UTILIZATION OF FAST RUNNING MODELS IN BURIED BLAST SIMULATIONS OF GROUND VEHICLES FOR SIGNIFICANT COMPUTATIONAL EFFICIENCY

Li, Stowe, Vlahopoulos, Mohammad, Barker, Thyagarajan

UNCLASSIFIED: Distribution A. Approved for public release

7 August 2013
UTILIZATION OF FAST RUNNING MODELS IN BURIED BLAST SIMULATIONS OF GROUND VEHICLES FOR SIGNIFICANT COMPUTATIONAL EFFICIENCY

ravi thyagarajan

Michigan Engineering Services, 2890 Carptr Road # 1900, Ann Arbor, Mi, 48108

U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

Approved for public release; distribution unlimited

GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013

Briefing Charts

Security classification of:
- Report: unclassified
- Abstract: unclassified
- This Page: unclassified

Limitation of abstract: Public Release

Number of pages: 24

17a. NAME OF RESPONSIBLE PERSON
Outline

• Objectives

• Methods
 – Fast Running Models
 – Blast Event Simulation sysTem Methodology and Validation

• Case Study: Notional V-hull Structure

• Future Applications and Development
Objectives

- Survivability assessment requires thorough and systematic exploration of threat effects
- Current computational approaches require significant wall-clock time
- Fast Running Models (FRMs) are paired with the Blast Event Simulation sysTem (BEST) to accelerate analysis
Fast Running Models

• FRMs comprise a reduced-order modeling approach that captures relevant physics governing relationships between input parameters and output effects.

• Scenario parameters are input and time-series effects are output, much like complex multi-physics computational analysis.

• Results are computed in seconds.

• FRMs are a fusion of Principal Component Analysis (PCA) and Kriging.
Principal Component Analysis

• Reduce dimensionality of data set
• Distill blast loading histories into 'modal' information
• No linear limitations, PCA isolates fundamental characteristics that can be used as an expansion basis
• PCA used for nonlinear structural analysis, image processing, shock analysis, automotive crash analysis, molecular dynamics and more
Principal Component Analysis

- Decompose response matrix X:

$$X = \begin{bmatrix} x_1(t_1) & \cdots & x_1(t_k) \\ \vdots & \ddots & \vdots \\ x_J(t_1) & \cdots & x_J(t_k) \end{bmatrix}$$

$$X = USV^T$$

$$X = [\Phi \quad \Phi_t] \begin{bmatrix} D & 0 \\ 0 & Z \end{bmatrix} \begin{bmatrix} \eta \\ \eta_t \end{bmatrix}$$

- Each column is a “mode”
- Only diagonal terms energy in each “mode”
- Modal participation terms at each time step
Kriging and Metamodels

- Time-dependent, reduced-order model:

\[X(\gamma) = [U(\gamma)] [W(\gamma)] [V(\gamma)]^T \]

- Matrices generated by metamodels (Kriging):

\[[U(\gamma)] , [W(\gamma)] , [V(\gamma)]^T \]

- Analyses are performed at a limited number of training points

- The values for [U], [W], [V] at the training points are used for developing the metamodels
Previous Applications

- SAE-2005-01-2373 surface ship shock analysis
- SAE-2007-01-1744 automotive crash analysis
- SAE-2006-01-0762 uncertainty analysis for occupant safety under blast loads
• Series of nested panels with buttons, input boxes, and drop down menus
• Organizes and automates mesh generation and simplifies simulation and post-processing
• Capable of defining and launching simulations and creating post-processing files through command line prompts and a suite of Fortran executables
• The FRM capability was developed within BEST
Previous Validation

- SAE-2008-01-0781

- Vlahopoulos et al., Army Science 2010
Generate air/soil/explosive model for 2-stage analysis

Material definition for soil, air, explosive. Varies due to moisture content.

Creation of projectiles as part of the explosive threat

LS-Dyna Eulerian analysis for 2-stage analysis

LS-Dyna Lagrangian analysis for 2-stage analysis

Create fast running models for underbody blast studies

Use fast running models for underbody blast studies

Generate air/soil/explosive model for coupled analysis

LS-Dyna Lagrangian analysis for 2-stage analysis

Create/use generic FRMS
BEST Validation Studies

- Emerging validation results for v-hull structure with varying geometry and charge size
Emerging correlation results with averaged experimental tests are at least as strong as fully-coupled ALE simulations.
FRM Terminology

- Input parameters
- Training points
- Loading points
- FRM applicable range
BEST FRM Build Interface

1. Specify parameter ranges
2. View loading point and FRM configuration
3. Build training point files and FRM
BEST FRM Use Interface

Desired mine/vehicle configurations for response study

Automatically populated applicability ranges

Visual representation of FRM applicable ranges
Case Study - FRM

- TARDEC V-hull
 - 20 Training Points
 - 9 Loading Points
 - 2 Evaluation Points
Training Points

• Training point ranges:
 – x location range: 0.7m
 – y location range: 1 m
 – ground clearance range: 0.65 m
 – depth of burial: 0.0508 m
 – charge size: Stanag Level 2

• Vehicle Dimensions:
 – width: 1.978
 – length: 3.1025
 – height: 1.6499
FRM Results

- EP-1 LP-3:

- EP-1 LP-8:
FRM Results

- EP-2 LP-3
- EP-2 LP-6
Case Study - Metamodel

- FRMs can also be utilized to predict structural response
- Displacement of vehicle underbody tracked at all bottom nodes (630 total) to study maximum displacement
- Roof velocity tracked at 5 locations on roof to study maximum average velocity

Maximum Average Velocity \(\bar{V}_{\text{Max}} \) at One Surface of Hull: (Four Sides and Roof).

\[
V_j(t_k) = \sqrt{V_{xj}(t_k)^2 + V_{yj}(t_k)^2 + V_{zj}(t_k)^2} \quad (j\text{th Node at time step } t_k)
\]

\[
\bar{V}(t_k) = \frac{\sqrt{\sum_{j=1}^{N} V_j^2(t_k)}}{N} \quad (N=5) \text{ at time step } t_k
\]

\[
\bar{V}_{\text{Max}} = \text{Max}[\bar{V}(t_k)]
\]
Both the maximum displacement and the maximum average velocity results correlate well with LS-DYNA simulation over 12 evaluation points.
Conclusions

- FRMs enable rapid evaluation of an entire matrix of vehicle/explosive configurations
- Both blast histories and structural responses can be modeled using FRMs
- The FRM capability has been incorporated in BEST to model any time-domain based physical event
• Two-step BEST approach justification: