value) to the fringe points (having the minimum values).

However, there are two key differences. First, not until recently (see Agostinelli and
Romanazzi 2011) data depth always models a given data with one centre, regardless whether
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Table 14 CBIR results (online time cost in seconds)

(a) Compare with QsimK , QsimD , QsimLD

Qsim′′ Qsim′ QsimK QsimD QsimLD Qsim

One query 0.715 0.822 0.820 0.840 0.829 0.093

Round 1 0.207 0.208 0.224 0.237 0.226 0.035

Round 2 0.228 0.231 0.279 0.288 0.276 0.058

Round 3 0.257 0.259 0.348 0.355 0.343 0.086

Round 4 0.291 0.294 0.435 0.438 0.425 0.122

Round 5 0.335 0.341 0.547 0.543 0.531 0.167

(b) Compare with InstRK , InstRD and InstRLD

InstR′′ InstR′ InstRK InstRD InstRLD InstR

One query 0.715 0.822 0.820 0.840 0.829 0.093

Round 1 0.197 0.198 0.203 0.215 0.206 0.026

Round 2 0.200 0.200 0.205 0.216 0.206 0.028

Round 3 0.200 0.200 0.206 0.217 0.207 0.028

Round 4 0.200 0.200 0.207 0.218 0.208 0.028

Round 5 0.200 0.200 0.207 0.218 0.208 0.028

Table 15 Anomaly detection:
MassAD vs DensityAD and
DepthAD (AUC)

MassAD DensityAD DepthAD

Mass′′ Mass′ Depth LDepth

Http 1.00 1.00 0.99 0.98 0.52

Forest 0.90 0.92 0.70 0.85 0.49

Mulcross 0.26 0.99 1.00 0.99 0.93

Smtp 0.91 0.86 0.59 0.92 0.93

Shuttle 1.00 0.99 0.90 0.87 0.72

Mammography 0.86 0.37 0.27 0.36 0.79

Annthyroid 0.75 0.71 0.80 0.58 0.86

Satellite 0.77 0.62 0.61 0.59 0.69

the data is unimodal or multi-modal; whereas mass can model both unimodal and multi-
modal data by setting h = 1 or h > 1. Local data depth (Agostinelli and Romanazzi 2011)
has a parameter (τ ) which allows it to model multi-modal data as well as unimodal data.
However, the performance of local data depth appears to be sensitive to the setting of τ (see
a discussion of the comparison below). In contrast, a single setting of h in mass estimation
had produced good task-specific performance in three different tasks in our experiments.

Second, mass is a simple and straightforward measure, and has efficient estimation meth-
ods based on axis-parallel partitions only. Data depth has many different definitions, depend-
ing on the construct used to define depth. The constructs could be Mahalanobis, Convex
Hull, simplicial, halfspace and so on (Liu et al. 1999), all of which are expensive to compute
(Aloupis 2006)—this has been the main obstacle in applying data depth to real applications
in multi-dimensional problems. For example, Ruts and Rousseeuw (1996) compute the con-
tour of data depth of a data cloud for visualization, and employ depth as the anomaly score to
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identify anomalies. Because of its computational cost, it is limited to small data size only. In
contrast to the axis-parallel partitions used in mass estimation, halfspace data depth5 (Tukey
1975), for example, requires to consider all halfspaces which demands high computational
time and space.

To provide a comparison, we replace the one-dimensional mass estimation (defined
in Algorithm 3) with data depth (defined by simplicial depth Liu et al. 1999) and local
data depth (defined by simplicial local depth Agostinelli and Romanazzi 2011). We repeat
the experiments by employing both the data depth and local data depth implementation
in R by Agostinelli and Romanazzi (2011) (accessible from r-forge.r-project.org/projects/
localdepth). Both data depths are carried out in the same approach by using sample size
ψ to build each of the t models in an ensemble.6 The number of simplices used to do the
empirical estimation is set to 10000 for all runs. Default settings are used for all other pa-
rameters (i.e., the membership of a data point in simplices is evaluated in the “exact” mode
rather than the approximate mode, and the tolerance parameter is fixed to 10−9). Note that
local depth uses an additional parameter τ to select candidate simplices, where a simplex
having volume larger than τ is excluded from consideration. As the performance of local
depth is sensitive to τ , we employ the quantile order of τ of 10 %, the low value of the range
10 %–30 % suggested by Agostinelli and Romanazzi (2011). Because both data depth and
local data depth are estimated using the same procedure, their runtimes are the same.

The task-specific performance result for information retrieval is provided in Table 13.
Note that local data depth could produce worse retrieval results than those in the original
feature space. Data depth performed close to that achieved by the one-dimensional mass
estimation, but it was significantly worse than the multi-dimensional mass estimation.

Figure 10 shows a scale up test in the information retrieval task using Qsim with one
query and feedback round 5. It is interesting to note both mass and data depth performed
better using small rather than large subsampling size. As expected, KDE produced better
results with increasing subsampling sizes; but even with ψ = 8196 in the COREL data set
of 10000 instances, KDE still performed the worst compared to mass and data depth.

Table 15 shows the result in anomaly detection. Data depth performed worse than both
versions of mass estimation in six out of eight data sets; local data depth performed worse
than multi-dimensional mass estimation in five out of eight data sets; local data depth versus
one-dimensional mass estimation have four wins and four losses. Note that though local data
depth achieved the best result in two data sets, it also produced the worst in three data sets
which were significantly worse than others (in http, forest and shuttle).

The runtime results are provided in Tables 14 and 16. These results do not reveal the time
complexities of the algorithms because of small ψ (and the CBIR results do not include the
offline time cost). We conducted a scale up test using the Mulcross data set by increasing

5Zuo and Serfling (2000) define halfspace data depth (HD) of a point x in Ru w.r.t. a probability measure P

on Ru as the minimum probability mass carried by any closed halfspace containing x:

HD(x;P) = inf
{
P(H) : H a closed halfspace, x ∈ H

}
, x ∈ Ru

In the language of data depth, the one-dimensional mass estimation may be interpreted as a kind of average
probability mass of halfspaces containing x, weighted by mass covered by halfspace. But the one-dimensional
mass estimation defined in (1) allows mass to be computed by a summation of n − 1 components from the
given data set of size n, whereas data depth does not. In addition, our implementation of multi-dimensional
mass estimation using a tree structure with axis-parallel splits cannot be interpreted using any of the constructs
employed by data depth.
6Our experiments indicate that using the entire data set to estimate data depth or local data depth produces
worse results than those using an ensemble approach. This result is shown in Appendix.
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Fig. 10 Scale up test in information retrieval using Qsim. Subsampling data size is increased from ψ = 8
to ψ = 8196 in the COREL image data set containing 10000 instances. The same experimental setting as
reported in Sect. 6.1 is used

Table 16 Anomaly detection:
MassAD vs DensityAD and
DepthAD (time in seconds)

MassAD DensityAD DepthAD

Mass′′ Mass′ Depth LDepth

Http 168 18 17 38 38

Forest 63 10 10 31 31

Mulcross 52 10 10 31 31

Smtp 27 10 10 26 26

Shuttle 20 4 4 25 25

Mammography 21 3 3 24 24

Annthyroid 7 1 1 23 23

Satellite 13 1 1 23 23

the subsampling size. Using the runtime at ψ = 8 as the base, runtime ratio is computed
for all other subsampling sizes. The result is presented in Fig. 11. It shows that data depth
or local data depth had the worst runtime ratio which increased its runtime 58 times when
ψ was increased by a factor of 512. The multi-dimensional mass estimation had the best
runtime ratio of 6.6, followed by KDE (24) and one-dimensional mass estimation (34) when
ψ ratio = 512. The actual runtimes in seconds were 126.6 (Mass′′), 166.7 (KDE), 239.4
(Mass′), and 600.5 (Data Depth). This result is not surprising because the multi-dimensional
mass estimation has time complexity O(ψ), KDE has O(ψ2), the one-dimensional mass
estimation has O(ψh+1), and data depth using simplices has O(ψ4) (Aloupis 2006).

9 Other work based on mass

iForest (Liu et al. 2008) and MassAD share some common features: Both are ensem-
ble methods which build t models, each from a random sample of size ψ , and they both
combine the outputs of the models through averaging during testing. Although iForest
(Liu et al. 2008) employs path length—an instance traverses from the root of a tree to its
leaf—as the anomaly score, we have shown that the path length used in iForest is in
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Fig. 11 Scale up test using the
Mulcross data set. The base
subsampling data size (ψ ) is 8;
doubling at each step until
ψ = 4096. Each point in the
graph is an average over 10 runs

fact a proxy to mass (see Sect. 4.1 for details). In other words, iForest is a kind of
mass-based method—that is why MassAD and iForest have similar detection accuracy.
Multi-dimensional MassAD has the closest resemblance to iForest because of the use
of tree. The key difference is that MassAD is just one application of the more fundamental
concept of mass introduced here, whereas iForest is for anomaly detection only. In terms
of implementation, the key difference is how the cut-off value is selected at each internal
node of a tree: iForest selects the cut-off value randomly whereas a Half-Space Tree
selects a mid point deterministically (see step 5 in Algorithm 2).

How easily can the proposed formalism be applied to other tasks? In addition to the
tasks we have applied in this paper, we have applied mass estimation ‘directly’, using the
proposed formalism, to solve problems in content-based multimedia information retrieval
(Zhou et al. 2012) and clustering (Ting and Wells 2010). While the ‘indirect’ application
is straightforward which simply uses the existing algorithms in the mass space, a ‘direct’
application requires a complete rethink of the problem and produces a totally different algo-
rithm. However, this rethink of a problem in terms of mass often results a more efficient and
sometimes more effective algorithm than existing algorithms. We provide a brief description
of the two applications in the following two paragraphs.

In addition to the mass-space mapping we have shown here (i.e., components C1 and C2),
Zhou et al. (2012) present a content-based information retrieval method that assigns a weight
(based on iForest, thus, mass) to each new mapped feature w.r.t. a query; and then it ranks
objects in the database according to their weighted average feature values in the mapped
space. The method also incorporates relevance feedback which modifies the ranking based
on the feedbacks through reweighted features in the mapped space. This method forms the
third component of the formalism stated in Sect. 5. This ‘direct’ application of mass has been
shown to be significantly better than the ‘indirect’ approach we have shown in Sect. 6.1, in
terms of both task-specific measure and runtime (Zhou et al. 2012). It is interesting to note
that, unlike existing retrieval systems which rely on a metric, the new mass-based method
does not employ a metric—it is the first information retrieval system that does not use a
metric, as far as we know.

Ting and Wells (2010) use a variant of Half-Space Trees we have employed here and ap-
ply mass directly to solve clustering problems. It is the first mass-based clustering algorithm,
and it is unique because it does not use any distance and density measure. In this task, like
in the case of anomaly detection, only two components are required. After building a mass
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model (in the C1 component), the C3 component consists of linking instances with non-
zero mass connected by the mass model and making each group of connected instances a
separate cluster; and all other unconnected instances are regarded as noise. This mass-based
clustering algorithm has been shown to perform equally well as DBSCAN (Ester et al. 1996)
in terms of clustering performance, but it runs orders of magnitude faster (Ting and Wells
2010).

The earlier version of this paper (Ting et al. 2010) establishes the properties of mass esti-
mation in the one-dimensional setting only; and use it in all three tasks. This paper extends
one-dimensional mass estimation to multi-dimensional mass estimation using the same ap-
proach as described by Ting and Wells (2010), and implements multi-dimensional mass
estimation using Half-Space Trees. This paper reports new experiments using the multi-
dimensional mass estimation, and shows the advantage of using multi-dimensional mass
estimation over one-dimensional mass estimation in the three tasks reported earlier (Ting
et al. 2010). These related works show that mass estimation can be implemented in different
ways using tree-based or non-tree-based methods.

10 Conclusions and future work

This paper makes two key contributions. First, we introduce a base measure, mass, and
delineate its three properties: (i) a mass distribution stipulates an ordering from core points
to fringe points in a data cloud; (ii) this ordering accentuates the fringe points with a concave
function—a property that can be easily exploited by existing algorithms to improve their
task-specific performance; and (iii) the mass estimation methods have constant time and
space complexities. Density estimation has been the base modelling mechanism employed
in many techniques thus far. Mass estimation introduced here provides an alternative choice,
and it is better suited for many tasks which require an ordering rather than probability density
estimation.

Second, we present a mass-based formalism which forms a basis to apply mass to dif-
ferent tasks. The three tasks (i.e., information retrieval, regression and anomaly detection)
to which we have successfully applied are just examples of its application. Mass estimation
has potentials in many other applications.

There are potential extensions to the current work. First, the algorithms for the three
tasks and the formalism can be improved or extended to include more tasks. Second, be-
cause the purposes and their properties differ, mass estimation is not intended to replace
density estimation—it is thus important to identify areas in which each is best suited for.
This will ascertain (i) areas in which density has been a mismatch, unbeknown up to now,
and (ii) areas in which mass estimation is weak. Third, the proposed approach to multi-
dimensional mass estimation is an approximation and it does not guarantee concavity. It
will be interesting to explore a version that has such a guarantee and to examine whether it
will further improve the task-specific performance in all three tasks reported here. Fourth,
the current implementation of multi-dimensional mass estimation using Half-Space Trees
limits its applications to low dimensional problems because it suffers the same problem as in
all other grid oriented methods. We will explore non-grid oriented implementations of mass
which have potential to tackle high dimensional problems more effectively than existing
density-based and distance-based methods.

The Matlab source codes of both one-dimensional and multi-dimensional mass
estimations are available at http://sourceforge.net/projects/mass-estimation/.
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Appendix: Anomaly detection using data depth that builds a single model from the
entire data set

This appendix provides the results in anomaly detection task where data depth and local
data depth built a single model from the entire data set, i.e., DepthADs . This is in contrast
to DepthAD which employed an ensemble approach in Sect. 8.

Table 17 shows that MassAD generally has higher AUC than DepthADs which em-
ployed either data depth or local data depth. The only exception is the Annthyroid data set.
Note that these results are generally worse than those employing an ensemble approach,
reported in Table 15.

Table 17 AUC values for
anomaly detection, comparing
MassAD with DepthADs

(which employed either data
depth or local data depth) that
build a single model from the
entire data set

MassAD DepthADs

Mass′′ Mass′ Depth LDepth

Http 1.00 1.00 0.84 0.50

Forest 0.90 0.92 0.50 0.55

Mulcross 0.26 0.99 0.88 0.61

Smtp 0.91 0.86 0.86 0.76

Shuttle 1.00 0.99 0.51 0.70

Mammography 0.86 0.37 0.73 0.62

Annthyroid 0.75 0.71 0.59 0.85

Satellite 0.77 0.62 0.50 0.70
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that stretches this fundamental limit to an extent that dealing with millions of data can now
be done easily and quickly. We provide an asymptotic analysis of the new density estimator
and verify the generality of the method by replacing existing density estimators with the
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classifiers, representing three different data mining tasks of clustering, anomaly detection and
classification. Our empirical evaluation results show that the new density estimation method
significantly improves their time and space complexities, while maintaining or improving
their task-specific performances in clustering, anomaly detection and classification. The new
method empowers these algorithms, currently limited to small data size only, to process big
data—setting a new benchmark for what density-based algorithms can achieve.

Keywords Density estimation · Density-based algorithms

1 Introduction

Density estimation is ubiquitously applied to various tasks such as clustering, classification,
anomaly detection and information retrieval. Despite its pervasive use (‘estimation of densi-
ties is a universal problem of statistics’ [36]), there are no efficient density estimation methods
thus far. Most existing methods such as kernel density estimator (KDE) and k-nearest neigh-
bour (k-NN) density estimator cannot be applied to problems with big data. This paper is
motivated to introduce the first efficient density estimation method for big data. We show that
two existing density-based algorithms for clustering and anomaly detection, when employing
the new density estimator, set a new runtime benchmark that is orders of magnitude faster.
For example, the clustering algorithm now takes only hours instead of more than one month
to complete a task involving one million of instances, after the existing density estimator is
replaced with the new one.

We make five contributions in this paper:

1. Propose a new density estimation method which has a significant advantage over existing
methods in terms of time and space complexities.

2. Establish the asymptotic behaviour of the method through a bias-variance analysis.
3. Verify the generality of the method by replacing existing density estimators with the new

one in three current density-based algorithms.
4. Significantly simplify and speed up the two current algorithms in anomaly detection and

clustering tasks using set-based definitions instead of the common point-based defini-
tions.

5. Introduce the first Bayesian classifier with constant training time complexity in the num-
ber of instances. The proposed Bayesian classifier estimates the multidimensional like-
lihood directly from the training data, unlike most existing Bayesian classifiers which
estimate single-dimensional likelihood.

The new density estimation method distinguishes itself from existing methods by:

• Employing no distance measures in the density estimation process.
• Having constant space complexity and average case sub-linear time complexity in the

number of instances in unsupervised learning tasks and constant training time complexity
in the number of training instances in supervised learning tasks. Thus, it can be applied
to big data in which current methods such as kernel and k-NN density estimators are
infeasible because they are expensive to compute.

Three existing density estimators are presented in Sect. 2, in order to contrast with the
new density estimator we introduce in Sect. 3. We analyse the error produced by the new
estimator by a bias-variance analysis and provide a comparison of the estimation results
between the new estimator and KDE in Sect. 4. Sections 5 and 6 describe how the new
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estimator can replace the existing density estimators in three current state-of-the-art density-
based algorithms and their empirical evaluation results, respectively. A discussion of the
related issues and the conclusions are provided in the last two sections.

2 Density estimation

This section describes probably the three most commonly used density estimation methods,
namely KDE, k-nearest neighbour density estimator and ε-neighbourhood density estimator.

2.1 Kernel density estimator

Let x be an instance in a d-dimensional space Rd . The KDE defined by a kernel function
K (·) and bandwidth b is given as follows [29]:

f̄KDE(x) = 1

nbd

n∑

i=1

K

(
x − xi

b

)

The difference x − xi requires some form of distance measure, and n is the number of
instances in the given data set D. An example of K (·), as a rectangular function, is given as
follows:

K (x) =
{ 1

2 if |x| < 1

0 otherwise.

2.2 k-NN density estimator

A k-NN density estimator can be expressed as follows [30]:

f̄kNN(x) = |N (x, k)|
n

∑
x′∈N (x,k) distance(x, x′)

where N (x, k) is the set of k nearest neighbours to x, and the search for nearest neighbours
is conducted over D of size n.

2.3 ε-Neighbourhood density estimator

The ε-neighbourhood density estimator [12] is defined as follows:

f̄ε(x) = |Nε(x)|
nε

where Nε(x) = {x′ ∈ D|distance(x, x′) ≤ ε}.
All the three density estimators have O(n2) time complexity and O(n) space complexity in

order to estimate the densities of n instances. Although there are various indexing schemes to
speed up the search for nearest neighbour in order to aid the k-NN and ε-neighbourhood den-
sity estimators, they are not satisfactory in terms of dealing with high-dimensional problems
and large data sets. We will provide further discussion of this issue in Sect. 7.
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3 Density estimator based on mass

A recently introduced base measure called mass [35] has demonstrated its wide application
to solve various data mining tasks such as regression, information retrieval, clustering and
anomaly detection, including one in data stream [31,34,35].

Because mass is more fundamental than density, we show in this paper that a density
estimator can be constructed from mass. The key advantage of mass is that it can be computed
very quickly. The new density estimator based on mass (DEMass) inherits this advantage
and executes significantly faster than existing density estimators such as KDE, k-NN and
ε-neighbourhood. It raises the capability of density-based algorithms to handle big data to a
new high level.

A mass base function is defined as follows by [34]:

m(T (x)) =
{

m if xis in a region ofT (·),
0 otherwise,

where T (·) is a function which subdivides the feature space into non-overlapping regions
based on the given data set D and m is the number of samples in a region of T (x) in which
x falls into.

Ting and Wells [34] show that mass can also be effectively estimated using data subsets
Di ⊂ D(i = 1, . . . , t) and its associated Ti (x|Di ), where |Di | = ψ � n. Each Di is sampled
without replacement from D. The mass estimated using sub-samples is defined as follows:

mass(x) = 1

t

t∑

i=1

m(Ti (x|Di )).

We now introduce the new density estimators based on mass (DEMass) and describe its
implementation in the next two subsections.

3.1 DEMass

Once mass is estimated, density can be estimated as a ratio of mass and volume. Thus,
the new density estimators based on mass functions m(T (x)) and m(Ti (x|Di )) are defined,
respectively, as:

fm(x) = m(T (x))
nv

. (1)

f̄m(x) = 1

t

t∑

i=1

m(Ti (x|Di ))

ψvi
. (2)

where v and vi are the volumes of regions T (x) and Ti (x|Di ), respectively.
We use the term DEMass to refer to the new density estimator constructed from Ti (x|Di )

in the rest of this paper. DEMass has two key differences/advantages when compared to the
one based on a kernel method, k-NN or ε-neighbourhood:

• f̄m is estimated from tψ instances only which are significantly smaller than D in a large
data set. It sums over t number of randomly generated regions, whereas f̄KDE sums over
n number of instances in D, and f̄kNN and f̄ε require a search on the entire data set. For
a large data set, f̄ is prohibitively expensive to compute in these three methods.1

1 While there are ways to reduce the computational cost of KDE, k-NN and ε-neighbourhood, they are usually
limited to low-dimensional problems or incur significant preprocessing cost. See Sect. 7 for a discussion.
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• f̄m needs no distance measures.

3.2 Implementation

Mass estimation can be implemented in different ways [31,34,35]. We use the implementation
of T (·|D) as described by [34] using a binary tree (called h:d-T rees by [34]) as the basis to
build density estimator f̄m. Algorithm 1 generates t trees from a given data set D. Algorithm
2 generates a single tree using a subset D ⊂ D, where |D| = ψ .

When T (·|D) is implemented as a binary tree, the volumes of regions in T (·|D) are
controlled by a parameter h which defines the level of binary subdivision. Let �i be a
workspace in Rd which envelops Di , and �i has its length along each dimension j as
�i j = max(xk j |xk ∈ Di )− min(xk j |xk ∈ Di ). The workspace �i is adjusted to become �i

using a random perturbation conducted as follows. For each dimension j , a split point v j is
chosen randomly within the range�i j . Then, the new range�i j along dimension j is defined
as [v j − r, v j + r ], where r = max(v j − min j (�i ),max j (�i ) − v j ). The new ranges on
all dimensions define the adjusted workspace �i for the tree-building process. This random
initialisation of the workspace is done in line# 5 of Algorithm 1.

A subset Di is constructed by sampling ψ instances without replacement from D. It is
used to construct Ti (·). If there are not enough instances to sample, all the instances are used
(i.e.ψ = n, ifψ ≥ n). The random adjustment of the work space as described earlier ensures
that no two trees are identical even if they are constructed from the same set of instances.
The random sampling is done in line# 4 of Algorithm 1.

The dimension to split is selected from a randomised set of d dimensions in a round-robin
manner at each level of a tree. At each level, the workspace is divided into two equal-volume
half-spaces by splitting at mid-point of the selected dimension. The process is then repeated
recursively on each non-empty half-space until the maximum height (h × d) is reached.
Hence, each path from the root to a leaf has h × d nodes such that each of the d attributes
appears exactly h times.

Each Ti (·|Di ) is constructed within workspace �i , resulting in potentially 2hd hyper-
rectangular regions where every region has an equi-width δxi j = �i j/2h on each dimension
j and a volume vi = δxi1 × · · · × δxid . For example, in a one-dimensional space with
workspace�i derived from Di and h = 3, Ti (·|Di ) subdivides the workspace into 23 regions.
We use Ti to denote T h

i , unless h is required in the context, and Ti is built from Di , for
each i .

Let � = h × d , and mk be the mass of region k. There is a total of 2� regions which have

a total mass: |D| = ∑2�
k=1 mk , where mk = m(T (x|D)), and x is in region k of T .

Our implementation reduces the number of regions generated, usually less than 2hd , for
ψ � n. At each node, if one of the two child nodes is empty, the range of the node is
reduced to the range of the non-empty child node instead of creating the empty node (line#
7–12 in Algorithm 2). This avoids creating unnecessary empty regions and reduces memory
requirement.

The height of each tree is hd . At each level of a tree, each instance in D has to be assigned
to either of the two child nodes. Thus, the time complexity of constructing t trees is O(thdψ).

There are a total of min(2hd , ψ) leaf nodes in each tree. In general,ψ < 2hd with moderate
d and h. Thus, the space complexity is O(tdψ + n) during construction. After the trees are
built, the data set is discarded, yielding O(tdψ).

To estimate the density of a given instance x, only these trees are used according to Eq. (2).
In the next section, we will show that the bias between f̄m(x) and the true probability

density function pd(x) converges asymptotically through a bias-variance analysis.
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Algorithm 1 : BuildTrees(D, t, ψ, h)
Inputs: D - input data with d attributes, t - number of trees, ψ - sub-sampling size, h - number of times an
attribute is employed in a path.
Output: F - a set of t h:d-T rees

1: Max Height Limit ← h × d
2: Initialise F
3: for i = 1 to t do
4: D ← sample(D, ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: A ← Randomised list of d attributes.
7: F ← F ∪ SingleTree(D,min,max, 0)
8: end for

Algorithm 2 : SingleTree(D,min,max, �)
Inputs: D - input data, min & max - arrays of minimum and maximum values for each of the d attributes
that define a work space, � - current height level.
Output: an h:d-T rees

1: Initialise Node(·)
2: while (� < Max Height Limit) do
3: q ← next Attribute(A, �) {Retrieve an attribute from A based on height level.}
4: midq ← (maxq + minq )/2
5: Dl ← f ilter(D, q < midq )
6: Dr ← f ilter(D, q ≥ midq )
7: if (|Dl | = 0 ) or (|Dr | = 0) then {Reduce range for single-branch node.}
8: if (|Dl | > 0 ) then maxq ← midq
9: else minq ← midq
10: end if
11: � ← �+ 1
12: continue at the start of while loop
13: end if
14: {Build two nodes: Le f t and Right as a result of a split into two equal-volume half-spaces.}
15: temp ← maxq ; maxq ← midq
16: Le f t ← SingleTree(Dl ,min,max, �+ 1)
17: maxq ← temp; minq ← midq
18: Right ← SingleTree(Dr ,min,max, �+ 1)
19: terminate while loop
20: end while
21: return Node(Le f t, Right, Spli t Att ← q, Spli tV alue ← midq , Size ← |D|)

4 Error analysis through bias-variance decomposition

The DEMass f̄m(x) can be thought of as a random variable because of its dependence on D
and its random sub-samples Di (i = 1, . . . , t). Accordingly, we analyse mean squared error
(MSE) of f̄m(x) from its true probability density pd(x). It is defined as:

MSE( f̄m(x)) = E
[{ f̄m(x)− pd(x)}2]

where the expectation E[·] is taken over the distribution of f̄m(x). This is rewritten by
introducing the expectation of f̄m(x): E[ f̄m(x)] as follows [29]:

MSE( f̄m(x)) = {
E[ f̄m(x)] − pd(x)

}2 + E
[{ f̄m(x)− E[ f̄m(x)]}2]

The first term on the rhs is called ‘square bias ’ and the second ‘variance’. We evaluate
the magnitude of each of these two terms in the following.
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To simplify notations for the rest of the paper, we have used Ti (x) to denote Ti (x|Di ) and
p(Ti (x)) to denote p(xk ∈ Ti (x)| xk ∈ Di ).

Let ci be the centre of a region of Ti (x) where each element ci j of ci is a middle point of
the interval on each dimension j . The second-order Taylor approximation of pd(x) around
ci for Ti (x) is given as:

pd(x)|ci ∈Ti (x) ≈ pd(ci )+ (x − ci )
T∇ pd(x)|x=ci

+1

2
{(x − ci )

T∇}2 pd(x)|x=ci , (3)

where ∇ = [∂/∂x1, . . . , ∂/∂xd ]T.
Note that m(Ti (x)) follows a binomial distribution2 B(ψ, p(Ti (x))). Therefore, E[ f̄m(x)]

is expressed by substituting E[m(Ti (x))] = ψp(Ti (x)) in Eq. (2).

E[ f̄m(x)] = 1

t

t∑

i=1

E[m(Ti (x))]
ψvi

= 1

t

t∑

i=1

p(Ti (x))

vi

= 1

t

t∑

i=1

1

vi

∫

Ti (x)

pd(x∗)dx∗. (4)

Accordingly, the square bias is evaluated as follows by applying Eq. (3) and the fact that
the integral of an odd function over [ci j − δx j/2, ci j + δx j/2] for each dimension j is zero.

{
E[ f̄m(x)] − pd(x)

}2

≈
[

1

t

t∑

i=1

{
1

24

d∑

j=1

∂2 pd(x)

∂x2
j

∣∣∣∣
x=ci

δx2
i j − (x − ci )

T∇ pd(x)|x=ci

−1

2
{(x − ci )

T∇}2 pd(x)|x=ci

}

ci ∈Ti (x)

]2

≤
[

1

t

t∑

i=1

{
1

24

∣∣∣∣
d∑

j=1

∂2 pd(x)

∂x2
j

∣∣∣∣
x=ci

∣∣∣∣�
2
i j 2

−2h +
d∑

j=1

∣∣∣∣
∂pd(x)
∂x j

∣∣∣∣
x=ci

∣∣∣∣�i j 2
−h

+1

2

d∑

j=1

d∑

k=1

∣∣∣∣
∂2 pd(x)
∂x j∂xk

∣∣∣∣
x=ci

∣∣∣∣�i j�ik2−2h
}

ci ∈Ti (x)

]2

= O(4−h)

This result shows that the square bias diminishes as level h increases, i.e., as the size of the
regions decreases. Though this analysis uses the second-order approximation of pd(x), the
result using the higher-order approximation is the same since the first-order term dominates
in the above formula.

2 The implementation of T (·) used in this paper is a tree-based nonparametric method. The binomial distrib-
ution is required for the error analysis only.
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Because m(Ti (x)) follows the binomial distribution B(ψ, p(Ti (x))), the variance of
m(Ti (x)) is:

var[m(Ti (x))] = ψp(Ti (x))(1 − p(Ti (x))).

In concert with Eq. (2), the variance of f̄m(x) is represented as follows:

E
[{ f̄m(x)− E[ f̄m(x)]}2]

= 1

t2

t∑

i=1

p(Ti (x))(1 − p(Ti (x)))

ψv2
i

= 1

t2

t∑

i=1

1

ψv2
i

∫

Ti (x)

pd(x∗)dx∗
(

1 −
∫

Ti (x)
pd(x∗)dx∗

)
.

Using the similar calculus as applied to the square bias, we obtain the variance as follows
where ci is a centre of Ti (x).

E
[{ f̄m(x)− E[ f̄m(x)]}2]

≈ 1

t2

t∑

i=1

1
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= O(2dh)

This result indicates that the variance increases when level h increases. Also, the result
does not change even if we use the higher-order approximation because the term pd(ci )/vi

dominates in the above formula.
The property of DEMass, revealed from this error analysis, is similar to that of the con-

ventional KDE which shows a bias-variance trade-off—the bias decreases as the kernel
bandwidth b decreases, but this increases the variance, and the reverse is true if the kernel
bandwidth is increased [29]. The parameter k in k-NN density estimator has the same effect.

In conclusion, DEMass has a comparable estimation of density with the KDE if both trade-
off bias and variance are equally well, and it is indeed the case in practice. Figure 1 shows
the estimation result of a normal distribution using KDE and DEMass. It demonstrates that
DEMass produces similar result to that generated by KDE, for different data sizes. Smoothing
can be applied by increasing b for KDE or decreasing h for DEMass which produces the
estimation results as shown in Fig. 2. The parameters used for DEMass are the following:
t = 1,000 and ψ = n when n = 10, 100; and ψ = 1,000 when n = 1,000,000.

Note that in either setting shown in Figs. 1 and 2, the estimations of both KDE and DEMass
approach the true distribution as the number of instances increases.
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KDE ( b = 0 .1) DEMass ( h = 5)
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Fig. 1 Example estimations of Kernel density estimator (with Gaussian kernel) using b = 0.1 and DEMass
using h = 5 for different data sizes, n = 10, 100, 1,000,000. The true data distribution is a normal distribution
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Fig. 2 Example estimations of Kernel density estimator (with Gaussian kernel) using b = 0.3 and DEMass
using h = 3 for the same data used in Fig. 1

5 Using DEMass in existing density-based algorithms

This section describes how DEMass can be applied to three current density-based algorithms,
DBSCAN [12], LOF [6] and Bayesian classifiers, in place of their existing density estimators.
DBSCAN, LOF and Bayesian classifiers are one of the best algorithms for clustering, anomaly
detection and classification, respectively.

Using DEMass automatically carries the two advantages mentioned in Sect. 3: (i) the
estimation requires no distance measures; thus, it completely saves the cost of distance
calculations for every pair of instances and (ii) DEMass enables small samples to construct
the required regions T (·|D), overcoming the key limitation of DBSCAN and LOF in handling
big data. We will discuss further advantages specific to individual algorithms in the following
subsections.
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Table 1 Algorithms for DBSCAN and DEMass-DBSCAN

Step DBSCAN DEMass-DBSCAN

1 Label all points as core,
border or noise points,
based on f̄ε(x)

Label all T (x) satisfying
Definition S1 in Table 2 as core
regions, based on fm(x). Points
not covered by core regions are
noise

2 Eliminate noise points Eliminate noise points

3 Connect all core points
that are within ε of each
other

Connect all core regions that
have non-zero intersections

4 Make each group of
connected core points
into a separate cluster

Make each group of
connected core regions into
a separate cluster

5 Assign each border point
to one of the clusters of
its associated core
points

Time complexity O(dn2) O(thdn)

Space complexity O(dn) O(tdψ)

Note that border points are not required with DEMass-DBSCAN; thus step 5 is not needed. Both versions of
DBSCAN could include an additional cluster size threshold to eliminate small size clusters in the last step

5.1 DEMass-DBSCAN

The principal steps of DEMass-DBSCAN are the same as DBSCAN, except that no border
points and their associated step are required. A comparison of the two algorithms is provided
in Table 1. The algorithm for DBSCAN is adapted from [30].

Following its principal steps, the use of DEMass simplifies DBSCAN in two ways, in
addition to the two advantages already mentioned above. First, DEMass enables regions to
be labelled instead of individual points. Because the number of regions is significantly less
than the number of points, labelling and linking required in steps 1 and 3 become significantly
faster. Second, no border points need to be defined because the connections within a cluster
are established via core regions only when DEMass is used. The first simplification is the
key reason for the significant speed up achieved by DEMass-DBSCAN, which we will show
in Sect. 6.1.

The time complexity to construct t trees is O(thdψ). In order to assign a cluster to each
instance, each of the t trees is traversed from the root to the respective leaf node. The time
complexity of that searching is O(thdn). Thus, the overall time cost of DEMass-DBSCAN
is O(thdψ + thdn). Since ψ � n, the first term can be ignored. Hence, the total time
complexity of DEMass-DBSCAN is O(thdn). But, the time complexity of DBSCAN is
O(dn2) as it requires pairwise distance calculation between n instances in order to search
for ε-neighbours. Also, DBSCAN needs to store all the instances in order to cluster a future
instance, yielding space complexity of O(dn). But, DEMass-DBSCAN requires space to
store t h:d-T rees only, which is O(tdψ). The space complexity of DEMass-DBSCAN is
constant (independent of n).

The DEMass-DBSCAN algorithm shown in Table 1 is derived from set-based definitions,
and the DBSCAN algorithm is derived from point-based definitions. We can use point-
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Table 2 Point-based and set-based definitions for DEMass-DBSCAN. Note that T (·) is used to denote T (·|D)
Point-based definitions Set-based definitions

Definition P1: The h-neighbourhood of a

point p, denoted by Nh(p), is defined by

Nh(p) = {q ∈ D|q ∈ T h(p)}
In contrast, the ε-neighbourhood for DBSCAN

is defined as Nε(p) = {q ∈ D|dist (p, q) ≤ ε},
which requires a distance function dist (·, ·)

No distance functions are required for Nh(·)
Definition P2: A point p is directly density- Definition S1: T (x) is a core region of

reachable from a point q wrt h and Min Pts if point x wrt h and Min Pts if

(i) p ∈ Nh(q) and m(T (x))
v ≥ Min Pts

vmax
, where vmax = maxi vi

(ii) |Nh (q)|
v ≥ Min Pts

vmax
(core point condition) and v is the volume of region T (x)

Definition P3: A point p is density-reachable

from a point q wrt h and Min Pts if there is a

chain of points p1, . . . , pn , where p1 = p and

pn = q such that pi+1 is directly density-

reachable from pi

Definition P4: A point p is density-connected Definition S2: Tr (·) is density-connected

to a point q wrt h and Min Pts if there is a to Ts (·) wrt h and Min Pts if there is a

point o such that both p and q are density- chain of regions T1(·), . . . , Tg(·) where r = 1

reachable from o wrt h and Min Pts and s = g such that Tı (·) ∩ Tı+1(·) �= ∅ and

Tı (·) is a core region for ı ∈ {1, · · · , g} wrt

h and Min Pts

Definition P5: Let D be a data set of points Definition S3: An arbitrary-shape

A cluster C wrt h and Min Pts is a non-empty cluster C wrt h and Min Pts is a non-

subset of D satisfying the following conditions: empty subset of a data set D satisfying the

(i) ∀p, q: if p ∈ C and q is density-reachable from following conditions: ∀r, s; Tr (·), Ts (·) ⊂ C :

p wrt h and Min Pts, then q ∈ C (Maximality) Tr (·) is density-connected to Ts (·) wrt h

(ii) ∀p, q ∈ C : p is density-connected to q wrt h and Min Pts

and Min Pts (Connectivity)

Definition P6: Let C1, . . . ,Ck be the clusters of Definition S4: Let C1, . . . ,Ck be the

the data set D wrt h and Min Pts clusters of D wrt h and Min Pts

Then we define noise as the set of points in the Noise is the set of points in D not

data set D not belonging to any cluster C j , i.e., belonging to any cluster Cj , i.e.,

noise = {p ∈ D|∀ j : p /∈ C j } noise = {x ∈ D|∀j : x /∈ Cj }
The point-based definitions are adopted from those defined for DBSCAN [12]

based definitions for DEMass-DBSCAN, except that the neighbourhood definition needs to
be adapted to DEMass. Although point-based definitions can be defined as in DBSCAN
[12], set-based definitions are simpler. The formal point-based and set-based definitions for
DEMass-DBSCAN are given in Table 2.

A comparison between DBSCAN and DEMass-DBSCAN is provided using two examples
showed in Fig. 3a, b. They show how core points and non-core points are labelled in DBSCAN
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(b)(a)

Fig. 3 An example for DBSCAN and DEMass-DBSCAN for Min Pts = 5. a An example for DBSCAN for
Min Pts = 5. A is a core point, B is a border point, and C is a noise point. b An example for DEMass-DBSCAN
for Min Pts = 5. The circle symbol indicates core points, and the star symbol indicates noise points. T3, T4
and T5 are core regions. T3 and T4 are linked by a common core point

Table 3 Algorithms for LOF and DEMass-LOF

Step LOF DEMass-LOF

1 Compute density distribution: f̄k N N (x) Compute density distribution: f̄m(x)

2 Compute L O F(x) using
∑

x′∈N (x,k)
f̄k N N (x

′)
|N (x,k)|

f̄k N N (x)

Compute L O Fp(x)

using:

1
t

∑t
i=1

m(T̆i (x))
ψ̆v̆i

f̄m(x)
3 Rank all instances based on their L O F

values in descending order
Rank all instances based on their L O Fp

values in descending order

Time complexity O(dn2) O(thdn)

Space complexity O(dn) O(tdψ)

f̄k N N (x) and N (x, k) are defined in Sect. 2.2; f̄m(x) is defined in Sect. 3. T̆i (x) ⊃ Ti (x) correspond to the
parent and child nodes in our tree implementation; ψ̆ and v̆i are the data size and volume of T̆i (x), respectively.
Note that T̆i (x), the next superset of T h

i (x), is not necessarily T h−1
i (x) because there are d levels in the tree

for each increment of h and the implementation allows single-branch extensions if there are no data in other
branches. See Sect. 3.2 for details of the implementation

and DEMass-DBSCAN. One superficial difference in these examples is that DBSCAN uses
hyper-spheres and DEMass-DBSCAN uses hyper-rectangles. This difference can be easily
eliminated by using L∞-norm (instead of L2-norm) in DBSCAN.

5.2 DEMass-LOF

Table 3 compares the algorithms for LOF and DEMass-LOF which have three identical
principal steps: compute density distribution and L O F , and then rank all instances based on
their L O F values. The key difference is the density estimator used in step 1 which changes
the computation of L O F in step 2.

In addition to the two advantages due to the use of DEMass mentioned in Sect. 3, the
advantage specific to LOF is that DEMass enables the computation of the relative density to
be substantially simplified, changing from nearest-neighbour-based to set-based. Instead of
finding the neighbours of x and then computing the density of each neighbour, the modified
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ranking measure L O Fp is computed based on the region T (x) and its immediate larger region
T̆ (x) ⊃ T (x). In the tree implementation of T (·), this corresponds to computing the density
of the node in which x falls into, relative to the density of its parent node.

In steps 1 and 2, the time complexities of DEMass-LOF and LOF are O(thdn) and
O(dn2), respectively. Since DEMass-LOF does not need to perform neighbourhood search
as in LOF, it is much faster, especially in large data sets. Unlike LOF that stores all n instances,
DEMass-LOF needs space to store t trees only. Hence, the space complexity of DEMass-LOF
is O(tdψ).

The parameter k in LOF has an inverse relationship with h in DEMass-LOF, i.e., high h
corresponds to low k (which covers a smaller region than that using low h or high k). A larger
k increases LOF’s processing time so as a larger h increases DEMass-LOF’s processing
time.

Note that both L O F and L O Fp are relative density scores, which range from 0 to +∞,
indicating the degree of anomaly; the higher the score, the higher the degree of anomaly.

5.3 DEMass-Bayes

Bayesian classifiers require density estimation in order to estimate the class conditional prob-
ability of test instance x given class y, i.e., p(x|y). Because it is difficult to compute p(x|y)
directly even in problems with a moderate number of dimensions, a number of assump-
tions have been made to simplify the computation. We describe those used in Naive Bayes
(NB) [21], Bayesian networks (BayesNet) [15] and Aggregating One-Dependence Estimators
(AODE) [38].

Naive Bayes assumes class conditional independence and estimates density distribution
on each dimension separately [21].

p(x|y) =
d∏

i=1

p(xi |y) (5)

For continuous-valued attributes, p(xi |y) can be computed either through discretisation or
using a density estimator. Naive Bayes with discretisation (NB-Disc) [11] estimates p(xi |y)
through discretisation. Naive Bayes with Gaussian distribution (NB-GD) [21] estimates
p(xi |y) through normal probability estimation. Naive Bayes with kernel density estimation
(NB-KDE) [22] estimates p(xi |y) through a kernel density estimator.

The assumption made by Naive Bayes is often violated in the real world where attributes
are related in some way. Other Bayesian classifiers such as BayesNet [15] and AODE [38]
employ less restrictive assumptions.

BayesNet learns probabilistic relationships among attributes in the form of directed acyclic
graph (DAG) from the training data. In a graph, each node is probabilistically independent of
its non-descendants given the state of its parents. At each node, joint probabilities with respect
to its parents are learned from the training data. In many implementations, the continuous-
valued attributes are discretised. The joint probability p(x, y) is estimated as:

p(x, y) = p(y|πy)

d∏

j=1

p(x j |π j ) (6)

where π j is parent (x j ) and πy is parent (y).
AODE allows conditional dependence with class and one ‘privileged’ attribute, and other

attributes are conditionally independent given the class label y and a privileged attribute xi .
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The conditional probabilities are computed as follows:

p(x|xi , y) =
d∏

j=1

p(x j |xi , y) (7)

As AODE cannot handle continuous-valued attributes, they are discretised, and the condi-
tional probabilities are estimated by the proportion of instances having values in an interval
belonging to class y.

In contrast to the existing implementation of Bayesian classifiers, the implementation
based on DEMass estimates p(x|y)directly, without any assumptions. In order to use DEMass
in classification, we made the following adjustments to estimate p(x|y).
• Instead of constructing t trees in total, t trees per class are constructed to estimate the

density distribution of each class separately. The instances in each data subset Di ⊂ D are
separated according to their class labels into c subsets where c is the number of classes,
yielding Di,y (y = 1, 2, . . . , c);

⋃
y Di,y = Di and |Di | = ψ . A tree is constructed from

Di,y to represent regions Ti,y(·). Hence, a total of ct trees are constructed.
• Instead of growing the tree to the maximum height, we stop growing when the number

of instances in a node is less than or equal to one. This provides a smoother estimation.

We compute the class conditional probability based on DEMass as:

p(x|y) ≡ f̄m(x|y) = 1

t

t∑

i=1

m(Ti,y(x))
|Di,y |vi,y

(8)

where Di,y is a subset of samples belonging to class y in Di and vi,y is the volume of the
region Ti,y(x).

The rest of the steps in DEMass-Bayes are the same as existing Bayesian classifiers. The
prior probabilities p(y) are calculated from the training data. Finally, Bayes rule is used to
predict the class which has the maximum posterior p(y|x).

ŷ = arg max
y

p(y)× p(x|y) (9)

In case of a tie, a random prediction is made between the classes yielding the equal
maximum posterior probabilities.

The decision rules of existing Bayesian classifiers and DEMass-Bayes are provided in
Table 4. The existing Bayesian classifiers estimate the conditional probability as the product of
one-dimensional likelihoods as shown in Table 4. In contrast, the proposed Bayesian classifier,
DEMass-Bayes, does not make any explicit assumptions and estimates the multidimensional
likelihood directly from the training data.

The time and space complexities of existing Bayesian classifiers and DEMass-Bayes are
provided in Table 5. DEMass-Bayes uses subsets of the given training set to construct h:d-
T rees in order to estimate mass. Its training time is constant as shown in Table 5. But,
the training time of the other Bayesian classifiers is linear in n. Also, the proposed method
has constant space complexity. Hence, the proposed method scales better than the existing
Bayesian classifiers in big data.

6 Empirical evaluation

The evaluations in clustering and anomaly detection tasks are conducted in the unsupervised
learning setting, whereas classification task in the supervised setting. We compare DBSCAN
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Table 4 Decision rules of existing Bayesian classifiers and DEMass-Bayes

Classifier Decision rule Remarks

NB-GD arg max
y

p(y)
d∏

i=1

p(xi |y) p(xi |y) is estimated with normal distribution

NB-KDE p(xi |y) is estimated with KDE

NB-Disc p(xi |y) is estimated through discretisation

BayesNet arg max
y

p(πy , y)
d∏

i=1

p(xi |πi , y) πi = parent (xi ), πy = parent (y) Joint
probabilities are estimated through
discretisation

AODE arg max
y

d∑

i=1

p(xi , y)
d∏

j=1

p(x j |xi , y) p(x j |xi , y) in Eq. (7) is
estimated through discretisation

DEMass-Bayes arg max
y

p(y) p(x|y) p(x|y) is estimated using Eq. (8)

Note that with the exception of DEMass-Bayes, all existing Bayesian classifiers estimate one-dimensional
likelihoods

Table 5 Time and space complexities of existing Bayesian classifiers and DEMass-Bayes

Classifier Time complexity Space complexity

Training Testing

NB-GDa O(nd) O(cd) O(cd)

NB-KDEa O(nd) O(cmd) O(cmd)

NB-Discb O(nd) O(cd) O(cdu)

AODEb O(nd2) O(cd2) O(c(du)2)

DEMass-Bayes O(cthdϕ) O(cthd) O(ctdϕ)

n: total number of training instances, m: average number of training instances in a class, d: number of
dimensions, c: number of classes, u: average number of discrete values of an attribute, t : number of trees, and
ϕ: average number of samples per class in Di
a Langley and John [22], bWebb et al. [38]

with DEMass-DBSCAN in the first subsection and then compare LOF with DEMass-LOF
in the second subsection. Finally, we compare DEMass-Bayes with five existing Bayesian
classifiers, namely NB-GD, NB-KDE, NB-Disc, BayesNet and AODE in the last subsection.

All experiments for clustering and anomaly detection tasks were conducted as single-
thread jobs processed at 2.3 GHz in a Linux cluster (www.vpac.org) using a node with 32
GB memory, whereas all the experiments for classification task were conducted as single-
thread jobs using a node in Linux cluster with 2.27 GHz and 120 GB memory.

All DEMass-based algorithms were written in JAVA in WEKA platform [39], so as
DBSCAN and existing Bayesian classifiers. LOF was written in Java in ELKI platform
version 0.4 [1].

The data sets used are from UCI Machine Learning Repository [14], unless stated other-
wise. Only data sets more than 10,000 instances are used in order to examine the algorithms’
capability to deal with large data sets.

The clustering result was reported in terms of CPU runtime (in seconds), number of
clusters identified, number of unassigned instances and F-measure which was calculated
based on assigned instances only. F-measure = 1 when all assigned instances are in the
correct clusters, i.e., perfect clustering, and F-measure = 0 if all instances are assigned to
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Table 6 Data sets used for the clustering task for comparing DEMass-DBSCAN with DBSCAN

Data sets Size n #d #Clusters

RingCurve-Wave-TriGaussian3D 70,000 3 7

RingCurve-Wave-TriGaussian48D 70,000 48 7

OneBig 68,000 20 9

Pendigits 10,992 16 10

wrong clusters. The anomaly detection result was reported in terms of CPU runtime and AUC
(Area Under ROC Curve) based on the ranked result. The classification result was reported
in terms of classification accuracy and CPU runtime (in seconds). We tuned the parameters
of each algorithm in the unsupervised learning setting and reported the best result. In the
supervised learning, the default parameter settings were used for all the classifiers unless
specified otherwise and reported the average classification accuracy and average runtime
over a 10-fold cross-validation.

6.1 DEMass-DBSCAN versus DBSCAN

DEMass-DBSCAN had ψ = 256 and t = 1,000 as default, and both DEMass-DBSCAN
and DBSCAN used Min Pts = 6 in all experiments. As a result, only one parameter needed
to be tuned for a particular data set: h for DEMass-DBSCAN and ε for DBSCAN.

Table 6 provides the properties of the four data sets used. RingCurve-Wave-TriGaussian3D,
RingCurve-Wave-TriGaussian48D and OneBig are the three largest data sets as used in [34],
and we use an additional data set, Pendigits, which has more than 10,000 instances.

RingCurve-Wave-TriGaussian consists of three two-dimensional synthetic data:
RingCurve, Wave and TriangularGaussian as shown in Fig. 10 in the ‘Appendix’, embedded
in either a 3-dimensional data set or a 48-dimensional data set (where 42 dimensions are
irrelevant with a constant value). There are a total of seven clusters with 10,000 instances
in each cluster. In OneBig [26], the biggest cluster has 50,011 instances, and each of the
other eight clusters has approximately 1,000 instances. In addition, there are 10,000 noise
instances randomly distributed in the feature space. Each of the ten clusters in Pendigits has
approximately 1,000 instances.

The clustering results from DEMass-DBSCAN and DBSCAN are shown in Table 7.
DEMass-DBSCAN ran faster than DBSCAN by a factor more than 17 in both 3-dimensional
and 48-dimensional RingCurve-Wave-TriGaussian data sets. In terms of #clusters and #unas-
signed, DEMass-DBSCAN performed slightly worse than DBSCAN in the 3-dimensional
data set, but better in the 48-dimensional data set. DEMass-DBSCAN decreased its number
of unassigned instances from 535 to 61 when the number of dimensions was increased from
3 to 48, whereas DBSCAN had the same 332 unassigned instances in both cases. DEMass-
DBSCAN performs either similarly to or better than DBSCAN in terms of F-measure in
these two data sets.

DEMass-DBSCAN and DBSCAN for OneBig had the same clustering result in terms of
F-measure and number of clusters, but DEMass-DBSCAN ran faster than DBSCAN by a
factor of 7. Note that DEMass-DBSCAN had correctly identified all but one of the 10,000
noise instances, whereas DBSCAN correctly identified all of the noise instances. In Pendigits,
the result showed that although DEMass-DBSCAN had a lower F-measure than DBSCAN,
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Table 7 Clustering results of DEMass-DBSCAN (h = 7 for RingCurve-Wave-TriGaussian3D, h = 6 for
RingCurve-Wave-TriGaussian48D, h = 3 for OneBig and h = 2 for Pendigits) and DBSCAN (ε = 0.01 for
RingCurve-Wave-TriGaussian3D and RingCurve-Wave-TriGaussian48D, ε = 0.1 for OneBig and ε = 0.2
for Pendigits)

RingCurve-Wave-TriGaussian3D RingCurve-Wave-TriGaussian48D

DEMass-DBSCAN DBSCAN DEMass-DBSCAN DBSCAN

Runtime 135 2,391 1,261 21,906

#Cluster 9 8 7 8

#Unassigned 535 332 61 332

F-measure 0.9999 0.9999 1.0000 0.9999

OneBig Pendigits

DEMass-DBSCAN DBSCAN DEMass-DBSCAN DBSCAN

Runtime 1,145 8,544 91 204

#Cluster 9 9 47 65

#Unassigned 10,021 10,005 2,166 6,251

F-measure 1.00 1.00 0.65 0.75

Fig. 4 Scale-up test:
DEMass-DBSCAN vs DBSCAN
in the 48-dimensional
RingCurve-Wave-TriGaussian
data set. Note that DBSCAN
completed the task of the one
million data set (at data size
ratio =150) in 36 days versus
DEMass-DBSCAN 4.5 h. Even
with the 10 million data set,
DEMass-DBSCAN completed it
in 38 h, but it is infeasible to run
DBSCAN  0
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it was better than DBSCAN in all other measures: it had only 20 % instances unassigned,
whereas DBSCAN had 57 % instances unassigned; DEMass-DBSCAN found 47 cluster,
whereas DBSCAN detected 65.

In order to examine how well the algorithms scale up to large data sets, we used the
48-dimensional RingCurve-Wave-TriGuassian data set and increased the data size from 7,000
to 70,000, half-a-million, 1 million and 10 million. Figure 4 plotted runtime ratio versus data
size ratio (1, 10, 75, 150 and 1,500) by using 7,000 as the base. The result showed that
DEMass-DBSCAN had a sub-linear increase in runtime: the runtime ratio increased from 1
to 101 when the data size ratio increased from 1 to 150. In contrast, DBSCAN’s runtime ratio
increased from 1 to 18,000 with the same increase in data size ratio. DEMass-DBSCAN was
faster than DBSCAN by a factor of 193 when the one million data set is used. Even the data
size was increased by a factor of 1,500, and the runtime of DEMass-DBSCAN increased by
a factor of 862 only.
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Table 8 Data sets used for the anomaly detection task for comparing DEMass-LOF with LOF

Data sets Size n #d Anomaly class

Http 567,497 3 Attack (0.4 %)

ForestCover (FC) 286,048 10 Class 4 (0.9 %) versus class 2

Mulcross 262,144 4 2 Clusters (10 %)

Smtp 95,156 3 Attack (0.03 %)

Shuttle 49,097 8 Classes 2,3,5,6,7 (7 %)

Table 9 Compare LOF and DEMass-LOF in terms of AUC (Area Under ROC Curve) and time (in seconds)

AUC Time (s)

DEMass-LOF LOF DEMass-LOF LOF

h = 1 h = 4 k = 10 k = 60 h = 1 h = 4 k = 10 k = 60

Http 0.99 0.93 0.44 0.35 19 42 18,913 19,818

FC 0.74 0.77 0.57 0.58 39 40 10,835 11,147

Mulcross 0.96 0.09 0.59 0.59 12 53 5,432 5,486

Smtp 0.29 0.89 0.32 0.85 2 5 540 552

Shuttle 0.94 0.71 0.55 0.62 5 12 368 380

AUC = 1 is the perfect detection performance and AUC = 0 is the worst. The default settings for DEMass-LOF
were h = 1, ψ = 256 and t = 100 which were used for all data sets. The parameters k (for LOF) and h (for
DEMass-LOF) were changed in order to explore a better result

6.2 DEMass-LOF versus LOF

For anomaly detection tasks, we compare LOF with DEMass-LOF in this section. Table 8
provides the properties of the data sets used. These are the five largest data sets used by [35].
Note that Http and Smtp are subsets of the network intrusion data set used in KDDCUP 99
[40] and an anomaly data generator, ‘Mulcross’ [27], is used to generate a synthetic data
set. All the data sets used have nearly fifty thousand or more instances, with the largest
up to half-a-million instances. The default settings for DEMass-LOF were ψ = 256 and
t = 100.

Table 9 compares LOF with DEMass-LOF in terms of detection performance AUC and
time. DEMass-LOF using either h=1 or 4 obtained better AUC results than LOF. It is inter-
esting to note that DEMass-LOF achieved extreme results in the Smtp and Mulcross data
sets between the two h settings, and it behaved differently in these two data sets, where a low
h setting is better in Mulcross but a high h setting is better in Smtp. This is because the two
data sets have two different types of anomalies: clustered and scattered anomalies [24,25].
Mulcross has clustered anomalies, i.e., outlying clusters with high density but a small num-
ber of instances. DEMass-LOF with a high h setting (i.e., h =4) regarded these anomaly
clusters more ‘normal’ than normal instances, which was reflected in the result: AUC = 0.09.
In contrast, the Smtp data set has scattered anomalies which are isolated outlying instances
around normal clusters. This scenario requires a high h setting in order for DEMass-LOF to
compute the right densities for these anomalies.

LOF was not competitive, and the AUC results did not change much from the presented
results even other k values were used (we had tried k =30, 40, 50, 80, 100, 120.)
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Fig. 5 Scale-up test: LOF versus
DEMass-LOF in Mulcross. The
base for data size ratio is 8,192
instances, and the base for
runtime ratio is the runtime on
8,192 instances
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However, it shall be noted that LOF could achieve good detection accuracy with an appro-
priate k. For example, LOF obtained AUC = 0.99 when k = 4, 000 was used in the shuttle data
set. But similar search in the largest three data sets failed with out-of-memory problem even
though the computer system was allocated 32 GB memory! This result reveals two universal
problems with k-NN approaches like LOF: (i) an extensive parameter search is required to
obtain good detection accuracy; this search adds a significant cost to the already long-runtime
process. The total time cost is often prohibitive; and (ii) high memory requirement.

Table 9 also compares these detectors in terms of processing time. DEMass-LOF was one
to three orders of magnitude faster than LOF in these data sets.

Figure 5 shows the runtime of both algorithms when scaling from 8,192 instances up to a
million instances in the Mulcross data set. The data size was increased by a factor of 16, 32,
64, 128 from 8,192 instances. DEMass-LOF increased its runtime by a factor of 11, 23, 25
and 86, respectively. In contrast, LOF increased its runtime by a factor of 217, 845, 2,371 and
11,173, respectively. At data size ratio = 128, which has a million instances, LOF completed
the task in 28 h whereas DEMass-LOF accomplished it in 45 seconds!

6.3 DEMass-Bayes versus Bayesian classifiers

In this subsection, we compare the performance of DEMass-Bayes with five existing Bayesian
classifiers: NB-GD, NB-KDE, NB-Disc, BayesNet and AODE.

For better estimation of multidimensional density, we need sufficient training data. Hence,
we chose large data sets with size n > 10,000. We tested on 10 data sets with different sizes,
dimensions, number of classes and class distributions. The properties of the data sets are
provided in Table 10.

Out of 10 data sets used, Wave, RingCurve and OneBig [26] are synthetic and the rest
are the real data sets from UCI Machine Learning Repository [14]. RingCurve and Wave
are the subsets of RingCurve-Wave-TriGaussian data set shown in the ‘Appendix’. OneBig
and Pendigits are the same data sets as used in Sect. 6.1. In OneBig, noise in the data set
is treated as a separate class; hence, it has 10 classes. Magic04 has two classes with 12,332
and 6,688 instances, and Mammography has two classes with 10,923 and 260 instances.
Letters is a data set of 26 characters (classes) with approximately 750 data instances in
each class. Out of seven classes in Shuttle, approximately 80 % of the data belongs to the
first class whereas the smallest class has 10 instances only. MiniBooNE is a dataset from an
experiment to distinguish electron neutrinos (signal) from muon neutrinos (background). The
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Table 10 Data sets used in
classification task to compare the
performance of DEMass-Bayes
with five existing Bayesian
classifiers

Data sets Size n #d #c

CoverType 581,012 10 7

MiniBooNE 129,596 50 2

OneBig 68,000 20 10

Shuttle 58,000 8 7

Letters 20,000 16 26

RingCurve 20,000 2 2

Wave 20,000 2 2

Magic04 19,020 10 2

Mammography 11,183 6 2

Pendigits 10,992 16 10

class distribution is approximately 7:3. CoverType is a data set of forest cover type with seven
classes. It is the biggest data set used, having more than half-a-million instances. The class
distribution is unbalanced as two classes have more than two hundred thousand instances
each and the smallest class has 2,747 instances.

In classification, it is important to estimate the density distribution of classes in the data
space as good as possible in order to separate them. To achieve better classification accuracy,
more samples are required to grow trees further to capture the detailed information about
the local class distributions. The larger the sample size to build h:d-T rees, the better the
density estimation. Hence, two variants of DEMass-Bayes are used: one employs a fixed-size
sub-sample, and the other uses the entire training data.

1. DEMass-Bayes: A sub-sample D ⊂ D (|D| = ψ < n)was used to build each h:d-T ree.
The sub-sampling size (ψ) was set to 10,000 as default.

2. DEMass-Bayes′: The entire training set (ψ = n) was used to build each h:d-T ree.

The other two parameters h and t were set as default to 10 and 100, respectively.
All the other algorithms were executed with the default parameter settings except

BayesNet. For BayesNet, the parameter ‘maximum number of parents’ was set to 100 to
examine whether a large number of parents produces better accuracy, and the parameter ‘ini-
tialise as naive Bayes’ was set to ‘false’ to initialise an empty network structure. The other
parameters were set to default values.

We normalised the data in the range of [0–1] to avoid attributes with large values affecting
volume calculation.

Since AODE cannot handle continuous-valued attributes, we discretised the attributes
using the method proposed in [13]. BayesNet does discretisation before building the classi-
fication model.

We performed 10-fold cross-validation and reported the average accuracy and average
runtime. The classification accuracies (%) and runtime (seconds) are provided in Tables 11
and 13, respectively.

A statistical test based on two standard errors was performed to examine whether the dif-
ference in classification accuracies between two classifiers is significant. The win:loss:draw
counts of both variants of DEMass-Bayes against the existing Bayesian classifiers are reported
in Table 12. A win or loss was counted if the difference was significant; otherwise, it was a
draw.
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Table 11 Average classification accuracies (%) over a 10-fold cross-validation for DEMass-Bayes′, DEMass-
Bayes and existing Bayesian classifiers: BayesNet, AODE, NB-KDE, NB-GD and NB-Disc

Data sets DEMass-Bayes′ DEMass-Bayes Bayes Net AODE NB-KDE NB-GD NB-Disc

CoverType 92. 05∗ 81.42† 87.54 72.89 66.72 63.05 66.56

MiniBooNE 88.13† 85.50† 90.19 89.58 86.06 83.40 86.18

OneBig 99.93† 99.93† 99.99 99.69 99.98 99.89 99.98

Shuttle 99.86† 99.86† 99.92 99.85 92.67 85.66 94.40

Letters 92.27∗ 91.71∗ 86.76 88.81 74.20 64.01 74.01

RingCurve 100.00∗ 100.00∗ 99.96 99.98 99.26 90.11 99.38

Wave 100.00∗ 100.00∗ 78.27 78.50 77.91 66.80 78.27

Magic04 84.17∗ 83.23 83.36 83.00 76.12 72.69 77.78

Mammography 98.64 98.64 98.48 98.42 97.86 95.68 97.50

Pendigits 98.87∗ 98.87∗ 96.56 97.84 88.64 85.75 87.78

Average 95.39 93.92 92.10 90.86 85.94 80.70 86.18

∗(†) represents the significantly better (worse) predictive accuracy of DEMass-Bayes′ or DEMass-Bayes over
the best accuracy of the existing Bayesian classifiers based on the two-standard-error significant test
Boldface represents the best accuracy achieved in each data set

Table 12 Win:Loss:Draw counts
of DEMass-Bayes′ and
DEMass-Bayes against the other
contenders in terms of accuracy
based on the two-standard-error
significance test

Contenders DEMass-Bayes′ DEMass-Bayes

BayesNet 6:3:1 4:4:2

AODE 7:1:2 6:1:3

NB-KDE 9:1:0 8:2:0

NB-GD 10:0:0 10:0:0

NB-Disc 9:1:0 8:2:0

The results in Tables 11 and 12 show that DEMass-Bayes′ yielded better classification
accuracies in most of the data sets. Even the sub-sample version DEMass-Bayes produced
competitive classification accuracies to the existing Bayesian classifiers. DEMass-Bayes′ had
six wins, three losses and one draw against BayesNet; seven wins, one loss and two draws
against AODE; nine wins and one loss against NB-KDE and NB-Disc; and all ten wins over
NB-GD. Similarly, DEMass-Bayes had four wins and four losses against BayesNet; six wins
and one loss against AODE; eight wins and two losses against NB-KDE and NB-Disc; and
all ten wins against NB-GD.

Both variants of DEMass-Bayes outperformed existing Bayesian classifiers in four data
sets namely Pendigits, Wave, RingCurve and Letters. In case of Wave and Letters, they had
large improvement in accuracy over existing Bayesian classifiers by 20 and 5 %, respectively.
They had slightly poorer accuracy than the best existing Bayesian classifier (BayesNet) in
three data sets—MiniBooNE, OneBig and Shuttle.

Wave is a synthetic data set of two parallel waves as shown in Fig. 10b in the ‘Appendix’.
In this data set, the prediction decision of NB-GD and NB-KDE depends on the likelihood
on the y-dimension only as the classes are equally likely everywhere on the x-dimension.
The same applies to NB-Disc, AODE and BayesNet which used a supervised discretisation
method; as a result, the values in the x-dimension cannot be discretised, and they are grouped
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Table 13 Average runtime (in seconds) over a 10-fold cross-validation for DEMass-Bayes′, DEMass-Bayes
and existing Bayesian classifiers: BayesNet, AODE, NB-KDE, NB-GD and NB-Disc

Data sets DEMass-
Bayes′

DEMass-
Bayes

Bayes
Net

AODE NB-KDE NB-GD NB-Disc

CoverType 1021.5 163.0 403.6 10.8 96.3 15.3 55.2

MiniBooNE 474.6 91.8 324.2 11.8 831.6 17.0 45.1

OneBig 122.3 22.3 432.5 3.9 253.0 3.2 11.9

Shuttle 35.0 17.5 8.4 0.9 1.5 0.9 2.7

Letters 48.2 22.2 5.5 0.8 2.5 0.9 1.2

RingCurve 6.4 5.7 0.3 0.2 2.4 0.2 0.2

Wave 6.8 5.8 0.3 0.2 2.5 0.1 0.3

Magic04 13.5 10.7 1.8 0.4 8.8 0.3 0.9

Mammography 4.7a 6.7a 0.3 0.3 0.5 0.1 0.2

Pendigits 12.5b 12.5b 2.3 0.4 1.6 0.3 0.6

a In each fold of a 10-fold cross-validation of Mammography, there are 10,065 instances in training set.
DEMass-Bayes samples 10,000 from 10,065 instances to build each tree, whereas DEMass-Bayes′ uses the
entire 10,065 instances. The tree-building time of DEMass-Bayes (with 10,000 instances) and DEMass-
Bayes′ (with 10,065 instances) is almost the same. DEMass-Bayes is slower than DEMass-Bayes′ because of
the sampling time
b In case of Pendigits, both DEMass-Bayes and DEMass-Bayes′ use the entire training set of 9893 instances
in each fold to construct each tree as ψ(=10,000) > n(=9,893)

as a single block. The accuracies of ADOE and BayesNet were increased to 97.35 and
97.34 %, respectively, with unsupervised 10-bin equal-frequency discretisation [7], but they
were still significantly worse than that of DEMass-Bayes. DEMass-Bayes, which estimates
the multidimensional likelihood directly considering both the dimensions at once, models
the distribution well. Hence, it produced significantly better accuracy than the other Bayesian
classifiers in the Wave data set.

The biggest difference between DEMass-Bayes and DEMass-Bayes′ was observed in
the CoverType data set. Even in this data set, DEMass-Bayes produced significantly better
classification accuracy than the existing Bayesian classifiers except BayesNet. It produced
lower accuracy than BayesNet because the sample size was not enough. More samples are
required to grow the trees further to model the distribution well if the class distribution in the
feature space is complex. A detailed discussion will be provided in Sec. 6.3.2.

Table 13 shows that DEMass-Bayes was generally slower than the other Bayesian classi-
fiers in terms of runtime in smaller data sets. However, it should be noted that the existing
Bayesian classifiers assume some kind of conditional independence and estimate the simpli-
fied surrogates of p(x|y) one dimension at a time. In contrast, the proposed method estimates
p(x|y) in multidimensional space directly from the given training data without making any
explicit assumptions. Nevertheless, the sub-sample version DEMass-Bayes was an order of
magnitude faster than BayesNet and NB-KDE in some large data sets such as MiniBooNE and
OneBig; DEMass-Bayes and BayesNet were in the same order of magnitude in CoverType.
Similarly, DEMass-Bayes′, BayesNet and NB-KDE were in the same order of magnitude in
the MiniBooNE and OneBig data sets. Note that the presented runtime results for AODE did
not include the discretisation time that was done as a preprocessing step. The discretisation
time was significantly large in large data sets. For example, it took 52 seconds in the largest
data set, CoverType.
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Fig. 6 Scale-up test for training
time: DEMass-Bayes versus
existing Bayesian Classifiers in
the 48-dimensional
RingCurve-Wave-TriGaussian
data set. The base for data size
ratio is 70,000 instances, and the
base for runtime ratio is the
runtime on 70,000 instances. The
training size ratio is on a
logarithmic scale of base 10
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This runtime result does not provide a full picture about the time complexities of DEMass-
Bayes′ and DEMass-Bayes. Therefore, we had conducted a scale-up test of the algorithms
to present a more accurate idea about the time complexity in the following subsection.

6.3.1 Scale-up test

In order to examine how well the classifiers scale up to large data sets, we used the
48-dimensional RingCurve-Wave-TriGaussian data set, used in Sect. 6.1. Data size was
increased from 70,000 to half-a-million, 1 million and 10 million.

Figure 6 shows the increase in training time of both variants of DEMass-Bayes and the
existing Bayesian classifiers. Note that AODE had an unfair advantage over the other con-
tenders in terms of runtime because it is the only algorithm which does not include the
additional discretisation time in the preprocessing step which increased linearly with the
training data size.

With the increase in data size by a factor of 7.5, 15 and 150, DEMass-Bayes increased
its runtime to learn a classification model by a factor of 1.6, 1.7 and 2.1, respectively. The
closest contender AODE increased its runtime by a factor of 6, 11 and 128, followed by
BayesNet (12, 27, 335), NB-GD (12, 24, 386), NB-Disc (15, 31, 491) and NB-KDE (16, 24,
545). DEMass-Bayes′ increased its runtime by a factor of 9, 23 and 201, respectively.

The training time of DEMass-Bayes was constant; some fluctuations in the runtime were
due to the memory management issue of Java, especially when the process demands high
memory. The training time complexity of DEMass-Bayes′ was slightly worse than that of
AODE but better than that of the other contenders (BayesNet and NB).

In a nutshell, DEMass-Bayes has a better scale-up capability than the existing Bayesian
classifiers in big data. The result is consistent with the time complexities presented in Table 5.

6.3.2 Sensitivity of parameters

In order to examine the effect of the parameters, i.e., sample size ψ , height h and number of
trees t , on the classification accuracy of DEMass-Bayes, we ran three experiments on five
real large data sets, namely CoverType, MiniBooNE, Shuttle, Letters and Magic04:

• Vary sample size ψ with a fixed number of trees (t = 100) and height (h = 10).
• Vary height h with a fixed sample size (ψ = 10, 000) and number of trees (t = 100).
• Vary number of trees t with a fixed sample size (ψ = 10, 000) and height (h = 10).
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Fig. 7 Effect of parameters sample size (ψ), height (h) and number of trees (t) on the accuracy of DEMass-
Bayes in Shuttle, Letters, MiniBooNE, Magic04 and CoverType. The horizontal axes of sample size (ψ) and
the number of trees (t) are on logarithmic scales of base 2 and base 10, respectively, in (a) and (c)

Figure 7 shows the effect of the three parameters on the classification accuracy of DEMass-
Bayes.

With the increase in sample size ψ as shown in Fig. 7a, the accuracy increased up to a
certain point (ψ = 10, 000) and then remained almost flat in all data sets, except CoverType.
In CoverType, accuracy kept increasing because the two biggest classes have more than two
hundred fifty thousand instances each and the continuous accuracy improvement is a result
of improved accuracy for these two classes. These two big classes are highly overlapped.
The two distributions can be better distinguished if the regions around the overlapped areas
are small. If there are more samples to grow trees further, better estimation for p(x|y) can be
achieved and the classification accuracy can be improved. The accuracy was increased up to
84.87 % withψ = 20,000 and 88.53 % withψ = 50,000. Figure 8 shows the improvement in
accuracy in CoverType when the sample size was increased. DEMass-Bayes using 2,50,000
instances produced the same result as DEMass-Bayes′ using the entire training set of 581,012
instances.

When h was increased as shown in Fig. 7b, the accuracy was increased initially and
then remained almost constant after h = 6. In Shuttle, there were small improvements until
h = 10. If there are not enough samples to grow a tree further, tree building stops early.
Hence, increasing h does not affect the performance if it is already set to a sufficiently high
value.
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Fig. 8 Increase in accuracy of
DEMass-Bayes with increase in
sample size in the CoverType
data set. Accuracies are measured
with ψ = 5,000, 10,000, 20,000,
50,000, 100,000, 150,000,
200,000, 250,000 and 581,012 (n)
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When the number of trees t was increased as shown in Fig. 7c, the accuracy increased
initially and remained constant after reaching a certain point (t = 100) except in CoverType
where accuracy kept increasing. Increasing the number of trees provides better approximation
of the local density in the overlapped areas and improves the classification accuracy of the
two largest classes.

Figure 9 shows the effect of parameters on the average runtime over a 10-fold cross-
validation in the biggest data set, CoverType. The runtime in the plots is presented as a
runtime ratio to show the increase in runtime when parameters were increased. The bases
for the runtime ratio while varying ψ , h and t are the total runtime (including training and
testing) for ψ = 500, h = 2 and t = 10, respectively. The runtime increased linearly with t
and sub-linearly with ψ . Since the number of dimensions was 10 and ψ = 10,000, the tree
building stopped early when all the instances had been separated. Hence, as shown in Fig. 9b,
after reaching a certain point (h = 6), further increase in h did not affect the runtime.

7 Discussion

What we have presented is the first density estimation method that utilises no distance mea-
sures. It potentially solves fundamental problems such as the curse of dimensionality in which
the use of a distance measure plays a key part in creating the problem [4,18]. Although the
current version of DEMass cannot deal with high-dimensional problems because of the grid-
based implementation, a non-grid-based implementation that utilises no distance measure
can potentially break the curse of dimensionality.

There are significant improvements of nearest neighbour search in recent times. For exam-
ple, indexing schemes to speed up nearest neighbour search such as Cover Trees [5] and
M-Trees [8] are claimed to have time complexity significantly better than O(n2). Index-
ing schemes such as Cover Trees and M-Trees rely on distance-based pruning methods in
both the index tree construction and range query processes. Distance-based pruning methods
cannot scale up to massive data, and they are known to be inefficient even for a moderate
number of dimensions. Thus, it is unlikely that any of the recent indexing schemes can be
used to speed up nearest neighbour search to the level that has been achieved already by
DEMass-DBSCAN and DEMass-LOF, especially in big data.

An exception to the above indexing schemes is PINN (projection-indexed nearest neigh-
bours) [37] which employs Random Projection [9,20] to project a high-dimensional space
to a low-dimensional space in order to get an accurate approximation for k-NN distances
for density calculation within LOF. This indexing scheme has reduced LOF’s time com-
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Fig. 9 Effect of parameters sample size (ψ), height (h) and number of trees (t) on the runtime of DEMass-
Bayes in the CoverType data set. The horizontal axes of sample size (ψ) and the number of trees (t) are on
logarithmic scales of base 2 and base 10, respectively, in (a) and (c). The vertical axis for runtime ratio when
varying t is on a logarithmic scale of base 10 in (c)

plexity from O(n2) to sub-quadratic. It is interesting to investigate how PINN may help to
enable DEMass-LOF to deal with high-dimensional problems, when DEMass-LOF does not
involve distance calculation and has already achieved sub-linear time complexity without
any indexing scheme.

Note that the purpose of trees used in DEMass differs from that used for Cover Trees
or M-Trees. Trees in DEMass are used to estimate mass and density, the core computation
process. In contrast, Cover Trees or M-Trees are indices used to speed up nearest neighbour
search. The indices are required because the core computation, i.e., the requirement to cal-
culate distance for every pair of instances, is slow. In other words, one uses trees directly in
the core process, and the other uses trees to aid the core process where trees are not used in
the actual computation of distance.

The cost of KDE estimation can be lowered, for example, by reducing the given data
set D to some ‘representative’ subset, where each representative kernel is derived from a
sub-sample using a maximum likelihood method such as an expectation–maximisation (EM)
algorithm [10,16]. This reduces the KDE estimation time, but it comes with a cost of an
expensive preprocessing step.

DENCLUE [19], a generic density-based algorithm, builds a density distribution from data
and then uses a threshold to determine clusters—all connected points above the threshold
form a cluster. DBSCAN is a special case of DENCLUE. DEMass-DENCLUE has exactly the
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same procedure as DEMass-DBSCAN, where Min Pts or the equivalent density threshold
stated in Sec. 5.1 is employed as the threshold.

It is possible to use neighbours to compute L O F for DEMass-LOF. However, the runtime
advantage over LOF will be significantly reduced because of the additional computations
required to calculate the density of each neighbour, even though it does not need to find
neighbours based on distance calculations.

Other k-NN-based anomaly detectors (e.g., [2,3]) have employed some search space
pruning methods to reduce the cost of the nearest neighbour search to achieve near-linear
time complexity. DEMass can be similarly applied in these algorithms, like what we have
done to LOF, without distance calculation, and the resultant algorithms will have better time
and space complexities.

Feature Bagging [23] has been proposed to improve the detection accuracy of LOF by
building multiple models, where each model is constructed from a subset of randomly chosen
features, and the final prediction is combined by averaging the anomaly scores from individual
models. While the method has been shown to produce a small improvement over a single
model LOF in terms of AUC, it requires a substantial increase in runtime (proportional to
the number of models required). This adds to the high computational cost of LOF we have
already discussed in Sect. 6.2.

It is possible to avoid density estimation. For example, uLSIF (unconstrained least-squares
importance fitting) [17], OSVM (one-class support vector machine) [28] and SVDD (support
vector data description) [32] are anomaly detectors which do not employ density estimators.
uLSIF directly estimates the density ratio between the training set and test and uses the
density ratio as the anomaly score. OSVM and SVDD find the smallest region that covers the
majority of the normal instances and regard instances outside the region as anomalies. uLSIF
is found to perform comparably with LOF and run significantly faster [17]. It is interesting to
compare our density-based approach DEMass-LOF with these non-density-based approaches
to determine their relative strengths and weaknesses.

DEMass-Bayes is the first Bayesian classifier with the constant training time complexity
in the number of training instances. It is the ideal classifier for big data and data streams
where there are potentially infinite data. It is interesting to note that DEMass-Bayes has the
flexibility to trade off between accuracy and the computational cost as required. The time and
space required can be reduced by setting lower values for the parameters t and ψ if a higher
misclassification rate can be tolerated. These parameters can be set to higher values in order
to achieve better classification accuracy at the expense of higher computational cost. The
current implementation does not suit problems with small data sets because the estimation
relies on sufficiently large sample in order to model accurately the local density distributions
of classes in the data space.

We had also experimented a version of DEMass-Bayes which samples ψ instances per
class, i.e., |Di,y | = ψ . With this formulation, the likelihood p(x|y) is estimated as follows:

p(x|y) ≡ f̄m(x|y) = 1

t

t∑

i=1

m(Ti,y(x))
ψvi,y

(10)

where Ti,y(.) is constructed from Di,y , which is a subset of ψ samples from class y. This
formulation forces uniform class distribution in building h:d-T rees. By sampling equal
number of instances from every class, an instance in smaller class is sampled more frequently
than the one in larger class. The ‘forced’ uniform class distribution has distorted the accurate
estimation of local class density in overlapping regions. The formulation discussed in Sect.
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5.3 employs approximately the original class distribution. It provides a better estimation of
p(x|y) than Eq. (10) and runs significantly faster too.

DEMass sets a new benchmark of what density-based algorithms can achieve. In contrast
to the density-based approaches, mass-based approaches [34,35] solve problems without
the use of a density estimator. Mass-based approaches have been shown to perform better
than the current density-based approaches in terms of time and space complexities. It is thus
interesting to compare the new benchmark achieved by DEMass-density-based approaches
with mass-based approaches.

The current implementation of DEMass has two limitations. First, it has step subdivi-
sions controlled by a global parameter h. The limited possible steps may be too coarse for
some applications, and the setting is not adaptive to local variations in density. Second, the
grid-based implementation carries all the limitations associated with grid-based approaches,
especially dealing high-dimensional problems. All these limitations can be overcome by
using a non-grid method which is adaptive to the local data distribution. This non-grid-based
implementation will eliminate one global parameter and potentially tackle high-dimensional
problems more effectively.

8 Conclusions and future work

The new density estimation method we introduced has two unique features which cannot
be found in existing density estimation methods. First, it is the first density estimator that
utilises no distance measures. Second, it has average case sub-linear time complexity and
constant space complexity in the number of instances. Existing density estimators must use
a distance measure and have time and space complexities a lot worse than linear. The time
and space complexities achieved set a new benchmark for density-based algorithms, of what
previously thought impossible.

The asymptotic analysis reveals that the new density estimator has the same characteristic
as KDE, i.e., both have a smoothing parameter used to trade-off between systematic error
(bias) and random error (variance).

Making full use of the features in the new density estimator, we show that two current
algorithms, in the unsupervised learning setting from two key areas of data mining, can
be significantly simplified through set-based definitions rather than the current point-based
definitions. This has directly contributed to their significantly improved time complexities.
In the supervised learning setting, DEMass enables direct estimation of multidimensional
likelihood p(x|y) for the first time, without any assumptions.

Our evaluation shows that the new density estimator not only successfully replaces existing
density estimators in three density-based algorithms, DBSCAN, LOF and Bayesian classi-
fiers, but (a) reduces the runtime of DBSCAN and LOF to become algorithms with sub-linear
time complexity and (b) scales down existing Bayesian classifiers’ best training time com-
plexity from linear to constant. In addition, DEMass-DBSCAN, DEMass-LOF and DEMass-
Bayes often achieve equivalent or better task-specific performances than DBSCAN, LOF and
existing Bayesian classifiers, respectively.

Our result implies that most, if not all, density-based algorithms can reap the immediate
benefit of significantly lowering their time complexities by simply replacing the existing
density estimators with the new one, with a potential further improvement in the task-specific
performance.

Future work has three directions. First, we will apply the new density estimator in existing
algorithms in more areas. We will ascertain whether there are areas in which the new density
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estimator cannot replace existing density estimators. Second, we will compare DEMass-
density-based approaches with mass-based approaches to determine their relative strengths
and weaknesses. Third, we will explore DEMass’s ability to deal with high-dimensional
problems.
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Appendix: Data characteristic of the RingCurve-Wave-TriGaussian data set

The characteristic of the RingCurve-Wave-TriGaussian data set, used in Sect. 5.1, is shown
in Fig. 10. Each of the Ring-Curve, Wave and Triangular-Gaussian is a two-dimensional data
set, and together, there is a total of seven clusters. Each cluster has 10,000 instances. When
used in the scale-up experiment, the data size in each cluster was scaled by a factor of 0.1, 1,
75, 150 to 1,500.

(a) RingCurve (b) Wave (c) TriGaussian

Fig. 10 Scatter plot of the clusters in the RingCurve-Wave-TriGaussian data set

References

1. Achtert E, Kriegel H-P, Zimek A (2008) ELKI: a software system for evaluation of subspace clustering
algorithms. In: Proceedings of the 20th international conference on scientific and statistical database
management, pp 580–585

2. Angiulli F, Fassetti F (2009) DOLPHIN: an efficient algorithm for mining distance-based outliers in very
large datasets. ACM Trans Knowl Discov Data 3(1):4:1–4:57

3. Bay SD, Schwabacher M (2003) Mining distance-based outliers in near linear time with randomization
and a simple pruning rule. In: Proceedings of the ninth ACM SIGKDD international conference on
knowledge discovery and data mining, ACM, pp. 29–38

4. Beyer KS, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful?
In: Proceedings of the 7th international conference on database theory, pp 217–235

5. Beygelzimer A, Kakade S, Langford J (2006) Cover trees for nearest neighbor. In: Proceedings of the
23rd international conference on machine learning, pp 97–104

6. Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers.
In: Proceedings of ACM SIGMOD international conference on management of data, pp 93–104

123



K. M. Ting et al.

7. Catlett J (1991) On changing continuous attributes into ordered discrete attributes. In: Proceedings of the
European working session on learning, pp 164–178

8. Ciaccia P, Patella M, Zezula P (1997) M-tree: an efficient access method for similarity search in metric
spaces. In: Proceedings of the 23rd international conference on very large data, bases, pp 426–435

9. Deegalla S, Bostrom H (2006) Reducing high-dimensional data by principal component analysis vs.
random projection for nearest neighbor classification. In: Proceedings of the 5th international conference
on machine learning and applications, IEEE Computer Society, Washington, pp 245–250

10. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM
algorithm. J Roy Stat Soc Ser B 39(1):1–38

11. Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization of continuous
features. In: Proceedings of the 12th international conference on machine learning, Morgan Kaufmann,
pp 194–202

12. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large
spatial databases with noise. In: Proceedings of KDD, AAAI Press, pp 226–231

13. Fayyad UM, Irani KB (1995) Multi-interval discretization of continuous valued attributes for classification
learning. In: Proceedings of 14th international joint conference on artificial intelligence, pp 1034–1040

14. Frank A, Asuncion A (2010) UCI machine learning repository. University of California, Irvine, School
of Information and Computer Sciences. URL: http://archive.ics.uci.edu/ml

15. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29:131–163
16. Hastie T, Tibshirani R, Friedman J (2001) Chapter 8.5 the EM algorithm. In The elements of statistical

learning, pp 236–243
17. Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2011) Statistical outlier detection using direct

density ratio estimation. Knowl Inf Syst 26(2):309–336
18. Hinneburg A, Aggarwal CC, Keim DA (2000) What is the nearest neighbor in high dimensional spaces?

In: Proceedings of the 26th international conference on very large data bases, pp 506–515
19. Hinneburg A, Keim DA (1998) An efficient approach to clustering in large multimedia databases with

noise. In: Proceedings of KDD, AAAI Press, pp 58–65
20. Johnson WB, Lindenstrauss J (1984) Extensions of Lipschitz mapping into Hilbert space. In: Proceed-

ings of conference in modern analysis and probability, contemporary mathematics, vol 26. American
Mathematical Society, pp 189–206

21. Langley P, Iba W, Thompson K (1992) An analysis of Bayesian classifiers. In: Proceedings of the tenth
national conference on artificial intelligence, pp 399–406

22. Langley P, John GH (1995) Estimating continuous distribution in Bayesian classifiers. In: Proceedings
of eleventh conference on uncertainty in artificial intelligence

23. Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the eleventh ACM
SIGKDD international conference on knowledge discovery and data mining, ACM, pp 157–166

24. Liu FT, Ting KM, Zhou Z-H (2010) On detecting clustered anomalies using sciforest. In: Proceedings of
ECML PKDD, pp 274–290

25. Liu FT, Ting KM, Zhou Z-H (2012) Isolation-based anomaly detection. ACM Trans Knowl Discov Data
6(1):3:1–3:39

26. Nanopoulos A, Theodoridis Y, Manolopoulos Y (2006) Indexed-based density biased sampling for clus-
tering applications. IEEE Trans Data Knowl Eng 57(1):37–63

27. Rocke DM, Woodruff DL (1996) Identification of outliers in multivariate data. J Am Stat Assoc
91(435):1047–1061

28. Schölkopf B, Platt JC, Shawe-Taylor JC, Smola AJ, Williamson RC (2001) Estimating the support of a
high-dimensional distribution. Neural Comput 13(7):1443–1471

29. Silverman BW (1986) Density estimation for statistics and data analysis. Chapmal & Hall, London
30. Tan P-N, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Reading
31. Tan SC, Ting KM, Liu FT (2011) Fast anomaly detection for streaming data. In: Proceedings of IJCAI,

pp 1151–1156
32. Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54(1):45–66
33. Ting KM, Washio T, Wells JR, Liu FT (2011) Density estimation based on mass. In: Proceedings of the

2011 IEEE 11th international conference on data mining, IEEE Computer Society, pp 715–724
34. Ting KM, Wells JR (2010) Multi-dimensional mass estimation and mass-based clustering. In: Proceedings

of IEEE international conference on data mining, pp 511–520
35. Ting KM, Zhou G-T, Liu FT, Tan SC (2012) Mass estimation. Mach Learn, pp 1–34. doi:10.1007/

s10994-012-5303-x
36. Vapnik VN (2000) The nature of statistical learning theory, 2nd edn. Springer, Berlin
37. Vries TD, Chawla S, Houle M (2012) Density-preserving projections for large-scale local anomaly detec-

tion. Knowl Inf Syst 32:25–52

123



DEMass: a new density estimator for big data

38. Webb GI, Boughton JR, Wang Z (2005) Aggregating one-dependence estimators. Mach Learn 58:5–24
39. Witten IH, Frank E, Hall MA (2011) Data mining: Practical machine learning tools and techniques, 3rd

edn. Morgan Kaufmann, San Francisco
40. Yamanishi K, Takeuchi J-I, Williams G, Milne P (2000) On-line unsupervised outlier detection using

finite mixtures with discounting learning algorithms. In: Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining, pp 320–324

Author Biographies

Kai Ming Ting received his Ph.D. from the University of Sydney,
Australia. He had worked at the University of Waikato and Deakin
University before joining Monash University in 2001. He currently
serves as the Associate Dean Research Training in Faculty of IT and
an Associate Professor in Gippsland School of IT at Monash Univer-
sity. He is an associate editor for Journal of Data Mining and Knowl-
edge Discovery. He had co-chaired the Pacific-Asia Conference on
Knowledge Discovery and Data Mining and had served as a member
of program committees for a number of conferences including ACM
SIGKDD, IEEE ICDM and ICML. His research projects are supported
by grants from Australian Research Council, US Air Force of Scien-
tific Research (AFOSR/AOARD), Toyoto InfoTechnology Center and
Australian Institute of Sport.

Takashi Washio received the Ph.D. degree in nuclear engineering from
Tohoku University, Japan, in 1983, on the topic of process plant diag-
nosis based on qualitative reasoning. He is a professor in the Institute
of Scientific and Industrial Research (ISIR), Osaka University. At ISIR,
he works on the study of scientific discovery, graph mining and high-
dimensional data mining. He received the best paper award from the
Atomic Energy Society of Japan in 1996, the best paper award from
the Japanese Society for Artificial Intelligence in 2001 and the Jour-
nal Award of Computer Aided Chemistry in 2002, Contribution Award
from the Japanese Society for Artificial Intelligence in 2009. He is a
member of the IEEE Computer Society.

Jonathan R. Wells worked as a Software Engineer in commercial envi-
ronments for a number of years. He received his degrees at Monash
University in Bachelor of Computing and Master of Information Tech-
nology (Research), and he is currently doing his PhD at the same uni-
versity. His research interests are in the areas of data mining and cog-
nitive science.

123



K. M. Ting et al.

Fei Tony Liu received his Ph.D. in 2011 from Monash University.
During his postgraduate studies, he was awarded with the Best Paper
and Best Student Paper Awards in the Tenth Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD 2006) and
the Runner-Up Best Theoretical/Algorithms Paper Award in the IEEE
International Conference on Data Mining (ICDM 2008). His research
interests include ensemble learning, outlier detection and predictive
classification.

Sunil Aryal received a BIT degree from Purbanchal University, Nepal,
in 2005 and an MIT degree from University of Southern Queensland,
Australia, in 2008. He worked as a Software Developer for a couple of
years. He is currently a postgraduate research student at Monash Uni-
versity, Australia. His research interests include mass-based data min-
ing, and mining large data and data streams.

123



MassBayes: A New Generative Classifier

with Multi-dimensional Likelihood Estimation
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Abstract. Existing generative classifiers (e.g., BayesNet and AnDE)
make independence assumptions and estimate one-dimensional likeli-
hood. This paper presents a new generative classifier called MassBayes
that estimates multi-dimensional likelihood without making any explicit
assumptions. It aggregates the multi-dimensional likelihoods estimated
from random subsets of the training data using varying size random
feature subsets. Our empirical evaluations show that MassBayes yields
better classification accuracy than the existing generative classifiers in
large data sets. As it works with fixed-size subsets of training data, it has
constant training time complexity and constant space complexity, and it
can easily scale up to very large data sets.

Keywords: Generative classifier, Likelihood estimation, MassBayes.

1 Introduction

The learning task in classification is to learn a model from a labelled training set
that maps each instance to one of the predefined classes. The model learned is
then used to predict a class label for each unseen test instance. Each instance x
is represented by a d-dimensional vector 〈x1, x2, · · · , xd〉 and given a class label
y ∈ {y1, y2, · · · , yc}, where c is the total number of classes. The training set D is
a collection of labelled instances {(x(i), y(i))} (i = 1, 2, · · · , N).

The generative approach of classifier learning models the joint distribution
p(x, y) and predicts the most probable class as:

ŷ = argmax
y

p(x, y) (1)

Using the product rule, the joint probability can be factorised as:

p(x, y) = p(y)× p(x|y) (2)

Generative classifiers learn either the joint distribution p(x, y) or the likelihood
p(x|y). However, estimating p(x, y) or p(x|y) directly from data using existing
data modelling techniques is difficult. Density estimators such as Kernel Density
Estimation [1], k-Nearest Neighbour [1] and Density Estimation Trees [2] are
impractical in large data sets due to their high time and space complexities. The
research has thus focused on learning one-dimensional likelihood to approximate
p(x, y) in different ways.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 136–148, 2013.
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Existing generative classifiers allow limited probabilistic dependencies among
attributes and assume some kind of conditional independence. Different gener-
ative classifiers make different assumptions and allow different level of depen-
dencies. They learn a network (or its simplification) of probabilistic relationship
between the attributes and estimate the likelihood at each node given its par-
ents from D (i.e., one-dimensional likelihood estimation). The joint distribution
p(x, y) is estimated as the product of likelihood of each attribute given their
parents in the network:

p̂(x, y) = p(x1|π1)× p(x2|π2)× · · · × p(xd|πd)× p(y|πy) (3)

where πi is parent(xi) and πy is parent(y).
Though these one-dimensional likelihood generative classifiers have been

shown to perform well [3,4,5,6,7], we hypothesize that a multi-dimensional like-
lihood generative classifier will produce even better results.

In this paper, we propose an ensemble approach to estimate multi-dimensional
likelihood without making any explicit assumption about attribute indepen-
dence. The idea is to construct an ensemble of t multi-dimensional likelihood
estimators using random sub-samples Di ⊂ D (i = 1, 2, · · · , t). Each estimator
estimates the multi-dimensional likelihood using a random subset of d attributes
from Di. The average estimation from t estimators provides a good approxima-
tion of p(x|y). We call the resulting generative classifier MassBayes. It has con-
stant space complexity and constant training time complexity because it employs
a fixed-size training subset to build each of the t estimators.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of well-known generative classifiers. The proposed method is described
in Section 3 followed by the implementation details in Section 4. The empirical
evaluation results are presented in Section 5. Finally, we provide conclusions and
directions for future research in Section 6.

2 Existing Generative Classifiers

Naive Bayes (NB) [3] is the simplest generative approach that estimates p(x, y)
by assuming that the attributes are statistically independent given y:

p̂(x, y)NB = p(y)

d∏

i=1

p(xi|y) (4)

Despite the strong independence assumption, it has been shown that NB pro-
duces impressive results in many application domains [3,4]. Its simplicity and
clear probabilistic semantics have motivated researchers to explore different ex-
tensions of NB to improve its performance by relaxing the unrealistic assumption.

BayesNet [5] learns a network of probabilistic relationship among the at-
tributes including the class attribute from the training data. Each node in the
network is independent of its non-descendants given the state of its parents. At
each node, the conditional probabilities with respect to its parents are learned
from D. The joint probability p(x, y) is estimated as:
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p̂(x, y)BayesNet = p(y|πy)
d∏

i=1

p(xi|πi) (5)

Learning an optimal network requires searching over a set of every possible
network, which is exponential in d. It is intractable in high-dimensional problems
[8]. NB is the simplest form of a Bayesian network, where each attribute is
dependent on y only.

In another simplification of BayesNet, AnDE [7] relaxes the independence
assumption by allowing dependency between y and a fixed number of privileged
attributes or super-parents. The other attributes are assumed to be independent
given the n super-parents and y. AnDE with n = 0, A0DE, is NB. AnDE avoids
the expensive searching in learning probabilistic dependencies by constructing an
ensemble of n-dependence estimators. The joint probability p(x, y) is estimated
as:

p̂(x, y)AnDE =
∑

s∈Sn

p(xs, y)
∏

j∈{1,2,···,d}\s
p(xj |xs, y) (6)

where Sn is the collection of all subsets of size n of the set of d attributes
{1, 2, · · · , d}; and xs is a n-dimensional vector of values of x defined by s.

It has been shown that A1DE and A2DE produce better predictive accuracy
than the other state-of-the-art generative classifiers [6,7]. However, it only allows
dependencies on a fixed number of attributes and y. Because of the high time

complexity of O
(
N
(

d
n+1

))
1 and space complexity of O

(
c
(

d
n+1

)
vn+1

)
, where

v is the average number of values for an attribute [7], only A2DE or A3DE is
feasible even for a moderate number of dimensions. Furthermore, selecting an
appropriate value of n for a particular data set requires a search.

AnDE and many other implementations of BayesNet require all the attributes
to be discrete. The continuous-valued attributes must be discretised using a
discretisation method before building a classifier.

3 MassBayes: A New Generative Classifier

Rather than aggregating an ensemble of n-dependence single-dimensional like-
lihood estimators, we propose to aggregate an ensemble of t multi-dimensional
likelihood estimators where each likelihood is estimated using different random
subsets of d attributes from data. The likelihood p(x|y) is estimated as:

p̂(x|y) = 1

t

∑

g∈Gt

p(xg|y) (7)

where Gt is a collection of t subsets of varying sizes of d attributes; and xg is a
|g|-dimensional vector of values of x defined by g; and 1 ≤ |g| ≤ d.

Each p(xg|y) is estimated using a random subset of training instances D ⊂ D,
where |D| = ψ < N .

p̂(xg|y) =
|Dy,xg |
|Dy| (8)

1
(
d
n

)
is a binomial coefficient of n out of d.
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where |Dy,xg | is the number of instances having attribute values xg belonging to
class y in D and |Dy| is the number of instances belonging to class y in D.

Rather than relying on a specific discretisation method in the preprocess-
ing step, we propose to build a model directly from data, akin to an adaptive
multi-dimensional histogram, to determine xg which adapts to the local data
distribution. The feature space partitioning we employed (to be discussed in
Section 4) produces large regions in sparse area and small regions in the dense
area of the data distribution.

Let T (·) be a function that divides the feature space into non-overlapping
regions and T (x) be the region where x falls. In a multi-dimensional space, each
instance in D can be isolated by splitting only on few dimensions i.e., only a
subset of d attributes (g ⊂ {1, 2, · · · , d}) is used to define T (x). Hence, |Dy,xg | is
the number of instances belonging to class y in the region T (x). Let p(T (x)|y) be
the probability of region T (x) when only class y instances in D are considered.

p(T (x)|y) = p̂(xg|y) =
|Dy,xg |
|Dy| (9)

The new generative classifier, called MassBayes, estimates the joint distribution
as:

p̂(x, y)MassBayes = p(y)
1

t

∑

g∈Gt

p(xg|y) = p(y)
1

t

t∑

i=1

p(Ti(x)|y) (10)

Fig. 1. Different regions from different Ti(·) (i = 1, 2, · · · , 5) that cover x

The average probability of t different regions Ti(x) (i = 1, 2, · · · , t), con-
structed using Di ⊂ D, provides a good estimate for p(x|y) as it estimates
the multi-dimensional likelihood by considering the distribution in different lo-
cal neighbourhood of x in the data space. An illustrative example is provided in
Figure 1. Note that, the estimator employed in MassBayes is not a true density
estimator as it does not integrate to 1.

MassBayes has the following characteristics in comparison with AnDE:

1. In each estimator, AnDE estimates one-dimensional likelihood given a
fixed number of super-parents and y, whereas MassBayes estimates multi-
dimensional likelihood using varying number of dimensions.

2. In AnDE, the ensemble size is fixed to
(
d
n

)
. But, MassBayes allows the flex-

ibility for users to set the ensemble size.
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3. AnDE requires continuous-valued attributes to be discretised before build-
ing the model. The performance of AnDE is affected by the discretisation
technique used. In contrast, MassBayes builds models directly from data.
It can be viewed as a dynamic multi-dimensional discretisation where the
information loss is minimised by averaging over multiple models.

4. Each model in MassBayes is built with training subset of size ψ < N which
gives rise to the constant training time. In contrast, each model in AnDE is
trained using the entire training set.

5. AnDE is a deterministic algorithm whereas MassBayes is a randomised al-
gorithm.

6. Like AnDE, MassBayes is a generative classifier without search.

4 Implementation

In order to partition the feature space to define the regions Ti(·), we use the
implementation described by Ting and Wells (2010) using a binary tree called
h:d-tree [9]. A parameter h defines the maximum level of sub-division. The
maximum height of a tree is h× d.

Let the data space that covers the instances in D be Δ. The data space
Δ is adjusted to become δ using a random perturbation conducted as follows.
For each dimension j, a split point vj is chosen randomly within the range
maxj(Δ) − minj(Δ). Then, the new range δj along dimension j is defined as
[vj − r, vj + r], where r = max(vj −minj(Δ),maxj(Δ)− vj). The new range on
all dimensions defines the adjusted work space for the tree building process.

A subset D is constructed from D by sampling ψ instances without replace-
ment. The sampling process is restarted with D when all the instances are used.
The random adjustment of the work space and random sub-sampling, as de-
scribed earlier, ensure that no two trees are identical.

The dimension to split is selected from a randomised set of d dimensions in
a round-robin manner at each level of a tree. A tree is constructed by splitting
the work space into two equal-volume half spaces at each level. The process
is then repeated recursively on each non-empty half-space. The tree building
process stops when there is only one instance in a node or the maximum height
is reached.

At the leaf node, the number of instances in the node belonging to each class
is stored. Figure 2 shows a typical example of an implementation of T (·) as an
h:d-tree for h = 2 and d = 2. The dotted lines enclosed the instances in D and
the solid lines enclosed the adjusted work space which has ranges δ1 and δ2 on
x1 and x2 dimensions. R1, R2, R3, R4 and R5 represent different regions in T (·)
depending on the data distribution in D. Region R1 is defined by splitting the
work space in x1 dimension only, g = {1}, whereas the other four regions use
dimensions x1 and x2, i.e., g = {1, 2}.

In the original implementation by Ting and Wells (2010) for mass estimation,
each tree is built to the maximum height of h× d resulting in equal-size regions
regardless of the data distribution [9]. In our implementation, in order to adapt
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Fig. 2. An example of an h:d-tree for h = 2 and d = 2

to the data distribution, the tree building stops early once the instances are
separated. We use the same algorithm as used by Ting and Wells (2010) to
generate h:d-trees to represent Ti(·) in [9] with the required modification.

The procedures to generate t trees from a given data set D are provided in
Algorithms 1 and 2.

The maximum height of each tree is hd, and ψ instances have to be assigned
to either of the two child nodes at each level of a tree. Hence, the total training
time complexity to construct t trees is O(thdψ). There are a maximum of ψ
(as ψ < 2hd in general) leaf nodes in each tree. The total space complexity is
O(t(d + c)ψ).

The time and space complexities of two variants of NB (NB-KDE that es-
timates p(xi|y) through kernel density estimation [4]; and NB-Disc that esti-
mates p(xi|y) through discretisation [10]), AnDE and MassBayes are presented in
Table 1. Both training time complexity and space complexity of MassBayes are

Table 1. Time and space complexities of different generative classifiers

Classifiers Training time Testing time Space
NB-KDE [4] O(Nd) O(cmd) O(cmd)
NB-Disc [6] O(Nd) O(cd) O(cdv)

AnDE [7] O
(
N
(

d
n+1

))
O
(
cd
(
d
n

))
O
(
c
(

d
n+1

)
vn+1

)

MassBayes O(thdψ) O(thd) O (t(d+ c)ψ)

N : total number of training instances, m: average number of training instances in a
class, d: number of dimensions, c: number of classes, v: average number of discrete values
of an attribute, n: number of super-parents, t: number of trees, h: level of divisions,
and ψ: sample size.
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independent of N . Note that the complexities for NB-Disc and AnDE do not
include the additional discretisation needed in the preprocessing.

Algorithm 1. BuildTrees(D, t, ψ, h)

Inputs: D - input data, t - number of trees, ψ - sub-sampling size, h - number of
times an attribute is employed in a path.
Output: F - a set of t h:d-trees

1: H ← h× d {Maximum height of a tree}
2: Initialize F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: A← {Randomised list of d attributes.}
7: F ← F ∪ SingleTree(D,min,max, 0, A)
8: end for
9: return F

Algorithm 2. SingleTree(D,min,max, �, A)
Inputs: D - input data, min & max - arrays of minimum and maximum values for
each attribute that define a work space, A - a randomised list of d attributes, � -
current height level.
Output: an h:d-tree

1: Initialize Node(·)
2: while (� < H and |D| > 1) do
3: q ← nextAttribute(A,�) {Retrieve an attribute from A based on height level.}
4: midq ← (maxq +minq)/2
5: Dl ← filter(D, q < midp)
6: Dr ← filter(D, q ≥ midq)
7: if (|Dl| = 0 ) or (|Dr | = 0) then {Reduce range for single-branch node.}
8: if (|Dl| > 0 ) then maxq ← midq
9: else minq ← midq
10: end if
11: �← �+ 1
12: continue at the start of while loop
13: end if
14: {Build two nodes: Left and Right as a result of a split into two half-spaces.}
15: temp← maxq; maxq ← midq
16: Left← SingleTree(Dl,min,max, �+ 1, A)
17: maxq ← temp; minq ← midq
18: Right← SingleTree(Dr,min,max, �+ 1, A)
19: terminate while loop
20: end while
21: classCount← updateClassCount(D)
22: return Node(Left,Right, SplitAtt← q, SplitV alue← midq, classCount)
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5 Empirical Evaluation

This section presents the results of the experiments conducted to evaluate the
performance of MassBayes against seven well known contenders: two variants of
NB (NB-KDE and NB-Disc), BayesNet, three variants of AnDE (A1DE, A2DE,
A3DE) and decision tree J48 (i.e., the WEKA [11] version of C4.5 [12]).

MassBayes was implemented in Java using the WEKA platform [11] which also
has implementations of NB, BayesNet, A1DE and J48. For A2DE and A3DE,
we used the WEKA implementations provided by the authors of AnDE.

All the experiments were conducted using a 10-fold cross validation in a Linux
machine with 2.27 GHz processor and 100 GB memory. The average accuracy
(%) and the average runtime (seconds) over a 10-fold cross validation were re-
ported. A two-standard-error significance test was conducted to check whether
the difference in accuracies of two classifiers was significant. A win or loss was
counted if the difference was significant; otherwise, it was a draw.

Ten data sets with N > 10000 were used. All the attributes in the data sets are
numeric. The properties of the data sets are provided in Table 2. The RingCurve,
Wave and OneBig data sets were three synthetic data sets and the rest were
real-world data sets from UCI Machine Learning Repository [13]. RingCurve
and Wave are subsets of the RingCurve-Wave-TriGaussian data set used in [9]
and OneBig is the data set used in [14].

Table 2. Properties of the data sets used

Data sets #N #d #c

CoverType 581012 10 7
MiniBooNE 129596 50 2

OneBig 68000 20 10
Shuttle 58000 8 7
Wave 20000 2 2

Data sets #N #d #c

RingCurve 20000 2 2
Letters 20000 16 26

Magic04 19020 10 2
Mamograph 11183 6 2

Pendigits 10992 16 10

For AnDE, BayesNet and NB-Disc, data sets were discretised by a supervised
discretisation technique based on minimum entropy [15] as suggested by the
authors of AnDE before building the classification models.

Two variants of MassBayes were used: MassBayes with (ψ = 5000) and
MassBayes′ (ψ = N). The other two parameters t and h were set as default
to 100 and 10, respectively.

For BayesNet, the parameter ‘maximum number of parents’ was set to 100
to examine whether a large number of parents produces better results; and the
parameter ‘initialise as Naive Bayes’ was set to ‘false’ to initialise an empty
network structure. The default values were used for the rest of the parameters.
All the other classifiers were executed with the default parameter settings.
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Table 3. Average classification accuracies (%) over a 10-fold cross validation

Data Mass Mass A3 A2 A1 Bayes NB- NB-
sets Bayes′ Bayes DE DE DE Net KDE Disc J48

CoverType 94.00 78.21 88.16 80.81 72.89 87.79 66.72 66.61 92.39
MiniBooNE 92.68 91.11 N/A∗ 91.48 89.58 90.25 86.07 86.29 90.47

OneBig 100.00 100.00 N/A∗ 99.81 99.69 99.99 99.98 99.97 99.84
Shuttle 99.89 99.89 99.94 99.94 99.85 99.93 92.68 94.36 99.97
Letters 96.63 95.63 95.11 94.31 88.81 86.97 74.21 73.94 87.92

RingCurve 100.00 100.00 99.99 99.99 99.99 99.99 99.27 99.48 99.91
Wave 100.00 100.00 78.51 78.51 78.51 78.51 77.91 78.51 99.79

Magic04 85.72 85.53 85.08 84.57 83.00 83.46 76.13 78.27 85.01
Mamograph 98.69 98.71 98.51 98.37 98.42 98.54 97.86 97.62 98.57

Pendigits 99.45 99.28 98.80 98.82 97.84 96.81 88.64 87.9 96.56
∗ Did not complete because of integer overflow error.

Table 4. Win:Loss:Draw counts of MassBayes over the other contenders in terms of
classification accuracy based on the two-standard-error significance test

A3DE A2DE A1DE BayesNet NB-KDE NB-Disc J48

MassBayes′ 4:1:3 7:1:2 7:0:3 7:1:2 10:0:0 10:0:0 7:1:2
MassBayes 3:2:3 6:3:1 7:0:3 6:2:2 10:0:0 10:0:0 6:2:2

Table 5. Average runtime (seconds) over a 10-fold cross validation

Mass Mass A3 A2 A1 Bayes NB- NB-
Data sets Bayes′ Bayes DE DE DE Net KDE Disc J48

CoverType 1075.8 45.7 45.6 13.9 4.9 387.9 96.3 3.2 3690.7
MiniBooNE 431.1 33.7 N/A 231.3 5.9 308.9 831.6 2.1 323.8

OneBig 113.9 10.5 N/A 11.6 3.9 432.5 253.0 0.8 15.1
Shuttle 48.5 8.0 1.8 0.7 0.5 6.8 1.5 0.4 4.2
Letters 18.9 5.5 11.5 2.6 0.8 4.9 2.5 0.4 7.3

RingCurve 4.4 2.3 0.2 0.2 0.2 0.3 2.4 0.2 0.4
Wave 4.9 2.1 0.2 0.2 0.2 0.2 2.5 0.1 0.6

Magic04 10.9 3.9 0.7 0.5 0.2 0.7 8.8 0.2 3.4
Mamograph 4.7 3.1 0.3 0.2 0.2 0.3 0.5 0.2 0.4

Pendigits 7.3 3.6 5.7 0.9 0.4 1.8 1.6 0.2 1.2

Table 3 shows the average classification accuracies of MassBayes′ and Mass-
Bayes in comparison to the other contenders. The results of the two-standard-
error significance test in Table 4 show that both MassBayes′ and MassBayes
produced better classification accuracy than the other contenders in most data
sets.
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Fig. 3. Scale-up test: MassBayes versus existing generative classifiers. The base for
training size ratio is 7000 instances and the bases for runtime ratio and memory ratio
are the training time and memory required to save a classification model for 7000
instances. Axes are on logarithmic scales of base 10.

MassBayes produced slightly poorer results than A2DE, A3DE, BayesNet and
J48 in CoverType. This was because the default sample size was not enough to
yield a good estimate. The accuracy was increased up to 84.62% with ψ = 20000
and 88.66% with ψ = 50000. More samples are required to grow the trees further
to model the distributions well if the class distributions in the feature space
are complex. Figure 4(a) shows the improvement in accuracy of MassBayes in
CoverType when the sample size was increased.

Table 5 presents the average runtime. In terms of runtime, MassBayes was
an order of magnitude faster than A2DE in MiniBooNE; BayesNet in Cover-
Type, MiniBooNE and OneBig; NB-KDE in MiniBooNE and OneBig; and J48
in CoverType and MiniBooNE. It was of the same order of magnitude as A3DE,
A2DE, BayesNet, NB-KDE and J48 in many cases and an order of magnitude
slower than NB-Disc and A1DE. MassBayes′ was an order of magnitude slower
than the other contenders in many data sets. However, it was of the same order
of magnitude as A3DE in Letters; A2DE in MiniBooNE; BayesNet and NB-KDE
in MiniBooNE and OneBig; and J48 in CoverType and MiniBooNE.

Note that the reported runtime results for AnDE, BayesNet and NB-Disc
did not include the discretisation time that must be done as a preprocessing
step, which give the existing generative classifiers (except NB-KDE) an unfair
advantage over MassBayes. The discretisation time can be substantially large in
large data sets. For example, the discretisation took 52 seconds in the largest
data set, CoverType. This discretisation time alone was more than the total
runtime of MassBayes. Thus, MassBayes in effect runs faster than all existing
generative classifiers on equal footing.

In order to examine the scalability of the classifiers in terms of training time
and space requirements with the increase in training size N , we used the 48-
dimensional (42 irrelevant attributes with constant values) RingCurve-Wave-
Tri-Gaussian data set previously employed by Ting and Wells (2010) in [9]. The
training data size was increased from 7000 to 70000, half-a-million, 1 million and
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Fig. 4. Effect of parameters ψ and t on the classification accuracy and runtime of
MassBayes in the CoverType data set. The base for the runtime ratio while varying
ψ and t is the total runtime (training and testing over a 10-fold cross validation) for
ψ = 500 and t = 10, respectively. The horizontal axis of t and the vertical axis of
runtime ratio in (b) are on logarithmic scales of base 10.

10 million by a factor of 1, 10, 75, 150 and 1500, respectively. Figure 3 shows the
increase in classification model building time and memory space required to store
the classification model for different generative classifiers. Note that the discreti-
sation time was not included in the presented results. The discretisation time
increases linearly with the increase in training data size. This additional time for
discretisation will increase the training time of AnDE, BayesNet and NB-Disc.
MassBayes had constant training time and constant space requirements.

In order to examine the sensitivity of the parameters ψ, t and h in classifica-
tion accuracy and runtime of MassBayes, we conducted a set of experiments by
varying one parameter and fixing the other two to the default values. The result
of the experiment varying ψ and t in the largest data set (CoverType) is shown
in Figure 4. The increase in runtime was plotted as a ratio to show the factor of
runtime increased when the parameters were increased.

In general, accuracy increased up to a certain point and remained flat when
each of the three parameters was increased. This indicates that the parameters
of MassBayes are not too sensitive in terms of classification accuracy if they are
set to sufficiently high values. The runtime increased linearly with t and sub-
linearly with ψ. With fixed sample size (ψ = 5000), increase in h after a certain
point did not affect the runtime because the tree building process stopped before
reaching the maximum level h once the instances are separated.

6 Conclusions and Future Work

In this paper, we presented a new generative classifier called MassBayes that
approximates p(x|y) by aggregating multi-dimensional likelihoods estimated us-
ing varying size subsets of features from random subsets of training data. In
contrast, existing generative classifiers make assumptions about attribute inde-
pendence and estimate single-dimensional likelihood only. Our empirical results
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show that MassBayes produced better classification accuracy than the existing
generative classifiers in large data sets.

In terms of runtime, it scales better than the existing generative classifiers in
large data sets as it builds models in an ensemble using fixed-size data subsets.
The constant training time and space complexities make it an ideal classifier for
large data sets and data streams.

Future work includes applying the proposed method in data sets with discrete
and mixed attributes and investigating the effectiveness of MassBayes in the data
stream context. In this paper, we have rigorously assessed MassBayes with the
state-of-the-art Bayesian classifiers. In the near future, we will assess its perfor-
mance against some well-known discriminative classifiers and their ensembles.
The feature space partitioning can be implemented in various ways. It would
be interesting to investigate a more intelligent way of feature space partitioning
rather than dividing at mid-point of a randomly selected dimension.
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Abstract

Despite their wide spread use, nearest neighbour density estimators have two fundamental limitations: O(n2)
time complexity and O(n) space complexity. Both limitations constrain nearest neighbour density estimators
to small data sets only. Recent progress using indexing schemes has improved to near linear time complexity
only.

We propose a new approach, called LiNearN for Linear time Nearest Neighbour algorithm, that yields
the first nearest neighbour density estimator having O(n) time complexity and constant space complexity,
as far as we know. This is achieved without using any indexing scheme because LiNearN uses a subsampling
approach for which the subsample values are significantly less than the data size. Like existing density
estimators, our asymptotic analysis reveals that the new density estimator has a parameter to trade off
between bias and variance. We show that algorithms based on the new nearest neighbour density estimator
can easily scaleup to data sets with millions of instances in anomaly detection and clustering tasks.

Keywords: k-nearest neighbour, density-based, anomaly detection, clustering

1. Introduction and Motivation

Existing methods have utilised nearest neighbour density estimators as the basis to solve all facets of
pattern recognition problems from classification and regression to clustering and anomaly detection [5, 7,
11, 13, 15].

While existing nearest neighbour density estimators have been effective, the time complexity is still
basically O(n2) because of the need to find the nearest neighbour for every instance in a given data set.
This makes existing methods utilising nearest neighbour density estimator impractical for problems with
large data sets. Recent research has substantially improved the k-nearest neighbour search by introducing
various indexing schemes to speed up the search (e.g., Cover Trees [9], M-Trees [12] and R∗-Tree [8]) to near
linear time complexity.

The premise of the current research is that finding the nearest neighbour for every instance in the given
data set is inevitable which leads to O(n2) time complexity. Since the aim is to do density estimation, we
reject this premise and find a way to reduce the number of distance calculations required to achieve this
aim.

We propose a new approach to nearest neighbour density estimator. Instead of focusing on speeding
up the nearest neighbour search, the new approach first generates many local regions from subsamples and
then produces the final result in an ensemble method. The speedup is achieved because the size of the
subsamples required is significantly smaller than the given data set. This not only eliminates the need of
using an indexing scheme but enables the new density estimator to run in orders of magnitude faster than
existing nearest neighbour density estimators.

Email addresses: jonathan.wells@monash.edu (Jonathan R. Wells), kaiming.ting@monash.edu (Kai Ming Ting),
washio@ar.sanken.osaka-u.ac.jp (Takashi Washio)
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We make three contributions in this paper:
1. Introduce a new nearest neighbour density estimator that defines local neighbourhoods using nearest

neighbours in each of the many subsamples by building a region centered at each instance. This differs
from the existing nearest neighbour density estimators where the local neighbourhoods are defined based on
either k nearest neighbours or a fixed radius.

2. Provide an asymptotic analysis and it reveals that the new density estimator has a parameter which
trades off between bias and variance, as in existing density estimators such as k-nearest neighbour density
estimators.

3. Demonstrate the advantages of the new approach over the existing nearest neighbour density esti-
mators in two tasks: anomaly detection and clustering. The new approach reduces the time complexity
from O(n2) to O(n) and the space complexity complexity from O(n) to constant. We call the new approach
LiNearN for Linear time Nearest Neighbour algorithm.

Since nearest neighbour density estimators are the core mechanism in many pattern recognition algo-
rithms, we will begin the next section with a description of existing nearest neighbour density estimators.
Section 3 introduces the new nearest neighbour density estimator and provides the asymptotic analysis.
Section 4 describes how nearest neighbour density estimators, both existing and the new, are applied to
anomaly detection and clustering tasks. Section 5 reports the empirical evaluation results. Discussion and
the conclusions are provided in the last two sections.

2. Existing Nearest Neighbour Density Estimators

We describe three existing nearest neighbour density estimators below.
1. A k-nearest neighbour (k-NN) density estimator can be expressed as follows [11, 32].

fkNN (x) =
|N(x, k)|

n
∑

x′∈N(x,k)

‖x− x′‖p

where N(x, k) is the set of k-nearest neighbours to x; and |S| denotes the cardinality of set S, and ‖x−x′‖p
denotes the distance measured by Lp-norm between x and x′. The search for nearest neighbours is conducted
over D of size n, where D is the given data set.

2. A kth nearest neighbour density estimator is defined as follows [25]:

fkthNN (x) =
|N(x, k)|

nα(d, p)‖x− xk‖dp
where xk is the kth nearest neighbour to x and α(d, p) is the volume of an unit ball in (<d, Lp)

3. An ε-neighbourhood density estimator is defined as follows:

fε(x) =
|Nε(x)|
nε

where Nε(x) = {q ∈ D | ‖x− q‖p ≤ ε}. Since the denominator nε is the same for all x, it is usually omitted
in the implementation (e.g., in DBSCAN [15]).

Each of the above determines a local neighbourhood based on a global parameter, i.e., k or ε; and the
density is calculated based on one variable: distance of k-nearest neighbours in fkNN or fkthNN since the
numerator is a constant k; and Nε(·) in fε since the denominator is a constant.

In addition, the nearest neighbour search is conducted over the entire data set, D, which is the main
computational expense of the whole process; therefore, leading to a time complexity of O(n2) for n queries.
Research has focused on reducing this cost by devising different indexing schemes.
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Table 1: Key differences between existing nearest neighbour algorithms and LiNearN in terms of methodology
and time complexity.

Existing NN LiNearN

Methodology

Single model Multiple models
Density for each x ∈ D is derived from a
single local region via NN searches (e.g.,
fkNN , fkthNN or fε).

Density for each x ∈ D is derived
from many local regions (LR).

Indexing† is required to speed up NN
search. Often rely on triangle inequal-
ity to prune the search space

NN search without indexing.
1. NN search in a subset of D
(t times) to define LR.
2. NN search to make the final
estimation for each x ∈ D.

Time complexity
- LR building Not Applicable 1. ψ(ψ + Ψ)t
- Index building nil or n log n ‡ Not Applicable
- n Queries n2 or n log n 2. ψnt

† An alternative to indexing is clustering based search [27] which often needs higher time cost than indexing.
‡ Without indexing, n queries in existing nearest neighbour algorithms have O(n2) time complexity; with
indexing methods such as Cover Trees [9] and M-Trees [12], n queries have O(n log n) time complexity.

We suggest a new approach to compute density based on nearest neighbour with the following distin-
guishing features:

• Both the number of instances in the local neighbourhood and its volume are adaptive to the data
distribution in the local region; neither is fixed by a global parameter, unlike fkNN (·), fkthNN (·) and
fε(·).

• The nearest neighbour search is conducted over a data subset which is significantly smaller than the
given data set.

We describe the new density estimator in the next section.

3. New nearest neighbour density estimator

We propose a new nearest neighbour density estimator, called LiNearN for Linear time Nearest
Neighbour algorithm. It estimates the density for a point x by averaging densities of multiple local re-
gions covering x. Whilst the local regions could be implemented in different ways, we focus on deriving the
local regions using nearest neighbours. Because these local regions can be defined by using a significantly
smaller data set than the given data set, the computational expense for nearest neighbour search is reduced
to such an extent that an indexing scheme becomes unnecessary.

We describe LiNearN in the following five subsections. After describing the key differences between
the new and existing density estimators in the first subsection, LiNearN is formally defined in the second
subsection with an illustration in the third subsection. The asymptotic error analysis is given in the fourth
subsection followed by its implementation in the fifth subsection.

3.1. Key Differences

The key differences between LiNearN and existing density estimators based on nearest neighbour are
shown in Table 1. Since all parameters, except n, are constant and both ψ � n and Ψ� n (see definitions in
Section 3.2), the time complexity of LiNearN is O(n), which is significantly smaller than O(n2) or O(n log n).

3



Unlike ε-neighbourhood density estimator which employs a global ε (where every local region has the
same size), LiNearN adapts the size of each local region to the local data distribution — sparse regions
have large local regions; whereas, dense regions have small local regions. While k-nearest neighbour density
estimator can adapt to local data distributions in simple cases where there are only two densities by choosing
an appropriate k, it is not possible in more complex cases where many different densities exist in the data.

Instead of relying on a single estimation using the entire data set, LiNearN computes the average of
multiple estimations. Each of the estimations can be done with a significantly smaller data subset — this is
where the significant speedup over existing nearest neighbour density estimators is achieved.

The typical nearest neighbour algorithm (e.g., LOF [11], ORCA [7] or DBSCAN [15]) requires to store all
instances of a given data set for the distance calculation. In contrast, LiNearN requires to store tψ instances
only, which is constant.

Though LiNearN requires nearest neighbour search, only a linear search is required because it involves
a small sample size only, where ψ � n and Ψ � n. Existing algorithms which employ nearest neighbour
density estimators must rely on indexing to reduce the time complexity from O(n2) to O(n log n) [9, 12].

3.2. Definitions

Let D be a set of i.i.d. samples in a (<d, Lp) space, where the length of x = (x1, x2, · · · , xd)T ∈ <d is
measured by an Lp-norm:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xd|p)
1
p .

where p is in (0,∞] , and ‖x‖∞ = max{|x1|, |x2|, · · · , |xd|}. Furthermore, let D ⊂ D be selected using i.i.d.
sampling without replacement.

Definition 1. Hc ⊂ (<d, Lp) is a local region having its center at c ∈ D and its radius rc = 1
2‖c − x‖p,

where x is the nearest neighbour of c in D. �

Lp-norm determines the shape of the local region Hc. For example, Hc is a hypersphere if p = 2, and a
hypercube if p =∞. Note that a region Hc does not overlap with any other regions within a given set of D.

Definition 2. H is the set of |D| local regions, Hc, constructed from D: H = {Hc|c ∈ D}. �

Definition 3. Given H and D ⊂ D selected using i.i.d. sampling without replacement, if ∃Hc ∈ H,x ∈ Hc,
a distance-based density of x is defined as

ρ(x|H,D) =
|D(Hcnn(x))|
|D|rcnn(x)

, (1)

where cnn(x) = arg min
c∈D s.t. x∈Hc∈H

‖c− x‖p and D(Hcnn(x)) = {o ∈ Hcnn(x)|o ∈ D}. �

ρ(x|H,D) is given by H and D if Hc containing x exist in H, while H is defined by D. |D| is generally
set to be larger than |D|. Note that ρ(x|H,D) = 0 if x /∈ Hc ∈ H. This distance-based density is defined as
a ratio of number of instances and distance, following the similar density definition called ‘inverse distance’
for k-NN density estimator [32].

Definition 4. Average distance-based density of a point x is estimated from t local regions as follows:

f(x) =
1

t

t∑
i=1

ρ(x|Hi,Di), (2)

where Hi is generated from Di ⊂ D. This summation excludes ρ(x|Hi,Di) such that 6 ∃Hc ∈ Hi, x ∈ Hc.
D(Hcnn(x)) of every Hcnn(x) ∈ Hi is estimated from Di ⊂ D. ∀i, |Di| = ψ, and |Di| = Ψ. �
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When producing an estimate from multiple local regions, it is important to ensure that only one estima-
tion from each Hi contributes to the final result. The use of Hcnn(x) ∈ Hi ensures that f(x) at any point x
uses only one of the local regions in Hi.

We further introduce volume-based density which has a consistent definition with population probability
density φ(x) of D.

Definition 5. Given H and D ⊂ D selected using i.i.d. sampling without replacement, if ∃Hc ∈ H,x ∈ Hc,
a volume-based density of x is defined as

℘(x|H,D) =
|D(Hcnn(x))|
|D||Hcnn(x)|

. (3)

where cnn(x) and D(Hcnn(x)) are defined in Definition 3. |Hcnn(x)| is the volume of Hcnn(x) given by

|Hcnn(x)| = α(d, p)rdcnn(x), where α(d, p) is the volume of an unit ball in (<d, Lp). �

For example, α(d, 2) = πd/2

Γ(d/2+1) where Γ(·) is a gamma function, and α(d,∞) = 2d. ρ(x|H,D) is related

to ℘(x|H,D) as follows:

ρ(x|H,D) =
|Hcnn(x)|
rcnn(x)

℘(x|H,D). (4)

We define average volume-based density by ℘(x|H,D) as follows.

Definition 6. Similar to Definition 4, average volume-based density of a point x is estimated from t local
regions as follows:

ζ(x) =
1

t

t∑
i=1

℘(x|Hi,Di). (5)
�

For the rest of this paper, we will refer to the shape for each region, Hc, as a hypercube by using p =∞,
with the understanding that the shape for each region can be easily changed by changing the Lp-norm.

3.3. Illustration

An example of hypercubes, as a result of using L∞-norm in a 2-dimensional data set, generated from
D ⊂ D is shown in Figures 1(a) and 1(b). Figure 1(c) shows an example of estimating density for an instance
x using multiple hypercubes from {Hi|i = 1, . . . , t} where t = 4.

The number of hypercubes in H, ψ, determines the smoothness of the estimation. It has the similar effect
as the k parameter in k-nearest neighbour density estimator. Three example density distributions, as shown
in Figures 2(a)-2(c), are generated by LiNearN using three different values of ψ. Low ψ produces a smooth
distribution; whereas, high ψ produces a more spiky corresponding distribution. The density distributions
as generated by fkNN and fε are shown in Figures 2(d)-2(f) and Figures 2(g)-2(i), respectively.

Notice that there is an anomaly cluster in the bottom left corner of Figure 1(a) which consists of five
instances densely packed into a small region. The density distributions produced by LiNearN in Figure 2
shows that the anomaly cluster has low density when a small ψ is used and the ‘true’ density only starts to
emerge when a high ψ is used. This feature is especially useful for the purpose of anomaly detection and
has the following impacts:

• Both scattered anomalies and clustered anomalies can be detected using a small value of ψ.

• The time cost increases linearly with ψ. A small ψ value means that LiNearN could detect anomalies
with a small time cost.
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(c) Example density estimation
from multiple hypercubes using f̄(x)
in Equation (2).

Figure 1: An example of constructing hypercubes using D ⊂ D (see Algorithm 2 in Section 3.5) and assigning
sample mass in each hypercube to estimate density using D ⊂ D. These two processes are shown in (b).
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(d) f̄(·), ψ = 2
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(e) f̄(·), ψ = 16
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(f) f̄(·), ψ = 128
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(g) fkNN (·), k = 700
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(h) fkNN (·), k = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9
10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(i) fkNN (·), k = 6
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(j) fε(·), ε = 0.3
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(k) fε(·), ε = 0.1
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Figure 2: Example density distributions for the data set shown in Figure 1(a). Figures (a)-(c) show the
distributions generated from LiNearN having f̄(·) uses three different values of ψ with Ψ = 256 and t = 1000.
The corresponding density distributions for fkNN (·) and fε(·) are shown in (d)-(f) and (g)-(i), respectively.
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In contrast, when k-nearest neighbour is used to detect clustered anomalies (e.g., in LOF [11] and ORCA
[7]), in order to detect clustered anomalies, k needs to be set to a value larger than the number of instances
in every anomaly cluster [24]. Otherwise, the k-nearest neighbour algorithms would fail to detect anomaly
clusters having number of instances larger than k. This has two implications. First, the time cost increases
as k increases. Second, a more detrimental effect to the runtime of k-nearest neighbour anomaly detectors is
that k needs to be searched in a large range of values. This will add a significant time cost to their already
expensive O(n2) time complexity.

We will demonstrate these advantages of LiNearN over existing nearest neighbour algorithms in Sec-
tion 5.1.

3.4. Asymptotic Error Analysis

ζ(x) can be thought of as a random variable because of its dependence on D, its random subsamples
Di and Di (i = 1, . . . , t). Accordingly, we analyse Mean Squared Error (MSE) of ζ(x) from the population
probability density φ(x). It is defined as

MSE(ζ(x)) = E
[
{ζ(x)− φ(x)}2

]
where the expectation E[·] is taken over the distribution of ζ(x). This is rewritten by introducing the
expectation of ζ(x), E[ζ(x)], as follows [30].

MSE(ζk(x)) =
{
E[ζk(x)]− φ(x)

}2

+E
[
{ζk(x)− E[ζk(x)]}2

]
. (6)

The first term on the rhs is called ‘square bias’ and the second term ‘variance.’
Preliminary to evaluating magnitudes of these terms, we present the moment expectations of the nearest

distance distribution at a point x ∈ <d under a generic population distribution φ(x) in a (<d, Lp) space.
Evans et al. [17] already assessed its associated problem. Although they did not explicitly state the applica-
bility of its analysis to generic Lp distance measures, the applicability was indicated in a subsequent paper
[16]. These papers focused on the moment expectations marginalized over a compact convex space having
a unit volume. Here, we further assess the moment expectations at a point x ∈ <d based on their analyses.

Theorem 1. Let C be a compact convex body in (<d, Lp). Assume that all instances in D and hence D ⊂ D
are i.i.d. sampled from C according to their population probability density φ(x) satisfying three conditions:
φ(x) is continuous, positive, and has bounded partial derivatives for all x ∈ C. Then for all 0 < ε < 1/d and
integer m ≥ 0, the expectation of the m-th moment of rc defined in Definition 1 is represented as follows for
some 0 < ν(d, p, x) ≤ 1.

E[rmc ] =
c(d,m, p)

(ψ + 1)m/d
+O(

1

ψm/d+ε
) (7)

holds as ψ → ∞, where ψ = |D|, and c(d,m, p) = Γ(m/d+1)
{ν(d,p,c)α(d,p)φ(x)}m/d is a constant not depending on ψ,

and α(d, p) is the volume of a unit ball in (<d, Lp).

The proof is provided in Appendix A.

The compactness and convexity of C and the three assumptions of φ(x) on C virtually do not limit the
applicability of this result, since C can be chosen to sufficiently cover the areas containing all data points in
D, a continuous and smooth φ(x) can be assumed, and small positive values of φ(x) can be assumed even
in the areas where the data points in D are not located in C.

Now, we obtain the following theorem evaluating asymptotic behaviours of the square bias and the
variance in the MSE of ζ(x) in terms of number of subsamples. In addition to the assumptions of Theorem 1,
we further introduce an assumption of bounded second order partial derivatives of φ(x). These assumptions
do not limit the applicability of the result to practical problems.
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Theorem 2. Under the assumptions of Theorem 1 and an assumption that φ(x) has bounded second order
partial derivatives at each point x ∈ C, magnitudes of the square bias and the variance of ζ(x) asymptotically
behave as follows.

{
E[ζ(x)]− φ(x)

}2
= O(ψ−2/d), and (8)

E
[
{ζ(x)− E[ζ(x)]}2

]
(9)

=

{
O(t−1ψ−1Ψ−1) if d = 1,
O(t−1ψ1−2/d+εΨ−1) for all 0 < ε < 1/d if d ≥ 2.

The proof is provided in Appendix B.

This result indicates that the square bias of ζ(x) diminishes and the variance increases as the size of D
increases, i.e., the size of the local region Hc decreases, except for the case of one-dimensional data. This
property of the average volume-based density estimator for the size of D is similar to that of the conventional
k-nearest neighbour estimator which also shows decrease of the bias and increase of the variance for the
reduction of the k value. On the other hand, a significant advantage of our approach is the dependency of the
variance to the inverse of t and the inverse of the size of D. By increasing these parameters, we can reduce
the variance while maintaining the squared bias. The average volume-based density estimator has superior
performance to the k-nearest neighbour estimator in theory while maintaining the lower computation cost.

3.5. Implementation

The procedural outline of LiNearN is given below:

¬ Select a subsample D of size ψ from D, where ψ � |D|.

­ ∀c ∈ D, identify its nearest neighbour; and construct a hypercube region centered at c with ‘radius’
rc. A total of ψ non-overlapping hypercube regions is produced from D. (Definitions 1 and 2)

® Repeat steps ¬ and ­ t times to produce {Hi|i = 1, . . . , t}.

¯ A subset D ⊂ D is used to estimate the number of instances covered by each hypercube region.
(Definition 3)

° Estimate the density for each x ∈ <d by averaging the densities of t hypercube regions that cover x.
(Definition 4)

Steps ¬ to ® are implemented in Algorithm 1, and the actual construction of hypercube regions is
implemented in Algorithm 2. Steps ¯ and ° are implemented in Algorithms 3 and 4, respectively.

Algorithm 1: LiNearN(D, t, ψ,Ψ)

input : D - input data, t - number of subsamples D, ψ - the size of subsample used for constructing
a set of hypercube regions, Hi. Ψ - the size of subsample used to estimate density in Hi

output: {Hi|i = 1, . . . , t} where each Hi contains a total of ψ non-overlapping hypercube regions
with estimated densities.

1 for i = 1 to t do
2 D ← sample(D,ψ) {strictly without replacement};
3 Hi ← BuildHyperCubes(D);

4 end
5 AssignSampleMass({Hi|i = 1, . . . , t}, D,Ψ)
6 return {Hi|i = 1, . . . , t} with estimated densities;
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Algorithm 2: BuildHyperCubes(D)

input : D - subsample used to build hypercube regions.
output: H - a set of |D| non-overlapping hypercube regions.

1 H ← ∅;
2 for m = 1 to |D| do
3 Initialise H;
4 H.center ← xm;
5 xNN ← arg min

o∈D\{H.center}
‖H.center − o‖∞ {find the nearest neighbour};

6 H.radius← 1
2‖H.center − xNN‖∞;

7 H.mass← 0;
8 H ← H ∪ {H};
9 end

10 return H;

Algorithm 3: AssignSampleMass(C, D,Ψ)

input : C - {Hi|i = 1, . . . , t}, D - input data, Ψ = |D| - the size of subsample used for density
estimation.

output: C - {Hi|i = 1, . . . , t} with their mass values estimated from Di, respectively.

1 for i = 1 to t do
2 Di = {x1, . . . , xΨ} ← sample(D,Ψ) {strictly without replacement};
3 for j = 1 to Ψ do
4 H← search(Hi, xj) {return H ⊂ Hi that covers xj , i.e., ||H.center − xj ||∞ < H.radius};
5 if H is not NULL then
6 H.mass← H.mass+ 1;
7 end

8 end

9 end
10 return C;

Algorithm 4: Density(x,C)

input : x - input point, C - {Hi|i = 1, . . . , t}.
output: ρ/t - average density estimated for x.

1 ρ← 0;
2 for i = 1 to t do
3 H← search(Hi, x) {return H that covers x};
4 if H is not NULL then
5 ρ← ρ+ (H.mass/H.radius);
6 end

7 end
8 return ρ/t;
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Table 2: Principal steps in LOF and LiNearN for anomaly detection.

Steps LOF LiNearN

1 Compute density distribution: Compute density distribution:
fkNN (x) f̄(x)

2 Compute LOF (x) using [Step 2 is not required for LiNearN.]∑
x′∈N(x,k)

fkNN (x′)

|N(x, k)|

fkNN (x)

3 Rank all instances based on their
LOF values in descending order

Rank all instances based on their
f̄(x) values in ascending order

4. Density estimators in anomaly detection and clustering tasks

4.1. Anomaly detection

The prevalent anomaly detection approaches (e.g., LOF and ORCA) rely on distance-induced density
based on the following definition:

Density-based Anomalies are instances in regions of low density or low relative density in the
local neighbourhood.

Variants of the definition are used in literature. Note that though they do not use the term ‘density’ in
their definitions, they are essentially estimating density based on the distance calculations where density is
a ratio of the number of instances in a spherical region and the radius of the region. The first definition
below has a fixed radius; whereas, the second and third definitions have a fixed number of instances k.

1. (MinPts, ε)-Distance Anomalies are instances which have fewer than MinPts instances within a
distance ε [22].

2. kth NN Distance Anomalies are the top-ranked instances whose distance to the kth nearest neigh-
bour is greatest [26].

3. Average kNN Distance Anomalies are the top-ranked instances whose average distance to the k
nearest neighbours is greatest [4].

4. Anomalies based on Local Outlier Factor (LOF) have high LOF values, where LOF of x is a
ratio of average density in the local neighbourhood of x and the density of x [11]. The density can be
defined using fkNN or other density estimators.

For a given x, LOF computes the average density of k nearest neighbours of x, where the region occupied
by these neighbours is the local neighbourhood of x. LOF is computed as the ratio of the average density and
the density of x. LOF ≈ 1 indicates that x has the similar density as instances in its local neighbourhood;
LOF � 1 indicates that x has significantly lower density than that from its local neighbourhood, or its
nearest neighbours are far away from x; thus x is more likely to be an anomaly.

As pointed by Breunig et al. [11] that the density computed by k-nearest neighbour density estimator,
while suitable for detecting global anomalies, will fail to detect local anomalies. LOF is a ‘correction’ of the
density calculated in order to detect both global and local anomalies.

Table 2 shows the principal steps in LOF and LiNearN used to detect anomalies. Not only f̄(x) executes
faster than fkNN (x), LiNearN can directly use the density computed to rank instances to detect anomalies,
without the additional ‘correction’ in step 2 required in LOF. This is because f̄(·) is using the nearest neigh-
bour to define local neighbourhood which provides the most localised estimation in a k-nearest neighbour
approach. In contrast, fkNN (·) often requires k � 1 in order to detect clustered anomalies that exist in
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a data set. The larger k is the less localised is the estimation. See the typical values of k required in the
experiments reported in Table 6 in Section 5.1.

Like LiNearN, ORCA requires two steps only but the two steps are coupled to prune the search space
in order to improve its time complexity. Unlike LiNearN, the density computed by ORCA does not allow it
to detect local anomalies.

4.2. Clustering

In clustering, DBSCAN [15] employs the ε-neighbourhood density estimator (fε) defined in Section 2.
DBSCAN requires nearest neighbour searches of the entire data set to find out how many instances are
within an ε distance from an instance of interest. A data point, x, is identified as a core point when the
number of points is equal to or greater than an user defined parameter, MinPts, within ε distance of x.
After all core points have been identified, the clustering process starts with the first core point, marked
as belonging to the first cluster. The next core point is selected from unmarked core points within the
boundary of the cluster. As more core points are marked, the boundary of the cluster continues to expand.
This expansion continues until there are no further unmarked core points found within the cluster boundary.
This entire process is repeated for the next cluster until there are no more unmarked core points. Each
border point, which is within the ε-neighbourhood of a core point but is not a core point, is then connected
to the nearest cluster.

Conceptually, the new clustering algorithm is the same as DBSCAN with the following three differences.
Firstly, we use the new density estimator f̄ to define the density. Secondly, there are no border points.
Finally, the clustering is done on the core regions not on the individual core points. We called the algorithm
LiNearN-Cluster. Table 3 gives a comparison between the point-based definitions of DBSCAN and the
region-based definitions of LiNearN-Cluster.

LiNearN-Cluster employs Algorithms 1 to 3 specified in Section 3.5 to estimate the density of each
hypercube region. An additional procedure is required to link all connecting hypercubes, having intersections
of non-empty sets, to form a cluster. The procedural outline of this linking process is given below:

¬ Identify all core regions, H, which has density ≥MinDensity. (Algorithm 5)

­ Remove all (noise) points in D that do not fall into any of the core regions (Algorithm 6)

® Assign an id to each core region which has a point x ∈ D (Algorithm 7)

(a) Find one previously assigned core region (line 5-13)
(b) If none found then increment the current id (line 14-17),

and assign the current id to the unassigned core region (line 31)
(c) If the core region is previously assigned then produce a link between the current id and previously

assigned id (line 23-27)

¯ Merge core regions which have connecting link ids to form a cluster (Algorithm 7 : line 36)

Algorithms 5 to 7 are shown in Appendix C.

Figure 3 illustrates an example linking process as outlined in the above steps for instances x1, x2, x3 and
x4. Figure 3(a) shows a set of five core regions. Three core regions (T2, T3, T5) covering x1 are identified
(Figure 3(b)) and are assigned the current id of 1 (Figure 3(c)). Figure 3(d) shows that x2 is covered by a
single core region, T4, and it is assigned the next id of 2. Core regions T1 and T4 cover x3 (Figure 3(e)).
Since T4 has been previously assigned an id of 2, T1 will be assigned the same id. The final point x4 falls
into core regions T1 and T5 (Figure 3(f)). Now that T1 and T5 have previously assigned ids, they are linked
as a pair.

After core regions, covering all instances in D, have been assigned id’s, all linking pairs will be merged
into a single cluster with the same id as the final step of the clustering process.
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Table 3: Point-based definitions for DBSCAN versus region-based definitions for LiNearN-Cluster. The
definitions for DBSCAN are extracted from Ester et al. [15] for comparison.

DBSCAN LiNearN-Cluster
(Point-based) (Region-based)

Definition P1: (ε-neighbourhood of a point) The
ε-neighbourhood of a point p, denoted by Nε(p),
is defined by Nε(p) = {q ∈ D|dist(p, q) ≤ ε}.

Definition S1: T (x) is a core region of point x
wrt MinDensity if ρ(x|H,D) ≥MinDensity.

Definition P2: (directly density-reachable) A point
p is directly density-reachable from a point q
wrt ε, MinPts if

1. p ∈ Nε(q) and

2. |Nε(q)| ≥MinPts (core point condition).

Definition S2: Tr(·) is density-connected to
Ts(·) wrt MinDensity if there is a chain of re-
gions T1(·), . . . , Tg(·) where r = 1 and s = g such
that Tı(·) ∩ Tı+1(·) 6= ∅ and Tı(·) is a core region
for all ı wrt MinDensity.

Definition P3: (density-reachable) A point p is
density-reachable from a point q wrt ε and
MinPts if there is a chain of points p1, · · · , pn,
p1 = q, pn = p such that pi+1 is directly density-
reachable from pi.

Definition S3: An arbitrary-shape cluster C
wrt MinDensity is a non-empty subset of a
database D satisfying the following condition:
∀r, s;Tr(·), Ts(·) ⊂ C: Tr(·) is density-connected
to Ts(·) wrt MinDensity.

Definition P4: (density-connected) A point p
is density-connected to a point q wrt ε and
MinPts if there is a point o such that both p and
q are density-reachable from o wrt ε and MinPts.

Definition S4: Let C1, . . . , Ck be the clusters of
D wrt MinDensity. Noise is the set of points
in D not belonging to any cluster C, i.e., noise
= {x ∈ D|∀ : x /∈ C}.

Definition P5: (cluster) Let D be a database of
points. A cluster C wrt ε and MinPts is a non-
empty subset of D satisfying the following condi-
tions:

1. ∀p, q : if p ∈ C and q is density-reachable
from p wrt ε and MinPts, then q ∈ C. (Max-
imality).

2. ∀p, q ∈ C : p is density-connected to q wrt ε
and MinPts (Connectively).

Definition P6: (noise) Let C1, · · · , Ck be the clus-
ters of the database D wrt parameters εi and
MinPtsi, i = 1, · · · , k. Then we define the noise
as the set of points in the database D not belonging
to any cluster Ci, i.e. noise = {p ∈ D|∀i : p /∈ Ci}.
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Figure 3: An example of the LiNearN-Cluster linking process.
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Table 4: A comparison of time and space complexities.

Time complexity Space complexity

LiNearN O(ntψd)‡ O(tψd)
DOLPHIN O(n2d) O(nd)

O(kpnd)† O(kpd)†

ORCA O(n log n · d) O(nd)
LOF O(n2d) O(nd)

DBSCAN O(n2d) O(nd)
LiNearN-Cluster O(ntψd) O(tψd)

‡ O(t(ψ+ Ψ)ψd) is the time complexity required in ‘training’, i.e., defining the local regions using D and estimating density of
the local regions using D, as described in steps ¬ to ¯ in Section 3.5. O(ntψd) is the time complexity in ‘testing’, i.e.,
estimating every x ∈ D, as described in step °. Since ψ + Ψ is constant and significantly less than n, it is omitted in the
Big-O notation.

† Under a special condition: p is the probability of randomly picking a point from the data set which is a neighbour of the

point under consideration using a search index; k is the number of nearest neighbours; d is the number of dimensions.

4.3. Time and Space Complexities for nearest neighbour-based anomaly detection and clustering algorithms

This section compares the time and space complexities of three state-of-the-art anomaly detection algo-
rithms [3, 11] and the state-of-the-art clustering algorithm [15] with LiNearN. All of these algorithms uses
density as the basis of their operations. Table 4 lists the complexities for the four algorithms, LiNearN and
LiNearN-Cluster.

In nearest neighbour algorithms, the most computationally expensive part of the process is to do the
nearest neighbour search which has O(n2) time complexity. These algorithms have already used or could
use some indexing scheme to their time complexities.

LiNearN has a significant advantage over the three k-nearest-neighbour-based anomaly detection algo-
rithms in terms of both time and space complexities. This is mainly due to the fact that LiNearN only
needs a small subsample to identify local neighbourhoods, where ψ � n; ψ (also t) can be fixed in practice,
regardless of the size of the given training set.

LiNearN-Cluster requires steps for the clustering process in addition to those steps in LiNearN. Even
with these additional steps, the time and space complexity are still the same as the basic LiNearN.

Another distinguishing feature is that the space complexities of both LiNearN and LiNearN-Cluster
are constant, independent of the data size. These properties make LiNearN and LiNearN-Cluster an ideal
candidate to apply to domains with huge data size or infinite data such as data streams.

5. Empirical Evaluations

All evaluations were conducted in the unsupervised learning settings in both anomaly detection and
clustering tasks.

The experiments were conducted as single thread jobs processed at 2.27 GHz in a Linux cluster with 40
GB memory unless a different memory requirement is specified. Both LiNearN and LiNearN-Cluster algo-
rithms were written in JAVA in the WEKA platform [20], so as DBSCAN. LOF and DBSCAN were written
in Java in the ELKI platform version 0.5 [1]. ORCA was written in C++ (www.stephenbay.net/orca/).

In anomaly detection, we compare LOF and ORCA with LiNearN using the same eleven data sets as
used by Liu et al. [24]. Ring-Curve-Wave-TriGaussian, OneBig and Pendigits data sets used by Ting et al.
[33] are employed to compare LiNearN-Cluster with DBSCAN. The additional Animals, Segment, WDBC,
Iris and Yeast data sets are from UCI Machine Learning Repository [18]. The characteristics of the data
sets are shown in Table 5. They were selected to have different data characteristics of data size, number of
dimensions and clusters.
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Table 5: Data sets. The first eleven data sets are for anomaly detection; the last eight data sets are for
clustering.

Data Size n d anomaly class

Http 567,497 3 attack (0.4%)
ForestCover (FC) 286,048 10 class 4 (0.9%) vs. class 2
Mulcross 262,144 4 2 clusters (1%)
Smtp 95,156 3 attack (0.03%)
Shuttle 49,097 9 classes 2, 3, 5, 6, 7 (7%)
Mammography 11,183 6 class 1 (2%)
Satellite 6,435 36 3 smallest classes (32%)
Pima 768 8 pos (35%)
Breastw 683 9 malignant (35%)
Arrhythmia 452 274 classes 03, 04, 05, 07, 08, 09, 14, 15 (15%)
Ionosphere 351 32 bad (36%)

Animals 200,000 72 4 clusters
OneBig 68,000 20 9 clusters and 10,000 noise instances
Pendigits 10,992 16 10 clusters
Segment 2,310 19 19 clusters
Yeast 1,484 8 10 clusters
WDBC 569 30 2 clusters
Iris 150 4 3 clusters
Ring-Curve-Wave-TriGaussian 7,000 to 10 million 48 7 clusters in 6 relevant attributes; 42 irrel-

evant attributes

In anomaly detection tasks, we conduct a parameter search for all three algorithms and report the best
result. For LOF and ORCA, the best k is searched between 5 and 4000 (or up to the data size for small
data sets), with steps from 5, 10, 20, 40, 60, 80, 150, 250, 300, 500, 1000, 2000, 3000 to 4000. For LiNearN,
the best ψ is searched from 2, 4, 8, 16, 32, 64 to 128; and we also report the result of the default setting
(i.e., ψ = 2). The other default settings are fixed: t = 1000 and Ψ = 256 for LiNearN; and p = 2 for both
LOF and ORCA. The remaining parameter settings for ORCA are set to their default values except for the
number of returned anomaly points which is set to twice the number of anomaly points in the selected data
set but capped at 50% of the total data size. The parameter setting not only provides information which is
usually not available in practice but also reduces the number of distance calculations for the top anomaly
points only. This setting gives ORCA an unfair advantage to LiNearN which computes the density for every
point in the data set.

We report the result in anomaly detection task in terms of CPU runtime and AUC (Area Under ROC
Curve) based on the ranked result. The clustering result was reported in terms of CPU runtime, number of
clusters identified, number of unassigned instances, and F-measure which was calculated based on assigned
instances only. F-measure = 1 when all assigned instances are in the correct clusters, i.e., perfect clustering;
and F-measure = 0 if all instances are assigned to wrong clusters.

We report the results in anomaly detection in Section 5.1, clustering in Section 5.2 and a summary is
provided in Section 5.3.

5.1. Anomaly Detection

The ELKI platform has an option to use an indexing scheme when using LOF to speed up the nearest
neighbour search process. We used the R∗-Tree indexing [8] for all of the data sets except http. LOF was
unable to process http within the physical memory of 40GB; therefore, we reported the results without using
indexing for this data set. We used the default settings for indexing except in the arrhythmia data set. The
default page size was changed from 4KB to 32KB because of the high dimensionality in the arrhythmia data
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Table 6: AUC results for LiNearN, LOF and ORCA.

AUC Best Parameter

LiNearN
LOF ORCA

LiNearN LOF ORCA

ψ = 2 best ψ ψ k k

http 1.00 1.00 1.00 1.00 2 500 3000
FC 0.81 0.95 0.94 0.88 8 1000 3000

mulcross 1.00 1.00 1.00 1.00 2 2000 3000
smtp 0.78 0.95 0.95 0.74 32 1000 40

shuttle 0.99 0.99 0.98 0.99 2 4000 4000
mammography 0.82 0.87 0.68 0.67 16 4000 80

satellite 0.69 0.72 0.79 0.78 4 1000 500
pima 0.72 0.74 0.72 0.73 4 250 150

breastw 0.98 0.98 0.96 1.00 2 300 300
arrhythmia 0.67 0.71 0.80 0.80 128 80 150
ionosphere 0.94 0.96 0.90 0.93 4 80 5

Table 7: Runtime results (in seconds) for LiNearN, LOF and ORCA. Separate training and testing results
are shown for LiNearN.

LiNearN
LOF ORCATraining Testing

ψ = 2 best ψ ψ = 2 best ψ

http 0.27 0.27 71.4 71.4 19, 965 78, 931
FC 0.25 0.29 57.6 444.5 2, 918 94, 336

mulcross 0.29 0.29 33.2 33.2 2, 169 56, 372
smtp 0.28 0.67 12.6 556.5 373 125

shuttle 0.34 0.34 7.8 7.8 656 16, 137
mammography 0.29 0.34 1.1 8.9 127 4.0

satellite 0.30 0.27 1.3 3.4 23.60 56.1
pima 0.20 0.21 0.21 0.21 0.44 0.46

breastw 0.23 0.24 0.10 0.15 0.44 1.02
arrhythmia 0.96 13.03 1.27 28.60 1.18 0.45
ionosphere 0.24 0.23 0.11 0.13 0.26 0.03

set. It should be pointed out that LOF within the ELKI platform does a pre-computation of every pair-wise
distance before commencing the algorithm as a speedup technique.

Table 6 shows the AUC results. It is interesting to note that LiNearN with the default setting ψ = 2 has
competitive AUC results in seven out of the eleven data sets. With a parameter search, all three algorithms,
LiNearN, LOF and ORCA, produce similar AUC results. However, both LOF and ORCA require a much
wider range of parameter search than LiNearN in order to achieve good AUC results. In contrast, LiNearN
achieves good AUC performance using small ψ values. Note that the smaller ψ is the faster LiNearN runs;
this applies to LOF and ORCA too for the k parameter. Both the range of search and the actual value
required put LiNearN in a more favourable position than LOF and ORCA.

In addition, LiNearN also runs significantly faster than LOF and ORCA, in the large data sets. In the
largest data set, http, LiNearN is faster than LOF and ORCA by a factor of 279 and 1101, respectively.
The actual runtime results are shown in Table 7.
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5.1.1. Scaleup tests

We conducted two scaleup tests. We scaled up the data size in the first and the number of dimensions
in the second.

The results of the first scaleup test using Mulcross are shown in Figure 4. The k parameter for LOF is
set to 2,000 and the ψ parameter for LiNearN is set to 2. The left graph of Figure 4 shows the result when
scaling up by data size. When the data size was increased by a factor of 2, 4, 10 and 40, LiNearN increased
its runtime by a factor of 2.2, 4.5, 14 and 61, respectively. In contrast, the factors of runtime increases by
LOF, without indexing, are 4.2, 17, 105, 1700 (the last one is a projected value); and the corresponding
factors for LOF with indexing are 1.9, 5, 15 and 88. With ten million instances (at the last point of each
line), LiNearN completed in just under 31 minutes; whereas, LOF with indexing took 1.7 hours. Without
indexing, LOF is projected to take 100 days! These results are consistent with the time complexities stated
in Table 4.

The right graph of Figure 4 shows the result of the same experiment but the number of dimensions
was increased from 4 to 5. Note that the k value for LOF had to be reduced from 2000 to 10 in order to
run within 200GB of physical memory; whereas, the memory usage is under 40G for all points in the left
graph. The reason for the high memory usage is two fold: ELKI does the entire indexing in memory and
before running the LOF algorithm, it pre-computes all the distance calculations for each pair-wise distance
for a given k value. The contrast in the left and right graphs in Figure 4 show that LOF has significantly
increased its runtime and runtime ratio by increasing the number of dimension from 4 to 5 only.
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Figure 4: Scaleup test for LiNearN and LOF as data size increases from 250,000 to ten million. By using
250,000 as the base, these increases have the ratios of 1 to 40. The final point for LOF without indexing is
a projected value in the left graph; and the final point for LOF without indexing, in the right graph, is not
available because it took longer than 100 days.

Figure 5 shows the runtime result when scaling up by increasing the number of dimensions from 5 by
factors of 2, 4, 10 and 20. For LiNearN, the increases in the runtime are 1.3, 1.3, 1.6 and 1.9, respectively;
LOF without indexing, the increases are 1.6, 2.0, 2.5 and 4.0; however, with indexing, LOF’s increases are
5.1, 15 and 25 for the first three points. The last point could not produced because the process ran out
of memory. For the second last point which has 50 dimensions, LiNearN completed within 134 seconds
and LOF without indexing completed in over 6 hours; however, LOF with indexing took nearly 18.3 hours
to complete. This highlights that such an indexing scheme has significant overheads for problems with a
moderate number of dimensions; and LOF with indexing will run slower than LOF without it; in addition
to high memory demands.

This experiment shows that while an indexing scheme such as R∗-Tree can speed up the nearest neighbour
search significantly, it has high memory requirements. Also, this speedup only occurs in problems with few
dimensions. With tens of dimensions1, it is better not to use indexing in the Mulcross data set.

1These are not high dimensional problems with tens of thousands of dimensions. LiNearN and LOF are not designed to
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Figure 5: Scaleup test for LiNearN and LOF as the number of dimensions increases from 5 to 100. By using
5 as the base, these increases have ratios of 1 to 20. The final point for LOF when indexing is not available
because the memory is not sufficient to run the experiment.

5.1.2. Sensitivity test

The aim of this subsection is to examine how sensitive the parameters are to the performance of LiNearN
in terms of AUC and runtime. Because the results are similar, only the results of the two largest data sets
are shown. Figure 6 shows AUC and runtime as Ψ was increased from 10 to 1000. It is interesting to
note that only a small Ψ is required to achieve good AUC result, and a large Ψ value gives minor or no
improvement in AUC.
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Figure 6: AUC and runtime as a result of varying Ψ of LiNearN. The default settings are used for the other
parameters: ψ = 2 and t = 1000.

Figure 7 shows the AUC and runtime results as t was increased from 10 to 1000. It also shows that only
a small t of 100 is required to achieve good AUC result.

Note that the runtime increase between t = 100 and t = 1000 was due to the memory swap between
cache and main memory or disk, not because of algorithmic procedure as it is linear to t.

Figure 8 shows the results as ψ was increased from 2 to 128 by multiplying with 2 at each step increase.
Among the three parameters, ψ has the highest influence on the AUC result because it controls the smooth-
ness of the density distribution estimated, as shown in Figure 2. It is interesting to note that small ψ values
achieve good AUC results, and this allows LiNearN to detect anomalies fast.

deal with high dimensional problems.
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Figure 7: AUC and runtime as a result of varying t of LiNearN. The default settings are used for other
parameters: ψ = 2 and Ψ = 256.
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Figure 8: AUC and runtime as a result of varying ψ of LiNearN. The default settings are used for other
parameters: t = 1000 and Ψ = 256.

5.1.3. Identifying Local Anomalies

With LiNearN, the probability of selecting an anomaly into a subsample is significantly smaller than
normal points. Thus, only a small number of t subsamples will include anomalies.

Let ε be the probability of selecting an anomaly into a subsample; and t is the number of subsamples
or models generated from subsamples. Thus, there are (1− ε) ∗ t models built without anomalies and they
will all have zero density estimation for anomalies. Only ε ∗ t models built from subsamples containing
anomalies may have low density estimations for anomalies2. As a result, the densities estimated by LiNearN
for anomalies will be low.

On the other hand, all t models will be built from subsamples containing mostly normal points, if not all
normal points. Thus, f̄(·) will estimate the densities for normal points to be higher than those for anomalies.

Note that the above effect is the same, regardless the point is a local or global anomaly.
It is interesting to note that k-nearest neighbour density estimator is known to have problems in identi-

fying local anomalies [11]. A similar example provided by Breunig et al. [11] is given in Figure 9, where the
local anomalies are estimated to have the same density of the sparse cluster; thus, they would not be identi-
fied as an anomaly by k-nearest neighbour-based anomaly detector such as ORCA, as shown in Figure 9(c).

2These models could still produce zero density estimation for anomalies when they are significantly different from those
appeared in the training subsamples.
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(c) kNN where k = 16. AUC = 0.96.
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(d) LOF where k = 16. AUC = 1.

Figure 9: Examining the ability to detect local anomalies using LiNearN, kNN and LOF. The ‘inverse’
anomaly scores are shown for LiNearN and kNN. Low scores indicates normal points; whereas, the higher
score indicates anomaly. To highlight the difference between anomalies and normal points, the scores shown
are a result of subtracting the maximum score of the normal points such that all normal points will have
(adjusted) scores below or equal to zero. Anomalies are shown as black lines and normal points as grey
lines.

Both LiNearN and LOF can detect all anomalies as shown in Figure 9(b) and 9(d).
In contrast, based on nearest neighbour, LiNearN can easily detect local anomalies for the reason stated

above. Instead of computing relative density, as in LOF [11] to ‘correct’ the deficiency of k-nearest neighbour
procedure in identifying local anomalies, LiNearN employs sampling to reduce the anomalies’ presence in
the training samples, as the key step to identify local and global anomalies.

5.2. Clustering

Table 8 shows the clustering results for LiNearN-Cluster and DBSCAN. In the OneBig data set that has
nine clusters with 10000 noise points, LiNearN-Cluster produced ten clusters which include a cluster consists
of noise, and additional 3000 points not assigned to any clusters. DBSCAN also produced nine clusters with
slightly more than ten thousand unassigned points. Both algorithms produced F-measures equal to one for
all the nine clusters. In terms of runtime, both LiNearN-Cluster and DBSCAN took about the same time
to complete this task.

In the pendigits data set, LiNearN-Cluster produced a better clustering result than DBSCAN in terms
of the number of clusters and the number of unassigned instances. Because LiNearN-Cluster assigned about
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Table 8: Clustering results for the OneBig and Pendigits data sets using LiNearN-Cluster (ψ = 600 for
OneBig; ψ = 512 for Pendigits; ψ = 43 and t = 30000 for Animals. Other default settings are Ψ = 256
and MinDensity = 6) and DBSCAN (ε = 0.1 for OneBig; ε = 0.2 for Pendigits; ε = 0.7 for Animals and
MinPts = 6).

OneBig Pendigits Animals

LiNearN- DBSCAN LiNearN- DBSCAN LiNearN- DBSCAN
Cluster Cluster Cluster

Runtime 8565 8406 821 181 38532 240187
#cluster [9] 10 9 [10] 18 65 [4] 4 4

#unassigned 2920 10005 1495 6251 18597 3347
F-measure 1.00 1.00 0.68 0.75 1.00 1.00

5000 more instances to clusters, it has slightly lower F-measure than DBSCAN. In this relatively small data
set, DBSCAN ran faster than LiNearN-Cluster.

The Animals is an interesting synthetic data set because of how it is constructed. It has approximately
16000 mini-clusters, each has either 12 or 13 points. These mini-clusters are grouped into 4 clusters with 2
being in close proximity of each other. With ε = 0.3, DBSCAN produced the 16000 mini-clusters. In order
for DBSCAN to detect the 4 clusters, ε needed to be set to 0.7. In this kind of data characteristics, LiNearN
requires to have a high t in order to link the related mini-clusters into a cluster. Using ψ = 43 and t =
30000, LiNearN produced the correct 4 clusters but had approximately 1500 mini-clusters unassigned.

Table 9 shows the results using two smaller data sets, Iris and Yeast. In terms of unassigned points and
the number of clusters for Iris, LiNearN-Cluster produced a better result; whereas, DBSCAN has almost
half of the data points unassigned. Both LiNearN-Cluster and DBSCAN have similar F-Measure scores.
For Yeast, DBSCAN has almost all of the data points unassigned; whereas, LiNearN-Cluster has about
one-third unassigned. In terms of F-Measure, LiNearN-Cluster outperformed DBSCAN. LiNearN-Cluster
has longer runtime than DBSCAN in these small data sets. Table 10 shows similar results in Segment and
WDBC data sets.

None of the above results reveal the time complexities of the algorithms. Therefore, we conducted a
scaleup test using the same data set as used by Ting et al. [33], i.e., Ring-Curve-Wave-TriGaussian. The
data characteristic is shown in Appendix D.

We used DBSCAN with and without indexing using R∗-Tree in the ELKI platform in this experiment.
The scaleup result is shown in Figure 10. Using 7000 instances as the base, the data size were increased by
a factor of 10, 75 and 150 to reach one million instances. With these data size ratio increases, LiNearN-
Cluster’s runtime ratio were increased by a factor of 12.5, 93.6 and 206, respectively. In contrast, without
indexing, DBSCAN’s runtime ratio were increased by a factor of 112, 6676 and 25754, respectively; with
indexing, the ratio were 88, 6080 and 20980, respectively. At data size ratio = 150 with one million instances,
DBSCAN without indexing completed the task in 98 hours; whereas, LiNearN-Cluster finished in 26 minutes.
DBSCAN with indexing completed in 77 hours which gives an improvement of 21.5% over DBSCAN without
indexing. This result shows the advantage of LiNearN-Cluster over DBSCAN, and using indexing does not
improve DBSCAN’s runtime significantly for problems with a moderate number of dimensions.

5.3. Summary

While the proposed approach also relies on distance calculations to find nearest neighbour, like all existing
nearest neighbour algorithms, there are important differences. First, the proposed approach reduces the
computationally expensive O(n2) nearest neighbour search process to a O(n) search process which involves
a small subset of size ψ � n. This is demonstrated in both anomaly detection and clustering tasks.

Second, as shown by the results in Table 6, existing k-nearest neighbour anomaly detectors require a
significant amount of search to find an appropriate k in order to produce good results; this adds to its
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Table 9: Clustering results for the Iris and Yeast data sets using LiNearN-Cluster (ψ = 32 for Iris; ψ = 160
for Yeast. Other default settings are Ψ = 256 and MinDensity = 6) and DBSCAN (ε = 0.1 for Iris; ε = 0.07
for Yeast; and MinPts = 5).

Iris Yeast

LiNearN- DBSCAN LiNearN- DBSCAN
Cluster Cluster

Runtime 0.51 0.1 21.3 1.8
#cluster [3] 4 5 [10] 15 12

#unassigned 16 70 572 1197
F-measure 0.90 0.89 0.33 0.20

Table 10: Clustering results for the Segment and WDBC data sets using LiNearN-Cluster (ψ = 400 and
Ψ = 1024 for Segment; ψ = 30 and Ψ = 512 for WDBC. The default setting is MinDensity = 6) and
DBSCAN (ε = 0.1 for Segment; ε = 0.3 for WDBC; and MinPts = 6).

Segment WDBC

LiNearN- DBSCAN LiNearN- DBSCAN
Cluster Cluster

Runtime 50 7 1.5 1.3
#cluster [19] 40 43 [2] 2 2

#unassigned 417 1282 319 331
F-measure 0.60 0.62 0.96 0.89
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Figure 10: Scaleup test for LiNearN-Cluster and DBSCAN using the 48 dimensional Ring-Curve-Wave-
TriGaussian data set. 7000 instances are used as the base for data size ratio. The data size is increased by
a factor of 10, 75 and 150 which has one million instances.
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already heavy computational cost. LiNearN’s ability to use low ψ for anomaly detection has the following
advantages over existing k-nearest neighbour anomaly detectors:

• Significantly lower runtime

• Require a search in a small range of ψ values only.

• Indexing schemes, normally required to speed up nearest neighbour search, become unnecessary.

In clustering, both LiNearN-Cluster and DBSCAN require a search of the key parameters, ψ and ε,
respectively, in order to identify connecting local regions to achieve good results. Nevertheless, LiNearN-
Cluster has more points assigned than DBSCAN in six out of the seven data sets, and with comparable
results in terms of F-Measure and the number of clusters.

6. Discussion

The nature of nearest neighbour approach necessitates O(n) distance calculations in order to find the
nearest neighbours in a data set of size n. This paper shows that if the aim is to do density estimation,
then O(n2) distance calculations are not required, even though nearest neighbour approach is adopted. The
proposed new approach opens up a new opportunity for many tasks in which nearest neighbour algorithms
have been applied. The aims of these tasks need to be carefully examined to determine whether O(n2)
distance calculations are necessary. If they are not, then the proposed approach is a way to convert an
O(n2) algorithm to an O(n) algorithm. Only tasks in which O(n2) distance calculations are absolutely
necessary that the current research focus in indexing is suitably applied.

Indeed, we show in anomaly detection tasks that, while the ranking requires density estimation, it does
not require O(n2) distance calculations and a correction suggested by LOF to enable density to be used
directly to detect local anomalies. In clustering tasks, the aim is to identify core regions and link all
neighbouring core regions to form a cluster. We also show that this also does not require O(n2) distance
calculations to achieve the aim.

It is interesting to identify the steps in the process where the speedup was achieved by LiNearN. In
anomaly detection tasks, density must be estimated for every point in the given data set. The density
for a point is estimated from the t hypercubes covering the point, rather than invoking n − 1 distance
calculations. In clustering tasks, the speedup occurs in two steps. First, density needs to be estimated for
local regions only in LiNearN-Cluster. In contrast, density must be computed for every single point in the
given data set in DBSCAN. Second, because the number of local regions is significantly smaller than the
number of points in the data set, the number of links required to form clusters become significantly smaller
for LiNearN-Cluster than that for DBSCAN.

An ensemble of k-nearest neighbours does not usually work because k-nearest neighbour classifiers, in
the classification context, are a stable learner like SVM and Naive Bayesian classifiers. Most of the ensemble
approaches, e.g., Bagging [10] and Boosting [19], only work for unstable learners such as decision trees.

Although there are recent ensemble approaches (e.g., Feating [34] and LocalModel [35]) that have been
shown to work for stable learners such as k-nearest neighbour, the proposed approach has importance
differences. First, Feating and LocalModel are specifically designed for classification tasks only; whereas,
LiNearN is a density estimator which has a wider application to different tasks. Second, LiNearN employs
a subsample, which is significantly smaller than the given data set, to build each model in the ensemble. In
contrast, Feating and LocalModel

3 build individual models using the entire data set. Third, both Feating
and LocalModel use a tree structure to define local regions; LiNearN uses nearest neighbours to define local
regions. Fourth, in LinearN, the shape of the local regions can be easily changed by setting the p parameter
in Lp-norm. The shape of the local regions is harder to change for both Feating and LocalModel, if not
impossible.

3Note that LocalModel is not an ensemble approach but constructs a global model which consists of many local models.
Boosting can then be used to improve the predictive accuracy of individual LocalModel.
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A feature bagging method [23] has been proposed to build multiple LOF models, each from a random
feature subset, and then aggregate the LOF scores from all models to produce the final score. However, this
method is reported to be marginally better than single LOF in five out of six data sets [23].

There are methods to reduce the number of instances in the given data in order to reduce the search
cost (e.g., [2, 14, 29, 31, 36, 37]). These methods require to spend significant amount of time in the instance
reduction process. In contrast, the instance selection process in LiNearN is a random sampling process
which can be achieved very quickly.

In the context of supervised learning, Salzberg [28] proposed a k-nearest neighbour algorithm, called
Nested Generalised Exemplars (NGE), which constructs hyper-rectangles to replace and reduce the number
of correctly classified instances while storing incorrectly classified instances like all nearest neighbour algo-
rithms. The purpose of NGE differs substantially from LiNearN. NGE is a classifier, LiNearN is an density
estimator that can be used for various pattern recognition tasks, potentially include classification. The
algorithmic differences are: NGE is a single model and stores both hyper-rectangles and instances; whereas,
LiNearN is an ensemble approach which stores a small subset of instances to form hypercube regions.

DEMass [33] is a closely related work which is a grid-based method that has a global parameter, like
existing nearest neighbour density estimators, to control the size of the grid. Like all grid-based methods,
the grid in DEMass has a single size which does not adapt to different data distributions in local regions.
Thus, LiNearN is expected to be more adaptive to data distribution in local regions than DEMass. On the
other hand, LiNearN can be expected to run slower than DEMass because of the use of distance measure.

Like the Voronoi diagram [6], LiNearN divides the feature space using the nearest neighbour rule; but
they have important differences. First, the union of all regions in the Voronoi diagram covers the entire
feature space, but not in LiNearN. Second, the Voronoi diagram is a result of all instances in the given data
set; LiNearN is a density estimator constructed from multiple models using subsets of the given data set.

A Voronoi region can be defined as:

Vc = {x ∈ X| ‖x− xc‖ ≤ ‖x− xi‖ ∀i 6= c and xi, xc ∈ D}.

In contrast, local region Hc in LiNearN can be defined as:

Hc = {x ∈ X|‖x− xc‖ < rc and xc ∈ D ⊂ D}.

If D = D, then the bisector between the two nearest neighbours in D will be the same for Vc and Hc.
Even in this case, the volume of Hc is solely determined by the nearest neighbour of xc; whereas, the volume
of Vc is determined by all nearest neighbours of xc in all directions. In addition, the shape of Hc is solely
due to Lp-norm; but the shape of Vc relies on xc’s nearest neighbours and Lp-norm.

It should be pointed out that in small data sets the proposed method runs slower than the existing
nearest neighbour density estimator without indexing. This is also true for any indexing scheme which has
overheads that outweigh its use in small data sets. Indexing schemes and our proposed method are designed
to deal with large data sets which impose serious time and memory constraints. No such constraints exist
in small data sets.

7. Conclusion and Future Work

By rejecting the premise that a nearest neighbour algorithm must find the nearest neighbour for every
instance in the given data set, we propose a new approach to produce a nearest neighbour density estimator
called LiNearN. It is the first nearest neighbour density estimator to have linear time complexity and constant
space complexity, as far as we know. In contrast, existing nearest neighbour density estimators typically
have O(n2) time complexity and O(n) space complexity; and even with the aid of an indexing scheme, the
time complexity can at best be reduced to near linear time only. LiNearN achieves linear time complexity
without any indexing scheme.

Our asymptotic analysis reveals that LiNearN has a parameter which trades off between bias and variance,
as in existing k-nearest neighbour density estimators.
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We assess LiNearN in anomaly detection and clustering tasks and compare with three state-of-the-art
nearest neighbour algorithms, ORCA, LOF and DBSCAN. LiNearN produces similar results compared with
these algorithms in terms of task-specific performance measures, but it runs orders of magnitude faster than
these algorithms in large data sets.

The advantages of the new nearest neighbour approach shown in these two tasks imply that it can
potentially be adopted, in place of existing nearest neighbour algorithms, to solve other pattern recognition
tasks. In each of these tasks, we shall first examine whether the aim can be achieved without O(n2) distance
calculations. LiNearN may be able to reduce the time and space complexities of kernel density estimators.
This is an interesting open question that deserves future investigation.
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Appendix A - Proof for Theorem 1

The ball of radius r centered at c ∈ D is denoted by Bc(r). Let ωc(r) denote the probability measure
induced by φ(x) on the neighbourhoods of C,

ωc(r) =

∫
Bc(r)∩C

φ(x)dx.

ωc(r) > 0 on C since Bc(r) ∩ C is not empty and φ(x) > 0 for all x ∈ C. Because of this fact and the
convexity of C, ωc(r) is strictly monotonic increasing for 0 ≤ r ≤ r0 for some r0 > 0 and ωc(r) = 1 for
r0 ≤ r. Thus, the inverse function r = h(ωc) exists, and the following holds according to the continuity of
φ(x) on C and Eq. (5.15) with k = 1 in Evans et al. [17].

E[rmc ] = (ψ − 1)

∫ 1

0

h(ωc)
m(1− ωc)ψ−2dωc. (T1.1)

Within the interval of this integral, the integral over [ωc(δ), 1] where δ = 1/ψε is negligible for all 0 < ε < 1/d
by Lemma 5.3 with k = 1 in Evans et al. [17]. With this fact, the convexity of C, the continuity and the
bounded partial derivatives of φ(x) on C, we obtain the following according to Eq. (5.22) in Evans et al.
[17],

ωc(r) = (φ(c) +O(δ))|Bc(r) ∩ C| as ψ →∞, (T1.2)

where |Bc(r) ∩ C| is the volume of Bc(r) ∩ C.
In case that the shortest distance between c and the surface boundary of C is more than or equal to δ,

|Bc(r) ∩ C| = |Bc(r)| = α(d, p)rdc . Thus, ωc(r) = (φ(c) +O(δ))α(d, p)rdc as ψ →∞ holds by Eq. (T1.2). In
case that c is closer than δ from the surface boundary of C, there exists a constant 0 < ν′ < 1 such that
ν′α(d, p)rdc < |Bc(r) ∩ C| by Eq. (2.1), Proposition (2.1) and Eq. (2.3) in Evans et al. [17]. In concert with
|Bc(r) ∩ C| < α(d, p)rdc , there exists 0 < ν′ < ν(d, p, c) < 1 and |Bc(r) ∩ C| = ν(d, p, c)α(d, p)rdc holds. By
this fact and Eq. (T1.2), ωc(r) = (φ(c)+O(δ))ν(d, p, c)α(d, p)rdc as ψ →∞ holds for some 0 < ν(d, p, c) < 1.
Combining these two cases,

ωc(r) = (φ(c) +O(δ))ν(d, p, c)α(d, p)rdc as ψ →∞ (T1.3)

for some 0 < ν(d, p, c) ≤ 1.
By following the manipulation from Eq. (5.24) to Eq. (5.33) in Evans et al. [17] with k = 1, our Eq. (T1.1)

and (T1.3), we obtain

E[rmc ] =
Γ(m/d+ 1)

{ν(d, p, c)α(d, p)φ(c)}m/d
1

(ψ + 1)m/d
(1 +O(δ)) as ψ →∞.

Because O(1/(ψ + 1)m/d)O(δ) = O(1/ψm/d+ε), Eq. (7) follows. �

27



Appendix B - Proof for Theorem 2

Let Cc be a hypercube such that Cc = Πd
j=1[cj − rc, cj + rc] where cj is the j-th element of c ∈ C. Note

that Hc ⊆ Cc for any p > 0 of Lp distance measure. Also, we use Pr(Hc) to denote Pr(x ∈ Hc|x ∈ D)
for brevity. In addition, according to the bounded first and second order partial derivatives of φ(x) at each
point x ∈ C, we denote their bounds as∣∣∣∣∂φ(c)

∂cj
|c∈Hc

∣∣∣∣ ≤ B1(φ,C) and

∣∣∣∣∣∂2φ(c)

∂c2j
|c∈Hc

∣∣∣∣∣ ≤ B2(φ,C). (T2.1)

Furthermore, the second order Taylor approximation of φ(x) around the center c of Hc is given as

φ(x)|c∈Hc
≈ φ(c)|c∈Hc

+ (x− c)T∇φ(c)|c∈Hc
(T2.2)

+
1

2
{(x− c)T∇}2φ(c)|c∈Hc

,

where ∇ = [∂/∂x1, . . . , ∂/∂xd]
T .

From Hc ⊆ Cc, (T2.1), (T2.2) and the fact that the integral of an odd function around c over its
symmetric region is zero, we obtain the following.

Pr(Hc)
|Hc|

=
1

|Hc|

∫
Hc

φ(y)dy

≈ φ(c)|c∈Hc +
1

|Hc|

∫
Hc

1

2
{(y − c)T∇}2φ(c)|c∈Hcdy

= φ(c)|c∈Hc +
1

α(d, p)rdc

∫
Hc

1

2

d∑
j=1

(yj − cj)2 ∂
2φ(c)

∂c2j
|c∈Hcdy

≤ φ(c)|c∈Hc
+

1

α(d, p)rdc

∫
Cc

1

2

d∑
j=1

(yj − cj)2

∣∣∣∣∣∂2φ(c)

∂c2j
|c∈Hc

∣∣∣∣∣ dy
≤ φ(c)|c∈Hc

+
d2d−1B2(φ,C)

3α(d, p)
r2
c (T2.3)

Because ζ(x) is computed from two subsamplesD and D which are mutually independent, the expectation
E[·] consists of two independent expectations over D and over D denoted as ED[·] and ED[·], respectively.
|D(Hc)| under a given Hc follows a binomial distribution B(Ψ, P r(Hc)) over D where its expected value is

ED[|D(Hc)|] = ΨPr(Hc), (T2.4)

and its variance

ED[{|D(Hc)| − ED[|D(Hc)|]}2] = ΨPr(Hc)(1− Pr(Hc)). (T2.5)

We denote Hi = {Hic|c ∈ Di} for the i-th subsampling in Eq. (5) and rc,i for the radius of Hic. Then,
from Eq. (3), (5), (T2.1), (T2.2), (T2.3) and (T2.4), the square bias of ζ(x) is evaluated as follows. Note
that |xj − cj | ≤ rcnn(x),i holds for each dimension j since x is always in Hicnn(x) for each i. So, we apply
inequality in the last line.
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{
E[ζ(x)]− φ(x)

}2
=

{
1

t

t∑
i=1

ED

[
ED[|D(Hicnn(x))|]

Ψ|Hicnn(x)|

]
− φ(x)

}2

≈

{
1

t

t∑
i=1

(
ED

[
Pr(Hicnn(x))

|Hicnn(x)|

]
− φ(c)|c∈Hi

cnn(x)
− (x− c)T∇φ(c)|c∈Hi

cnn(x)

−1

2
{(x− c)T∇}2φ(c)|c∈Hi

cnn(x)

)}2

≤
{(

d2d−1B2(φ, c)

3α(d, p)
ED[r2

cnn(x),i] + dB1(φ,C)ED[rcnn(x),i]

+
d2B2(φ,C)

2
ED[r2

cnn(x),i]

)}2

. (T2.6)

From Eq. (7) with m = 1 or 2, the term ED[rcnn(x),i] dominates in terms of ψ in Eq. (T2.6). Though
this analysis uses the second order approximation of φ(x), the result using the higher order approximation
is the same, since the first order term dominates the magnitude. This gives Eq. (8).

Next, from Eq. (3), (5), (T2.1), (T2.2), (T2.3) and (T2.5), the variance of ζ(x) is evaluated as follows.
Note that Eq. (7) indicates that the magnitudes of 1/|Hicnn(x)| and ED[1/|Hicnn(x)|] have the same order for

ψ. So, we introduce an approximation to remove ED[·] in the inner summation on the third line.

E
[
{ζ(x)− E[ζ(x)]}2

]
= ED

ED

{1

t

t∑
i=1

|D(Hicnn(x))|
Ψ|Hicnn(x)|

− 1

t

t∑
i=1

ED

[
ED[|D(Hicnn(x))|]

Ψ|Hicnn(x)|

]}2


≈ ED

ED

{1

t

t∑
i=1

|D(Hicnn(x))| − ED[|D(Hicnn(x))|]
Ψ|Hicnn(x)|

}2


=
1

t2Ψ2

t∑
i=1

ED

ED

[{
|D(Hicnn(x))| − ED[|D(Hicnn(x))|]

}2
]

|Hicnn(x)|2


=

1

t2Ψ

t∑
i=1

ED

[
Pr(Hicnn(x))

|Hicnn(x)|
1− Pr(Hicnn(x))

|Hicnn(x)|

]

≤ 1

t2Ψ

t∑
i=1

ED

[
d2d−1B2(φ, c)

3α(d, p)
r2
cnn(x),i

{
1

α(d, p)rdcnn(x),i

+
d2d−1B2(φ, c)

3α(d, p)
r2
cnn(x),i

}]

=
1

tΨ

(
d2d−1B2(φ, c)

3α(d, p)2
ED[r−d+2

cnn(x),i] +
d222d−2B2(φ, c)2

9α(d, p)2
ED[r4

cnn(x),i]

)
. (T2.7)

From Eq. (7) with m = 4 or d − 2, the first term in the summation of Eq. (T2.7) always dominate the
magnitude of this expression. If d = 1, the variance is O(ψ−1) from Eq. (7) with m = 1. If d ≥ 2, it is
O(ψ1−2/d+ε) from Eq. (7) with m = d− 2. Similarly to the analysis of the square bias, this uses the second
order approximation of φ(x). However, the result using the higher order approximation is the same, since
the second order term dominates the magnitude. Thus, Eq. (9) is derived. �
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Appendix C - LiNearN-Cluster Algorithms

The procedures for LiNearN-Cluster are provided in the following three algorithms.

Algorithm 5: CoreRegions(C)

input : C - {Hi|i = 1, . . . , t}.
output: {Hi|i = 1, . . . , s} containing only core regions.

1 for i = 1 to t do
2 foreach H ∈ Hi do
3 density ← H.mass/H.radius;
4 if density < MinDensity then
5 Hi ← Hi \ {H};
6 end

7 end

8 end
9 return {Hi|i = 1, . . . , s} containing only core regions;

Algorithm 6: FindPointsWithinCoreRegions(D,C)

input : D - input data, C : {Hi|i = 1, . . . , s} containing only core regions.
output: D containing only points found within core regions.

1 foreach x ∈ D do
2 found← false;
3 for i = 1 to s do
4 H← search(Hi, x) {return a H that covers x};
5 if (H is not NULL) then
6 found← true;
7 break i loop {found a core region that x falls into.};
8 end

9 end
10 if not found then
11 D ← D \ {x};
12 end

13 end
14 return D containing only points found within core regions;
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Algorithm 7: LiNearN-Clusters(D,C)

input : D - containing only points found within core regions, C : {Hi|i = 1, . . . , s} - containing only
core regions.

output: {Hi|i = 1, . . . , s} with id assigned to each core region.

1 idNext← 0;
2 P← ∅;
3 foreach x ∈ D do
4 found← false;
5 {Search for the first assigned core region};
6 for i = 1 to s do
7 H← search(Hi, x) {return a H that covers x};
8 if (H is not NULL) and isAssigned(H) then
9 idCurrent← H.id;

10 found← true;
11 break the i loop {found a core region that has been assigned to an id};
12 end

13 end
14 if notfound then
15 idNext← idNext+ 1;
16 idCurrent← idNext;

17 end
18 {Set all unassigned regions that x falls into to idCurrent};
19 for i = 1 to s do
20 H← search(Hi, x) {return a H that covers x};
21 if (H is not NULL) then
22 if isAssigned(H) then
23 if idCurrent 6= H.id then
24 {Current H is already assigned but has a different id; make a note and then merge

into one id in step 36};
25 P.idF irst← H.id;
26 P.idSecound← idCurrent;
27 P← P

⋃
{P};

28 end

29 end
30 else
31 H.id← idCurrent;
32 end

33 end

34 end

35 end
36 merge(C,P) {merge all ‘linked’ ids into one id};
37 return {Hi|i = 1, . . . , s} with an id assigned to each core region;
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Appendix D - Data characteristic

The characteristic of the data set, Ring-Curve-Wave-TriGaussian, used in Section 5.2 is shown in Fig-
ure .11.

(a) Ring-Curve (b) Wave (c) Tri-Gaussian

Figure .11: Scatter plot of the clusters in the Ring-Curve-Wave-TriGaussian data set, as used in [33].
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Mass-based Similarity Measure:
An Effective Alternative to Distance-based Similarity Measures

Submitted for Blind Review

Abstract—This paper introduces a unique similarity measure
that does not compute distance. Instead, it is based on the cardi-
nality of the smallest local region covering the two instances for
which the similarity is measured. Theoretical analysis reveals
that it is a generalisation of mass estimation. To show its utility,
a new information retrieval system is created based on the new
similarity measure. Empirical evaluations demonstrate that the
new system has a significantly better retrieval performance
than five state-of-the-art systems in image and music retrievals.

Keywords-theory; data mining; unsupervised learning;

I. INTRODUCTION AND MOTIVATION

Data mining algorithms have traditionally relied on sim-
ilarity measures to gauge the similarity between two in-
stances, as the core operation to solve various data mining
problems. For example, anomaly detection requires ranking
of instances in a database according to their degrees of
anomaly; an information retrieval task ranks instances in a
database which are most similar to a query. These ranking
tasks are traditionally accomplished by computing the sim-
ilarity or distance between two instances as the key step to
calculate the ranking. Because the ranking is with respect
to the entire database, the similarity must be computed for
all pairs of instances in the database for anomaly detection,
and between the query and every instance in the database
for information retrieval.

This paper is motivated by a recent content-based
multimedia information retrieval (CBMIR) system called
ReFeat [1]. ReFeat is unique in two aspects. First, it
uses a similarity measure which is primarily based on data
distribution in the local region. In contrast, commonly used
distance measures are solely based on the positions of in-
stances in the feature space. Second, at the heart of ReFeat
is an anomaly detector which provides a ranking score `(x)
for an instance x, independently of other instances. This
is fundamentally different from most ranking measures that
rely on a distance measure to compute the distance of an
instance relative to another instance, dist(x,y) (e.g., ORCA
[2], Qsim [3]).

The use of such a unique similar measure is the key reason
why ReFeat has produced better retrieval performance than
state-of-the-art CBMIR systems including manifold learning
method MRBIR [4], Bayesian learning method BALAS [5],
query-sensitive ranking methods InstRank [6] and Qsim [3].

Despite its unique approach and demonstrably excellent
retrieval performance, the ReFeat paper [1] does not

provide a satisfactory explanation as to why a unary score
function could produce an appropriate ranking of database
instances for a query which requires a binary function. More
to the point: ReFeat does not guarantee that two ‘similar’
instances, having a similar ranking score `(·), are in the same
local neigbourhood.

This paper investigates the source of the power of
ReFeat. From a foundation in mass estimation [7], we
derive a new mass-based similarity measure that enables a
new CMBIR system to significantly improve the retrieval
performance of ReFeat.

The contributions of this paper are:
1) Introducing a unique similarity measure, Massim, and

establishing its theoretical foundation based on mass.
2) Creating a new CMBIR system called MassIR based

on this similarity measure.
3) Empirically evaluating MassIR in comparison with

ReFeat and systems which employ commonly used
similarity measures, and showing its superiority in
image and music information retrievals.

Massim has the following characteristics:
• Unlike the similarity measure used in ReFeat,
Massim guarantees that two similar instances are in
the same local neighbourhood.

• Unlike distance-based similarity measures, it does not
compute distance and primarily based on data distribu-
tion in the local region.

• It is a generalisation of mass estimation. Under certain
conditions, it reduces to mass estimation [7].

The rest of the paper is organised as follows. Sections II
and III describe the related work and ReFeat, respectively.
We introduce the intuition, the new similarity measures and
the implementation in the next three sections. The new
information retrieval system and the experimental results are
described in Section VII. Discussion and the conclusions are
provided in the last two sections.

II. RELATED WORK

Similarity is a concept that is used extensively not only
in data mining, but also in many other fields such as
psychology [8] and ecology [9]. There are different types
of similarity measures applied for different tasks. We refer
the reader to [10] and [11] for a rich collection of similarity
measures.



Table I: Unary ranking function for Similarity measure

Ranking measure Similarity measure
Function `(x) Similarity(x,q)
Model - Purpose: Describe the data profile for each x Describe the similarity for any x and q

- iTree: x having long path length from an iTree is
relevant to the data profile; and x having
short path length is irrelevant

ReFeat employs t iTrees which map Rd to Rt, where each iTree
profiles one aspect of the database as a relevance feature in the new
feature space.
similarity(x,q) ≡ score(x|q) = 1

t

∑t
ı=1(

`ı(q)
c
− 1)`ı(x)

Distance based similarity measures are often tested against
four distance axioms to determine whether they are a metric.
The suitability of similarity measures that adhere to all
four axioms have been challenged by various researchers
[12], [13]. Tversky [13] and Krumhans [14] have questioned
the validity of using geometrical models as the measure
of similarity. They introduced set theoretic and density-
augmented geometrical alternatives, respectively.

Many nonmetric similarity measures [15] have been de-
signed to explicitly violate the triangle inequality axiom.
While this enhances similarity modeling (to model human
perception), systems that use these nonmetric measures are
inefficient because they cannot use many indexing schemes
(that rely on the triangle inequality) to prune the search
space. To improve efficiency, research has focused on ways
to (i) enforce or approximate the triangle inequality while
preserving the desired similarity orderings [9], [16], [17];
and (ii) condense the given data set into a smaller set of
representative instances, and then employ a classification
method to find the representative instance which is most
similar to the query [18], [19].

Irrespective of whether metric or nonmetric, all existing
similarity measures are binary functions.

iForest [20] employs a unary function to score each
instance and was designed specifically for anomaly detec-
tion. ReFeat [1], mentioned in the introduction, adopted
iForest to solve information retrieval problems. ReFeat has
created a binary function to measure the similarity between
a query q and a database instance x. But, the function is
not strictly a similarity measure because the relevance of q
and x is measured against a reference model (i.e., iForest)
independently and the model does not guarantee q and x to
be in the same local neighbourhood even though both have
similar scores.

In this paper, we establish a principled approach which
ensures that two instances are similar if they are in the same
local neighbourhood.

The new similarity measure, Massim, is fundamentally
different from existing distance based similarity measures
because it is based on mass [7] rather than distance. Mass
estimation [7] was recently introduced as an alternative to
density estimation to solve data mining problems. Mass
models the centrality of a data cloud whereas density models
the compactness. Mass estimation provides the theoretical
foundation for iForest; and like the measure used in iForest,
mass is a unary function. Here we use mass to define a
binary function to measure similarity.

III. REFEAT: A UNARY FUNCTION
FOR SIMILARITY MEASUREMENT

ReFeat [1] maps the original database with d features
to a database with new t relevance features; and computes
the similarity in the new space. The value of each relevance
feature is derived from an iTree, i.e., `ı(x) the path length
of x traversing iTree ı. The similarity score of a database
instance x with respect to an query q is expressed as
the weighted average of t relevance feature values, where
the weight for feature ı is wı(q) = `ı(q)

c − 1, and c is
a normalisation constant. The similarity function taking a
query q and a database instance x produces a high (low)
score if both x and q have long (short) path lengths on
many relevance features. Table I provides a brief summary of
how ReFeat employs a unary ranking measure to measure
similarity between two instances.

ReFeat relies on iTrees to be unbalanced. Having dis-
tinct long and short path lengths in each iTree is a pre-
requisite to identify similar instances. Balanced iTrees al-
ways produce the same path length; thus they have no way
to differentiate instances of different feature characteristics.
Zhou et. al. [1] analyse empirically that iTrees are more
likely to be unbalanced than balanced.

However, the analysis does not consider the fact that, even
if both have long path lengths, there is no guarantee that x
and q will fall into the same local neighbourhood in the
feature space as `(x) and `(q) are assessed independently,
albeit against the same reference model, i.e., iTree.

ReFeat works because it has employed a large number
of iTrees (where t = 1000 in their experiments) such that
similar instances are likely to have long path lengths in
the same local neighbourhood of many iTrees; though some
iTrees giving long path lengths may not have both instances
in the same local neighbourhood.

In a nutshell, ReFeat derives its retrieval power from
a ranking model that profiles the data distribution and it
scores an instance’s relevancy according to the profile. But
its ranking score is based on a unary function which does
not guarantee that similar instances are in the same local
neighbourhood. We show in this paper that overcoming this
weakness significantly improves the retrieval performance of
ReFeat.

It is important to note that iTree is just one realisation
of mass estimation [7], implemented using a tree structure



Table II: Mass-based similarity measure versus distance-based similarity measure

Mass-based similarity measure Distance-based similarity measure
Computation Mass(x,y) is primarily based on data distribution in the local region

of the feature space.
dist(x,y) is solely based on the positions of x and y in the feature
space.

Definition Mass base function M(x,y) measures the cardinality of the smallest
local region covering both x and y.

dist(x,y) measures the length of the shortest path from x to y.

Inequality similarity(x,y) > similarity(x, z) ≡ similarity(x,y) > similarity(x, z) ≡
Mass(x,y) < Mass(x, z) dist(x,y) < dist(x, z)

Metric The measure does not satisfy some distance axiom. All distance axioms usually hold.

such that path length is a proxy to mass1. In general, a data
distribution can be expressed as a mass distribution, instead
of density distribution, and the mass distribution can be used
as a basic data modelling tool to solve data mining problems
(see [7], [21]). The data profile produced by iTrees has a
one-to-one correspondence to mass: high (low) path length
implies high (low) mass in the data distribution.

The new information retrieval system we present,
MassIR, differs from ReFeat in that
• MassIR measures similarity using a binary function

whereas ReFeat is based on a unary function.
• MassIR guarantees similar instances to be in the same

local neighbourhood.
• The implementation of Massim uses balanced trees

whereas ReFeat relies on unbalanced trees to work.
• MassIR and ReFeat behave differently (see section

VII-B).

IV. INTUITION

We will use the simplest form of mass, which is the
cardinality of a region [7], to provide the intuition in this
section.

Let ri be a convex local region; and |ri| be the cardinality
of region ri; or in other words, the number of instances from
the database that the region contains.

Mass inequality holds true as follows: |rj | < |ri| for rj ⊂
ri if regions ri, i ∈ {1, . . . ,m} created by a model satisfy
the conditions: ∀i, j; i 6= j ri 6= ∅ and ri \ rj 6= ∅.

With the assurance of the mass inequality, similarity of
instances x,y, z can be inferred as shown in the follow-
ing example: if r1 = {x,y, z} and r2 = {x,y} then
|R(x,y)| < |R(x, z)|, where R(a,b) is the smallest region
covering both a and b; r1 and r2 are the regions created
by a model. This means that if x is in a local region of
few instances with y; and x is in a local region of many
instances with z, then x is more similar to y than z.

We propose to use the cardinality of the smallest convex
region covering both a and b as the base function to measure
similarity between any two instances. Table II highlights the
differences between this mass-based similarity measure and
existing distance-based similarity measures.

Based on the simplest form of mass, more sophisticated
forms of mass are derived in the next section.

1The path length is computed as L+ f(m), where L is the path length
traversed from the root to an external node, and f(m) is a function which
estimates the average path length of an unexpanded subtree for a training
subset of size m.

V. MASS-BASED SIMILARITY MEASURES

The theoretical basis of mass-based similarity, Massim,
is given here. We introduce a new one-dimensional similarity
measure in section V-A, provide its axioms in section V-B,
and describe the multi-dimensional version in section V-C.

A. One-dimensional similarity measure
Definition 1: R(x, y|E) is the smallest local region cov-

ering x and y in a given model E, which partitions the
feature space into convex local regions, where x, y ∈ R :
R(x, y|E) = r∗ such that |r∗| = minr∈E |r| and x, y ∈ r.
E must be chosen to ensure that R(x, y|E) is a unique

region that covers both x and y. Let E(si) = {r1, r2, r3}
be a model as a result of binary split si in the real line
defined by D = {x1, x2, ..., xn}; let si be a binary split
between xi and xi+1 which divides the real line into two
non-overlapping local regions, r1 (where x ≤ si) and r2
(where x ≥ si); and r3 covers the entire real line.

Mass base function Mi(x, y) denotes the mass of local
region R(x, y|E(si)).

Definition 2: Mass-based similarity measure Mass(x, y)
is defined using D as a weighted power mean of a series of
Mi(x, y) weighted by p(si) over n− 1 splits as follows:

Mass(x, y) = (

n−1∑
i=1

Mi(x, y)
ep(si))

1
e (1)

where p(si) is the probability of selecting the binary split
si and

∑
i p(si) = 1; and

Mi(x, y) =

 i if R(x, y|E) = r1
n− i if R(x, y|E) = r2

n if R(x, y|E) = r3

For an example of five points, x1 < x2 < ... < x5 and
e = 1, Mass(x1, ·) for x1 and each of the five points are
given as follows:

Mass(x1, x1) = 1p(s1) + 2p(s2) + 3p(s3) + 4p(s4)

Mass(x1, x2) = 5p(s1) + 2p(s2) + 3p(s3) + 4p(s4)

Mass(x1, x3) = 5p(s1) + 5p(s2) + 3p(s3) + 4p(s4)

Mass(x1, x4) = 5p(s1) + 5p(s2) + 5p(s3) + 4p(s4)

Mass(x1, x5) = 5p(s1) + 5p(s2) + 5p(s3) + 5p(s4)

The components of the summation, Mi(x1, ·) due to each
split si, are illustrated in Figure 1.



Table III: Axioms used for Mass-based Similarity and distance-based similarity

Mass-based Similarity Distance-based Similarity
Axiom 1 Mass(x, y) ≥ 1 dist(x, y) ≥ 0 (non-negativity)
Axiom 2 i.∀x, y Mass(x, x) ≤Mass(x, y) dist(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

ii. ∃x 6= y Mass(x, x) 6=Mass(y, y)
Axiom 3 Mass(x, y) =Mass(y, x) dist(x, y) = dist(y, x) (symmetry)
Axiom 4 Mass(x, z) < Mass(x, y) +Mass(y, z) dist(x, z) ≤ dist(x, y) + dist(y, z) (triangle inequality)

x1 x2 x3 x4 x5

s1

M1(x1,x1) = 1

M1(x1,x2) = 5

M1(x1,x3) = 5

M1(x1,x4) = 5

M1(x1,x5) = 5

(a) M1(x1, xa) due to s1

x1 x2 x3 x4 x5

s2

M2(x1,x1) = 2

M2(x1,x2) = 2

M2(x1,x3) = 5

M2(x1,x4) = 5

M2(x1,x5) = 5

(b) M2(x1, xa) due to s2

x1 x2 x3 x4 x5

s3

M3(x1,x1) = 3

M3(x1,x2) = 3

M3(x1,x3) = 3

M3(x1,x4) = 5

M3(x1,x5) = 5

(c) M3(x1, xa) due to s3

x1 x2 x3 x4 x5

s4

M4(x1,x1) = 4

M4(x1,x2) = 4

M4(x1,x3) = 4

M4(x1,x4) = 4

M4(x1,x5) = 5

(d) M4(x1, xa) due to s4
Figure 1: Example of mass base function Mi(x1, .) due to
each of four binary splits s1, s2, s3, s4.
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(a) Distributions of Massh(x, y = 0.9)
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(b) Distributions of Massh(x, x)

Figure 2: Distributions of Massh(x, y) and Massh(x, x) in
a data set having two Gaussian density distributions, where
µ = {0.1, 0.9}, σ = 0.1. Distributions for h = 1, 2, 3 are
shown, where e = −1 is used.

Definition 3: Level-h Massh(x, y) defined using D,
where 1 < h < n, is expressed as:

Massh(x, y) = (

n−1∑
i=1

Massh−1i (x, y)ep(si))
1
e (2)

where Massh−1i (x, y) is Massh−1(x, y) defined using
Di ⊆ D, i.e., the data subset covered by R(x, y|E(si)).

Multi-modal data distribution requires level-h
Massh(x, y) that takes into account the nature of the
data distribution more effectively.

Note that the distribution of Massh(x, y) (for e = 1)
reduces to mass distribution massh(x) as defined by [7]
when y = x:

massh(x) =


n−1∑
i=1

mi(x)p(si), h = 1

n−1∑
i=1

massh−1i (x)p(si), h > 1

where mi(x) =

{
i if x ≤ xi

n− i if x > xi
and massh−1i (x) is massh−1(x) defined using Di ⊂ D,
i.e., the data subset separated by si that includes x.

B. Axioms for Massim

Function Mass : R1×R1 → R+ satisfies the four axioms
as shown in the second column of Table III.

A comparison with the axioms for distance-based simi-
larity is also provided in Table III. The key difference is in
axiom 2: (i) the minimum of Mass(x, y) is Mass(x, x);
and (ii) Mass(x, x) is not the same for all x. Figures 2(a)
and 2(b) show that the distributions of Mass(x, y) (for a
given y) and Mass(x, x), respectively.

The proofs for the axioms are omitted because of space
limitation.

C. Multi-dimensional similarity measure

The one-dimensional Massim can be generalised to
multi-dimensional by using a model E that partitions the
feature space into local regions, instead of the binary splits.

We use the same approach, as proposed by [7], to elim-
inate the need to compute the probability of a binary split,
p(si); and this produces a randomised approximation.

The idea is to generate multiple random local regions
that satisfy the mass inequality, and the mass similarity
of any two instances is estimated by averaging the mass
of all smallest local regions which cover both instances.



We show that random regions can be generated using axis-
parallel splits called half-space splits. Each half-space split
is performed on a randomly selected attribute in a multi-
dimensional feature space. For an h-level split, a tree struc-
ture is formed in which each path has h half-space splits,
and the tree has a total of 2h non-overlapping local regions.

Let E(h) be a multi-dimensional model producing 2h

local regions as a result of an h-level split. Let R(x,y|E(h))
be the smallest region of E(h) covering both x and y, where
x,y ∈ Rd; and Mh(x,y) be the mass in R(x,y|E(h)).

In addition, multiple models are required which give rise
to Mh,ı(x,y), the mass in R(x,y|Eı(h)).

In one-dimensional problems, Equations (1) and (2) can
now be approximated as follows:

(

n−1∑
i=1

Mi(x, y)
ep(si))

1
e ≈ (

1

t

t∑
ı=1

M1,ı(x, y)
e)

1
e (3)

Massh(x, y) ≈ (
1

t

t∑
ı=1

Mh,ı(x, y)
e)

1
e (4)

where t > 1 is the number of random regions to be used to
define the mass similarity of x and y.

Since E(h) is defined in multi-dimensional space, the
multi-dimensional mass similarity is the same as Equation
(4) by simply replacing x and y with x and y:

Massh(x,y) ≈ (
1

t

t∑
ı=1

Mh,ı(x,y)
e)

1
e (5)

An half-space tree implementing Mh,ı(·, ·) that generates
regions r, ∃i, j rj ⊂ ri, must satisfy the conditions specified
in Section IV: ∀i, j; i 6= j ri 6= ∅ and ri \ rj 6= ∅ to ensure
the mass inequality.

This is realised in a similarity tree (sTree), where a data
subset D ⊂ D is partitioned into two equal-size subsets
recursively until it cannot be subdivided. Each sTree is
balanced having height h = log2(ψ) and ψ regions, where
ψ = |D|. D is then populated to the ψ regions to estimate
the mass in each region. The detail of the implementation
is provided in Section VI.

To simplify notation, we will drop h hereafter to denote
Massh(·, ·) as Mass(·, ·), when the context is clear.

VI. IMPLEMENTATION

Mass-based similarity estimation is implemented in two
stages. In the modelling stage, a Similarity Forest (sForest)
is generated from D. The resultant sForest is the similarity
model of the given dataset. Mass-based similarity between
two instances is calculated in the estimation stage.

The sForest generation process is provided in Algorithm
1. A sForest consists of t Similarity Trees (sTrees).

Each sTree is built independently from D, randomly
selected without replacement from D, where |D| = ψ. A
sTree node can either be an external node or an internal node

Algorithm 1: sForest(D,t,ψ)

Input: D - Database, t - number of trees, ψ - sub
sampling size

Output: sForest
1: Initialize sForest
2: for i = 1→ t do
3: D ← select ψ instances from D without re-

placement.
4: T ← sTree(D)
5: UpdateTreeMass(T,D)
6: sForest← sForest ∪ T
7: end for
8: return sForest

Algorithm 2: sTree(D)

Input: D - input data
Output: sTree

1: if |D| is 1 then
2: return exNode
3: end if
4: Let A be the complete list of attributes
5: a← Randomly selected attribute from A
6: Dsorted ← sort D on a
7: Vl ← value of a of ( |D|2 )th item in Dsorted

8: Vr ← value of a of ( |D|2 + 1)th item in Dsorted

9: V ← Randomly selected value between Vl and Vr
10: Dl ← filter(D, a ≤ V )
11: Dl ← filter(D, a > V )
12: return innode{ LeftChild ← sTree(Dl),

RightChild← sTree(Dr), SplitAttribute← a,
SplitV alue← V }

with exactly two child subtrees. An internal node consists
of a randomly selected attribute a and a split value V , such
that test a ≤ V divides the training set in this node into two
equal-size subsets. The process is repeated in each subset
recursively until |D| = 1, as described in Algorithm 2.
After creating a sTree, it is populated with D to determine

Algorithm 3: UpdateTreeMass(T ,D)

Input: T - sTree , D - Data
Output: T (sTree), having all nodes updated with M

1: T.mass← |D|
2: if T is an internal node then
3: Dl ← filter(D,T.SplitAttribute

≤ T.SplitV alue)
4: Dr ← filter(D,T.SplitAttribute

> T.SplitV alue)
5: UpdateTreeMass(T.LeftChild,Dl)
6: UpdateTreeMass(T.RightChild,Dr)
7: end if



Table IV: Measures and feedback formulations used in ReFeat, MassIR and Lp-IR. Note that x =< x(1), x(2), . . . , x(d) >.

ReFeat MassIR Lp-IR

Score Score(x|q) = 1
t

t∑
ı=1

(wı(q) `ı(x)) Mass(x,q) = ( 1
t

t∑
ı=1

Mı(x,q)
e)

1
e dist(x,q) = (

d∑
=1

(x() − q())p)
1
p

Model wı(·) is a function of `ı(·); and `ı(·) is
derived from iForest

Mı(·, ·) is derived from sForest No trained models are required

Feedback
Q = P ∪N

wı(Q) = 1
|P|

∑
y∈P

wı(y) Mass(x,Q) = [ 1
|P|

∑
y∈P

Mass(x,y)e dist(x,Q) = 1
|P|

∑
y∈P

dist(x,y)

− γ 1
|N|

∑
z∈N

wı(z) − γ 1
|N|

∑
z∈N

Mass(x, z)e]
1
e − γ 1

|N|

∑
z∈N

dist(x, z)

Axioms Violate all four distance axioms Violate distance axiom 2 p ≥ 1: Satisfy all distance axioms
p < 1: Triangle inequality violated

the mass in each node. It is done using Algorithm 3. To
estimate Mass(x,y), x and y are parsed through t sTrees
as described in Algorithms 4 and 5.

Note that sTree is a balanced binary tree; and let Li
x be

the index of the external node in which x falls in sTree i
and Li

x ∈ [1, 2 . . . ψ]. Since Li
x is fixed for each x ∈ D, it

can be computed as preprocessing.

For any instance y, Mh,ı(x,y) in Equation 5 is the mass
of the lowest common ancestor node of Li

x and Li
y in

sTree i. This implementation converts from the bulk of tree
traversals of (x,y) to table lookups based on indices (Li

x,
Li
y). It reduces the time complexity for Algorithms 4 and 5

from O(nt log(ψ)) to O((n+ ψ)t), where n = |D|.

Algorithm 4: Mass(x,y,F ,e)

Input: F - sForest with t number of sTrees, e -
Exponent, x,y - Instances

Output: Massh(x,y) as in Equation 4
1: Mass← 0
2: for i = 1→ t do
3: T ← ith sTree in F
4: Mass←Mass+ {TreeMass(T,x,y)}e
5: end for
6: Mass← (Mass

t )
1
e

7: return Mass

Algorithm 5: TreeMass(T ,x,y)

Input: T - sTree, x,y - Instances
Output: mass of y with respect to x for T

1: if T is an external node then
2: return T.mass
3: end if
4: if x(T.SplitAttribute) ≤ T.SplitV alue And

y(T.SplitAttribute) ≤ T.SplitV alue then
5: return TreeMass(T.LeftChild,x,y)
6: else if x(T.SplitAttribute) > T.SplitV alue And

y(T.SplitAttribute) > T.SplitV alue then
7: return TreeMass(T.RightChild,x,y)
8: else
9: return T.mass

10: end if

VII. MASSIR
This section describes a new information retrieval system

constructed from Massim, called MassIR. It is motivated
to improve the retrieval performance of ReFeat.

Like in ReFeat, MassIR has two stages. In the off-
line modelling stage, a sForest is built from D as described
in section VI. In the on-line retrieval stage, mass-based
similarity is used to rank the instances in D with respect
to a query and its feedback instances.

For a given query q, Mass(x,q) is estimated for all
x in D. The ranking with respect to q is conducted as
follows: ∀ xi,xj ∈ D, if Mass(xi,q) < Mass(xj ,q) then
similarity(xi,q) > similarity(xj ,q).

The feedback mechanism in MassIR is given in the
second column of Table IV, where Q = P ∪ N ; and
P denotes the set of positive feedbacks and query, and
N denotes the set of negative feedbacks. The ranking of
instances x ∈ D is based on Mass(x,Q).
MassIR takes O(tψ log (ψ)) time to generate t sTrees. It

takes O(nt log (ψ)) to update the mass values in tree nodes.
Altogether, the offline processing time is O(nt log (ψ)). The
time complexity for a query has already been discussed in
Section VI which takes O((n+ψ)t). Together with |Q|− 1
feedbacks, the total computation time takes O((n+ |Q|ψ)t).

A. Comparison with ReFeat and Lp-IR

In addition to MassIR, we have created a new informa-
tion retrieval system called Lp-IR which has a feedback
mechanism similar to ReFeat but based on the commonly
used distance function, Lp-norm. A comparison of MassIR,
ReFeat and Lp-IR is provided in Table IV.

The score function of ReFeat is essentially based on
the unary function `(·). MassIR and Lp-IR are based
on Massim and Lp-norm, respectively, to compute the
similarity of two instances. ReFeat and MassIR must
build a model in order to assess the similarity between
instances, but Lp-IR does not need a model.

The feedback mechanism has the same form in all three
systems; but ReFeat modifies the weight function w(q)
only, independent of x. MassIR and Lp-IR have exactly
the same formulation when e = 1, except different similar-
ity measures are used. ReFeat violates all four distance
axioms; MassIR violates some; and Lp-IR satisfies all



Table V: Time Complexity Comparison
Off-line Query Feedback

ReFeat O(nt log (ψ)) O((n+ log (ψ))t) O((n+ |Q|)t)
MassIR O(nt log (ψ)) O((n+ ψ)t) O((n+ |Q|ψ)t)
Lp-IR - O(nd) O(n|Q|d)

axioms for p ≥ 1, but violates the triangle inequality axiom
for p < 1.

Table V contains the comparison of the time complex-
ities of MassIR with ReFeat and Lp-IR. Except in
very small databases, n > |Q|ψ. Hence, query and feed-
back time complexities of MassIR and ReFeat become
O(nt). Similarly, the space complexities of MassIR and
ReFeat are both O(nt). The space complexity of Lp-IR
is O(n). In MassIR and ReFeat, t is a constant parameter.
Therefore, space and time requirements of MassIR and
ReFeat increase linearly with the number of instances in
the database. However, this is not the case for Lp-IR as
feedback efficiency is much affected by |Q| and the number
of dimensions, d.

B. Experiments

The aims of the experiments are to (i) compare MassIR
with state-of-the-art systems ReFeat [1], Qsim [3], In-
stRank [6], MRBIR [4] and BALAS [5]; and (ii) analyse
the behaviours of MassIR, ReFeat and Lp-IR when key
parameter settings are changed.

We employ two databases which were previously used in
other studies: GTZAN music database [1], [22] and COREL
image database [1], [23].

The GTZAN database contains 1000 songs. Each song
belongs to one of 10 genres, namely classical, country, disco,
hiphop, jazz, rock, blues, reggae, pop and metal. There are
100 songs in each genre. Each song is stored as a 22,050Hz,
16 bit mono-audio file, which is a 30-second excerpt [22].
Each instance has 230 attributes, extracted from the music
files, as reported in [1]. The COREL database has 10,000
images. They belong to 100 classes. Each class has 100
images. Each instance has 67 attributes, comprised of 32
colour features, 24 texture features and 11 shape features.
Feature vectors of the COREL database are elaborated in
[23].

Experiments to evaluate the retrieval performances of
competing methods were designed as follows. A query was
randomly selected from the database. A retrieval method
ranked the instances in the database with respect to the
query. In each feedback round, two positive instances (hav-
ing the same class as the query) and two negative instances
(having classes other than the query class) were provided.
The method then re-ranked each instance in the database
with respect to the query and the feedbacks. Five different
queries were randomly selected from each class in the
database; and up to five feedback rounds were performed
for each query, where instances from a feedback round
were added to those from the previous rounds. Instances
already used as query and feedbacks were not included in

the database for retrieval. This experimental design is the
same as used in [1].

The above was repeated 20 times, each using a different
forest from MassIR or ReFeat. Accordingly, a total of
1,000 queries and 5,000 feedback rounds were tested in
GTZAN; and a total of 10,000 queries and 50,000 feedback
rounds were tested in COREL. The retrieval performance
is measured in terms of Mean Average Precision (MAP).
A two-standard error significance test is used to examine
whether the performance difference in a comparison is
significant.
MassIR and ReFeat were implemented using MAT-

LAB. The experiments were conducted on Sun Grid Engine
(SGE). 4GB and 8GB memory were allocated for informa-
tion retrieval tasks in GTZAN and COREL, respectively.

The results are presented in the following three para-
graphs. Figure 3 shows the comparison of MassIR with
ReFeat, Qsim, InstRank, MRBIR and BALAS. Results of
Qsim, InstRank, MRBIR and BALAS were taken from [1].
The best parameter settings reported by [1] were used for
ReFeat (i.e., ψ = 4 for GZTAN, ψ = 8 for COREL, and
γ = 0.25). MassIR uses ψ = 256, γ = 0 and e = −1. The
result shows that MassIR performs significantly better than
all other existing methods. Also note that the performance
gap increases as the number of feedback rounds increases,
indicating that MassIR utilizes feedback instances more
effectively than other methods.

Figure 4 shows the behaviour of MassIR and ReFeat
when the sample size, ψ, changes. ReFeat performs best
using small sample size. In contrast, the performance of
MassIR monotonically increases as ψ increases.

Figure 5 shows the retrieval performance of MassIR and
Lp-IR as γ varies. MassIR was tested for e = −1 and 1.
Lp-IR was tested for p = .25, 0.5, 0.75, 1 and 2. Recall
that Lp-norm is a nonmetric violating the triangle inequality
axiom when p < 1. The results show that MassIR with e =
−1 was better than MassIR with e = 1 and Lp-IR for all
γ. MassIR performed the best with γ = 0 in both databases.
However, this is not the case for Lp-IR. Depending on
the p value and the database, the performance peaked at
either 0.5 or 0.75. In addition, MassIR is less sensitive with
γ when compared to Lp-IR. It is interesting to note that
MassIR performs the best at γ = 0, i.e., negative feedbacks
have a negative impact, albeit small. In contrast, negative
feedbacks have a significant positive impact on the retrieval
performance of Lp-IR.

Note that Lp-IR is our creation of distance based ap-
proach. With the right setting, it performs better than Qsim,
InstRank, MRBIR and BALAS (see their results showed in
Figures 3 and 5); and Lp-IR has the same level of retrieval
performance as ReFeat.

The execution time comparison is given in the Table VI.
Compared head-to-head using ψ = 8, ReFeat runs 5.6
times faster than MassIR, i.e. they are in the same order of
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Figure 3: Comparison of retrieval performance in terms of MAP
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Figure 4: Relative retrieval performance of MassIR and ReFeat as ψ increases (feedback round 5 performance).
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Figure 5: Relative retrieval performance of MassIR and Lp-IR for different values of γ (feedback round 5 performance).
The results of Lp-IR (p = 0.25) were worse than the best results from other p values and they were omitted to increase
readability.



Table VI: Online execution time per query/feedback in mil-
liseconds for COREL for MassIR ψ = 8 (MIR8), ReFeat
(RF), Lp-IR (LPIR), Qsim (QS), InstRank (IR),MRBIR
(MR) and BALAS (BA)

Round MIR8 RF LPIR QS IR MR BA
query 194 35.8 5.5 24.7 24.7 612.9 N.A.

1 194 35.1 16.2 71.3 32.6 1172.4 262.8
2 195 35.4 26.8 146.3 33.4 1172.3 317.5
3 195 35.0 37.4 261.9 34.2 1172.3 373.0
4 196 34.8 48.0 417.9 34.9 1172.2 473.9
5 196 34.8 58.5 615.8 35.5 1172.1 506.0

time complexity O(nt). This is consistent with the analysis
of time complexity provided in section VII-A.

It is important to emphasise that MassIR behaves dif-
ferently from ReFeat in two ways. First, the retrieval
performance of MassIR improves as ψ increases; but this is
not the case for ReFeat. Second, negative feedbacks have
an impact on ReFeat but not on MassIR.

VIII. DISCUSSION

Distance metric learning [24] aims to learn a metric,
that obeys the four distance axioms, to achieve a better
performance outcome than a standard metric such as Eu-
clidean distance. There are two approaches. First, the super-
vised approach requires information about pairs of instances
belonging to the same class as well as different classes
in the training data. This information is used to compute
the feature relevance that changes the neighbourhood of a
test instance to improve the decision outcome. Second, the
unsupervised approach or manifold learning aims to learn a
low dimensional manifold where the distance between most
instances is preserved; it is closely related to dimension
reduction. In contrast, albeit an unsupervised approach,
Massim is a nonmetric that neither computes distance nor
requires dimension reduction.

Unlike many other nonmetric similarity measures (e.g.,
Lp-norm where p < 1), the new measure satisfies the
triangle equality axiom. Thus, it can use existing indexing
schemes such as M-Trees [25] to reduce the online time
complexity of MassIR from O(nt) to O(log(n)t).

Similarities and differences between iForest and sForest
are given as follows. Both ensure non-empty regions are
constructed. iForest is likely to produce unbalanced trees,
each using a ψ subset; and it is a unary function. Mapping
Rd to Rt using iForest to produce t relevance features is an
essential step in ReFeat.

In contrast, sForest produces balanced trees only, each
using a ψ subset but requires the entire data set to determine
the mass in each local region; and it is binary function. No
feature space mapping is required in MassIR.

Also note that the resultant values of `(·) and Mass(·, ·)
for any given test instances would increase if iForest were
trained using a larger subsample or sForest were trained
using a larger training set (even with the same subsample

size). They can be easily normalised to be independent of
training size, if this is required.

Our result shows that MassIR only requires positive
feedbacks (i.e, γ = 0) to improve its retrieval performance.
This reduces its time complexity from O((n + |Q|ψ)t) to
O((n+ |P|ψ)t).

The harmonic mean (e = −1) is less susceptible to large
outliers than the arithmetic mean (e = 1). Therefore, we can
expect MassIR to perform better when e = −1 than e = 1.

Treating e = −1 and γ = 0 as default, the only parameter
that needs to be set for MassIR is the sample size, ψ (as
t should be set to a high value such as 1000, as in the case
of ReFeat). Since both the retrieval performance and the
processing time increase with ψ, the parameter selection of
MassIR is a trade-off between retrieval performance and
runtime.

It is interesting to note that the retrieval performance of
Lp-IR could be improved by using the harmonic mean
rather than the arithmetic mean in the feedback formulations
shown in Table IV (but not for ReFeat). However, this
improvement is still worse than MassIR.

We have shown that Massim is significantly better than
Lp-norm (used in InstRank, Qsim, BALAS and Lp-IR) in
two data sets. However, a caveat is in order. One should
not expect Massim to outperform Lp-norm in all cases.
There are a number of factors which affect the performance,
e.g., whether the algorithms make full use of the similarity
measure, and whether the characteristics of the domain
match the similarity measure.

There are many applications using tree structures. Before
examining the superficial similarities, one must check the
purposes first. sTree is created for similarity measurement.
There are different trees created for indexing in order to
speed up the nearest neighbour search, e.g., k-d tree. The
superficial similarity between sTrees and k-d trees is: the
latter is based on median split and the former is based on a
randomly selected split close to median. There are many
differences, e.g., (i) a k-d tree is created by cycling all
dimensions one at a time to build each subsequent internal
node in the tree, but sTree randomly selects an attribute to
build an internal node; (ii) a k-d tree is constructed using
the entire data set, but a sTree is built using a small subset.
These similarities and differences are superficial as far as
the purpose is concerned.

IX. CONCLUDING REMARKS

Mass-based similarity measures, Massim, represents a
paradigm shift from measuring similarity in terms of dis-
tance to measuring similarity in terms of mass.

We establish the theoretical foundation of Massim, which
is a generalisation of mass estimation. This generalisation
shows that the new binary function for similarity measure
Mass(·, ·) produces better retrieval performance than the
commonly used distance-based similarity measures.



This paper shows the effect of overcoming the key weak-
ness of ReFeat by ensuring that two similar instances are
in the same local neighbourhood. This contributes directly
to (i) the better retrieval performance of MassIR; and (ii) a
more desirable behaviour of MassIR, where the retrieval
performance of MassIR can be improved by increasing
ψ. Our empirical results verify that MassIR has a better
retrieval performance than ReFeat while having the same
order of time and space complexities.
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An ensemble approach to estimate multi-dimensional
likelihood in Bayesian classifier learning

Sunil Aryal · Kai Ming Ting

Abstract In Bayesian classifier learning, estimating the joint probability distri-
bution p(x, y) or the likelihood p(x|y) directly from training data is considered
to be difficult, especially in large multi-dimensional data sets. In order to circum-
vent this difficulty, existing Bayesian classifiers such as Naive Bayes, BayesNet and
AηDE have focused on estimating simplified surrogates of p(x, y) from different
forms of one-dimensional likelihoods.

Contrary to the perceived difficulty in multi-dimensional likelihood estimation,
we present a simple ensemble approach to estimate multi-dimensional likelihood
directly from data. The idea is to aggregate pi(x|y) estimated from a random sub-
sample of data Di (i = 1, 2, · · · , t). This paper presents two ways to estimate multi-
dimensional likelihoods using the proposed ensemble approach and introduces two
new Bayesian classifiers called ENNBayes and MassBayes that estimate pi(x|y)
using a nearest neighbour density estimation and a probability estimation through
feature space partitioning, respectively.

Unlike the existing Bayesian classifiers, ENNBayes and MassBayes have con-
stant training time and space complexities and scale better than existing Bayesian
classifiers in very large data sets. Our empirical evaluation shows that ENNBayes
and MassBayes yield better predictive accuracy than the existing Bayesian classi-
fiers on benchmark data sets.

Keywords Bayesian classifiers, Multi-dimensional likelihood estimation

1 Introduction

In classification task, the training data D is a collection of labelled instances
{(x(i), y(i))} (i = 1, 2, · · · , n), where x is a d-dimensional vector 〈x1, x2, · · · , xd〉
and y is a label from the predefined set of c classes.
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2 Sunil Aryal, Kai Ming Ting

The Bayesian approach of classifier learning models the joint probability dis-
tribution p(x, y) and predicts the most probable class using Bayes rule as:

ŷ = arg max
y

p(x, y) (1)

Using the product rule, the joint probability can be factorised as:

p(x, y) = p(y)× p(x|y) (2)

Bayesian classifiers learn either the joint probability distribution p(x, y) or
the conditional probability distribution (likelihood) p(x|y). Estimating p(x, y) or
p(x|y) directly from data is considered to be difficult because commonly used
density estimators such as kernel density estimator (KDE), and k-nearest neigh-
bour (kNN) density estimator are impractical in problems with large data sizes
and moderate number of dimensions. This is due to their high space and time
complexities (Silverman, 1986).

However, surrogates of p(x, y) can be estimated efficiently provided that some
simplifying assumptions are made (e.g., attributes are independent given the class
label, or data are assumed to have some known distribution such as Gaussian). Ex-
isting Bayesian classifiers make some kind of conditional independence assumption
and estimate the simplified surrogate of p(x, y) as the product of one-dimensional
likelihoods. Even though existing Bayesian classifiers such as Naive Bayes (Lang-
ley et al., 1992), BayesNet (Friedman et al., 1997) and AηDE (Webb et al., 2012)
have been shown to perform well in many application domains, they can result
in poor predictive accuracy in many other real-world problems as the estimate of
p(x, y) is a biased one-dimensional approximation of the true distribution.

Instead of researching on different forms of one-dimensional likelihoods, we re-
examine the premise that multi-dimensional likelihoods are difficult to estimate
and find that there is a simple way to estimate multi-dimensional likelihoods di-
rectly from data using an ensemble approach.

In this paper, we make the following three contributions:

1. Presenting the first generic approach to estimate p(x|y) directly by aggregating
estimations from an ensemble of t estimators where each estimates the multi-
dimensional likelihood pi(x|y) using a fixed-size random sub-sample Di ⊂ D
(i = 1, 2, · · · , t). This is a generic approach because pi(x|y) can be estimated
using different data modelling methods.

2. Introducing two variants of the ensemble approach that estimate pi(x|y) using
a nearest neighbour density estimation and a probability estimation through
feature space partitioning, and produce two new Bayesian classifiers called
ENNBayes and MassBayes, respectively.

3. Verifying that the proposed classifiers produce better classification accuracy
and scale better than the state-of-the-art Bayesian classifiers in large data
sets.

The proposed approach has the following distinguishing characteristics over
the existing Bayesian classifiers:

• Unlike existing Bayesian classifiers that estimate one-dimensional likelihoods,
it estimates multi-dimensional likelihoods directly from data.
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• As it employs fixed-size sub-samples of data, it has constant training time and
constant space complexities. Thus, it can be easily applied in very large data
sets.

The rest of the paper is structured as follows. Section 2 provides an overview
of existing well-known Bayesian classifiers. Section 3 presents the ensemble ap-
proach to estimate p(x|y) directly from data and describes two new Bayesian
classifiers based on the proposed approach - ENNBayes and MassBayes. The em-
pirical evaluation results are presented in Section 4. Finally, we provide discussion
and conclusions in the last two sections.

2 Related work

This section provides a survey of previous works related to this paper. Subsection
2.1 discusses some widely used methods to estimate likelihood in real domain (Rd).
Subsection 2.2 provides a survey of Bayesian classifier learning and describes some
well-known Bayesian classifiers.

2.1 Likelihood estimation

The likelihood p(x|y) for continuous-valued attributes can be estimated either
through density estimation or by estimating probability in the local region (LR)
of x.

The probability p(x|y) in a LR can be estimated as a ratio of the number of
instances in the LR that belong to class y and the total number of instances in
class y. In existing Bayesian classifiers, continuous-valued attributes are converted
to discrete attributes through discretisation and the LR of x is then defined by
the smallest discrete intervals that contains x.

Discretisation divides the range of an attribute x into v discrete intervals and
maps each x ∈ R to a corresponding interval, yielding a categorical attribute with v
labels, i.e., x∗ ∈ {a1, a2, · · · , av}. Different methods of discretisation determine the
intervals in different ways. In unsupervised discretisation (e.g., equal width or equal
frequency discretisation (Catlett, 1991)), class label is not used while selecting the
cut points. Supervised discretisation methods find the cut points based on some
criterion that takes class information into consideration such as entropy of the
intervals, error in the training data or some statistical measure. Fayyad and Irani
(1995) proposed a supervised discretisation method that selects the cut points
which minimise the class entropy. In classification, the supervised methods often
produce better predictive accuracy than the unsupervised methods (Dougherty
et al., 1995). Note that the combinations of values grow exponentially with d
because there are vd possible combinations. Many of those possible combinations
may not appear in the observed data. If the unseen instance x has a combination of
attribute values that did not appear in the observed data, it yields zero probability.
Hence, the multi-dimensional likelihood estimation through discretisation may not
provide a good estimate.

Density estimators approximate the unknown probability density function f
from the observed data. The parametric estimators assume that the data are drawn
from a known distribution and derive the function f̂ by estimating parameters of



4 Sunil Aryal, Kai Ming Ting

the distribution such as mean and variance of a Gaussian distribution (Silverman,
1986). But, in reality, the underlying distribution does not always belong to a
parametric distribution. Non-parametric approaches make less rigid assumptions
and estimate the distribution from the observed data (Silverman, 1986). Kernel
density estimator (KDE) and k-nearest neighbour density estimator (kNN) are
two well-known non-parametric density estimators.

KDE estimates the density as the average of a kernel function K(·) centered
on each observed instance as (Silverman, 1986):

f̂(x) =
1

nhd

n∑
i=1

K

(
x− x(i)

h

)
(3)

where h is the smoothing parameter called bandwidth.

In order to estimate the density at point x, kNN searches k nearest neighbours
of x in the observed data. A kNN density estimation can be expressed as follows
(Breunig et al., 2000; Tan et al., 2006):

f̂(x) =
|N(x, k)|

n
∑

x′∈N(x,k)

distance(x,x′)
(4)

where N(x, k) is the set of k nearest neighbours of x and |s| is the cardinality of
set s.

Both KDE and kNN employ the expensive distance calculations over all n
observed instances, which restricts them to small data sets. Apart from high time
and space complexity, KDE and kNN require search to find optimal values for h
and k. In Bayesian classification framework, the density distribution of each class
has to be modelled separately. The same value for h or k may not be equally
good for modelling density distribution of all the classes. Searching for an optimal
value for each class will add further runtime cost to already expensive distance
calculations. Hence, they are impractical in large multi-dimensional data sets.

DEMass (Ting et al., 2013) is the first efficient density estimator in large data
set. It achieves significant improvement over KDE and kNN in terms of time and
space complexities by aggregating density estimations from t different random
sub-samples of data Di (i = 1, 2, · · · , t). It is an ensemble approach where density
in each sub-sample is estimated through multi-dimensional mass estimation (Ting
and Wells, 2010) as follows:

f̄m(x) =
1

t

t∑
i=1

|(Ti(x))|
|Di| vi

. (5)

where Ti(·) is a function which subdivides the feature space defined by Di into
non-overlapping regions through axis-parallel divisions; |(Ti(x))| is the number of
instances in the smallest region of Ti(x) in which x falls into; and vi is the volume
of region Ti(x).

DEMass has sub-linear time complexity and constant space complexity (Ting
et al., 2013). But, it is limited to low dimensional problems. Also, it is not adaptive
to data distribution as it constructs equal volume regions in the data space.
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2.2 Bayesian classifier learning

Naive Bayes (NB) (Duda and Hart, 1973; Langley et al., 1992) is the simplest
Bayesian approach to solve classification problems. It assumes that the attributes
(x1, x2, · · · , xd) are statistically independent given the class label (y) (class condi-
tional independence) and estimates p(x|y) as:

p̂(x|y) =

d∏
j=1

p(xj |y) (6)

Kononenko (1991) extended NB to detect dependencies between attributes
and proposed a variant of NB called semi-naive Bayes. Langley and Sage (1994)
proposed another variant of NB, called selective naive Bayes by removing the
correlated attributes in the modelling process. In the traditional NB, the distri-
bution of a continuous-valued attribute is assumed to be a Gaussian distribution
and p(xi|y) is estimated through normal density estimation. Langley and John
(1995) have shown the improvement in predictive accuracy of NB by replacing the
parametric normal density estimator with a non-parametric kernel density estima-
tor (KDE). A similar conclusion was drawn by Dougherty et al. (1995) through
discretisation.

Despite the strong assumption of class conditional independence, NB produces
impressive results in many application domains where the assumption does not
always hold (Clark and Niblett, 1989; Kononenko, 1993; Domingos and Pazzani,
1997). Its simplicity and clear probabilistic semantics have motivated researchers
to explore further to lessen its assumption of conditional independence.

Naive Bayes tree (NBTree) (Kohavi, 1996) combines the benefits of decision
tree and NB by using NB at the leaves of the decision tree to make predictions.
It has been shown that NBTree outperforms NB (Kohavi, 1996). Lazy Bayesian
rules (LBR) (Zheng and Webb, 2000) builds a rule which best characterises each
test instance during testing and builds local NB to classify. Another lazy Bayesian
classifier is locally weighted naive Bayes (LWNB) (Frank et al., 2003) that searches
for k nearest neighbours of each test instance and builds a NB based on k nearest
neighbours weighted by their distance to the test instance. All these classifiers
improve the prediction accuracy of NB, but they are expensive in terms of runtime
and inapplicable in large data sets.

A Bayesian network (BayesNet) (Friedman et al., 1997) learns probabilistic
relationships among the attributes and class from the training data, in the form
of a directed acyclic graph (DAG). In a graph, each node is probabilistically in-
dependent of its non-descendants given the state of its parents. At each node,
conditional probabilities with respect to its parents are learned from the training
data. The joint probability p(x, y) is estimated as:

p̂(x, y) = p(x1|π1)× p(x2|π2)× · · · × p(xd|πd)× p(y|πy) (7)

where πj is parent(xj) and πy is parent(y).

NB is the simplest form of Bayesian networks, where each attribute has y as
its only parent.
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Learning an optimal network of probabilistic dependencies is difficult and com-
putationally intractable as it requires searching over every possible network (Chick-
ering, 1996; Jiang et al., 2007). Thus, in practice, either some heuristics are used
or some restrictions are imposed on the network structure.

Friedman et al. (1997) proposed a Bayesian network called tree augmented
naive Bayes (TAN), where the probabilistic relationship is a tree-like structure.
TAN allows each attribute to have one additional parent along with the class
attribute. Another variant of TAN learning is super parent-TAN (SP-TAN) (Keogh
and Pazzani, 1999) that searches for a common super parent which yields the
minimum error in the training data. Grossman and Domingos (2004) proposed a
heuristic to produce a Bayesian network classifier that learns a network structure
(probabilistic relationship) by maximising conditional likelihood.

Aggregating η-dependence estimators (AηDE) (Webb et al., 2012) avoids the
expensive search in learning probabilistic dependencies by constructing an ensem-
ble of η-dependence estimators. It is the only ensemble approach that was designed
specifically to estimate p(x, y). It began with one-dependence estimators (Webb
et al., 2005) and then generalised to η-dependence estimators (Webb et al., 2012).
Each estimator allows dependency between y and η privileged attributes or super-
parents. The other attributes are assumed to be conditionally independent given
the η super-parents and y. The joint probability p(x, y) is estimated as:

p̂(x, y) =
∑
s∈Sη

p(xs, y)
∏

j∈{1,2,···,d}\s

p(xj |xs, y) (8)

where Sη is the collection of all subsets of size η of the set of d attributes {1, 2, · · · , d};
and xs is a η-dimensional vector of values of x defined by s.

NB is a member of AηDE family with η = 0, A0DE. A1DE and A2DE pro-
duce better predictive accuracy than the other state-of-the-art Bayesian classifiers
(Webb et al., 2005, 2012). However, it only allows dependencies on a fixed number

of attributes and y. Because of the high time complexity of O
(
n
(
d
η+1

))
1 and

space complexity of O
(
c
(
d
η+1

)
vη+1

)
, where v is the average number of values for

an attribute (Webb et al., 2012), only A2DE or A3DE is feasible even for a mod-
erate number of dimensions. Furthermore, selecting an appropriate value of η for
a particular data set requires a search.

All of the Bayesian classifiers surveyed so far estimate the joint distribution
as the product of one-dimensional likelihoods. Both BayeNet and AηDE allow
limited probabilistic dependencies among attributes. None of them consider the
unrestricted inter-dependencies between the attributes, and they all have limita-
tions in terms of time and space complexities in large data sets.

DEMassBayes (Ting et al., 2013) estimates the multi-dimensional likelihood
directly without making any explicit assumptions through DEMass. It builds t
models per class y from subsets of instances belonging to class y in each Di, i.e.,
Di,y ⊂ Di, and estimate p(x|y) as:

p(x|y) =
1

t

t∑
i=1

|(Ti,y(x))|
|Di,y| vi,y

(9)

1
(
d
η

)
is a binomial coefficient of η out of d.
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where vi,y is the volume of the region Ti,y(x).
DEMassBayes had better predictive accuracy than A1DE and BayesNet in low

dimensional problems. But, it had poor predictive accuracy in problems with a
moderate number of dimensions. This is because volume vi,y reduces exponen-
tially and becomes very small as the parameter controlling the number of regions
increases; and the estimation of p(x|y) is adversely affected by regions having small
volumes with few instances.

3 An ensemble approach for multi-dimensional likelihood estimation

Even though DEMassBayes has some limitations, it sets a benchmark to employ an
ensemble approach to estimate the multi-dimensional likelihood from sub-samples
of data. The approach used in DEMassBayes can be generalised as a generic en-
semble approach to estimate p(x|y) as follows:

p(x|y) =
1

t

t∑
i=1

pi(x|y) (10)

where pi(x|y) is estimated from a fixed-size sub-sample Di ⊂ D (i = 1, 2, · · · , t),
|Di| = ψ < n.

From a small sub-sample Di, pi(x|y) can be easily estimated by using existing
data modelling techniques such as density estimation or other means.

DEMassBayes is one realisation of Equation 10 that estimates pi(x|y) through
mass-based density estimation. It estimates the density fi(x|y) from each Di as:

fi(x|y) =
|(Ti,y(x))|
|Di,y| vi,y

(11)

From fi(x|y), pi(x|y) can be estimated as the probability that x lies in a small
region ε.

pi(x|y) =

∫
ε

fi(x|y) dx ≈ fi(x|y)× volume(ε) (12)

Since volume(ε) is a constant, it can be ignored in classification decision and
pi(x|y) can be expressed as:

pi(x|y) ≈ fi(x|y) (13)

The ensemble approach estimates the multi-dimensional likelihood directly
from data. It has the following characteristics:

• The average over t estimators provides a good approximation of p(x|y) as it
considers distribution over different local neighbourhoods of x.
• As it employs fixed-size data sub-samples, it has constant training time and

constant space complexities.
• Existing density estimators, which have problem running in large data sets,

can now be used as long as ψ � n.
• In large data sets where tψ < n, the proposed method runs faster than esti-

mating p(x|y) using the entire data set D.
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• The time complexity can be further reduced by a factor of t by using paral-
lel computing. Each estimator in the ensemble can be built independently in
different computing node.

The proposed ensemble method differs from the existing ensemble methods in
classifier learning in two ways. First, ensemble methods such as Bagging (Breiman,
1996), Boosting (Freund and Schapire, 1996), Random Forest (Breiman, 2001) and
Feating (Ting et al., 2011) aggregate the posterior probability p(y|x) from different
models to make the final prediction, whereas the proposed method aggregates
p(x|y) and uses the Bayes rule to make the final prediction. Second, each model in
the existing ensemble methods is trained with a sample of size n, but each model
in the proposed method can be built with a small sub-sample of training data
(ψ � n) and the ensemble still performs well.

Like the existing ensemble approach of AηDE, the proposed new ensemble
approach avoids search in learning a Bayesian classifier. But, it has the following
distinguishing characteristics in comparison with AηDE:

• AηDE estimates one-dimensional likelihoods given a fixed number of super-
parents and y, whereas the proposed approach estimates multi-dimensional
likelihoods directly.
• In AηDE, the ensemble size is fixed to

(
d
η

)
. But, the proposed approach has

the flexibility for users to set the ensemble size.
• Each model in the proposed approach is built with training sub-sample of size
ψ < n which gives rise to the constant training time. In contrast, each model
in AηDE is trained using the entire training set.
• AηDE is a deterministic algorithm whereas the proposed approach is a ran-

domised algorithm.

Using the ensemble approach to estimate p(x|y), we introduce two new Bayesian
classifiers using two new realisations of Equation 10: ENNBayes and MassBayes.
ENNBayes uses a nearest neighbour density estimator to estimate pi(x|y). Mass-
Bayes partitions the data space of Di to create local regions and then estimates
pi(x|y) from the numbers of instances in the local region (LR) andDi. ENNBayes is
a lazy approach that defines LRs implicitly in terms of nearest neighbours when the
test instance is presented. MassBayes is an eager learner that explicitly partitions
the feature space enclosed by Di. The conceptual differences between ENNBayes,
MassBayes and DEMass-Bayes are provided in Table 1. ENNBayes and MassBayes
are described in the next two subsections.

Table 1: Three realisations of the proposed ensemble approach to estimate p(x|y):
ENNBayes, MassBayes and DEMass-Bayes

Classifiers Defining Local Regions Estimating pi(x|y) Model
ENNBayes Implicit with nearest Nearest neighbour No model

neighbours. density estimation.
MassBayes Explicit with feature Probability estimation One model for all

space partitioning. in local regions. classes.
DEMassBayes Explicit with feature Density estimation One model per

space partitioning. based on mass. class.
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3.1 ENNBayes: An ensemble of nearest neighbour density estimators

We call the new Bayesian classifier that estimates the likelihood using an ensem-
ble of nearest neighbour density estimators ENNBayes (Ensemble of Nearest
Neighbour Bayesian classifier).

Using a random sub-sample of training instances Di, the conditional density
fi(x|y) can be estimated as:

fi(x|y) =
|N(x, k|Di,y)|

|Di,y|
∑

x′∈N(x,k|Di,y)

distance(x,x′)
(14)

where Di,y is a set of instances belonging to class y in Di,
⋃
y Di,y = Di; and

N(x, k|Di,y) is the set of k nearest neighbours of x in Di,y.
Since the nearest neighbour instance contributes significantly to fi(x|y), the

above equation can be simplified by considering the nearest neighbour only (i.e.,
k = 1).

In the case of skewed class distribution, instances from some classes may not
present in Di. If there is no instance from any class in Di, pi(x|y) for that class is
zero. Hence, pi(x|y) from Di is estimated as:

pi(x|y) =

{
1

|Di,y|×distance(x,NN(x|Di,y)) if |Di,y| > 0,

0 otherwise.
(15)

where NN(x|Di,y) is the nearest neighbour of x in Di,y.
With k = 1, the final estimate considers different local neighbourhoods of

the test instance (the nearest neighbour in each Di). An illustrative example of
implicit local regions centered on the nearest neighbour of x in different sub-
samples is shown in Figure 1. The shape of the regions depend on the distance
measure (Lp-norm) used: hypersphere if p = 2 (Euclidean distance) and hypercube
if p =∞.

ENNBayes is a lazy learning approach. There is no model building process. In
the training phase, each data sub-sample Di ⊂ D (i = 1, 2, · · · , t) is constructed

Fig. 1: Implicit regions to estimate pi(x) using Euclidean distance (L2-norm).



10 Sunil Aryal, Kai Ming Ting

by sampling ψ instances from D without replacement. The sampling process is
restarted with D when all the instances in D are used. In the testing phase, the
nearest neighbour of the test instance x in each class is searched in each sub-sample
Di and pi(x|y) is estimated from Equation 15.

ENNBayes requires to store tψ instances. Hence, the space complexity isO(tψd).
In order to classify a test instance, the nearest neighbour in each class is searched
in each of the t sub-samples. If ϕ is the average number of instances per class in
each Di, the total testing time complexity is O(ctϕd). Even though ENNBayes
reduces the time complexity to constant in terms of n, it still requires distance
calculation in order to find the nearest neighbour.

3.2 MassBayes: Multi-dimensional likelihood estimation through probability
estimation in a local region defined by feature space partitioning

MassBayes estimates multi-dimensional likelihood pi(x|y) through probability es-
timation in local region. Instead of converting continuous-valued attributes to
discrete attributes through discretisation (as done by existing Bayesian classifiers,
as a preprocessing step), MassBayes defines local regions through feature space
partitioning in the model building process.

Let Ti(·) be a function that divides the data space of Di into non-overlapping
regions and Ti(x) be the smallest local region where x falls into. The likelihood
pi(x|y) is defined as follows:

pi(x|y) =
|Ti(x, y)|
|Di,y|

(16)

where |Ti(x, y)| is the number of instances belonging to class y in Ti(x) and |Di,y|
is the number of instances belonging to class y in Di.

The feature space partitioning is constructed using a binary tree structure
called h:d-tree, as used by Ting and Wells (2010) in multi-dimensional mass esti-
mation. The data space enclosing instances inDi is sub-divided into two half-spaces
by splitting at the mid-point on a dimension. The process is then repeated in each
non-empty half-space with more than one instance in it on a different dimension.

In a multi-dimensional space, each instance in Di can be isolated by splitting
on a few dimensions i.e., only a subset of d attributes, g ⊂ {1, 2, · · · , d} is used to
define Ti(x). Hence, pi(x|y) is estimated as pi(xg|y) where xg is a |g|-dimensional
vector of values of x defined by g; and 1 ≤ |g| ≤ d.

pi(x|y) = pi(xg|y) =
|Ti(xg, y)|
|Di,y|

(17)

The regions Ti(x) from different Di are represented by different feature subsets.
Hence, the multi-dimensional likelihood p(x|y) can be expressed as:

p(x|y) =
1

t

∑
g∈Gt

p(xg|y) (18)

where Gt is a collection of t subsets of varying sizes of d attributes used to define
Ti(x) in each Di.
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Fig. 2: Different regions from different Ti(·) (i = 1, 2, · · · , 5) that cover x.

The average probability of t different regions Ti(x) (i = 1, 2, · · · , t), constructed
using different Di, provides a good estimate of p(x|y) as it considers the distri-
bution in different local neighbourhoods of x in the data space. An illustrative
example of different regions covering x is provided in Figure 2.

As our implementation is motivated from the multi-dimension mass estimation
by Ting and Wells (2010), we call the resulting Bayesian classifier MassBayes.
MassBayes estimates p(x|y) by aggregating the multi-dimensional likelihoods esti-
mated from random subsets of the training data using varying-size random feature
subsets.

3.2.1 Implementation

We use the same algorithm as used by Ting and Wells (2010) to generate h:d-trees
to represent Ti(·) with the following modification: the tree building process stops
early once every instance is isolated. In the original implementation, each tree is
built to the maximum height of h × d (where h is a parameter that defines the
maximum level of sub-divisions) resulting in equal-size regions. Even in a moderate
number of dimensions, many of the regions remain empty, and each non-empty
region encloses a very small area around the observed data instances resulting in
a poor estimate for unseen instances. The procedures to generate t trees from a
given data set D are provided in Algorithms 1 and 2 in Appendix A.

Let the data space that envelops the instances in D be ∆. The data space ∆
is adjusted to become δ using a random perturbation conducted as follows. For
each dimension j, a split point vj is chosen randomly within the range maxj(∆)−
minj(∆). Then, the new range δj along dimension j is defined as [vj − r, vj + r],
where r = max(vj −minj(∆),maxj(∆) − vj). The new range on all dimensions
defines the adjusted work space for the tree building process. The random adjust-
ment of the work space ensures that no two trees are identical even if they are
constructed from the same subset of instances and covers a wider area than ∆.

The dimension to split is selected from a randomised set of d dimensions in
a round-robin manner at each level of a tree. The maximum allowed height of a
tree is h× d. At the leaf node, the number of instances belonging to each class is
stored.
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Fig. 3: An example of an h:d-tree for h = 2 and d = 2.

A typical example of an implementation of T (·) as an h:d-tree for h = 2 and
d = 2 is shown in Figure 3. The dotted box envelopes the instances in D and the
outer solid box represents the adjusted work space which has ranges δ1 and δ2 on
x1 and x2 dimensions. R1, R2, R3, R4 and R5 represent different regions in T (·)
depending on the data distribution in D. R1 is defined by splitting the work space
in x1 dimension only (i.e., g = {1}), whereas the other four regions use dimensions
x1 and x2 (i.e., g = {1, 2}).

In the worst case, an h:d-tree has height hd. At each level of a tree, a total of ψ
instances are assigned to all nodes. Hence, the time complexity to construct a single
tree is O(hdψ). Since t such trees are constructed, the training time complexity
is O(thdψ). When classifying a test instance, each of the t trees is traversed from
the root to a leaf node where the test instance falls into. The complexity of that
searching is O(thd). Each leaf node represents a region having a value range (with
the minimum and the maximum value) in each of the d dimensions and the number
of instances belonging to each of the c classes. There is a total of min(2hd, ψ) leaf
nodes in each of the t trees. In general, ψ < 2hd; thus, the total space complexity
is O(t(c + d)ψ). During the tree building process, an additional space of nd is
required to store n training instances which can be discarded once the trees are
constructed.

3.3 Proposed Bayesian classifiers versus existing Bayesian classifier

The decision rules of existing and the proposed Bayesian classifiers are provided in
Table 2. Note that the existing Bayesian classifiers (NB, BayesNet and AηDE) esti-
mate the conditional probability as the product of one-dimensional likelihoods as-
suming some kind of conditional independence. In contrast, DEMassBayes, Mass-
Bayes and ENNBayes estimate multi-dimensional likelihoods directly.

The time and space complexities of two variants of NB, AηDE, DEMassBayes,
ENNBayes and MassBayes are presented in Table 3. Note that these complexi-



Multidimensional likelihood estimation 13

Table 2: Decision rules of different Bayesian classifiers.

Classifier Decision Rule Remarks

NB-KDE
arg max

y
p(y)

d∏
i=1

p(xi|y)

p(xi|y) is estimated with
KDE (Gaussian kernel).

NB-Disc
p(xi|y) is estimated
through discretisation.

BayesNet arg max
y

p(πy , y)

d∏
i=1

p(xi|πi, y)

πi = parent(xi),
πy = parent(y);
Probabilities are estimat-
ed through discretisation.

AηDE
arg max

y

∑
s∈Sη

p(xs, y)
∏

j∈{1,2,···,d}\s

p(xj |xs, y) p(xj |xs, y) is estimated
through discretisation.

DEMassBayes
arg max

y
p(y)

1

t

t∑
i=1

fi(x|y)

fi(x|y) is estimated
using Equation 11.

ENNBayes
fi(x|y) is estimated
using Equation 15.

MassBayes arg max
y

p(y)
1

t

∑
g∈Gt

p(xg|y) p(xg|y) is estimated
using Equation 17.

Table 3: Time and space complexities of the existing (NB and AηDE) and the
proposed (MassBayes and ENNBayes) Bayesian classifiers.

Classifiers Training time Testing time Space
NB-KDE∗ O(nd) O(cmd) O(cmd)
NB-Disc† O(nd) O(cd) O(cdv)

AηDE‡ O
(
n
(
d
η+1

))
O
(
cd
(
d
η

))
O
(
c
(
d
η+1

)
vη+1

)
DEMassBayes? O(cthdϕ) O(cthd) O(ctdϕ)

MassBayes O(thdψ) O(thd) O (tψ(d+ c))
ENNBayes - O(ctϕd) O(tψd)

∗ Langley and John (1995), † Webb et al. (2005), ‡ Webb et al. (2012), ? Ting et al. (2013)
n: total number of training instances, m: average number of training instances in a class, d:
number of dimensions, c: number of classes, v: average number of discrete values of an
attribute, η: number of super-parents, t: number of trees, h: level of divisions ψ: sample size
|Di|, and ϕ: average number of samples per class in Di.

ties do not include the additional discretisation needed in the preprocessing for
NB-Disc and AηDE. Both training time complexity and space complexity of DE-
MassBayes, ENNBayes and MassBayes are independent of n.

Note that the average case training and testing time complexities of DEMass-
Bayes and MassBayes are a lot better than the worst case complexities presented
in Table 3 because the tree building process terminates early once every instance
is isolated. With moderate values of d and h, the average height of the tree will be
a lot less than the maximum height of hd. Hence, DEMassBayes and MassBayes
run faster than ENNBayes.



14 Sunil Aryal, Kai Ming Ting

4 Empirical evaluation

This section presents the results of the experiments conducted to evaluate the
performance of ENNBayes and MassBayes against well known Bayesian classifiers.
Since our focus is in the Bayesian approach of classifier learning, we chose the state-
of-the-art Bayesian contenders: three variants of AηDE (A1DE, A2DE, A3DE),
BayesNet, two variants of NB (NB-KDE and NB-Disc) and DEMassBayes. Webb
et al. (2012) showed that A2DE is better or at least competitive to state-of-the-art
ensemble approaches of Feating (Ting et al., 2011) and Random Forest (Breiman,
2001).

ENNBayes and MassBayes were implemented in Java using the WEKA plat-
form (Hall et al., 2009) which also has implementations of NB, BayesNet and
A1DE. For DEMassBayes, A2DE and A3DE, we used the WEKA implementa-
tions provided by the respective authors.

Fifteen data sets with n > 10000 were used. All the attributes in the data
sets were numeric. The properties of the data sets are provided in Table 4. The
RingCurve, Wave and OneBig data sets were three synthetic data sets and the
rest were real-world data sets from UCI Machine Learning Repository (Frank
and Asuncion, 2010). RingCurve and Wave are subsets of the RingCurve-Wave-
TriGaussian data set used by Ting and Wells (2010) and OneBig is the data set
used by Nanopoulos et al. (2006).

Table 4: Properties of data sets used.

Data sets Data size Dimensions Classes
KDDCup99 5209460 32 40
CoverType 581012 10 7

YearPrediction 515345 90 2
Census 299285 7 2

SkinSegment 245057 3 2
Localisation 164860 3 11
MiniBooNE 129596 50 2

OneBig 68000 20 10
Shuttle 58000 8 7
Letters 20000 16 26

RingCurve 20000 2 2
Wave 20000 2 2

Magic04 19020 10 2
GasSensor 13790 128 6
Pendigits 10992 16 10

All the experiments were conducted in a Linux machine with 2.27 GHz proces-
sor and 20 GB memory. The performance measures were the classification accuracy
and the CPU runtime. In large data sets (n > 100000), the data sets were divided
into two folds, one for training and the other one for testing. The classification ac-
curacy on the test set and the total runtime (training and testing) were reported.
In small data sets (n < 100000), a 10-fold cross validation was used and average
accuracy and average runtime (training and testing) were reported.

A two-standard-error significance test was conducted to check whether the
difference in accuracies of two competing classifiers was significant. A win or loss
was counted if the difference was significant; otherwise, it was a draw.
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For AηDE, BayesNet and NB-Disc, data sets were discretised by a supervised
discretisation technique based on minimum entropy (Fayyad and Irani, 1995) as
suggested by the authors of AηDE before building the classification models. The
reported runtime did not include the additional discretisation time that was done
in preprocessing.

For BayesNet, the parameter ‘maximum number of parents’ was set to 100
to examine whether a large number of parents produces better results; and the
parameter ‘initialise as Naive Bayes’ was set to ‘false’ to initialise an empty
network structure. The default values were used for the rest of the parameters.

In MassBayes and DEMassBayes, the parameters t, ψ and h were set as default
to 100, 5000 and 10, respectively; whereas the parameters t and ψ in ENNBayes
were set as default to 25 and 5000, respectively. Euclidean distance (L2-norm) was
used to find the nearest neighbour in ENNBayes.

We discuss the experimental results in detail in the following three subsections.
The results in terms of classification accuracy and runtime are analysed in Section
4.1 and 4.2, respectively. We analyse the sensitivity of the parameters in ENNBayes
and MassBayes in Section 4.3.

4.1 Classification accuracy comparison

A summary of the comparison is presented in Table 5 which shows the win:loss:draw
counts of MassBayes and ENNBayes against the other contenders based on the
two-standard-error significance test. Both ENNBayes and MassBayes perform sig-
nificantly better than NB, A1DE and DEMass-Bayes in the complete set of 15
data sets. BayesNet, A2DE and A3DE cannot complete in all 15 data sets. Both
ENNBayes and MassBayes still have more wins than losses in comparison with
these classifiers. The complete result of ENNBayes, MassBayes and other con-
tenders are provided in Tables 7 in Appendix B.

We discuss the classification results of ENNBayes and MassBayes against
AηDE, BayesNet and NB, and DEMassBayes separately in the following three
subsections.

Table 5: Win:Loss:Draw counts of MassBayes and ENNBayes against the other
contenders in terms of accuracy based on the two-standard-error significance test.
Note that A3DE and BayesNet did not complete in five data sets and A2DE did
not complete in two data sets.

Contenders MassBayes ENNBayes
A3DE 5:3:2 5:4:1
A2DE 7:5:1 8:2:3
A1DE 10:1:4 12:1:2

BayesNet 6:3:1 6:2:2
NB-KDE 15:0:0 13:2:0
NB-Disc 15:0:0 14:1:0

DEMass-Bayes 10:0:5 7:1:7



16 Sunil Aryal, Kai Ming Ting

4.1.1 ENNBayes and MassBayes versus AηDE

Since AηDE is the key contender, we analyse the result in more details in this
subsection. The accuracies of ENNBayes and MassBayes in all the data sets were
plotted against the accuracies of each of the three variants of AηDE in Figure 4.
The coordinate values of each point in the plot are the accuracies of each pair of
classifiers in a data set. If both the classifiers had produced the same accuracies in
a data set, the point representing that data set lies on the diagonal. In both the
plots, many points lies below the diagonal line and only a few points are above.
This indicates that both the proposed methods are better than AηDE in many
cases.
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Fig. 4: Scatter plot of accuracies of ENNBayes and MassBayes versus those of the
three variants of AηDE (A1DE, A2DE and A3DE)

ENNBayes had 12 wins and 1 loss against A1DE; 8 wins and 2 losses against
A2DE; and 5 wins and 4 losses against A3DE. Similarly, MassBayes had 10 wins
and 1 loss against A1DE; 7 wins and 5 losses against A2DE; and 5 wins and 3
losses against A3DE.

It is interesting to note that A3DE did not complete in five out of the fifteen
data sets used. In OneBig (d = 20), KDDCup (d = 32), MiniBooNE (d = 50),
YearPrediction (d = 92) and GasSensor (d = 128), it did not complete because of
the arithmetic overflow. The memory requirement in AηDE increases with d and c
as it requires (η+2)-dimensional probability table to store the observed frequency
for each combination of (η+1) attribute values and the class values (Webb et al.,
2012). Table 6 shows the increase in memory with the increase in the number of
dimensions and classes in three variants of AηDE. A3DE can only be used in low
dimensional data sets (d < 20). It can not handle data sets even with a moderate
number of dimensions. Similarly, A2DE did not complete in KDDCup (d = 32,
c = 40) and GasSensor (d = 128, c = 6). A2DE can handle more dimensions
than A3DE but still fails in data sets with a moderate number of dimensions and
classes. A1DE, which can handle more attributes than A2DE, completed in all
data sets.
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Table 6: Memory required by three variants of AηDE in different data sets. v is
the average number of discrete values per attribute.

Data sets #d #c
Memory per class Total memory

A1DE A2DE A3DE A1DE A2DE A3DE
Census 7 2 21v2 35v3 35v4 42v2 70v3 70v4

Shuttle 8 7 28v2 56v3 70v4 196v2 392v3 490v4

CoverType 10 7 45v2 120v3 210v4 315v2 840v3 1470v4

Letters 16 26 120v2 560v3 1820v4 3120v2 14560v3 47320v4

OneBig 20 10 190v2 1140v3 4845v4 1900v2 11400v3 48450v4

KDDCup99 32 40 496v2 4960v3 35960v4 19840v2 198400v3 1438400v4

MiniBooNE 50 2 1225v2 19600v3 230300v4 2450v2 39200v3 460600v4

YearPrediction 90 2 4005v2 117480v3 2555190v4 1080v2 234960v3 5110380v4

GasSensor 128 6 8128v2 341376v3 10668000v4 48768v2 2048256v3 64008000v4

4.1.2 ENNBayes and MassBayes versus BayesNet and Naive Bayes

We focus on the comparison with the second key contenders BayesNet and Naive
Bayes in this subsection.

In the scatter plots in Figure 5, most of the points are below the diagonal line.
This shows that ENNBayes and MassBayes are better than BayesNet and Naive
Bayes. ENNBayes had 6 wins and 2 losses against BayesNet; 13 wins and 2 losses
against NB-KDE; and 14 wins and 1 loss against NB-Disc. Similarly, MassBayes
had 6 wins and 3 losses against BayesNet; and all 15 wins over both the variants
of NB (NB-KDE and NB-Disc).

Note that BayesNet did not complete in five data sets with a moderate number
of dimensions - OneBig (d = 20), KDDCup99 (d = 32), MiniBooNE (d = 50),
YearPrediction (d = 90) and GasSensor (d = 128) with out of memory error when
a computing cluster node with 20GB was used. But, ENNBayes and MassBayes
completed in all 15 data sets using the same machine.
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Fig. 5: Scatter plot of accuracies of ENNBayes and MassBayes versus those of
BayesNet and the two variants of Naive Bayes (NB-KDE and NB-Disc).
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4.1.3 MassBayes and ENNBayes versus DEMassBayes

This subsection focuses on comparison with DEMassBayes, a variant of the same
generic ensemble approach.

As shown in the scatter plots in Figure 6, both ENNBayes and MassBayes
produced better classification accuracies than DEMassBayes. MassBayes had 10
wins and no loss against DEMassBayes whereas ENNBayes had 7 wins and one
loss. DEMassBayes produced competitive results to MassBayes and ENNBayes
in low dimensional data sets such as RingCurve (d = 2), Wave (d = 2), Skin-
Segment (d = 3), Localisation (d = 3), Census (d = 7) and Shuttle (d = 8).
It had significantly worse results than both MassBayes and ENNBayes in data
sets with a moderate number of dimensions such as KDDCup99 (d = 32), Mini-
BooNE (d = 50), YearPrediction (d = 90) and GasSensor (d = 128). When the
number of dimensions increases, the volume of the regions decreases exponential
which heavily influence the density estimation and degrades the performance of
DEMassBayes.

40

50

60

70

80

90

100

40 50 60 70 80 90 100

D
E

M
a
s
s
B

a
y
e
s

ENNBayes

(a) ENNBayes versus DEMassBayes

40

50

60

70

80

90

100

40 50 60 70 80 90 100

D
E

M
a
s
s
B

a
y
e
s

MassBayes

(b) MassBayes versus DEMassBayes

Fig. 6: Scatter plot of accuracies of ENNBayes and MassBayes versus those of
DEMassBayes.
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4.1.4 ENNBayes versus MassBayes

As shown in Figure 7, ENNBayes and MassBayes produced competitive results in
many data sets. ENNBayes had 5 wins, 2 losses and 8 draws against MassBayes.

4.2 Runtime comparison

4.2.1 ENNBayes and MassBayes versus existing Bayesian classifiers

In terms of runtime, ENNBayes was generally one to three orders of magnitude
slower than the existing Bayesian classifiers. But, the runtime of MassBayes was
an order of magnitude faster than some contenders (such as A2DE and NB-KDE)
in large data sets and it was competitive to many existing Bayesian classifiers in
many data sets.

The runtime of the proposed and the existing Bayesian classifiers in the three
largest data sets - KDDCup99, YearPrediction and CoverType was presented in
Figure 8. In the largest data set KDDCup99, the runtime of MassBayes was of the
same order of magnitude as DEMassBayes, A1DE and NB-KDE whereas it was
an order of magnitude slower than NB-Disc. A2DE, A3DE and BayesNet did not
complete in KDDCup99. In YearPrediction, MassBayes was an order of magni-
tude faster than A2DE and NB-KDE; and was of the same order of magnitude as
DEMassBayes and A1DE. A3DE and BayesNet did not complete in the YearPre-
diction data set. In CoverType, the runtime of MassBayes was of the same order of
magnitude as DEMassBayes, A3DE, BayesNet and NB-KDE, but it was an order
of magnitude slower than A2DE, A1DE and NB-Disc. ENNBayes was one to three
orders of magnitude slower than the existing Bayesian classifiers in all three data
sets.

The complete runtime results of ENNBayes, MassBayes and other contenders
are provided in Tables 8 in Appendix B.

Note that the reported runtime results for AηDE, BayesNet and NB-Disc did
not include the discretisation time that must be done as a preprocessing step,
which give AηDE, BayesNet and NB-Disc an unfair advantage over the proposed
classifiers. The discretisation cost is significantly large in large and moderately
high dimensional data sets. For examples, the discretisation took 1290 seconds
in the KddCup99 data set, and 467 seconds in the YearPrediction data set. The
discretisation time itself was of the same order of magnitude as the runtime of
MassBayes. The runtime of the supervised discretisation (Fayyad and Irani, 1995)
in all the data sets are provided in Table 9 in Appendix C.

The head-to-head comparison of runtime of ENNBayes, MassBayes and DE-
MassBayes against the existing Bayesian classifiers (AηDE, BayesNet and NB)
is not entirely fair. The existing Bayesian classifiers assume some kind of condi-
tional independence and estimate the simplified surrogates of p(x|y). In contrast,
ENNBayes, MassBayes and DEMassBayes estimate p(x|y) directly from the given
training data.

Among the three classifiers based on the proposed ensemble approach, ENNBayes
was one to three orders of magnitude slower than MassBayes and DEMassBayes.
MassBayes and DEMassBayes had runtime of the same order of magnitude. Among
the three variants of AηDE, the runtime increases with the increase in η.
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Fig. 8: Runtime of MassBayes, ENNBayes and the other contenders in the three
largest data sets: KDDCup99, CoverType and YearPrediction. The vertical axis is
on a logarithmic scale of base 10. For ease of reading, the classifiers are organised
into groups of three: the first group has three classifiers (MassBayes, ENNBayes
and DEMassBayes) based on the proposed ensemble approach; the second group
has three variants of AηDE (A3DE, A2DE and A1DE); and the last group has
BayesNet, NB-KDE and NB-Disc. Note that the discretisation time was not in-
cluded in the runtime of AηDE, BayesNet and NB-Disc. Histograms with star
which have the maximum height indicate that the classifiers did not complete the
tasks.

The above runtime results do not provide a detailed picture about the scalabil-
ity of the proposed classifiers. Hence, we examine the scalability of the proposed
classifiers to present a more accurate idea about their time complexities in the
following subsection.

4.2.2 Scaleup test

In order to examine how well the classifiers scaleup to large data sets, we used a
subset of the KDDCup99 data set with the three largest classes (d = 32, c = 3)1.
The training data size was increased from 10000 to 50000, 100000, half-a-million,
million and five million with a factor of 1, 5, 10, 50, 100 and 500, respectively. The
test set had 10000 instances. The increase in training time and space required to
store the classification model of MassBayes and three variants of AηDE is presented

1 The number of classes must be reduced for AηDE to run
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Fig. 9: Increase in training time and memory requirement to learn a classification
model with the increase in training size in a subset of KDDCup99 data set with
three largest classes (i.e., c = 3, d = 32). The horizontal axes are on a logarithmic
scale of base 10. A3DE did not complete when the training size was increased to
five million.

in Figure 92. The increase in training time and space required is presented as a
ratio with the training time and space required for 10000 training instances as
the base. Note that AηDE had an unfair advantage over MassBayes in terms of
runtime as the discretisation time was not included in the presented results.

With the increase in training size by a factor of 5, 10, 50, 100 and 500, the
training time of A1DE increased by a factor of 3, 6, 28, 57 and 420 followed by

2 The scaleup test was conducted against the key contender AηDE. ENNBayes was not
included in the scaleup test as there is no training phase.
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A2DE (5, 11, 58, 128 and 686) and A3DE (8, 18, 72 and 161). A3DE did not
complete when the sample size was increased to five million instances by a factor
of 500. The training time of MassBayes was constant, irrespectively of the training
data size.

The memory requirement of A2DE was increased by a factor of 1.4, 1.7, 3, 4
and 10 followed by A2DE (1.7, 2.3, 5, 8 and 29) and A3DE (2.1, 3, 9 and 16). But,
MassBayes had constant memory requirement.
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Fig. 10: Increase in training time and memory requirement to learn a classification
model with the increase in the number of dimensions in a subset of KDDCup99
data set with three largest classes (i.e., c = 3, n = 5125369). The horizontal and
vertical axes in Figures (a) and (b) are on a logarithmic scale of base 2 and 10,
respectively. A3DE did not complete when the number of dimensions was increased
to 32.
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When the training size was varied from 10000 instances to five million instances,
all the classifiers produced similar classification accuracy. The classification accu-
racy of MassBayes varied from 99.96% to 99.99%, whereas that of A1DE and
A2DE varied from 99.89% to 99.98% and 99.91% to 99.98%, respectively. This
indicates that MassBayes scales better than the existing Bayesian classifiers in
very large data sets both in terms of training time and memory requirement, and
produce better classification accuracy.

In order to examine how well the classifiers scaleup to the increase in the
number of attributes, we increased the number of attributes of the same subset of
the KDDCup99 data set with the three largest classes (n = 5125369, c = 3) from
2 to 4, 8, 16, 24 and 32. These attributes were selected from the best attributes
identified using Chi-squared attribute evaluation available in WEKA (Hall et al.,
2009). The test set had 10000 instances. The increase in training time and space
required to store the classification model of MassBayes and three variants of AηDE
are presented in Figure 10. The bases for runtime ratio and memory ratio are the
training time and memory required by the data set with 2 attributes.

With the increase in the number of attributes by a factor of 2, 4, 8, 12 and
16, MassBayes increased its training time by a factor of 1.3, 1.5, 3.8, 5.9 and 6.4,
respectively. The closest contender A1DE increased its training time by a factor
of 2.5, 4.6, 8.6, 15 and 21 followed by A2DE (2.7, 6.3, 21, 81 and 166) and A3DE
(3.4, 9.4, 193 and 1830). A3DE did not complete when the number of attributes
was increased to 32 by a factor of 16.

The memory requirement of MassBayes was increased by a factor of 1.9, 2.3,
3.4, 4.2 and 5, respectively. A1DE increased its memory requirement by a factor
of 4, 13, 21, 31 and 35 followed by A2DE (109, 1161, 3052, 5952 and 7219) and
A3DE (868, 42491, 179230 and 463939).

4.3 Role of parameters in ENNBayes and MassBayes

In this section, we present the results of a series of experiments conducted to inves-
tigate the sensitivity of parameters in ENNBayes and MassBayes. We conducted
the following sets of experiments by varying one parameter and fixing the other
parameters to the default values in the KDDCup99 data set.

• ENNBayes
1. Varying ensemble size (t) in the range of [10, 25, 50, 100] and fixing ψ =

5000.
2. Varying sample size (ψ) in the range of [500, 1000, 5000, 10000] and fixing
t = 25.

• MassBayes
1. Varying ensemble size (t) in the range of [10, 25, 50, 100] and fixing ψ = 5000

and h = 10.
2. Varying sample size (ψ) in the range of [500, 1000, 5000, 10000] and fixing
t = 100 and h = 10.

3. Varying height (h) in the range [1, 5, 10, 15] and fixing t = 100 and ψ =
5000.

Figures 11 and 12 show the effect of parameters t and ψ in classification accu-
racy and runtime of ENNBayes and MassBayes and Figure 13 shows the effect of
parameter h in classification accuracy and runtime of MassBayes.
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Fig. 11: The effect of ensemble size (t) on accuracy and runtime of ENNBayes and
MassBayes.
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Fig. 12: The effect of sample size (ψ) on accuracy and runtime of ENNBayes and
MassBayes.
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Multidimensional likelihood estimation 25

All the experiments were conducted using 10000 instances for testing and the
rest for training. The increase in runtime was plotted as a ratio to show the
fraction of runtime increased when the parameters were increased. The bases for
the runtime ratio while varying t, ψ and h are the total runtime (including training
and testing) for t = 10, ψ = 500 and h = 1, respectively.

When t was increased from 10 to 25, 50 and 100, the accuracies of both
ENNBayes and MassBayes increased upto a certain point (t = 50) and then re-
mained almost constant. Similarly, when the sample size was increased from 500 to
1000, 5000 and 10000, the accuracies of ENNBayes and MassBayes were increased
rapidly initially upto ψ = 5000 and then increased gradually when ψ was increased
to 10000. Similarly, as shown in Figure 13, the accuracy of MassBayes increased
upto a certain point (h = 10) and then remained constant when h was increased.

The results show that the parameters are not too sensitive in terms of predictive
accuracy if they are set to a sufficiently large value. But, setting the parameters to
very large values will increase the runtime. The runtime varies linearly with t in
both ENNBayes and MassBayes. With the increase in ψ, the runtime of ENNBayes
and MassBayes varies linearly and sub-linearly, respectively. In MassBayes, if the
sample size is enough, the increase in h will increase the runtime almost linearly.
After reaching a certain height, the runtime remains constant as the tree building
stops early once every instances is isolated.

5 Discussion

Between the two proposed classifiers, ENNBayes is computationally expensive due
to the associated distance calculation. MassBayes is fast because the tree structure
speed-up the search for local neighbourhood. In MassBayes, with moderate d and
h, the trees are usually significantly shorter than the maximum height hd. The
distinguishing characteristics between ENNBayes and MassBayes are summarised
as follows:

1. ENNBayes estimates multi-dimensional likelihoods using all the features, whereas
MassBayes estimates using feature subsets of different sizes.

2. ENNBayes is based on nearest neighbour and needs no training; MassBayes
builds trees in the training stage.

3. ENNBayes estimates likelihoods using density estimation; MassBayes estimates
likelihoods using probability estimation.

In ENNBayes, fi(x|y) can also be estimated considering the volume in the
feature space that includes the k nearest neighbours of x in Di,y, as Silverman
(1986):

f̂i(x|y) =
|N(x, k|Di,y)|

|Di,y| × volume(N(x, k|Di,y))
(19)

This implementation does not provide a good estimate of fi(x|y) because the
estimate is heavily influenced by the volume which becomes very small, like in
DEMassBayes, even in data sets with a moderate number of dimensions. In order
to overcome this problem, we used the implementation based on distance as used
by Breunig et al. (2000). We have used the Euclidean distance (Lp-norm with
p = 2) in the experiment, but any value of p can be used.
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It is interesting to note that we are not the first to employ nearest neighbour
only to do density estimation. Naive Bayes Nearest Neighbour (NBNN) (Boiman
et al., 2008) and local NBNN (McCann and Lowe, 2012) employ nearest neigh-
bour only in a kernel estimator to estimate the one-dimensional likelihoods in the
Naive Bayesian framework. In contrast, ENNBayes employs the nearest neighbour
only in a k-nearest neighbour density estimator to estimate the multi-dimensional
likelihoods in the more general Bayesian framework.

One obvious question with ENNBayes is: what if an ordinary kNN density
estimator is used instead of an ensemble? In large data sets, it is impossible to run
because of its high time complexity. For example, when kNN with k = 1 was used
to estimate p(x|y) directly from D, it could not complete in the largest data set
(KDDCup99) in 20 days and it is estimated to need 140 days to complete. But
ENNBayes completed the task in less than seven days. With ψ = 5000 and t = 25,
ENNBayes uses only 125000 training instances, 20 times less instances than the
entire training size of 2.5 million instances and runs 20 times faster.

ENNBayes is the first lazy Bayesian classifier that estimates pi(x|y) directly
through the nearest neighbour density estimation. The existing lazy Bayesian clas-
sifiers, LBR (Zheng and Webb, 2000) and LWNB (Frank et al., 2003), estimate
one-dimensional likelihoods and uses NB. LBR needs to convert continuous-valued
attributes to categorical attributes and estimates p(xj |y) (j = 1, 2, · · · , d) through
probability estimation in a local region defined by a conjunctive rule covering x.
Similarly, LWNB estimates p(xj |y) through (i) a probability estimation in a local
region covered by k nearest neighbours if xj is a discrete attribute or (ii) through
density estimation assuming Gaussian distribution if xj is a continuous-valued
attribute.

In ENNBayes, the nearest neighbour search can be improved by using indexing
schemes such as Cover Trees (Beygelzimer et al., 2006), M-Trees (Ciaccia et al.,
1997) and Projection-Indexed Nearest Neighbours (PINN) (Vries et al., 2012).

Due to the tree-based implementation, one may view MassBayes as an ensemble
of decision trees like Bagging (Breiman, 1996), Random Forest (Breiman, 2001)
and Random Trees (Liu, 2005). However, the trees are not decision trees because
the tree building process uses neither class information nor any other evaluation
criteria. The purpose of feature space partitioning in MassBayes is different from
the one in decision trees. In MassBayes, the objective is to define local regions
around the observed instances in order to estimate the likelihood p(x|y). In decision
trees, the objective is to separate the classes as good as possible in order to estimate
the class membership probability p(y|x).

In terms of implementation, DEMassBayes and MassBayes are similar. The
only different is MassBayes constructs t trees with ψ instances whereas DEMass-
Bayes constructs t trees per class with a fewer number of instances (in average
ψ
c ).

The performance of both ENNBayes and MassBayes will be affected by the
presence of irrelevant attributes. Irrelevant attributes make the distribution sparse
in the feature space and affect the nearest neighbour search in ENNBayes and
feature space partitioning in MassBayes. Irrelevant attributes affect other Bayesian
classifiers in a similar way. The easiest solution is to conduct feature selection
before building a classification model.

Density estimation tree (Ram and Gray, 2011), that estimates f(x) using a
decision tree, eliminates irrelevant attributes implicitly as they are never selected
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to split the data. But, it requires an expensive search to select an attribute and its
cut-point to partition the data space, which makes it inapplicable to large data sets
due to its high time and space complexities. Also, in high dimensional problems,
the density estimation is heavily influenced by the volume of the leaf node as it
becomes very small as in DEMassBayes.

LiNearN (Wells et al., 2012) is an ensemble approach to estimate f(x) that
overcomes the issues associated with DEMass. It defines local hypercube regions
from a sub-sample of instances based on nearest neighbour defined by L∞-norm
and estimates mass in the regions using another sub-sample of instances. It is
more adaptive than DEMass as it constructs regions with different volumes based
on the data distribution. LiNearN produced good results in unsupervised learning
tasks of clustering and anomaly detection. But, when it was used in Bayesian
classifier to estimate p(x|y), the classification accuracy was not as impressive as
ENNBayes and MassBayes. It is because many unseen test instances fall outside
the hypercube regions resulting in zero mass and zero density.

The proposed ensemble approach to estimate the multi-dimensional likelihoods
from sub-samples yields constant training time and space complexities. It is ideal
for big data sets and data streams. It also allows user to trade-off between the
prediction accuracy and the computational cost as required. The computational
cost (time and space) can be reduced by setting lower values for the parameters
t and ψ if a higher misclassification rate can be tolerated. Setting the parameters
to higher values improves the predictive accuracy at the expense of increasing
computational cost.

6 Conclusions

Existing Bayesian classifiers have been designed using one-dimensional likelihoods,
based on the premise that multi-dimensional likelihoods are difficult to estimate
directly from data. We take a fresh re-examination on this premise and find that
there is a simple way to estimate multi-dimensional likelihoods directly from data
using an ensemble approach.

This paper presents a generic ensemble approach of estimating multi-dimensional
likelihood in Bayesian classification learning using random sub-samples of the
training data. We show that:

1. With a small sub-sample of data, multi-dimensional likelihood can be estimated
easily using existing data modelling techniques.

2. Aggregating estimations from multiple models provides a good estimate of
p(x|y) as it considers different local neighbourhoods of x.

3. The proposed ensemble approach reduces the training time and space com-
plexities to constant with respect to the number of training instances.

Using the generic ensemble approach, we introduce two new Bayesian classifiers
called ENNBayes and MassBayes using a nearest neighbour density estimator and
a probability estimator, respectively, to estimate the multi-dimensional likelihoods.
Our empirical evaluation shows that both ENNBayes and MassBayes produced
better classification accuracy than the state-of-the-art Bayesian classifiers. Both
the classifiers are efficient in terms of runtime and memory requirement, and they
scale better than the existing Bayesian classifiers in very large data sets.



28 Sunil Aryal, Kai Ming Ting

Between ENNBayes and MassBayes, ENNBayes has slightly better predictive
accuracy in some data sets than MassBayes but it is one to three orders of mag-
nitude slower than MassBayes due to the need to do nearest neighbour search.

Appendix

A Implementation of MassBayes

Algorithm 1 : BuildTrees(D, t, ψ, h)

Inputs: D - input data, t - number of trees, ψ - sub-sampling size, h - level of divisions.
Output: F - a set of t h:d-trees

1: H ← h× d {Maximum height of a tree}
2: Initialize F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: A← {Randomised list of d attributes.}
7: F ← F ∪ SingleTree(D,min,max, 0, A)
8: end for
9: return F

Algorithm 2 : SingleTree(D,min,max, `, A)

Inputs: D - input data, min & max - arrays of minimum and maximum values for each
attribute that define a work space, A - a randomised list of d attributes, ` - current height
level.
Output: an h:d-tree

1: Initialize Node(·)
2: while (` < H and |D| > 1) do
3: q ← nextAttribute(A, `) {Retrieve an attribute from A based on height level.}
4: midq ← (maxq +minq)/2
5: Dl ← filter(D, q < midp)
6: Dr ← filter(D, q ≥ midq)
7: if (|Dl| = 0 ) or (|Dr| = 0) then {Reduce range for single-branch node.}
8: if (|Dl| > 0 ) then maxq ← midq
9: else minq ← midq

10: end if
11: `← `+ 1
12: continue at the start of while loop
13: end if
14: {Build two nodes: Left and Right as a result of a split into two half-spaces.}
15: temp← maxq ; maxq ← midq
16: Left← SingleTree(Dl,min,max, `+ 1, A)
17: maxq ← temp; minq ← midq
18: Right← SingleTree(Dr,min,max, `+ 1, A)
19: terminate while loop
20: end while
21: classCount← updateClassCount(D)
22: return Node(Left,Right, SplitAtt← q, SplitV alue← midq , classCount)
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C Discretisation Time

Table 9: Total runtime for supervised discretisation (Fayyad and Irani, 1995).

Data sets #n #d #c Disc. time (s)
KDDCup99 5209460 32 40 1290
CoverType 581012 10 7 98

YearPrediction 515345 90 2 467
Census 299285 7 2 35

SkinSegment 245057 3 2 7
Localisation 164860 3 11 9
MiniBooNE 129596 50 2 100

OneBig 68000 20 10 15
Shuttle 58000 8 7 4

LetterRecognition 20000 16 26 3
RingCurve 20000 2 2 1

Wave 20000 2 2 1
Magic04 19020 10 2 3

GasSensor 13790 128 6 17
Pendigits 10992 16 10 2
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