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ABSTRACT 

We have recently proposed a new method for 

combined design optimization and calibration-based 

validation using a sequential approach with variable-

size local domains of the design space and statistical 

bootstrap techniques. Our work was motivated by the 

fact that model validation in the entire design space 

may be neither affordable nor necessary. The method 

proceeds iteratively by obtaining test data at a design 

point, constructing around it a local domain in which 

the model is considered valid, and optimizing the 

design within this local domain. Due to test variability, 

it is important to know how many tests are needed to 

size each local domain of the sequential optimization 

process. Conducting an unnecessarily large number of 

tests may be inefficient, while a small number of tests 

may be insufficient to achieve the desired validity level. 

In this paper, we introduce a technique to determine the 

number of tests required to account for their variability 

by sizing the local domains accordingly. The goal is to 

achieve a desired level of model validation in each 

domain using the correlation between model data at the 

center and any other point in the local domain. The 

proposed technique is illustrated by means of a piston 

design example. 

 

1. INTRODUCTION 

A major challenge in engineering design 

optimization is that the computational and/or simulation 

models utilized for analysis to quantify objective and 

constraint values (and their sensitivities with respect to 

design variables and parameters) must remain 

adequately accurate in very large design spaces, both in 

terms of dimensionality and range. In the engineering 

design community, adequate accuracy of the models has 

been assessed by validation approaches that compare 

model predictions to experimental data. Model 

validation for specific analysis purposes typically 

presents significantly less computational challenges as 

such models are developed with the intention to be 

utilized in the context of a relatively narrow scope. We 

believe that the approach to model validation for design 

optimization however, as used predominantly by the 

engineering design community, has several limitations: 

1. Model predictions are compared to experimental 

data at a small number of points. Typically, this 

may be inadequate for large number of model 

inputs (dimensionality) that constitute design 

optimization variables and parameters, and can 

take values from large intervals (range). 

2. Model predictions are typically compared at points 

for which experimental data are already available; 

new tests are usually not conducted. However, 

these points may not be relevant to the optimal 

design, which is determined by intersecting active 

constraint boundaries that may lie far away from 

the test points. 

3. If new tests are conducted for model validation, 

they are all performed before the optimization 

process. Typically, the test points are distributed 

across the design space in an attempt to fill it 

according to the design-of-experiments paradigm. 

However, numerical optimization algorithms 

generate a sequence of design candidates (or 

iterates) until they converge to an optimal design 

according to termination criteria, desired accuracy 

and/or computational budget (e.g., maximum 

number of iterations). They rarely visit the entire 

design space. Thus, testing at points distributed 

over the entire design space may be irrelevant, and 

thus wasteful. We think that this is true even when 

using optimization algorithms that evaluate points 
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in the entire design space in an attempt to find 

good local minima, because the test cost can 

outweigh these attempts.  

To address the above issues, we have been 

presenting in a series of recent publications (Li et al., 

2010; Drignei et al, 2012a and 2012b), the building 

blocks of a new methodology for sequential design 

optimization that utilizes calibration-based model 

validation in local (sub)domains of the design space. 

The above publications also provide a comprehensive 

literature review on model validation. Our new  

methodology proceeds iteratively by obtaining test data 

at a design point, constructing around it a local domain 

in which the model is considered valid, and optimizing 

the design within this local domain. If the optimal 

design associated with the local domain lies on the 

boundary of the latter, a new iteration is conducted with 

the optimal design serving as the new center point. This 

process either converges if the optimal design of a local 

domain lies in the interior of the latter or is terminated 

if testing resources are exhausted. In the second case, 

we are still left with a design that is optimal with 

respect to a part of the design space.    

The premise of this paradigm is that testing 

resources are utilized more efficiently. We recognize 

that the new paradigm may be conflicting with the 

automation of the design optimization process, as it 

requires the temporary interruption of the design 

optimization process when new tests become necessary. 

However, we emphasize that current practice can lead 

to invalid and bad designs because of the three 

arguments we presented above, as demonstrated with an 

academic example in Li et al. (2010). We must decide 

whether we want "automated" results that may be 

erroneous or "semi-automated" design solutions that 

utilize resources efficiently and increase the likelihood 

of performing as predicted when built. Moreover, the 

proposed paradigm enables the consideration of 

additional model inputs as variables during the 

optimization process. It also enables robustness studies 

with respect to model inputs that are design parameters 

since testing resources are not exhausted a-priori but 

managed and allocated as the design optimization 

process progresses. 

In section 2 we review our previous research on 

design optimization using local domains. In section 3 

we develop the statistical models, the method for 

choosing the number of tests and the construction of 

local domains. Section 4 presents a description of the 

piston example, on which we apply the proposed 

methodology. We summarize in Section 5. 

 

2. BRIEF METHODOLOGY REVIEW 

In Li et al. (2010) we first proposed the idea of 

validating computational models via calibration as the 

design optimization process progresses using a 

sequential approach that resembles trust-region 

methods. In this first research effort, we assumed that 

data can be obtained for each of the local domains that 

are defined during the sequential optimization process. 

Moreover, we held the size of the local domains (whose 

shapes were hyper-rectangles) fixed, and used interval-

based Bayesian hypothesis testing to compute model 

validity at the center of each local domain. Our 

combined design optimization and validation method 

was based on calibrating model parameters (if 

necessary) to ensure that model validity would not fall 

below a threshold. Although this first method did not 

account for test or model uncertainty directly, and 

assumed fixed local domains, a contrived cantilever 

beam design example we used to demonstrate our idea 

highlighted the fact that a-priori global validation can 

lead to invalid and worse designs, while the proposed 

sequential design optimization approach using 

calibration-based validation in local domains converged 

to a valid and better design. 

In Drignei et al. (2012a), we improved our 

methodology by varying the size of the local domains 

to reflect model validity. In this work, the dimensions 

of the hyper-rectangles around a center point design are 

determined such that model predictions match test data 

statistically for a given confidence level. Keeping the 

assumption that test data can be obtained for each local 

domain, we modeled the error between model 

predictions and test data as a Gaussian process and 

conducted calibration-based validation using a 

parametric bootstrap methodology involving maximum 

likelihood estimators of unknown model parameters. 

We formulated a design optimization problem based on 

the "thermal example" of Dowding et al. (2008) that 

was developed to serve as a validation benchmark 

problem for a validation workshop at Sandia National 

Laboratories. We demonstrated that i) the sequential 

process generates local domains of different dimensions 

and ii) that the active constraints (which determine the 

optimum) move around the design space as the models 

that are used to compute them are re-calibrated as 

necessary. 

While the Gaussian process assumption is 

prevalent in the literature as many data sets exhibit 

Gaussian behavior, there are instances where this is not 

true. Therefore, in Drignei et al. (2012b), we used a 

nonparametric bootstrap statistical method that does not 

rely on the assumption of Gaussian (or any other) 

distribution. We applied the nonparametric 

bootstrapping technique to the same thermal example. 

The obtained results differed, but not substantially. 

Nevertheless, the ability to not have to rely on the 

Gaussian (or any other) distribution may be crucial for 

other design applications. 

In this paper, we lift the assumption that a fixed 

number of tests has been conducted to generate data for 

each local domain. In order to utilize resources as 

efficiently as possible, we assume that only one set of 

test data exists (or can be obtained) for the center point 
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design of each new local domain, and present a 

technique for conducting additional tests incrementally 

(one by one) if and as necessary to validate the model 

via calibration, so that it satisfies a user-specified 

accuracy threshold. We demonstrate our updated 

methodology for sequential design optimization and 

validation using a piston design example, which 

involves statistical surrogates for the responses of 

interest.  

 

3. TEST VARIABILITY AND LOCAL DOMAIN 

SIZING 

In this section, we first review the statistical 

framework to model the error between test data and 

model predictions. For convenience of notation, since 

the design example we use considers only scalar 

responses, we will consider the case where responses 

are spatially invariant and time-independent. A 

formulation for time-dependent, spatially variant 

responses is presented in Drignei et al. (2012b). We 

then proceed with presenting the technique for linking 

test variability with domain size to determine the 

number of required tests in order to satisfy local domain 

model validity requirements. 

   

3.1 Statistical error modeling  

Let  pd,ty  and   pdcpd ,,,my  be system 

responses as measured in a test and predicted by a 

computational model, respectively, where dn
d  are 

design variables, pn
p  are design parameters, and 

cn
c  are model calibration parameters. We assume 

that several tests   rkyt
k ,,1, x  are available at a 

point   pd nn 
 pdx , , with their exact number r to 

be determined later.  We can then write 

       xxcxx k
mt

k yy   ,  ,              (1) 

where  x  is the prediction bias representing the mean 

simulation model error, and  xk  is a zero mean 

random quantity representing the variability between a 

specific test response (fixed k) and a specific model 

prediction (fixed c). Here, for simplicity reasons, we 

will not include the model bias explicitly. However, a 

bias term (random or not) can be easily included 

(Drignei et al., 2012b; Bayarri et al., 2007; Kennedy 

and O'Hagan, 2001), should there be strong evidence 

for it in specific applications. The above statistical 

model simplifies to 

      ., xcxx k
mt

k yy                 (2) 

Since there can be several responses of interest, we 

denote by  xy
t  the vector of test responses, by

 cxy ,m  the vector of model responses and by  xε  the 

error vector. Due to measurement error and 

uncontrollable testing conditions, the test responses 

 xy
t  may be variable. In order to capture the error 

variability around the mean statistically, we model  xε  

as a Gaussian process with mean vector zero and 

covariance matrix Γ . The latter may depend on 

statistical parameters θ  that also need to be estimated. 

If  θcφ ,  includes the model calibration parameters c 

and the statistical parameters θ , the Gaussian 

probability density function we consider is (Schervish, 

1995)

  



fE x |
1

2



 
 

 

 
 

N

1

det
exp 

1

2
 x 

T

1 x 
 

 
 

 

 
 

,  (3) 

where N is the length of the test data vector  xy
t . For 

simplification, the covariance matrix is chosen as 

IΓ
2  where I  is the identity matrix. Therefore, 
2θ  in this paper. 

 

3.2 Determining the local domain  

When the point x is fixed, the parameter vector φ  

is estimated by maximizing the likelihood function                                            

   where   )|(/  xE f     is 

provided by Equation (3).                   

Test data  xy
t  at point x are used to determine the 

size of the local domain around x, by extending the 

likelihood function to include x  as an additional 

statistical parameter; i.e., . We can then 

obtain estimated values  φx ˆ,ˆ
 
of the parameters  φx,  

by maximizing the extended likelihood function Lext. 

This is accomplished by generating error data  xεk  

from the Gaussian distribution with zero mean and 

variance 2 , and re-estimating (i.e., re-calibrating) the 

model by maximizing the extended likelihood function 

Lext. This process is repeated (e.g.,  times) to 

obtain the parametric bootstrap finite sample 

Bbb ,,1},{ x  of statistical copies of x . Then the 

local domain will be an ellipse including those design 

points x  that satisfy  

,

 

where ix  is the i
th

 

component of x , ix~  is the sample mean of ibx , , is  is 

the sample standard deviation of ibx ,  and 2
1,  K  is a 

critical value of the chi-square distribution with nd+np 

degrees of freedom (the number of components of x ). 

For example, for nd+np =2 and 01.0 , 21.92
1, K  

based on the table of chi-square critical values. This is 

an established statistical method to obtain exact 



L  x   fE  x | 



Lext x  x  



B 50



x i x i



si
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



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




2

i1

K

  K 1
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confidence regions in multidimensional cases 

(Schervish, 1995). In our previous work we used 

rectangular shapes for the local domains to expedite the 

computational process. The resulting confidence level 

was thus only approximate.  

 

3.3 Determining the number of required tests for 

each local domain 

In our previous work, we assumed that the model is 

validated through calibration in a local domain D 

uniformly, i.e., that the model is valid at each point 

inside the local domain. However, model validity may 

vary at different points of the local domain, with points 

farther away from its center (where test data are 

available) possibly having lower validity. This behavior 

stems from the Gaussian asymptotic distribution of the 

maximum likelihood estimators and the generalized 

least squares estimators that were used in our 

parametric and non-parametric bootstrap approaches, 

respectively. Moreover, we need to account for test 

variability while sizing the local domains (in our 

previous work we assumed that data are available from 

a fixed number of tests). 

We propose therefore, an enhanced calibration-

based validation procedure that is based on the distance 

between the point at which we have test data (the center 

of the local domain) and the point at which we want to 

utilize the model. This enhanced technique is based on 

the assumption that test and model data are statistically 

similar at the center of the local domain, while this 

statistical similarity decreases as the distance from the 

center point increases.  

We define a pointwise validation measure at x as 

the correlation between model data at the center xc of 

the domain and model data at point x. This could be an 

empirical correlation, or a more sophisticated model 

correlation. In this paper, we use the surrogate model 

correlation   

                      ,cxxx ,CV                           (4) 

which is described in detail in the next section. This 

correlation inherently depends on the distance between 

the two points x and xc. Furthermore, we define the 

validation level of the local domain D as 
  

                  
)(min x

x
VV

D
L


 .

              
(5) 

It expresses a minimally acceptable model correlation 

between data at the center and data within the local 

domain. This new validation measure is a 

generalization and a refinement of our previous 

dichotomous validation measure, where the model at a 

validating design point was either validated or not, 

depending on whether it was included in the local 

domain or not.  

Using statistical arguments, one can demonstrate 

that if the number of tests at the center design point 

increases from 1 to r, the local domain shrinks, and its 

size is expected to decrease by a factor of order r. This 

follows from the asymptotic distribution of maximum 

likelihood. Therefore, by increasing the number of tests, 

we obtain a local domain that is more strongly validated 

according to the proposed validation level of Equation 

(5) because all its points are closer to the center design 

point where the test data are available. However, 

increasing the number of tests also increases the cost. 

Thus, there is a trade-off between the cost and the 

degree of model validation of the local domain. We 

propose the following algorithm for choosing the 

number of tests r in each local domain: 

1. Start with a minimum number of tests r0 and 

obtain the local domain using high confidence 

level, for example 99%. In this local domain, 

compute the validation level of Equation (5).  

2. If the validation level is above a high pre-

established threshold (e.g. 0.99), stop the 

algorithm and choose r=r0. 

3. If the validation level is below the threshold, 

increase the number of tests r by one and repeat 

steps 1 and 2 above. 

In general, the confidence level used to construct the 

local domains does not need to be equal to the 

validation level threshold.    

 

3.4 Design optimization  

 

Ultimately, we are interested in optimizing a 

design objective subject to constraints where the 

objective and constraints are evaluated using model 

predictions for the responses of interest. A piston 

design optimization example is presented in the next 

section. The following steps summarize the proposed 

sequential design optimization approach with 

concurrent calibration-based model validation using 

elliptic local domains whose size is determined by 

accounting for test variability using a parametric 

bootstrap.  

1. Choose an initial point )0(
x , where both test 

data and model predictions are generated. 

2. Calibrate the computer (prediction) model at the 

current point using maximum likelihood 

estimation, parametric bootstrap and an initial 

number r0 of test data. 

3. Obtain the elliptic local domain surrounding this 

point.  

4. Compute the validation level of the current local 

domain. If it is below a specified threshold, 

conduct an additional test, go back to Step 3 and 

compute a new elliptic local domain using the 

additional test data. If it satisfies the validation 

level threshold go to Step 5.  

5. Solve the design optimization problem in the 

local domain defined at Step 3.  
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6. If the optimal design obtained at Step 5 is on the 

boundary of the local domain, go to Step 2. 

Otherwise, stop.  

 

 

4. EXAMPLE: PISTON DESIGN 

Automotive piston design is a challenging problem 

involving complex physics and requiring satisfaction of 

multiple performance objectives. Efforts to reduce 

engine vibration and radiated noise while improving 

durability, fuel economy and reliability are critical. 

Important piston design requirements include high scuff 

resistance, low friction and wear, and low noise. It is 

common practice to determine the optimal piston skirt 

profile so that the maximum contact pressure at the 

piston-bore interface is kept low in order to avoid 

scuffing. Reduced friction and low piston slap noise are 

used as additional design requirements. 

Despite the small clearance between the piston and 

the cylinder bore, the piston undergoes a secondary 

motion within the bore, which can generate unwanted 

sound and vibration. The secondary motion is caused 

by the piston side thrust, which changes direction due to 

the connecting rod angularity. As a result, the piston 

moves laterally from one side of the bore to the other 

and also tilts within the bore clearance. It eventually 

collides against the cylinder wall. This impact is 

commonly known as piston slap. 

To improve the friction, noise and scuffing 

performance, the piston is designed with barrel and 

ovality shapes. Because of the barrel shape, the side 

load on the piston skirt gets distributed more evenly 

resulting in a much wider contact pattern and lower 

skirt pressure improving the piston‟s scuffing 

propensity. The piston ovality also improves the 

piston‟s scuffing propensity and also provides 

additional clearance to parts of the skirt to compensate 

for the piston‟s thermal expansion. The piston slap 

cannot be eliminated completely although it can be 

significantly reduced with a good piston skirt profile. 

The combination of a deformed cylinder with a 

deformed, profiled piston (oval and barrel shapes) 

defines the clearance at running conditions affecting 

therefore, the performance of the piston.  

An analytical model was developed by Patel et al. 

(2010) and Paras et al. (2007) to simulate the piston 

secondary dynamics and piston-bore contact for an 

asymmetric half piston model. The model includes 

several important physical attributes such as bore 

distortion due to mechanical and thermal deformation, 

inertia loading, piston barrelity and ovality, piston 

flexibility and skirt-to-bore clearance. The model 

accounts for piston kinematics, rigid-body dynamics 

and skirt flexibility.  

Based on a sensitivity study (Patel, 2009) seven 

key design variables were identified as the biggest 

contributors on piston friction, noise and scuffing. 

Table 1 provides the lower and upper bound for each 

design variable. All variables are assumed normally 

distributed. Table 1 also provides their standard 

deviation.  

 

 

Table 1. Piston design variables 

 

 Design variables Units 
Lower 

bound 
Upper bound 

Standard 

deviation 

1 Pin offset mm -1 1 0.1 

2 Cold clearance μm 0 0.025 0.005 

3 Clearance at section Α2 μm 0.1 0.2 0.05 

4 Ovality at section Α2 - 0.4 0.9 0.1 

5 Barrelity at section Α2 - 1.5 4.0 0.2 

6 Cylinder bore distortion deg 60 120 10 

7 Coefficient of friction - 0.05 0.2 0.05 

 

Figure 2 shows some piston design details. From the 

front view, the piston has a barrel shape which allows 

different level of clearance at different sections. The 

piston skirt is divided into three main sections; top section

2A , middle section 1A , and bottom section A . The 

clearance between the skirt and the liner in the middle 

section represents the cold-clearance. The oval shape is 

defined at three sections along the piston skirt similarly to 

the piston barrelity. Because of its criticality, the piston 

ovality at the top-section is used as a design variable. 

Finally, the piston pin offset and the cold clearance are 

also design variables. The pin offset is the distance 

between the piston centerline to the piston pin-hole 

centerline. 
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Figure 2. Piston geometric dimensions 

 
Here, the design vector x  consists of two design 

variables (pin offset and cold clearance), whereas the 

calibration vector c  includes the remaining five variables 

in Table 1. Denoting by f1(x,c) the skirt pressure, by 

g1(x,c)  the total friction power loss and by g2(x,c)  the 

kinetic energy loss, the design optimization problem is 

formulated as
 

 

 

  .7850,                 

2,  subject to

,       min    

2

1

1





cx

cx

cx
x

g

g

f

  (6)
 

The model response vector in this example is thus given 

by         T211 ,,,,,, cxcxcxcxy ggfm  . 

 

 4.1 Model surrogates   

The models developed by Patel et al. (2010) and 

Paras et al. (2007) for simulating the piston motion and 

computing the responses f1, g1 and g2 are computationally 

expensive and thus prohibitive for optimization. 

Therefore, following established methodology on design 

and analysis of computer experiments (Santner et al., 

2003; Fang et al., 2006), we constructed separate scalar 

surrogates for each response using data at 100 points of  

the 7-dimensional input space chosen according to a 

maximin design criterion (Morris et al., 1993). We 

assumed a Gaussian distribution for each surrogate y, with 

constant mean   and Gaussian correlation (Currin et al., 

1991)  

   ],)(exp[),(

7

1

2
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for i,j =1,…, 100, where ikx ,  are input coordinates scaled 

to the interval [0,1], and k=1,…,7. The unknown 

parameters 
2,, k   are estimated by maximum 

likelihood estimation. Denote by C the matrix with 

elements ),( ji xxC  and by Y the vector of model data. 

The surrogate at a new input of coordinates 0,kx  is 

chosen to be the conditional mean   

                  
),(ˆ 1

0 1YCCy   T

  
(7) 

with the conditional variance )1( 0
1

0
2

CCC


T  for the 

surrogate error. In Equation (7), the vector 0C  has 

components  
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and 

1 represents a unit vector. 

In the rest of the paper we replace the model data 

 cxy ,m  with surrogates  cxy ,ˆ m  throughout the input 

space. 

The surrogate surfaces may be characterized by 

artificial, local optima. As the results below will show, 

this may be a potential drawback in using surrogates in 

optimization processes. One can decrease the potential of 

such artificial local optima by increasing the sample of 

design points, at the expense of a more computationally 

intensive and/or numerically unstable procedure. 

Alternatively, starting the optimization process from 

different initial conditions may lead to the global 

optimum. 

Table 2 presents the maximum likelihood estimated 

statistical parameters for the three surrogates. Figure 1 

shows the cross-validation plots, indicating that the 

surrogates are acceptably accurate. The “leave-one-out” 

cross-validation method has been used. The plots in 

Figure 1 show the actual model response data versus the 

cross-validation surrogate model response data at all 100 

points. In such plots, the closer the scatter-plot is to the 

main diagonal, the better the statistical surrogate is.

 
Table 2. Surrogate maximum likelihood estimates 

 
Surrogate 

response 

  
1  2   3  4  5  6  7    

Skirt pressure 37.1286 18.2107 0.1692 0.6668 39.6980 0.2646 0.2141 0.0368 12.6683 

Friction power loss 2.0366 0.0043 0.6496 0.1698 0.4760 1.7270 3.0177 4.6468 1.3090 

Kinetic energy loss 8519 0.1070 0.0000 0.2302 0.0000 15.9649 57.2604 0.2637 1362 
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Figure1. Surrogate cross-validation results 

 
Figure 2a. Optimization results with variable number of tests for initial guess: pin offset = -0.4, cold clearance = 0.01; 

objective iso-contours in yellow, friction power loss constraint boundaries in green and kinetic energy loss constraint 

boundaries in blue 

 
Figure2b. A zoom-in of Figure 2a, illustrating the upper part of the optimization process; objective iso-contours in 

yellow, friction power loss constraint boundaries in green and kinetic energy loss constraint boundaries in blue 
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Table 3. Summary of optimization results with variable number of tests for initial guess: pin offset = -0.4, cold 
clearance = 0.01 

 

Step 

# 

Ellipse semiaxis 

length 

r  Validation 

level 

Clearance

 at A2 

section

 

Ovality at 

A2 section 

Barrelity 

at A2  

section
 

Cylinder 

Bore 

Distortion

 

Coeff. of 

Friction

 
Pin 

Offset 

optimum  

Cold 

clearance 

optimum 

a b 
0 0.0030 0.0021 2 0.9960 0.1585 0.6301 2.7647 87.6363 0.1057 -0.3977 0.0112 

1 0.0036 0.0024 2 0.9944 0.1524 0.6290 2.7705 88.5236 0.1014 -0.3949 0.0126 

2 0.0039 0.0024 2 0.9936 0.1491 0.6347 2.7769 88.8969 0.0946 -0.3921 0.0143 

3 0.0027 0.0030 2 0.9905 0.1503 0.6346 2.7722 88.6851 0.0968 -0.3907 0.0169 

4 0.0027 0.0021 3 0.9948 0.1531 0.6209 2.7538 88.0373 0.1150 -0.3888 0.0180 

5 0.0036 0.0021 5 0.9954 0.0498 0.5966 2.9990 91.8587 0.0602 -0.3902 0.0161 

6 0.0039 0.0021 5 0.9954 0.1330 0.6359 2.7923 89.9825 0.0740 -0.3869 0.0170 

7 0.0027 0.0021 5 0.9955 0.1409 0.6420 2.8061 89.8938 0.0793 -0.3849 0.0185 

8 0.0052 0.0027 12 0.9944 0.1441 0.6385 2.7775 89.1672 0.0863 -0.3809 0.0201 

9 0.0061 0.0030 5 0.9912 0.1209 0.6286 2.7690 90.1270 0.0723 -0.3760 0.0209 

10 0.0134 0.0027 14 0.9933 0.1482 0.6326 2.7592 88.6176 0.1089 -0.3637 0.0215 

11 0.0112 0.0030 20 0.9928 0.1496 0.6302 2.7541 88.2910 0.1097 -0.3533 0.0218 

12 0.0018 0.0018 8 0.9966 0.1282 0.6202 2.7471 89.8001 0.1343 -0.3519 0.0218 

… ... ... …  … … … … … … … 

96 0.0018 0.0015 2 0.9978 0.1508 0.6428 2.7446 86.5974 0.1124 -0.1453 0.0082 

97 0.0036 0.0012 2 0.9982 0.1456 0.6442 2.7623 85.3336 0.1023 -0.1450 0.0081 

 

 

Table 4. Summary of optimization results with fixed number of tests for initial guess: pin offset = -0.4,  

cold clearance = 0.01 

 

Step 

# 
Ellipse semiaxis 

length 

r  Validation 

level 

Clearance

 at A2 

section

 

Ovality at 

A2 section 

Barrelity 

at A2  

section
 

Cylinder 

Bore 

Distortion

 

Coeff. of 

Friction

 
Pin Offset 

optimum  

Cold 

clearance 

optimum 

a b 
0 0.0030 0.0021 2 0.9960 0.1585 0.6301 2.7647 87.6363 0.1057 -0.3977 0.0112 

1 0.0036 0.0024 2 0.9944 0.1524 0.6290 2.7705 88.5236 0.1014 -0.3949 0.0126 

2 0.0039 0.0024 2 0.9936 0.1491 0.6347 2.7769 88.8969 0.0946 -0.3921 0.0143 

3 0.0027 0.0030 2 0.9905 0.1503 0.6346 2.7722 88.6851 0.0968 -0.3907 0.0169 

4 0.0046 0.0052 2 0.9767 0.1490 0.6358 2.7780 88.9326 0.0940 -0.3882 0.0215 

5 0.0452 0.0061 2 0.9621 0.1665 0.6532 2.9547 90.2804 0.1133 -0.3448 0.0217 

6 0.1505 0.0058 2 0.9122 0.1783 0.6597 2.9875 89.8286 0.1098 -0.2151 0.0224 

7 0.0455 0.0067 2 0.9586 0.1473 0.6335 2.8164 89.8114 0.0943 -0.1677 0.0208 

8 0.0294 0.0067 2 0.9656 0.1555 0.6332 2.7942 88.1026 0.0928 -0.1456 0.0175 

9 0.0167 0.0070 2 0.9530 0.1510 0.6327 2.7808 87.5601 0.0924 -0.1352 0.0138 

10 0.0030 0.0027 2 0.9925 0.1519 0.6335 2.7838 87.1252 0.0929 -0.1342 0.0114 

11 0.0039 0.0024 2 0.9948 0.1512 0.6336 2.7844 87.7648 0.0880 -0.1326 0.0098 

12 0.0024 0.0018 2 0.9965 0.1490 0.6322 2.7757 87.5562 0.0931 -0.1318 0.0084 

… ... ... …  … … … … … … … 

48 0.0003 0.0012 2 0.9986 0.1647 0.6465 2.8418 87.1074 0.0786 0.0000 0.0019 

49 0.0003 0.0009 2 0.9989 0.1535 0.6353 2.8059 89.0702 0.0780 0.0000 0.0019 
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Figure 3. Optimization results with fixed number of tests for initial guess: pin offset = -0.4, cold clearance = 0.01; 

objective iso-contours in yellow, friction power loss constraint boundaries in green and kinetic energy loss constraint 

boundaries in blue 

 

 

 
 

 
 

Figure 4. Optimization results with variable number of tests for initial guess: pin offset = -0.64, cold clearance = 0.02; 

objective iso-contours in yellow, friction power loss constraint boundaries in green and kinetic energy loss constraint 

boundaries in blue 
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Figure 5. Optimization results with fixed number of tests for initial guess: pin offset = -0.64, cold clearance = 0.02; 

objective iso-contours in yellow, friction power loss constraint boundaries in green and kinetic energy loss constraint 

boundaries in blue 

 

Table 5. Summary of results as a function of number of tests necessary to obtain the first local domain when 
algorithm starts at pin offset = -0.35 and cold clearance = 0.022. 

 

 

 

 

 
 

4.2 Design optimization results 

Figure 2 and Table 3 summarize the results of the 

optimization process, implementing the technique 

presented in Section 3. Test data  xy
t  were simulated 

from the Gaussian distribution with mean  cxy ,ˆ m  and 

standard deviation .10 . The initial guess used for 

optimization was pin offset = -0.4 and cold clearance = 

0.01. The optimization within each local domain started at 

the center of the ellipse. Objective function iso-contours 

are shown in yellow only for the last step of the 

optimization process. Constraint boundaries are shown in 

green and blue for the friction power and kinetic energy 

losses, respectively. The constraint boundaries "move" 

about the design space as the sequential optimization 

process progresses due to the re-calibration of the models 

as necessary.  

r Ellipse semiaxis 

length 

Validation 

level 

Clearance

 at A2 

section

 

Ovality at 

A2 section 

Barrelity 

at A2  

section
 

Cylinder 

Bore 

Distortion

 

Coeff. of 

Friction

 

a b 
2 0.0256     0.0024   0.9473 0.1362     0.6258     2.7579    89.0112     0.0798 

3 0.0153     0.0024 0.9475 0.1438     0.6284     2.7790    89.2401     0.0860 

4 0.0116     0.0022 0.9553 0.1408     0.6278     2.7728    89.1668     0.0802 

5 0.0053     0.0021 0.9613 0.1398     0.6275     2.7669    88.9502     0.0763 

6 0.0078     0.0021 0.9591 0.1354     0.6274     2.7658    89.1418     0.0711 

7 0.0073     0.0023 0.9534 0.1474     0.6319     2.7846    88.8173     0.0713 

8 0.0068     0.0017 0.9744 0.1591     0.6361     2.7999    88.1488     0.0706 

9 0.0074     0.0018 0.9710 0.1589     0.6368     2.8016    87.8803     0.0633 

10 0.0118     0.0018 0.9725 0.1417     0.6304     2.7789    88.9059     0.0643 

11 0.0069     0.0011 0.9882 0.1541     0.6364     2.8116    88.9887     0.0631 

12 0.0042     0.0015 0.9794 0.1558     0.6370     2.8125    88.8671     0.0630 

13 0.0035     0.0014 0.9836 0.1421     0.6309     2.7857    89.0676     0.0618 

14 0.0061     0.0019 0.9714 0.1435     0.6300     2.7742    88.1697     0.0589 

15 0.0050     0.0016 0.9764 0.0933     0.6206     2.7298    90.5046     0.0585 

16 0.0062     0.0017 0.9734 0.1264     0.6270     2.7848    90.0593     0.0628 

17 0.0021     0.0013 0.9862 0.1442     0.6331     2.8202    89.8644     0.0647 

18 0.0025     0.0011 0.9907 0.1333     0.6273     2.7825    89.6645     0.0650 

Initial Design 

Final Design 
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Due to the many steps of the sequential optimization 

process, Table 3 includes only the first 13 and the last 2 

steps. The initial number of tests for each local domain is 

r0=2. One can see that after the first 4 steps the number of 

tests per local domain increases to achieve the required 

high validation level. Towards the end of the sequential 

optimization process the validation level is high enough 

that no additional tests are required, so the last local 

domains are based on r0=2 tests. Figure 3 and Table 4 

show results for fixed number of tests (r0=2) at each local 

domain of the sequential optimization process. One can 

see that the local domains in the middle stage of the 

sequential optimization process are larger. Therefore, the 

points located near the boundaries of the local domains 

are assumed to be not as valid as the points closer to the 

center of the ellipse, where test data are available. These 

ellipses are, in fact, much larger than those towards the 

middle stage of the optimization process in Figure 2a. 

This was to be expected, since additional tests will 

decrease the area of the local domains. The validation 

levels reported in Tables 3 and 4 were computed using 

1000 sample points within each local domain.  

Not using the new method that controls the size of 

the local domain may result in obtaining different optimal 

designs. Indeed, the optimal design in Table 3 is pin 

offset=-0.1450 and cold clearance = 0.0081, whereas the 

optimal design in Table 4 is pin offset=0.0000 and cold 

clearance = 0.0019. A pin offset value very close to 0 is 

not meaningful from an engineering point of view.  

We have replicated the optimization process several 

times using the same initial guess. The results differ 

slightly due to the different sets of random numbers. 

While there are differences among statistically replicated 

optimization paths, the ones using the new method tend to 

converge to an optimal design farther away from the 

origin than those not using it. The possible cause of this 

behavior is the qualitative change in the optimization 

surface around the objective function iso-contour of 40 

MPa. Specifically, this line appears to separate the area 

including the local maximum associated with the contour 

line 65 MPa from the local minimum associated with the 

contour line 25 MPa. In general, one would like to have a 

more conservative optimization method that uses small 

steps in such areas of qualitative changes. The 

optimization based on the presented method seems to 

naturally reduce the size of local domains in this area, 

whereas the method used in our previous work did not.  

Figures 4 and 5 depict what happens when 

considering a different initial guess for the sequential 

design optimization process, namely pin offset = -0.64, 

cold clearance = 0.02 where the optimization within each 

local domain started at the extreme left end of each 

ellipse. Using the enhanced technique that accounts for 

test variability when sizing the local domain (new 

validation measure), the final optimal values are similar to 

those obtained using the previous initial guess (Figure 4). 

This is not the case when the number of tests is held fixed 

for each local domain. In this case, the optimization 

process converges to an inferior local optimum (Figure 5). 

Even though this may have been caused by the surrogates, 

the enhanced technique did not get trapped in this local 

optimum. We conclude that varying the local domain size 

according to test variability may have advantages 

regarding the quality of the obtained optimal designs, 

even though this may come at the expense of additional 

tests.  

To provide insight on how the validation level 

changes with the number of tests, we started the 

optimization algorithm at a new initial design with pin 

offset = -0.35 and cold clearance = 0.022 and stopped the 

algorithm after the first local domain was identified. A 

number of r = 18 tests were necessary to achieve the 

prescribed validation level of 0.99. Figure 6 shows the 

validation level as the number of tests varies from 2 to 18. 

As expected, adding more tests increases the validation 

level although the increase is not monotonic. Table 5 

provides more details for the 18 tests showing that in 

general the size of the ellipses decreases with the number 

of tests. It should be noted that each row in Tables 3 and 4 

show only the last row of Table 5 for each identified local 

domain. 

 

 
Figure 6. Validation level versus number of tests to 

obtain the first local domain for an initial pin offset =       

-0.35 and cold clearance = 0.022. 

 

5. SUMMARY 

In our recently developed methodology for sequential 

design optimization with concurrent, calibration-based 

model validation, the number of tests to obtain data was 

assumed constant for each local domain. Recognizing that 

test variability can play a significant role in the statistical 

error models we employ, we developed a new method that 

accounts for it when determining the size of local 

domains within which we can assume that the models 

used to obtain objective and constraint function values are 

sufficiently valid.  

Using an automotive piston design example, we have 

demonstrated again that local model calibration is 
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necessary to ensure that the sequence of design 

optimization candidates is validated. Moreover, we have 

shown that test variability can be accounted for as 

necessary by varying the size of the local domains to 

ensure that validity thresholds are satisfied. Finally, for 

the particular example considered in this paper, we 

observe that optimal designs obtained using the proposed 

method are superior to these obtained without using it.        
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