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Synchrotron-radiation-based microcomputed-tomography (SR-μCT) is a powerful tool for yielding
3D structural information of high spatial and contrast resolution about a specimen preserved in its
natural state. A large number of projection views are required currently for yielding SR-μCT images
by use of existing algorithms without significant artifacts. When a wet biological specimen is imaged,
synchrotron x-ray radiation from a large number of projection views can result in significant struc-
tural deformation within the specimen. A possible approach to reducing imaging time and specimen
deformation is to decrease the number of projection views. In the work, using reconstruction algo-
rithms developed recently for medical computed tomography (CT), we investigate and demonstrate
image reconstruction from sparse-view data acquired in SR-μCT. Numerical results of our study
suggest that images of practical value can be obtained from data acquired at a number of projection
views significantly lower than those used currently in a typical SR-μCT imaging experiment. © 2011
American Institute of Physics. [doi:10.1063/1.3572263]

I. INTRODUCTION

Micro-CT is a powerful tool for evaluating speci-
men structures preserved in their natural states, thus pre-
venting structural deformation or destruction encountered
otherwise in its histologic fixation and sectioning.1 To-
day, both commercial micro-CT systems and synchrotron-
radiation-based CT systems can achieve around 1-μm reso-
lution without x-ray optics,2–6 and sub-50-nm resolution with
x-ray optics.6–9 In terms of microtomography, a third-
generation synchrotron radiation source provides partially
coherent x-ray beam with enough brilliance to image a
millimeter-sized sample at better than 10/micropixel resolu-
tion in a few seconds with high sensitivity.10–12 In comparison
to other nondestructive inspection techniques, such as mag-
netic resonance imaging, conventional micro-CT, and confo-
cal microscopy, synchrotron-radiation-based micro-CT (SR-
μCT) provides the unique capability of performing 3D dy-
namic studies. In SR-μCT, a synchrotron source can deliver
intense x-rays over a wide energy spectrum, ranging from a
few electrovolts to more than a hundred kiloelectrovolts. With
a monochromator, x-ray photons within a narrow energy band
can be selected for illuminating the imaged specimen virtu-
ally free of the beam-hardening effect with optimized contrast
sensitivity.

Despite the fact that SR-μCT possesses unique, desir-
able properties, such as monochromatic x-ray energy, prac-
tical issues exist that limit its applicability to some imaging
tasks. One of the issues concerns the large number of projec-
tion views that are required currently by existing algorithms
such as the filtered-backprojection (FBP) algorithm for yield-
ing images without significant artifacts.13–15 Measurements at
a large number of projection views not only increase imaging

time but also potentially result in serious radiation damage
to the specimen. This is particularly an issue when imaging
a living animal in vivo. One possible approach to reducing
imaging time and radiation damage in SR-μCT imaging is
to decrease the number of projection views, similar to the
strategy widely employed in medical imaging.16 Furthermore,
data may be collected only over a limited angular range
in some SR-μCT applications due to certain hardware con-
straints. For example, in tomographic imaging of specimen
in situ the specimen is placed in a preserving cham-
ber, which limits the scannable angular range to be less
than 180◦.

There exist increased interests in developing algorithms
for image reconstruction from sparse-view and limited-
angular-range data. Inspired by the compressive-sensing
work17–19 on the inverse discrete Fourier transform from its
sparse samples, we have recently developed an iterative al-
gorithm for image reconstruction from sparse data in cone-
beam computed tomography.20, 21 The algorithm reconstructs
an image through solving a constrained optimization problem
in which the image total variation (TV) is minimized sub-
ject to data constraints.16, 20–22 Specifically, the algorithm uses
adaptively the steepest descent (ASD) for minimizing the im-
age TV, and uses the projection-onto-convex-sets (POCS) for
enforcing data constraints. We thus refer to the algorithm as
the ASD-POCS algorithm. In the work, by tailoring the ASD-
POCS algorithm to SR-μCT imaging, we investigate image
reconstruction from data acquired at a number of projection
views significantly lower than that currently used in a typi-
cal SR-μCT imaging experiment. Also, we investigate image
reconstruction from SR-μCT data collected over an angular
range less than 180◦.
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II. MATERIAL AND METHOD

A. SR-μCT system and imaging experiments

In the work, we used the SR-μCT system of the Ad-
vanced Photon Source at Argonne National Laboratory to col-
lect data from a sample of sea urchin spine (SUS). The SR-
μCT system, as shown in Fig. 1, has seven degrees of motion
freedom that allows the control of the rotation-axis orienta-
tion and sample position. The detector module is composed
of a scintillator, a microscope lens, and a CoolSNAP 2K×2K
CCD camera (Princeton Instrument, New Jersey) with a pixel
size of 7.5 μm. The scintillator converts an x-ray image into
an optical image that is magnified subsequently by the micro-
scope lens and then recorded by the CCD camera. Depend-
ing upon the magnification of the microscope lens, the size
of a pixel can vary between 0.75 and 6.0 μm in the image
space. The detector is placed on a translation stage that is
mounted along the synchrotron-radiation-beam direction so
that the sample-to-detector distance can be adjusted.

The SUS sample is composed of highly fenestrated sin-
gle crystals of high magnesium calcite, and its volume con-
tains about 50% open space. Yet, it has a remarkable strength
and flexibility. Because of its unique structural and mechan-
ical properties of high practical interest, SUS is used often
as a model system in bionic engineering. The SUS sample
used in the work is an A. radiata spine with a diameter of 0.6
mm that was collected at Miyako Island, Japan. We used a
2.5× Zeiss microscope lens that allows a detector pixel to
sample the image space with a resolution of 3.0 μm. The
projection data were acquired at a total of 400 views evenly
distributed over 180◦ with a 0.45◦ angular step. In our experi-
ment, the x-ray energy was 20 keV, and the sample-to-detector
distance was 7.0 mm.

B. Imaging model and reconstruction algorithms

1. Imaging model in SR-μCT

The imaging configuration used in SR-μCT can be spec-
ified by two coordinate systems: the fix-coordinate system
{x, y, z} and the rotation-coordinate system {ξ, η, z}, which
are related, as shown in Fig. 2, through ξ = xcosφ + ysinφ,
and η = −xsinφ + ycosφ, where φ indicates the rotation an-
gle. The detector is assumed to be placed at a distance η

= D, parallel to the (ξ, z) plane. In the well-adapted projec-
tion approach in x-ray imaging, the measured x-ray intensity
I η=D(ξ, z, φ) at a projection view φ can approximately be

x

z

y

ξ

η
incident X−ray

φ

FIG. 2. Illustration of the fixed coordinate system {x, y, z} and rotated coor-
dinate system {ξ, η, z} in the SR-μCT scan.

expressed as23, 24

I η=D(ξ, z, φ) = I η=0(ξ, z, φ)

[
1 − D

(
∂2

∂ξ 2
+ ∂2

∂z2

)

×
∫

R2
dxdy (n(x, y, z) − 1)δ(ξ − xcosφ − ysinφ)

]
,

(1)

where δ denotes the Dirac delta function, μ(x, y, z) is the lin-
ear attenuation coefficient distribution, n(x, y, z) indicates the
real refractive index distribution,

I η=0(ξ, z, φ)

= I0exp

[
−

∫
R2

dxdy μ(x, y, z)δ(ξ − xcosφ − ysinφ)

]
,

and I0 indicates the intensity of the incident x-ray. The sec-
ond term in Eq. (1) represents the refraction contribution to
measured data. We define

g(ξ, z, φ) = ln

[
I0

I η=D(ξ, z, φ)

]
(2)

as the projection data in our studies. When the sample-to-
detector distance is small such that the refractive contribution
is negligible as compared to the first term in Eq. (1), the data
function can be modeled adequately as the Randon transform
of μ(x, y, z).25 In contrast, when the sample-to-detector dis-
tance is large, a strong contrast enhancement due to the sec-
ond term in Eq. (1) may be observed around the boundaries
between regions with different refractive indices. In this work,
the sample-to-detector distance was chosen to be relatively
small, and we assume that the data function is the Randon
transform of μ(x, y, z). Therefore, the task of image recon-
struction is to determine μ(x, y, z) from its Radon transform,
i.e., the projection data g(ξ, z, φ).

In actual physical imaging process, other nonlinear fac-
tors, i.e., inelastic scattering and small-angle scattering also

FIG. 1. (Color online) Schematic picture of the SR-μCT system at beamline 2BM of the Advanced Photon Source at Argonne National Laboratory. The
specimen data used in the work were collected with this system.
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contribute to the measured x-ray intensity behind the speci-
men. These contributions may cause data inconsistency with
the employed imaging model. Such data inconsistency, how-
ever, can be accounted for by the relaxation parameters in
ASD-POCS, POCS, and expectation-maximization (EM) al-
gorithms. In FBP algorithm, such data inconsistency has the
effect similar to that introduced by noise, which rarely leads
to any noticeable error in the reconstructions. In this work,
the interest is to compare the performance of different algo-
rithms with real data under different data acquisition condi-
tions. For this purpose, the widely adapted projection model
is employed herein.

2. The FBP algorithm

Currently, the FBP algorithm14 is used most widely for
image reconstruction in SR-μCT. It provides an analytic in-
version of the Radon transform and is computationally effi-
cient. When data samples are sufficiently dense, the FBP al-
gorithm can generally yield images of practical usefulness.
However, when data are sparsely sampled, it would yield im-
ages with significant artifacts. For example, when the number
of projection views is limited, as the cases considered in the
work, the FBP algorithm yields images with severe streak ar-
tifacts. In this work, the FBP results obtained from full data
acquired at densely sampled 400 projection views over 180◦

will be used as reference images, i.e., gold standards, for eval-
uating the performance of the ASD-POCS algorithm in image
reconstruction from data sampled at sparse views or over a
limited-angular range. We refer to them as the FBP-reference
images.

3. The ASD-POCS algorithm

In this work, we focus on applying the ASD-POCS al-
gorithm to reconstructing images from SUS data acquired at
a number of views substantially below what are used cur-
rently in SR-μCT, or over an angular range smaller than 180◦.
The image reconstruction problem can be expressed as a con-
strained optimization formulation20, 21 below:

�f ∗ = argmin|| �f ||TV s. t. |M �f − �g| ≤ ε, (3)

where �f ∗ denotes the reconstructed image vector that is the
solution to the optimization problem, the subscript “TV” is
the image TV, matrix M is the linear imaging model, i.e.,
the Radon transform, and �g is the projection data vector. Pa-
rameter ε can be selected for handling potential data incon-
sistency, including data noise and deviations of the imaging
model from the measured data in Eq. (1). In contrast to an
unconstrained optimization, the constrained optimization in
Eq. (3) allows the incorporation of additional physical con-
straints such as image positivity and object support. We have
recently developed the ASD-POCS algorithm20, 21 to recon-
struct �f ∗ by solving the constrained optimization problem in
Eq. (3). As mentioned above, the ASD-POCS algorithm it-
eratively reconstructs the image �f ∗ through minimizing the
image TV by use of the SD and enforcing the data constraint
by use of the POCS. We modify the ASD-POCS algorithm

for its application to image reconstruction from data acquired
at sparse views or over a limited angular range.

4. The POCS and EM algorithms

In an attempt to gauge the performance of the ASD-
POCS algorithm, in addition to the FBP algorithm, we have
also implemented POCS (Ref. 26 and algorithm,27, 28 and ap-
plied them to reconstructing image from the same datasets.
Both POCS and EM are widely used iterative algorithms, and
they can be interpreted as solutions for their corresponding
unconstrained optimization problems. Specifically, when data
are consistent with the imaging model, the POCS algorithm
seeks to minimize the Euclidean distance between the mea-
sured and estimated data. On the other hand, the EM algo-
rithm seeks to minimize the Kullback–Liebler divergence be-
tween the measured and estimated data. The performance of
the POCS and EM algorithms are compared with that of the
FBP and ASD-POCS algorithms in the evaluation studies be-
low.

C. Image quality evaluation

We have conducted quantitative performance-evaluation
studies of algorithms in image reconstruction from sparse-
view data and limited-angular-range data of a SUS specimen
acquired with the SR-μCT. A number of metrics, as summa-
rized below, have been used for quantifying reconstruction
quality. It should be pointed out that the metrics can be ap-
plied not only to the entire image supports but also to regions
of interest (ROI).

The first metric used is the normalized root mean square
error (NRMSE), which assesses differences between recon-
structed and reference images. It is defined as

NRMSE = 1

N

√√√√ N∑
i=1

(
fi − f r

i

)2

/
.

⎡
⎣ 1

N

√√√√ N∑
i=1

f r2
i

⎤
⎦ ,

(4)

where f and f r denote the voxel values in the reconstructed
and reference images, and N is the number of voxels within
the selected ROI in the image space. In addition to the
NRMSE, we have also computed universal quality index
(UQI) and mutual information (MI), which are frequently
used as quantitative metrics in image processing community
for evaluation of image quality.29, 30 The metric UQI is defined
as29

UQI( f, f r ) =
(

2μμr

μ2 + μ2
r

) (
2Cov( f, f r )

σ 2 + σ 2
r

)
, (5)

where μ = 1
N

∑N
i=1 fi and μr = 1

N

∑N
i f r

i are the mean
values of the reconstructed and reference images, σ

= [ 1
N−1

∑N
i ( fi − μ)2]

1
2 and σr = [ 1

N−1

∑N
i ( f r

i − μr )2]
1
2 de-

note the standard deviations of the reconstructed and ref-
erence images, and Cov( f, f r ) = 1

N−1

∑N
i

∑N
j ( fi − μ)( f r

j
− μr ) is the covariance between the reconstructed and ref-
erence images. It can be shown that the closer an image to the
reference image, the higher the value of UQI. In particular,
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UQI reaches 1.0, its maximum value, when the reconstructed
image is identical to the reference image.

The metric MI is a quantity that measures the image sim-
ilarity and can be expressed as30

MI( f ; f r ) =
∑
fi ∈ f

∑
f r

j ∈ f r

p( f ; f r ) ln

(
p( f ; f r )

p( f )p( f r )

)
, (6)

where p( f ) and p( f r ) denote the marginal distribution func-
tion of the reconstructed and reference images, and p( f ; f r )
denotes the joint distribution function of the reconstructed
and reference images, and they can be approximated by use
of the histograms and joint histograms of reconstructed and
reference images. The MI measures the degree of similar-
ity between the histograms of the reconstructed and refer-
ence images. The closer the image histogram to the reference-
image histogram, the higher the value of MI. In particular, MI
achieves the maximum value when the reconstructed image is
identical to the reference image.

III. RESULTS

A. Image reconstruction from SR-μCT data

In our SUS-imaging experiment, the SUS specimen was
placed at a distance of D =7.0 mm from the detector, and we
then collected the full-dataset, which consists of 256 × 256
projection images at 400 views evenly distributed over 180◦.
This dataset is referred to as the full-dataset in our studies. For
the imaging configuration under consideration, the refraction
contribution to the measured data can be negligibly small be-
cause the sample-to-detector distance is small. Therefore, the
projection data can be modeled adequately by the 2D Radon
transform of the linear attenuation coefficient within the SUS
sample.

1. Image reconstruction from the full-dataset

From the full-dataset, we reconstructed an image of the
SUS sample using the FBP algorithm, which is shown in
Fig. 3(a). This FBP image will be used as the FBP-reference
image (i.e., the “gold standard” image) in evaluation studies
in Sec. III B because it is currently used in practical SR-μCT.
We also reconstructed an image by use of the ASD-POCS
algorithm from the full-dataset, which is shown in Fig. 3(b).

This image will be used as the ASD-POCS-reference image in
Sec. III B for the investigation of impact of reference images.
Moreover, we used a positivity constraint on pixel values in
our reconstructions since the linear attenuation coefficients of
the sample are positive. The two images obtained from full-
dataset by use of different algorithms appear visually compa-
rable to one another.

2. Image reconstruction from data collected at a
reduced number of views

From the full-dataset, we extracted a subset of data at 100
projection views uniformly distributed over 180◦ to mimic
sparse-view data acquisition. From the sparse-view dataset,
we used the FBP, EM, POCS, and ASD-POCS algorithms
to reconstruct images and display them in the top row of
Fig. 4. The FBP-reference image obtained from the full-
dataset is displayed in the fifth column of Fig. 4 as the gold
standard. Streak artifacts can be observed in the FBP re-
construction obtained from the 100-view projection data, as
shown in top panel of the first column of Fig. 4, indicating that
the 100-view projection data are under-sampled for analytic
reconstruction. In contrast, from the same dataset, the EM,
POCS, and ASD-POCS algorithms can yield images with re-
duced streak artifacts, as shown in the top panels of the sec-
ond, third, and fourth columns of Fig. 4. Moreover, noise in
the image reconstructed by the ASD-POCS algorithm seems
to be suppressed as compared to images obtained by use of
the EM and POCS algorithms. Overall, the ASD-POCS im-
age is visually more similar to the FBP-reference image than
images of other algorithms under study.

In an attempt to investigate the performance of the ASD-
POCS algorithm under different angular sampling conditions,
we extracted, from the full-dataset, two more subsets of data
at 80 and 50 projection views uniformly distributed over 180◦.
From both datasets, we reconstructed images by use of the
FBP, EM, POCS, and ASD-POCS algorithms and display
them in the middle and bottom rows of Fig. 4. It can be
observed that as the number of projection views decreases,
although small structures in the central region of the ASD-
POCS reconstruction appear slightly blurred, structures in the
peripheral region remain well preserved. In general, the over-
all image quality reduces, as expected, as the number of pro-
jection views decreases. However, it is interesting to notice

FIG. 3. Image reconstructed from the full data by use of the FBP and ASD-POCS algorithms. Display window: [0.0, 0.5] a.u.
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FIG. 4. Images reconstructed from 100-view (top row), 80-view (middle-row), and 50-view (bottom row) full-angular-range data by use of the FBP, EM, POCS,
and ASD-POCS algorithms. For comparison, the FBP-reference image is shown in the fifth column. Display window: [0.0, 0.5] a.u.

that, when the number of angular samples is lowered, the
quality of iterative reconstructions reduces more slowly than
does that of the FBP reconstruction. This observation is par-
ticularly true for ASD-POCS reconstructions.

In addition to images within transverse slices shown in
Fig. 4, we display 3D reconstructions within selected slices
in Fig. 5 obtained from data acquired at 80 views uniformly
distributed over 180◦. Specifically, we show in the first, sec-
ond, third, and fourth columns of Fig. 5 images within the
coronal slice at x = 0 mm and the sagittal slice at y = 0 mm,
reconstructed by use of the FBP, EM, POCS, and ASD-POCS
algorithms, respectively. For comparison, we also show in the
fifth column of Fig. 5 FBP-reference images within the corre-
sponding slices. From images within the sagittal and coronal
slices, it can be observed that the ASD-POCS algorithm yields
images that are visually more similar to the FBP-reference im-
age than those obtained with other algorithms. In particular,
the columns of holes within the SUS can readily be identified
in both the sparse-view ASD-POCS reconstruction and the

FBP-reference image, whereas they are less well visualized
in sparse-view FBP, EM, and POCS reconstructions.

3. Image reconstruction from data collected over a
limited angular range

It is not uncommon in SR-μCT imaging that data may
be collected only over a limited angular range13, 31 because,
for example, hardware constraints prevent the system from
performing a 180◦-scan. In an effort to mimic the limited-
angular-range cases, we extracted from the full-dataset three
limited-angular-range subsets of data over an angular range
of 144◦. The three datasets contain 320, 160, and 80 projec-
tion views uniformly distributed over 144◦. From each of the
three datasets, we used the FBP, EM, POCS, and ASD-POCS
algorithms to reconstruct images and display the results in
Fig. 6. Again, for comparison, we show in the fifth column
of Fig. 6 FBP-reference images within the same slice. Sig-
nificant distortion can be observed in FBP images, resulted

FIG. 5. Images within coronal (upper row) and sagittal (lower row) slices reconstructed from 80-view full-angular-range data by use of the FBP, EM, POCS,
and ASD-POCS algorithms. For comparison, the FBP-reference image is shown in the fifth column. Display window: [0.0, 0.5] a.u.
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FIG. 6. Images reconstructed from 320-view (top row), 160-view (middle row), and 80-view (bottom row) data acquired over a limited angular range of 144 ◦, by
use of the FBP, EM, POCS, and ASD-POCS algorithms, respectively. For comparison, the FBP-reference image is shown in the fifth column. Display window:
[0.0, 0.5] a.u.

from the lack of sufficient angular coverage that is required
by an analytic reconstruction algorithm. In contrast, some dis-
tortion can be identified in images reconstructed by use of
the EM and POCS algorithms; whereas the ASD-POCS al-
gorithm yields images with minimum distortion. It is clear
that ASD-POCS images are visually more similar to the FBP-
reference images than images obtained with other algorithms.

B. Evaluation studies

In addition to the study based upon visual inspection
above, we have also carried out evaluation of algorithm per-
formance using quantitative metrics, including NRMSE, UQI,
and MI.

1. Quantitative evaluations of image reconstructions

Using images reconstructed from the full-angular-range
data containing different numbers of views and the FBP-
reference image in Eqs. (4)–(6), we calculated the values of
NRMSE, UQI, and MI for FBP, EM, POCS, and ASD-POCS
reconstructions and display them in Fig. 7 as functions of
view numbers. As the results show, for a given view number,
the NRMSE of ASD-POCS reconstruction is generally lower
than those of the FBP, EM, and POCS reconstructions, sug-
gesting that the ASD-POCS algorithm yields images that are
closer to the FBP-reference image than do other algorithms.
As expected, the NRMSE values decrease as the number of
views increases, and for 50- and 80-view reconstructions, the
NRMSE values of FBP reconstructions are higher than those
of EM and POCS reconstructions. However, it is interesting to
notice that, for the 100-view case under study, the NRMSEs of
FBP reconstructions are actually lower than those of EM and
POCS reconstructions. This is because FBP reconstructions

with increased view numbers, i.e., increased angular sampling
density, become rapidly similar to the FBP-reference image.
Similar observation can be made for the UQI and MI results:
the UQIs and MIs of the ASD-POCS reconstructions are gen-
erally higher than those of other algorithms under considera-
tion, whereas for 100-view reconstruction, the UQIs and MIs
of FBP reconstructions are indeed higher than those of the
EM and/or POCS reconstructions

We have also reconstructed images from data acquired
at 320, 160, and 80 views uniformly distributed over 144◦.
Similarly, using the reconstructed and FBP-reference im-
ages in Eqs. (4)–(6), we have calculated NRMSEs, UQIs,
and MIs for FBP, EM, POCS, and ASD-POCS reconstruc-
tions and display them in Fig. 8. Based upon the results,
observations can be made that, for a given view number,
NRMSEs of ASD-POCS reconstructions are generally lower
than those of the other algorithms, while UQIs and MIs of
ASD-POCS reconstructions are higher than those of the other
algorithms, which indicate that the ASD-POCS algorithm
generally yields images more similar to the FBP-reference
image than do the other algorithms under study. It should be
noted that the NRMSEs of FBP reconstructions are higher
than those of EM and POCS reconstructions. This is differ-
ent from the cases of image reconstructions from sparse-view
data discussed above, revealing the fact that the FBP algo-
rithm is more susceptible to the lack of angular coverage than
other algorithms under consideration.

2. Impact of reference images

In our real-data studies, the truth is unknown. As dis-
cussed, we used the full-data-FBP reconstruction, i.e., the
FBP-reference image, as a surrogate truth, because it is cur-
rently used in practical SR-μCT. Clearly, results of evaluation
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(b)(a)

(c)

FIG. 7. NRMSEs (a), UQIs (b), and MIs (c) calculated from images displayed in Figs. 4(a)–4(d), which are obtained from the full-angular-range data containing
different numbers of views by use of FBP (“∗”), EM (“�”), POCS (“�”), and ASD-POCS (“+”) algorithms, with respect to the FBP-reference image.

studies can depend on the selection of reference images. Im-
ages from full data reconstructed by use of algorithms other
than the FBP algorithm can also be used as reference images.
In this case, it is likely that evaluation results differ than those
obtained with the FBP-reference image. In an effort to demon-

strate the impact of the selection of reference images on
evaluation results, using full-data ASD-POCS reconstruction
displayed in Fig. 3(b) as the ASD-POCS-reference image,
we repeated the quantitative evaluation study performed in
Sec. III B 1 and show some example results in Fig. 9.

(b)(a)

(c)

FIG. 8. NRMSEs (a), UQIs (b), and MIs (c) calculated from images displayed in Fig. 6, which are obtained from data containing different number of views
acquired over a limited angular range of 144◦ by use of FBP (“∗”), EM (“�”), POCS (“�”), and ASD-POCS (“+”) algorithms, with respect to the FBP-reference
image.
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(b)(a)

(c)

FIG. 9. NRMSEs (a), UQIs (b), and MIs (c) calculated from images displayed in Fig. 4, which are obtained from the full-angular-range data by use of FBP
(“∗”), EM (“�”), POCS (“�”), and ASD-POCS (“+”) algorithms, with respect to the ASD-POCS-reference image.

Comparison between Figs. 7 and 9 indicates that NRMSEs
of the ASD-POCS reconstructions are lowered, while UQIs
and MIs of the ASD-POCS are enhanced, suggesting that the
use of the ASD-POCS-reference image does lead to eval-
uation results different from those obtained with the FBP-
reference image. Based upon the results in Figs. 8 and 10,

similar observation can also be made for image reconstruc-
tions from limited-angular-range data. When either FBP- or
ASD-POCS-reference image is used, the ASD-POCS algo-
rithm yields images from sparse-view and/or limited-angular-
range data with quality higher than other algorithms under
consideration, in terms of the metrics used.

(b)(a)

(c)

FIG. 10. NRMSEs (a), UQIs (b), and MIs (c) calculated from images displayed in Fig. 6, which are obtained from the data acquired over a limited angular
range of 144◦, by use of FBP (“∗”), EM (“�”), POCS (“�”), and ASD-POCS (“+”) algorithms, with respect to the ASD-POCS-reference image.
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IV. CONCLUSIONS

In this work, we have performed image reconstruction
from sparse-view data and limited-angular-range data ac-
quired from a SUS sample with SR-μCT. Results of the
study demonstrate that appropriate development of optimiza-
tion formulation [e.g., Eq. (3)] and the associated algorithms
(e.g., the ASD-POCS algorithm) can potentially yield images
of practical value for SR-μCT imaging. The quantitative stud-
ies show that, in comparison to the FBP, EM, and POCS al-
gorithms, the ASD-POCS algorithm can yield, from sparse-
view and limited-angular-range data, better reconstructions,
in terms of NRMSE, MI, and UQI, even when different ref-
erence images are used. For the cases under consideration,
the ASD-POCS algorithm can reconstruct images with qual-
ity comparable to that of the current full-data-FBP reconstruc-
tions, from data acquired at considerably fewer views or over
a reduced angular range. The work suggests that the ASD-
POCS algorithm may allow flexible data acquisition schemes
for reducing radiation dose delivered to biologic specimens
and thus for minimizing the radiation-induced structural de-
formation, and that it is also capable of yielding images of
practically acceptable quality for limited-angular-range imag-
ing, which is a common situation in tomography experiments
in situ. It should be noted that other optimization algorithms
can be used for replacing the SD and POCS in the ASD-
POCS. Therefore, ASD-POCS provides a general iterative ap-
proach to solving the constrained optimization problems un-
der study.
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