ZERO RARE-EARTH MAGNET INTEGRATED STARTER-GENERATOR DEVELOPMENT FOR MILITARY VEHICLE APPLICATIONS

Katherine Rileyψ, ShanShan Conwayψ, Seong T. Lee Ph.D.ψ, Yong-Bae Jung Ph.D.ψ, Wesley G. Zanardelli Ph.D.Ω, Ronnie L. Wright Ph.D.Δ

ψ- Remy International, Inc. Ω- U.S. Army TARDEC Δ- DCS Corporation

14 August 2013
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AUG 2013</td>
<td>Briefing Charts</td>
<td>06-03-2013 to 06-08-2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZERO RARE-EARTH MAGNET INTEGRATED STARTER-GENERATOR DEVELOPMENT FOR MILITARY VEHICLE APPLICATIONS</td>
<td>W56HZV-09-D-0148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katherine Riley; ShanShan Conway; Seong Lee; Yong-Bae Jung; Wesley Zanardelli</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remy International, 600 Corporation Drive, Pendleton, IN, 46064</td>
<td>#24094</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000</td>
<td>TARDEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefing Charts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT classified</td>
<td></td>
<td>Public Release</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT classified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE classified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Standard Form 298 (Rev. 8-98)
Proscribed by ANSI Std Z39-18 |

Abstract

Briefing Charts

Subject Terms

Outline

• Introduction
• Permanent Magnet Materials
• Motor Topology Comparison
• Comparative Down-Selection Process
• Results
• Future Work
• Conclusion
• Questions
Introduction

• Today’s military ground vehicles require more electrical power than ever before.
• Current high-performance alternators – 28V, 18 kW.
• Future demand for vehicle export power generation is expected to reach and exceed 100kW.
• Many electric machines capable of (≥ 100kW) output power rely on rare-earth elements such Nd, Sm, Dy and Tb.
• Diminished U.S. reserves, uncertain availability abroad and price volatility limit rare-earth based PM material viability.
• These factors drive electric machine design towards high-voltage and Zero-Rare-Earth (ZRE) magnet Integrated-Starter-Generator (ISG) designs.
Consider and evaluate machine topologies for application to a 3-phase, brushless, integrated starter-generator (ISG) that does not use rare-earth (RE) metals, for:

- Continuous on-board power generation and engine starting in a military vehicle platform.
- Support of on-board hybrid electric features such as regenerative braking, torque assist and stop-start operation.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady-State Output Voltage</td>
<td>600 ± 35</td>
<td>VDC</td>
</tr>
<tr>
<td>Output Power</td>
<td>100</td>
<td>kW</td>
</tr>
<tr>
<td>Cont. Torque</td>
<td>1200</td>
<td>Nm</td>
</tr>
<tr>
<td>Peak Torque (30 sec)</td>
<td>1800</td>
<td>Nm</td>
</tr>
<tr>
<td>Base / Max Speed</td>
<td>800 / 4250 RPM (objective)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100 / 3200 RPM (threshold)</td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td>WEG</td>
<td></td>
</tr>
<tr>
<td>Max Flow Rate</td>
<td>30</td>
<td>LPM</td>
</tr>
<tr>
<td>Inlet Temp</td>
<td>110</td>
<td>ºC</td>
</tr>
<tr>
<td>Operating Air Temp</td>
<td>-50 - 125</td>
<td>ºC</td>
</tr>
<tr>
<td>Housing</td>
<td>SAE #1 Compatible OD: 22 inch, Length: 120mm</td>
<td></td>
</tr>
</tbody>
</table>
Permanent Magnet Materials
Permanent Magnet History

- 1900’s – Magnetic Steel
- 1940’s – Alnico
- 1950’s – Ferrite
- 1960’s – Alnico 9
- 1960’s – SmCo
 - First RE PM’s
- 1980’s – NdFeB
- 2007 – LaCo Ferrite
• Traditional PM machines use rare-earth permanent magnets – NdFeB or SmCo.
• RE materials present challenges because of rising prices, price instability and foreseeable shortages.
• Because of these factors, this project considers designs that utilize zero-rare-earth magnets.
Permanent Magnet Materials

Rare-Earth
- NdFeB
- SmCo
- LaCo
- Ferrite

Zero Rare-Earth
- Ferrite
- Alnico

Developmental Materials
Permanent Magnet Materials

Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>NdFeB</th>
<th>SmCo 2:17</th>
<th>Alnico 9</th>
<th>Ferrite</th>
<th>Favorability Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux Density [Br]</td>
<td>T</td>
<td>1.23</td>
<td>1.12</td>
<td>1.12</td>
<td>0.4</td>
<td>> better</td>
</tr>
<tr>
<td>Coercivity [Hcb]</td>
<td>kA/m</td>
<td>931</td>
<td>820</td>
<td>109</td>
<td>290</td>
<td>> better</td>
</tr>
<tr>
<td>Intrinsic Coercivity [Hcj]</td>
<td>kA/m</td>
<td>≥ 2228</td>
<td>≥ 1600</td>
<td>109</td>
<td>318</td>
<td>> better</td>
</tr>
<tr>
<td>Energy product [BH\text{max}]</td>
<td>kJ/m\text{³}</td>
<td>240</td>
<td>230</td>
<td>83.6</td>
<td>31.8</td>
<td>> better</td>
</tr>
<tr>
<td>Usable Temperature Range</td>
<td></td>
<td>up to 200 °C</td>
<td>up to 520 °C</td>
<td>up to 520 °C</td>
<td>-40 °C to 150 °C</td>
<td>Min: -50 °C to 150 °C</td>
</tr>
<tr>
<td>Relative Cost</td>
<td></td>
<td>Highest</td>
<td>High</td>
<td>Medium</td>
<td>Lowest</td>
<td>< better</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td>S38EH</td>
<td>Recoma 30</td>
<td>Alnico 9</td>
<td>NMF-9G</td>
<td></td>
</tr>
</tbody>
</table>

Significant magnetic performance difference between **rare-earth** and **zero-rare-earth** materials.
Motor Topology Comparison
Motor Topologies

Permanent Magnet
- IPM
- SPM
- AFPM

Non-Permanent Magnet
- Spoke IPM
- SRM
- SynRM
- TFPM
- IM
Permanent Magnet Topologies

- Requires more magnetic material when using non-rare-earth magnets to achieve similar torque density.
- If a flux concentrating magnet arrangement, ferrite magnets can be used otherwise, utilizes Alnico magnets.
- Flux concentrating requires a high magnet length to pole pitch ratio which requires high rotor thickness.
Non-PM Topologies

- Brushless, do not require active rotor windings.
- No requirement for permanent magnets.
- Low cost.

- IM & SynRM have significant end turn length because of low pole counts, making them less optimal for this application.
Qualitative Motor Comparison

Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>PM Topologies</th>
<th>Non-PM Topologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Housing Length</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Housing OD</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Maximum Operating Speed</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Base (corner) Speed</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Continuous Torque</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Continuous Power</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Peak Torque (800 RPM)</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Peak Power (800 RPM)</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Inlet Temperature</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Operating Air Temperature</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

- **PM Topologies**
 - Spoke IPM
 - AFPM
 - TFPM
 - SRM
- **Non-PM Topologies**
 - SynRM
 - IM

Used baseline specification and literature survey results to evaluate likelihood to topologies to meet requirements.

More uncertainty in ability to meet specification for the PM topologies because of the limitations of the magnet materials.

Selected for further consideration:
- Spoke IPM
- AFPM
- TFPM
- SRM
Comparative Down-Selection

- Designs provided a quantitative comparison between selected topologies.
- Criteria chosen based upon project technical targets and engineering assumptions.
- Designs generated using 2D and 3D FEA and preliminary thermal modeling.
Comparative Down-Selection

<table>
<thead>
<tr>
<th>Specification</th>
<th>Spoke IPM</th>
<th>AFPM</th>
<th>TFPM</th>
<th>SRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Housing Length</td>
<td>120 mm (T)</td>
<td>120 mm</td>
<td>120 mm</td>
<td>120 mm</td>
</tr>
<tr>
<td>Housing OD</td>
<td>< 558 mm</td>
<td>530 mm</td>
<td>530 mm</td>
<td>530 mm</td>
</tr>
<tr>
<td>Pole Count</td>
<td>16</td>
<td>30 +</td>
<td>30 +</td>
<td>24/16</td>
</tr>
<tr>
<td>PEAK PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Torque (800 RPM)</td>
<td>1800 Nm</td>
<td>1057</td>
<td>550</td>
<td>1834</td>
</tr>
<tr>
<td>Peak Power (800 RPM)</td>
<td>150 kW</td>
<td>88.5</td>
<td>46</td>
<td>154</td>
</tr>
<tr>
<td>MAGNETIC REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Material</td>
<td>Ferrite</td>
<td>Alnico</td>
<td>Ferrite</td>
<td></td>
</tr>
<tr>
<td>Demagnetization Risk</td>
<td>Low</td>
<td>Guaranteed</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>Simple</td>
<td>Middle</td>
<td>Complex</td>
<td>Middle</td>
</tr>
<tr>
<td>Controlability</td>
<td>Middle</td>
<td>Complex</td>
<td>Complex</td>
<td>Simple</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>Middle</td>
<td>Complex</td>
<td>Complex</td>
<td>Simple</td>
</tr>
</tbody>
</table>
Results

• Spoke IPM
 – Unable to meet peak torque and power requirements.
 – Offers best performance for a permanent magnet machine.
 – Utilized ferrite magnets.
 – Unlikely that any PM topology will meet specifications using commercially available ZRE magnets.

• Switched Reluctance
 – Has the highest potential for meeting output torque and power requirements.
 – Requires no magnets.
 – Disadvantage of higher torque ripple and acoustic noise.
Future Work

• Detailed design ongoing to optimize electrical and mechanical designs for performance.
• After completion of mechanical design, prototypes will be built for testing and validation.
• Testing and validation anticipated to be completed by October 2014.
• Continued work for noise, torque ripple, performance improvement.
Conclusions

• As vehicle export power generation demands and ground vehicle electrification increase so does the U.S. dependence on rare-earth elements.

• Continued use of rare-earth permanent magnet materials for high-performance (≥ 100kW) military vehicle applications may not be viable.

• This paper offers alternative motor/machine topologies for ISGs that are rare-earth material independent and capable of meeting significant export power generation demands for military applications.

• The zero-rare-earth material study rated Ferrite and Alnico 9 as the preferred magnet material candidates due to their high commercial availability, low cost and suitable magnetic properties.

• The motor topology study rated the SWITCHED RELUCTANCE motor as the favored non-PM topology and found that the SPOKE IPM motor was the preferred ZRE PM topology.
Questions?