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ABSTRACT 
 

This paper discusses fundamental issues related to the integration of computer aided design and 

analysis (I-CAD-A) by introducing a new class of ideal compliant joints that account for the 

distributed inertia and elasticity. The absolute nodal coordinate formulation (ANCF) degrees of 

freedom are used in order to capture modes of deformation that cannot be captured using 

existing formulations. The ideal compliant joints developed can be formulated, for the most 

part, using linear algebraic equations, allowing for the elimination of the dependent variables at 

a preprocessing stage, thereby significantly reducing the problem dimension and array storage 

needed. Furthermore, the constraint equations are automatically satisfied at the position, 

velocity, and acceleration levels. When using the proposed approach to model large scale chain 

systems, differences in computational efficiency between the augmented formulation and the 

recursive methods are eliminated, and the CPU times resulting from the use of the two 

formulations become similar regardless of the complexity of the system. The elimination of the 

joint constraint equations and the associated dependent variables also contribute to the solution 

of a fundamental singularity problem encountered in the analysis of closed loop chains and 

mechanisms by eliminating the need to repeatedly change the chain or mechanism independent 

coordinates. It is shown that the concept of the knot multiplicity used in computational 

geometry methods, such as B-spline and NURBS (Non-Uniform Rational B-Spline), to control 

the degree of continuity at the breakpoints is not suited for the formulation of many ideal 

compliant joints. As explained in this paper, this issue is closely related to the inability of B-

spline and NURBS to model structural discontinuities. Another contribution of this paper is 

demonstrating that large deformation ANCF finite elements can be effective, in some MBS 

application, in solving small deformation problems. This is demonstrated using a heavily 

constrained tracked vehicle with flexible link chains. Without using the proposed approach, 

modeling such a complex system with flexible links can be very challenging. The analysis 

presented in this paper also demonstrates that adding significant model details does not 

necessarily imply increasing the complexity of the MBS algorithm.     

 

Keywords: Compliant joints; tracked vehicle; flexible multibody systems; finite element; 

ANCF; closed loop chains; I-CAD-A 
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1.  INTRODUCTION 

Complex multibody systems (MBS) consist of many components connected by mechanical 

joints. These joints can be modeled using different formulations that lead to different dynamic 

models. One method for representing mechanical joints in computational MBS algorithms is the 

ideal joint formulation, in which a set of nonlinear algebraic constraint equations are used to 

define the body connectivity conditions. This approach, when used with existing MBS rigid body 

formulations or flexible body formulations based on the floating frame of reference (FFR) 

formulation, does not account for the joint flexibility. Furthermore, in these existing MBS 

formulations, the joint constraints introduce nonlinearities both in the inertia and constraint 

forces. Another problem that must be addressed when constrained MBS dynamics algorithms are 

developed is the violation of the joint kinematic constraints that must be satisfied at the position, 

velocity, and acceleration levels. This paper proposes a new procedure to address the following 

fundamental issues: 

1. The paper develops a new class of ideal joints that account for the distributed inertia and 

elasticity at the joint definition point. Additional degrees of freedom are introduced in 

order to capture modes of deformation that cannot be captured using existing 

formulations that employ rigid triads or unit vectors to formulate the joint equations. 

2. The ideal compliant joints developed in this paper, while more general and capture more 

modes of displacements, can be, for the most part, formulated using linear algebraic 

equations. These linear connectivity conditions allow for the elimination of the dependent 

variables at a preprocessing stage, thereby significantly reducing the problem dimension 

and array storage needed. 
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3. Because linear connectivity conditions are used to eliminate the dependent variables at a 

preprocessing stage, the constraint equations are automatically satisfied at the position, 

velocity, and acceleration levels. Therefore, when using the proposed approach to model 

large scale chain systems, differences in computational efficiency between the augmented 

formulation and the recursive methods are eliminated, and the CPU times resulting from 

the use of the two formulations become similar regardless of the complexity of the 

system. 

4. Furthermore, the elimination of the joint constraint equations and the associated 

dependent variables contribute to the solution of a fundamental singularity problem 

encountered in the analysis of closed loop chains and mechanisms. It is known that in the 

case of closed loop chains and mechanisms, the set of independent coordinates must be 

repeatedly changed in order to avoid singularity of the constraint Jacobian matrix. This 

problem can be avoided by using the new ANCF finite element meshes that allow for the 

elimination of the constraint equations and the dependent variables at a preprocessing 

stage.  

5. Using the concept of the ideal compliant joints, the fundamental problems that can be 

encountered when using computational geometry methods, such as B-spline and NURBS, 

as analysis tools are explained. The concept of the knot multiplicity used in computational 

geometry methods does not lend itself easily to the formulation of the ideal compliant 

joints that may require different degrees of continuity for different variables or elements 

of the gradient vectors or may require constraints on the gradient vectors along directions 

that differ from the B-spline and NURBS coordinate lines. This issue is closely related to 

the inability of B-spline and NURBS to model structural discontinuities.  
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6. While small deformation MBS problems can be effectively solved using the FFR 

approach that allows for filtering out high frequency contents, there are small 

deformation problems that can be solved more efficiently using large deformation 

formulation such as the absolute nodal coordinate formulation (ANCF). In these small 

deformation problems, the inclusion of high frequency modes may be necessary. An 

example of these problems is a flexible-link chain of a tracked vehicle where each link is 

modeled using one finite element only. The use of ANCF finite elements can be 

advantageous as compared to the use of the FFR formulation. This important issue is 

addressed in this paper.  

7. The necessity of using the new concepts developed in this paper in modeling complex 

systems is demonstrated using a heavily constrained tracked vehicle with flexible-link 

chains. Without using the proposed approach modeling such a complex system with 

flexible links can be very challenging. 

The analysis presented in this paper demonstrates that adding significant model details does 

not necessarily imply increasing the complexity of the MBS algorithm. In fact, including 

significant details such as body flexibility and joint deformations can be accomplished using 

MBS algorithms that are much simpler than the algorithms currently used for rigid body system 

analysis. This can be achieved using the ANCF finite elements that lead to new meshes that have 

linear connectivity and constant inertia. By using the geometry concepts that allow for successful 

integration of computer aided design and analysis (I-CAD-A) and using the new ANCF meshes 

to model heavily constrained systems such as long chains, the distinction between the augmented 

and recursive methods can be eliminated.  
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2.  BACKGROUND 

Several FE/MBS , formulations have been developed for the deformation analysis of mechanical 

systems. Some of these formulations are suited for the analysis of large rotation small 

deformation problems, while the others can be used in the analysis of large rotation and large 

deformation problems. An example of the large rotation and small deformation formulation is the 

FE/FFR formulation which employs mixed set of reference and elastic coordinates (Shabana, 

2014). This formulation leads to a highly nonlinear inertia matrix that has a strong coupling 

between the reference and deformation coordinates. In addition to the high nonlinearity of the 

inertia forces, the joint constraints equations developed using the FFR formulation are also 

highly nonlinear because of the use of orientation parameters (Korkealaakso et al, 2009). 

Furthermore, rigid triads and unit vectors are often used in the formulation of the joints in the 

rigid body and FFR algorithms, and as a result, these ideal joint formulations do not capture 

modes of deformation.  

While the FFR formulation will remain an effective approach for modeling small 

deformation problems because it allows for filtering out high frequency modes, the more general 

large rotation large deformation finite element absolute nodal coordinate formulation (ANCF) 

can be effective in solving a class of small deformation problems (Shabana et al, 2012; Hamed et 

al, 2011; Shabana, 2010, 2012; Dimtrochenko and Pogorelov, 2003; Abbas et al, 2010; Dufva et 

al, 2005, 2007; Schwab and Meijaard, 2010; Shabana and Mikkola, 2003; Tian et al, 2009; 

Yakoub and Shabana, 2001; Omar and Shabana, 2001). ANCF finite elements can be used to 

model both structural and nonstructural discontinuities in a straightforward manner (Shabana et 

al, 2012; Hamed et al, 2011). Using ANCF finite elements, the absolute position vectors and 

their gradients are considered nodal coordinates. The global position of an arbitrary point on an 
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element k of body i can be defined in a global coordinate system as )(),,( tzyx ikikikikikik eSr  , 

where ),,( ikikikik zyxS  is the space-dependent matrix that defines the element shape functions, 

and ik
e is time-dependent vector of nodal coordinates. An example of ANCF finite elements is 

the three-dimensional gradient deficient Euler-Bernoulli beam element shown in Fig. 1. For this 

element, the vector of nodal coordinates ik
e , which contains position and position gradient 

vectors, can be defined as 
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(Gerstmayr and Shabana, 2006; 

Shabana, 2012), where ikjr  and  ikj ikx r  refer to the displacement and displacement gradient 

vectors at node j of element k . While ANCF finite elements were introduced for large 

deformation problems of very flexible bodies, these elements can be very effective in the 

analysis of small deformation in complex flexible multibody systems containing a large number 

of joints and flexible links. As demonstrated in this paper using a large scale tracked vehicle that 

has flexible-link chains, ANCF finite elements can be used to capture model details that cannot 

be captured using small deformation and rigid body formulations.  

A number of approaches have been proposed in the literature for developing tracked 

vehicle models. Galaitsis (1984) introduced a comprehensive model incorporating the dynamics 

of independent rigid track shoes. In this model, the equations of motion for the track chain were 

developed for a tracked vehicle traveling on a flat ground. Bando et al (1991) developed a 

procedure for the design and analysis of small-size rubber tracked bulldozers. They presented a 

computer simulation which was used in the evaluation of the vehicle behavior. Nakanishi and 

Shabana (1994) introduced a model for the nonlinear dynamic analysis of two dimensional 

tracked vehicle systems. They used both the augmented and the velocity transformation 

techniques. In their investigation, it was shown that the singularity problem, which can be 
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encountered if one set of independent coordinates is used throughout the simulation, can be 

avoided by either repeatedly changing the set of independent coordinates or by using a penalty 

function approach. In this latter approach, a cut is made at a selected secondary joint in the track 

in order to form an open loop structure, and the chain is closed using a spring with high stiffness 

coefficient. Choi et al (1998A; 1998B) developed a three dimensional contact force model that 

represents the interaction between the track links and the vehicle components. In their work, 

track links were connected using perfect pin joints. The highly nonlinear joints constraint 

equations were adjoined to the equations of motion using the augmented formulation. Maqueda 

et al (2010) developed a three-dimensional tracked vehicle model with rubber chains modeled 

using ANCF finite elements which allows for a straightforward implementation of general linear 

and nonlinear material models. The cross section deformation results obtained using ANCF finite 

elements were validated by comparing with the results obtained using solid finite elements in the 

case of a simple tension test. In previous investigations (Hamed et al, 2011; Shabana et al, 2012), 

an ANCF C
0
/C

1
 continuity flexible-link chain mesh was developed. This new ANCF mesh can 

be used in the efficient modeling of flexible-link chains. The C
0
/C

1
 ANCF chain model leads to 

linear connectivity conditions, thereby allowing for an efficient elimination of the dependent 

joint variables at a preprocessing stage. Using this approach, the ANCF mesh mass matrix 

remains constant in the case of articulated systems.   

The organization of this paper is as follows. Section 3 discusses the problems of large 

rotation and slope discontinuities in MBS dynamics. In Section 4, a brief review of the recently 

developed linear finite element ANCF meshes that have linear connectivity conditions and 

constant inertia matrix is presented.  This section also proposes a new simple model for the 

sliding joint. Section 5 discusses some of the limitations of the B-spline representation  when 
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flexible-link chain structures are considered. Control points used in the B-spline representation 

may not represent material points, leading to some fundamental issues that are discussed in 

Section 5. The discussion presented in Section 5 sheds light on the potential of using ANCF as 

the basis for the integration of computer aided design and analysis (I-CAD-A). Section 6 

provides a justification for the use of  ANCF finite elements to model complex flexible-link 

chains. Section 7 describes the simplified three-dimensional Euler-Bernoulli beam elastic force 

model used to demonstrate the procedures and concepts introduced in this study. In Section 8,  a 

tracked vehicle model is used to obtain the numerical results that demonstrate the potential of 

using the new ANCF meshes in capturing model details that cannot be captured using existing 

methods. Summary and conclusions drawn from this study are presented in Section 9.   

3. STRUCTURAL AND NONSTRUCTURAL DISCONTINUITIES  

Structural and nonstructural discontinuities have been fundamental issues in the development of 

MBS formulations. Understanding these types of discontinuities will also shed light on the 

fundamental differences between the approaches currently being developed for the integration of 

computer aided design and analysis. Structural discontinuities refer to the type of joints that do 

not allow relative rigid body displacements, while nonstructural discontinuities refer to the types 

of joints that allow for relative rigid body displacements. The joints used in flexible-link chains 

are example of joints that lead to nonstructural discontinuities. 

Structural discontinuity was the main issue in the development of the large displacement 

small deformation FE/FFR formulation. In the classical finite element formulations, beams, 

plates, and shells, which employ infinitesimal rotations as nodal coordinates, are considered 

nonisoparametric elements. Rigid body motion of such elements does not lead to zero strains and 

rigid body inertia cannot, in general, be exactly modeled (Shabana, 2014). Therefore, before 
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introducing the FE/FFR formulation in the early eighties, an incremental approach was needed 

when these elements are used in the analysis of large rotation problems. Because the incremental 

solution of linearized system of equations eventually deviates from correct solution, there was a 

need to develop a new FE formulation that correctly describes rigid body motion when 

nonisoparametric elements are used. For this reason, the FFR formulation was introduced. In this 

formulation, a floating body coordinate system which shares the large displacement and rotation 

of the body is introduced. The large displacement of the body can be described using the global 

position of the floating frame origin and a set of orientation parameters that can be used to define 

the FFR transformation matrix. The use of these independent reference coordinates is sufficient 

to describe correctly the rigid body motion. Nonetheless, the introduced body coordinate system, 

if not used with the finite element method, allows only modeling simple geometries that do not 

have any slope discontinuities as the one shown in Fig. 2. On the other hand, complex 

geometries that consist of elements with different orientations as shown in Fig. 3 can be modeled 

using the concept of the intermediate element coordinate system. This coordinate system has an 

origin that is rigidly attached to the origin of the body coordinate system and has axes that are 

initially parallel to the axes of the finite element coordinate system as shown in Fig. 4. Using this 

coordinate system, the finite elements that have different orientations can be connected rigidly 

using linear algebraic constraint equations at a preprocessing stage. Therefore, the FE/FFR 

formulation provides a general solution for accurately modeling structural geometric 

discontinuities using linear connectivity conditions. This leads to an FE mesh that is locally 

linear allowing for the use of coordinate reduction techniques to filter out high frequency modes 

of vibration. 
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Another type of slope discontinuity is the nonstructural discontinuity which permits the 

relative rigid body displacements between the segments connected. Example of which is a chain 

of links connected by pin joints as the one shown in Fig. 5. In the case of large relative rotation 

between the connected links, the dynamics of these chains, even for a planar rigid-link chain, is 

governed by highly nonlinear equations as the result of the geometric nonlinearities due to the 

finite relative rotations (Korkealaakso et al, 2009). For this type of joints, the FFR or rigid body 

formulations lead to a highly nonlinear connectivity conditions as the result of using orientation 

parameters. Furthermore, the resulting joint formulations do not include any deformation modes 

since the resulting joint degrees of freedom define only relative rigid body displacements.  

A systematic approach for modeling joints between flexible bodies using ANCF finite 

elements was introduced by Sugiyama et al (2003). In their work, tangent frames were used to 

define transformation matrices at the joint definition points. This approach leads to complex 

nonlinear constraints that are adjoined to the system equations of motion using the technique of 

Lagrange multipliers. Nonetheless, as demonstrated in previous publications, a linear finite 

element mesh of chains that consist of flexible links can be developed in many MBS applications 

(Vallejo et al., 2003; Hamed et al, 2011; Shabana et al, 2012). This can be achieved using ANCF 

finite elements which allow for developing an FE mesh that includes one or more chains with 

flexible links, and each of the links can have independent relative finite rotations. The 

connectivity conditions between the ANCF finite elements can be described using linear 

algebraic constraint equations that can be used at a preprocessing stage to eliminate redundant 

variables. The use of this new concept can lead to significant simplification of the MBS 

algorithm and can eliminate the distinction between the augmented and recursive methods. Both 

the augmented and recursive methods will converge to approximately the same CPU time. Figure 
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6 shows two flow charts that describe the steps of the dynamic analysis of two different ANCF 

chains defined using the conventional nonlinear constraint approach and the new linear ANCF 

constraint approach. It is clear that using the new ANCF linear constraint approach is more 

efficient since it eliminates many of the time-consuming steps of the conventional approach. For 

instance, when the new approach is used, there is no need to solve the constraint equations at the 

position, velocity or acceleration levels. Furthermore, the dimension of the system 

differential/algebraic equations will be significantly reduced as a result of the elimination of 

dependent variables and the associated Lagrange multipliers. 

4. ANCF JOINT FORMULATIONS AND DEFORMATION MODES 

Using ANCF finite elements, mechanical joints between finite elements can be formulated using 

linear connectivity conditions (Vallejo et al., 2003; Hamed et al, 2011; Shabana et al, 2012). This 

is an important feature that can be exploited to significantly reduce the number of nonlinear 

algebraic constraint equations and the associated Lagrange multipliers in many MBS 

applications. Several flexible bodies can be modeled as one FE mesh consisting of elements that 

have  relative translations and finite rotations with respect to each other. It is demonstrated in this 

section, using several examples, how the linear joint equations can be developed and how ANCF 

finite elements can also reduce the degree of nonlinearity when linear joint formulations cannot 

be obtained for some joints. The modes of the deformation of the new ANCF joints are also 

discussed in this section.  

4.1.  Spherical Joint 

When two bodies or finite elements are connected by a spherical joint, one has 0C  continuity 

that ensures only the continuity of the position coordinates. The two connected bodies can 
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arbitrarily rotate with respect to each other. For a spherical joint between two finite elements i  

and j , the algebraic spherical joint constraint equations can be written as 

AjBi ,,
rr  ,                                                                  (1)         

where A and  B refer to the joint node on the finite elements i and j, respectively. The preceding 

constraint equations eliminate the relative translation between the two finite elements. However, 

since ANCF structural finite elements can correctly describe arbitrary rigid body rotations, 

applying the linear algebraic equations of Eq. 1 at a preprocessing stage allows for developing a 

FE mesh in which each finite element can have an independent rotational displacement. Note 

that the above spherical joint constraints are linear in the ANCF coordinates. The same constraint 

equations are highly nonlinear in the case of the rigid body or the FFR formulation (Shabana, 

2001).  

4.2.  Pin Joint 

The formulation of the three-dimensional ANCF linear pin joint will be discussed using two 

different ANCF finite elements. The first element is the three-dimensional Euler-Bernoulli beam 

element. This element has only one gradient vector tangent to the element center line. In order 

for two three-dimensional ANCF Euler-Bernoulli finite elements to be connected by a pin joint, 

two sets of conditions must be satisfied. The first set of conditions is the continuity of the 

position coordinates at the joint definition point. This set of conditions can be imposed at a 

preprocessing stage by using the same position degrees of freedom for the two elements at the 

joint node. The second set of conditions constrain the normals to the gradient vectors at the joint 

point to be parallel to each other. This second set of conditions can also be introduced at a 

preprocessing stage by applying continuity on the component of the gradient vector in the 
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direction of the joint axis. The constraint equations of a pin joint between two ANCF Euler-

Bernoulli beam elements i and j can thus be written as follows: 

                                                                                                   

          
i ,B j ,A

i ,B j ,A ,
x x

 

    
    

    

r r
r r ,        

            

(2) 

where  3or  2, 1, denotes the direction of the joint axis. The preceding equations represent a 

set of four scalar equations. The second equation in Eq. 2 is a scalar equation that equates the 

 th component of element i  gradient vector along the joint axis to the corresponding  th 

component of element j  gradient vector. For example, if the joint axis is the element y  axis, 

then in this case 2  . Note that the second set of algebraic equations can be formulated at a 

preprocessing step and can be used to eliminate dependent variables before the start of the 

dynamic simulation. Using the preceding equations, one can develop one linear FE mesh for 

flexible-link mechanisms in which the links can have arbitrarily large relative rotations and large 

deformations without the need to include nonlinear algebraic constraint equations in the 

formulation since these conditions can be eliminated as a preprocessing stage. Note that for the 

gradient deficient Euler-Bernoulli beam element, the joint axis needs to be one of the finite 

element axes in order to obtain the linear relationships of Eq. 2. This restriction, which can be 

relaxed when using fully parameterized ANCF finite elements, does not represent a serious 

limitation when chain models are developed. 

Another example of ANCF finite elements is the three-dimensional shear deformable 

beam element. A node on this fully parameterized ANCF element has 12 degrees of freedom. 

These degrees of freedom include three rigid body translations, three rotations, and six 

deformation modes. One may introduce a pin joint formulation that uses the following six scalar 

equations defined at the joint node between elements i and j (Shabana et al, 2012). 
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AjBi ,, rr   ,  
 






 AjBi ,,
rr

.                                                       (3) 

In the above equations,   is the coordinate that defines the joint axis. It can be either x, y, z, or 

any other coordinate line since the use of ANCF finite elements allows for a straight forward 

application of the gradient tensor transformation. The six scalar equations represented by Eq. 3 

define a pin joint with six degrees of freedom: one rotation and five deformation degrees of 

freedom. Consequently, the joint leads to 1C  continuity for the gradient vector along the 

coordinate line   and 0C continuity for the remaining gradient vectors.  

4.3.  Sliding Joint 

Sliding joints between flexible bodies are examples of variable boundary conditions joints. 

Developing the kinematic equations of these joints using the FFR formulation that employs 

linear modes can be difficult because the change of the boundary conditions. On the other hand, 

these joints can be systematically formulated using ANCF finite elements as explained in the 

literature (Sugiyama et al, 2003). Using ANCF finite elements, a procedure was introduced to 

model the sliding joints using local frames defined at the joint definition point. A tangent frame 

can be used to define a joint local coordinate system whose transformation matrix at the joint 

definition point can be evaluated. In order to define the time derivative of the constraint 

equations, the time derivatives of the columns of the transformation matrices are written as 

function of the generalized coordinates and velocities. This procedure leads to complex 

constraint equations that are difficult to implement. The same joint constraints can be formulated 

using a simple and straightforward approach by introducing two nongeneralized coordinates. 

The first nongeneralized coordinate u defines the local position of the joint definition point on 

the base element as shown in Fig. 7, while the second one m defines the ratio between lengths of 
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the two element position gradient vectors in the direction of the sliding axis. The following 

equations can be used to define the constraint equations of the sliding joint: 

0erereeC  )(),(),,( jj
p

iii
p

iji uu ,    
 






 ji

m
rr

   
 . 

                               

(4) 

In the above equations,   and are the coordinate lines in the direction of the joint axis on each 

element, and,  i
e and 

j
e  are the nodal coordinates of the two finite elements. These constraint 

equations can be applied to constrain 4 of the joint degrees of freedom: 2 rigid rotations, and 2 

rigid translations. The sliding is ensured by requiring continuity of the gradient along the sliding 

axis and preventing the joint definition point from moving normal to the direction of the sliding 

axis. This guarantees the freedom of sliding without the need to define local frames which lead 

to complex constraint equations required to ensure the parallelism of the sliding axes. 

4.4. ANCF Joint Deformation Modes 

In rigid body and small deformation FFR MBS algorithms, joint formulations allow for only 

relative rigid body degrees of freedom that describe the relative displacements between two rigid 

triads attached to the two bodies connected by the joint. The ANCF joint formulations, on the 

other hand, allow for deformation modes at the joint definition point. This leads to a new class of 

ideal compliant joints defined using algebraic equations. The gradient vectors of the two 

elements can change their magnitude and orientation allowing for stretch and shear deformations 

at the joint node. Depending on the element type and the number of algebraic equations used in 

the formulation of the joint, different deformation modes can be captured. As an example, the 

gradient deficient Euler-Bernoulli beam element allows for only the axial, bending, and twist. 

Therefore, such an element does not capture shear and cross section deformations. On the other 

hand, the fully parameterized beam element which has a complete set of gradient vectors can be 

used to capture the change in the cross section due to deformation at the joint node. For the fully 
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parameterized beam element, the modes of deformations at the joint nodes can be examined 

using the Green-Lagrange strain tensor ε  which can be written as  
1

2

T ε J J I , where J  is the 

matrix of position vector gradients, and I  is the identity matrix. Because the strain tensor ε  is 

symmetric, one can define the strain vector  T 
          zxyzxyzzyyxxv ε , where xx , yy and zz

 

are the normal strains, and xy , yz  and zx  are the shear strains. The strain components are 

continuous inside the element and some of the strain components can be discontinuous at the 

joint nodes because of the discontinuity of position vector gradients at these nodes. Figure 8 

shows some of the deformation modes of the three-dimensional fully parameterized beam 

element. These modes are the tensile mode, the bending mode, and one of the cross section 

deformation modes. The tensile mode is a result of changing the magnitude of the gradient xr at 

the joint point. The bending mode is due to the change of the orientation of the gradient vector 

xr with respect to the line connecting the two nodes of the element. Finally, the cross section 

deformation mode defines the change of the cross section dimensions which is the result of the 

change in the magnitude of the gradient vectors along the cross section fibers. Furthermore, the 

second condition of Eq. 3,    i ,B j ,A    r r , allows for the stretch of the joint pin.  

5. COMPARISON WITH THE ISOGEOMETRIC APPROACH  

Computational geometry methods such as B-spline and NURBS (Non-Uniform Rational B-

Splines) use control points as coordinates. The control points do not necessarily represent 

material points. This is one of the fundamental differences between computational geometry 

methods and the finite element method. The isogeometric analysis is a concept aims at unifying 

the two fields of computer aided design (CAD) and finite element analysis (FEA) by using the 

same basis for the geometry description and analysis (Hughes et al, 2005). This concept, which 
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has been used in computer science for many years to build physics based models, has recently 

received attention from the mechanics community. The increasing interest in isogeometric 

analysis is motivated by the desire to deal with the difficulties and cost associated with the 

conversion of solid models to FE analysis models. This conversion process leads to distortion of 

the geometry of the analysis model because existing structural elements such as beams, plates 

and shells cannot describe correctly arbitrary geometry. 

While the use of the isogeometric analysis can be considered as a step in the right 

direction, the use of computational geometry methods as analysis can lead to fundamental and 

implementation problems which can be avoided by using ANCF geometry. In this section, some 

of the limitations of computational geometry methods when used as analysis tools are discussed. 

The discussion in this section will focus on the limitations associated with the joint formulations 

which is the subject of this paper.  

5.1  B-Spline Surfaces 

In this subsection, the B-spline representation is briefly reviewed in order to provide the 

background required for the discussion that follows in subsequent subsections. B-spline surfaces 

can be defined in the following parametric form (Piegl and Tiller, 1997): 

jiqj

n

i

m

j

pi vNuNvu ,,

0 0

, )()(),( Pr 
 

                         (5) 

where u  and v  are the parameters, )(, uN pi  and )(, vN qj  are B-spline basis functions of degree  p 

and q, respectively, and ji ,P  are a set of ( 1) ( 1)n m    bidirectional control points. The B-

spline basis functions )(, uN pi can be defined as   
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where 1210   ,,  p,....,n,,iui  
are called the knots, and 1 ii uu . The vector 

}  ......      { 110  pnuuuU  is called the knot vector. Similar definitions can be introduced for 

)(, vN qj  with another knot vector }  ......      { 110  pmvvvV . The knots of B-spline surfaces do 

not have to be distinct; distinct knots are called breakpoints and define surface segments with 

non-zero dimensions. The number of the non-distinct knots in U  and V  at a point is referred to 

as the knot multiplicity associated with the parameters u  and v , respectively. The degree of 

continuity at a breakpoint is controlled by the multiplicity of the knots at this point. A decrease in 

the knot multiplicity by one leads to an increase in the degree of continuity by one. This amounts 

to automatic elimination of one control point. The concept of the knot multiplicity can lead to 

fundamental implementation problems when ideal compliant joints are used in MBS algorithms 

as discussed later in this paper.  

5.2 Basis Functions 

ANCF geometry does not impose restrictions on the number of basis functions used in the 

interpolating polynomials. In contrast, B-spline rigid recurrence formula restricts the number of 

basis functions depending on the degree of the interpolating functions; there is a relationship 

between the polynomial degree, the number of knots, and the number of control points. If 1r   is 

the number of knots in U  and 1s   is the number of knots in V , then in B-spline geometry, one 

must have  

1, 1r n p s m q           (7) 

Using Eq. 7, one can show that if a cubic interpolation is used for both u  and v , as in the case of 
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a thin plate, the B-spline representation requires 16 control points regardless of whether the 

shape of deformation of the plate is simple or complex (Shabana et al, 2012). This can be a 

disadvantage in the analysis since such a geometric representation can unnecessarily increase the 

dimension of the analysis model and leads to a loss of the flexibility offered by the FE method. 

As the degree of the polynomial interpolation increases, this drawback of B-spline becomes more 

serious. 

5.3 Knot Multiplicity 

In computational geometry methods, a decrease in the knot multiplicity by one leads to 

elimination of one control point and to an increase in the degree of continuity by one. The knot 

multiplicity cannot be used to impose continuity condition on only one element of a position 

vector or a gradient vector. In three-dimensional analysis, a minimum of three scalar equations 

are automatically imposed when the knot multiplicity is decreased by one. Some ideal compliant 

joints, as discussed in this paper, may require imposing only one or two algebraic equations to 

obtain a certain degree of continuity for one or two elements of a position or gradient vector. 

Such ideal compliant joint constraints cannot be formulated using the rigid B-spline and NURBS 

knot multiplicity concept.  

5.4  Structural Discontinuities 

Structural discontinuities, such as T-, L-, and V-sections, which can be thought of as a sudden 

change in geometry, represent discontinuities  in gradients as the result of the discontinuities of 

the coordinate lines (directions). Modeling this type of discontinuity, which characterizes both 

mechanical and structural systems, requires the use of gradient transformation which is 

fundamental in the implementation of the ANCF geometric representation (Hamed et al, 2011). 

Using 0C  continuity in B-spline analysis is equivalent to having a pin joint in the planar analysis 
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and to a spherical joint  in the spatial analysis. The case of structural discontinuity, which is also 

of the 0C  type, requires additional algebraic equations in order to eliminate the relative rotation 

at the joint definition point. Therefore, there are important geometric configurations where the 

degree of continuity does not change by eliminating degrees of freedom or equivalently control 

points. These important geometric configurations cannot be covered by the rigid structure of the 

B-spline and NURBS which relates the number of degrees of freedom or the control points to the 

degree of continuity (knot multiplicity). 

5.5 Sliding Joints 

Another important geometric scenario associated with the ideal compliant constraints is the 

sliding joint. This type of joint requires continuity of the gradients, but not continuity of all 

position coordinates. In the B-spline representation, 1C  requires first 0C  continuity. As 

previously discussed, ANCF representation does not require this sequence, and for this reason, 

such an ANCF representation can be used to model the sliding joint in a straightforward manner. 

Modeling the same joint using B-spline geometry is not as straight forward: at a given 

breakpoint, the multiplicity associated with a knot can be used to change the continuity of the 

derivatives. For example, in the case of cubic interpolation, 10,CC , and 2C  conditions 

correspond, respectively, to knot multiplicity of three, two, and one. Applying higher degree of 

continuity implies all lower degree continuity. In other words, a knot multiplicity of three which 

corresponds to 2C  implies 0C and 1C continuity. Similarly, applying 1C  implies 0C continuity. 

Therefore, B-spline structure does not allow applying continuity on position gradients without 

position continuity. Therefore, two sliding bodies must be modeled as two separate meshes and 

additional algebraic constraint equations must be added to guarantee the sliding motion.  
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6. USE OF ANCF FOR SMALL DEFORMATION PROBLEMS 

Chains are used in many important MBS applications, and therefore, it is important to be able to 

develop efficient and accurate chain models, particularly when the link flexibility is considered. 

For example, chains are critical in defining the mobility of tracked vehicles that consist of a large 

number of components interconnected by joints and force elements. The dynamics of such 

systems are governed by complex relationships as result of the relative motions and joint forces. 

Furthermore, considering the flexibility of the track links increases the system complexity, model 

dimension, and degree of nonlinearity. For this reason, it is necessary to carefully select the 

procedure used to model the flexible links and the joints connecting them in a chain structure.  

As previously discussed, an efficient formulation that can be used to model complex 

chain systems is the ANCF which allows for the elimination of the joint constraint equations at a 

preprocessing stage, allowing for the elimination of the joint dependent variables before the 

dynamic simulation starts and leading to a chain mesh that has a constant inertia matrix and zero 

Coriolis and centrifugal forces. Furthermore, the ANCF geometry description, in contrast to 

conventional finite elements, is consistent with the descriptions used in computational geometry 

methods (Lan and Shabana, 2010; Mikkola et al, 2013).  
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While ANCF allows for the use of a general continuum mechanics approach, special 

elastic force models can be derived and implemented in ANCF/MBS algorithms for the solution 

of specific applications. In the case of the tracked vehicle model considered in subsequent 

sections, the deformation of the track links is small. Nonetheless, the development of FFR model 

to study the flexible link chain dynamics is not recommended because of the following specific 

reasons: 

1. The FFR formulation leads to a highly nonlinear mass matrix and complex non-zero 

Coriolis and centrifugal forces. On the other hand, ANCF leads to a constant inertia 

matrix and zero Coriolis and centrifugal forces. ANCF Cholesky coordinates can be used 

to obtain an identity generalized inertia matrix, leading to an optimum sparse matrix 

structure. 

2. The FFR formulation leads to highly nonlinear constraint equations for the joints between 

the chain links. These constraint equations must be satisfied at the position, velocity, and 

acceleration levels, and as discussed before, contribute to increasing the problem 

dimensionality and the array storage needed. In the case of flexible-link chains, the 

overhead can be significant. On the other hand, ANCF finite elements allow for the 

formulation of linear connectivity conditions, and therefore, the dependent variables can 

be eliminated systematically at a preprocessing stage. The use of the new ANCF meshes 

can lead to significant simplification of the solution algorithm and significant reductions 

in the array storage as previously discussed. 

3. In both rigid and FFR chain models, the use of closed chains can lead to singular 

configurations if one set of independent coordinates is used. This is not the case when the 
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new ANCF models are used. No singularities are encountered because the joint constraint 

equations and the joint dependent variables are eliminated at a preprocessing stage.  

4. In the case of simple geometry, one chain link can be modeled using one finite element. 

Therefore, the FFR coordinate reduction methods will not be advantageous, particularly 

if the high frequency axial modes need to be included in the model in order to capture the 

link tension forces. Furthermore, in tracked vehicle applications, the contact forces have 

very high frequency contents that can be comparable to the frequencies that results from 

the elastic forces.  

 

Because of these reasons, the large deformation ANCF finite elements can be effectively used to 

efficiently solve small deformation problems. ANCF finite elements allow for implementing 

small deformation elastic forces models as described in the following section.  

7. SMALL DEFORMATION ANCF ELASTIC FORCE MODEL 

In this section, a simple force model, which can be used in the analysis of small deformation 

based on a three-dimensional ANCF Euler-Bernoulli beam, is introduced. The developed force 

model accounts for the coupling between bending and axial deformations. The model can be 

considered as a generalization of the two-dimensional force model developed by Berzeri et al 

(2001). Despite the simplicity of the proposed force model, it accounts for the elastic 

nonlinearity in the strain-displacement relationship. 

7.1 Generalized Elastic Forces 

The strain energy of the Euler-Bernoulli beam element can be written as a function of 

longitudinal strain x  and curvature   as  
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In the preceding equation, x  is the longitudinal coordinate, l is the length of the element, E is 

the modulus of elasticity, A  is the cross section area, and I is the second moment of area. The 

expression for the vector of elastic forces can be determined by differentiating the strain energy 

with respect to the ANCF coordinates as 
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In the computer implementation, it is possible to derive the expressions for the derivatives in Eq. 

9 by means of a symbolic computer program, or to derive them analytically in order to minimize 

the number of mathematical operations. Closed form expressions for the derivatives of both the 

axial strain and the curvature can be written as (Gerstmayr and Shabana, 2006)  
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The computation of these complex expressions can be time consuming, especially, for models 

containing a large number of elements. Berzeri et al (2001) introduced a simple model for the 

elastic forces of the planar Euler-Bernoulli beam element. Their model can be extended to the 

spatial Euler-Bernoulli beam element assuming small longitudinal deformation, which is the case 

for the steel track links used in the chains of the tracked vehicle model considered in this 

investigation. The expression for the elastic forces due to longitudinal forces can be written as 
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By assuming small variation of the strain over the length of the beam, the strain x  
can be 

factored out from the expression of the elastic forces ,allowing writing the preceding equation as  

, ,

0

l

T

e l x x x e lEA dx Q S S e K e ,                                                    (12) 

where ,

0

l

T

e l x x xEA dx K S S . The average axial strain can be simply calculated as 

 x d l l   where d
 
is the current length of the beam. 

The expression of the elastic forces due to bending can be written as  
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In the case of small longitudinal deformation, the curvature can be defined as xxr . Hence, the 

transverse elastic forces can be written as 
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0

l

T

e t xx xx e tEI dx Q S S e K e ,                                                     (14) 

where ,

0

l

T

e t xx xxEI dx K S S .  

Finally, the elastic force vector can be written as  

eKKQ )( ,, telee  ,                                                              (15) 

where ,e lK  and ,e tK are constant stiffness matrices associated with longitudinal and bending 

elastic forces, respectively.  

7.2 Generalized Damping Forces 
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The internal damping characteristics of most known materials lead to energy dissipation when 

the materials are subjected to initial disturbances or shock loadings. Therefore, developing 

realistic flexible MBS models requires the inclusion of the effect of internal damping. One of the 

advantages of ANCF finite elements is the ability of capturing modes of deformations that 

cannot be captured using existing structural finite elements (Mohamed and Shabana, 2011). In 

some applications, some of these ANCF modes, which can have high frequencies, may not have 

significant effect on the solution. In such cases, explicit numerical integration schemes are forced 

to select very small time steps to capture the high frequencies. Therefore, for such applications, it 

is desirable to damp out these high frequency modes by using an appropriate visco-elastic 

constitutive model. This section introduces a suitable damping model that can be used with the 

simple elastic force model introduced in the previous section. The damping model introduced is 

also based on the assumption of small deformation.  

The proposed visco-elastic model applies damping to the deformation associated with the 

gradient vector xr  and the curvature vector ssr  where s is the arc length. In order to properly 

define the deformation and avoid damping out rigid body displacement modes, a tangent frame 

can be used to define an orthogonal matrix using the vectors xr  and ssr  as 

  
        

 

x x ss ss

x x ss ss

 
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r r r r
R

r r r r
 . The power dissipated can be written as a function of the damping 

stress dσ   and the strain rate ε  as (Vallejo et al, 2005) 


V

dd dVP   
2

1 T
εσ  .                                                              (16) 

Following a procedure similar to the one given in (Mohamed and Shabana, 2011; Mohamed, 

2011), the power dissipated can be rewritten in the case of the Euler-Bernoulli beam element as 
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where
 x and   are the longitudinal strain rate and curvature rate. By differentiating the 

dissipated energy with respect to the absolute nodal velocities, the generalized damping force can 

be written as   
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where 1  and
 2  are two damping constants. 

Using the assumption of small variation of the strain over the length, both the longitudinal strain 

and strain rate can be assumed constant through the length. Hence, the longitudinal damping 

force can be written as 

eKeSSQ ldx

l

x

x

x dxA ,

0

T1
ld,  

21



 

 
                                               (19) 

where,    T
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d ,l x x x xA dx    K S S . Using the same assumption, the curvature and 

curvature rate can be assumed constant through the length. Therefore, the transverse damping 

force can be written as 
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where.   T

2

0

l

d ,t xx xxI k k dx K S S e . Then, the generalized internal damping force vector can be 

written as 
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These generalized damping forces can be introduced to the ANCF element equations. The 

generalized damping forces associated with the ANCF Cholesky coordinates can also be 

obtained using the Cholesky transformation. 

8. NUMERICAL RESULTS 

A flexible-link chain three-dimensional tracked vehicle example is used in this section to 

demonstrate the implementation of the concepts discussed in this paper. This example represents 

a complex system with large number of bodies connected by large number of revolute (pin) 

joints. Furthermore, the mathematical models of such vehicles represent a stiff numerical 

integration problem due to high frequencies of the contact forces. Such vehicle models can be 

used to test the robustness of the MBS algorithm developed. 

8.1 Model Description 

The tracked vehicle used is an armored personnel carrier that consists of a chassis and two track 

chains. Each track system consists of an idler, one sprocket, 5 road-wheels, and 64 track links. A 

schematic drawing of the selected tracked vehicle is shown in Fig. 9. Table 1 shows the inertia 

properties for all the tracked vehicle model components used in this simulation. The vehicle has 

a suspension system that consists of a road arm, placed between each road wheel and the chassis, 

and a shock absorber that consists of a spring and a damper connecting each road arm to the 

chassis. In order to control the tension of the two tracks, each idler is connected to the chassis 

through a tensioner. Table 2 shows the stiffness coefficients k  and the damping coefficients c  of 

the contact models, the suspension system, and the tensioner; as well as the friction 

coefficient  of the contact models. Ideal pin joints are used to connect the road arms and the 

sprockets to the chassis, and the road-wheels to the road arms. The normal contact forces are 
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calculated based on a linear dissipative contact force model (Choi et al, 1998; Maqueda et al, 

2010; Dufva et al, 2007). 

The models discussed in this section are assumed to have flexible track links. The 

flexible links are defined as three-dimensional steel Euler-Bernoulli beam elements with a 

modulus of rigidity of 76.9 GPa, a Young’s modulus of 200 GPa, and a mass density of 7800 

kg/m
3
.
 
 The flexible chain links are connected to each other using ANCF ideal compliant pin 

joints, which define a linear ANCF mesh. As previously mentioned, one of the advantages of 

using this ANCF definition of joints is having linear joint constraints which allow for the 

elimination of the dependent joint variables at a preprocessing stage. As a result, this procedure 

avoids the computational cost required to formulate the nonlinear pin joint constraint equations 

at the position, velocity, and acceleration levels. In the case of the tracked vehicle used in this 

study, the proposed approach allows for the elimination of 126 pin joints and 630 highly 

nonlinear constraint equations at a preprocessing stage. In conventional MBS algorithms, this 

large number of highly nonlinear constraint equations must be satisfied at position, velocity, and 

acceleration levels. If ANCF joints are used, all these constraints become linear and can be 

eliminated at a preprocessing stage.  

Three different tracked vehicle models are used to demonstrate the effectiveness of using 

the ANCF linear ideal compliant joint model. In the first vehicle, the chain links are modeled as 

rigid bodies. In order to solve the singularity problem encountered in the case of closed chain 

(Nakanishi and Shabana, 1994), the first and last links of the chain are connected through a very 

stiff spring. The links of the second and third tracked vehicle models are modeled as flexible 

links connected using ANCF continuum-based joints. The chain of the second model has a 

secondary joint by making a cut and using a very stiff spring to close the chain as in the case of 



UNCLASSIFIED: Distribution Statement A. Approved for public release. #24314 

 

31 

 

the rigid-link chains. In the case of the third model, on the other hand,  an ANCF closed loop 

chain is used. The third model is used to demonstrate the fact that using the new linear ANCF 

joint model does not lead to any singularity problems as in the case of conventional MBS 

nonlinear joint algorithms. An explicit Adams-Bashforth predictor-corrector method was used 

for the numerical solution of the system differential equations.  

8.2 Rigid Body Motion 

The angular velocities of the two sprockets of all the three tracked vehicle models were specified 

to follow the pattern shown in Fig. 10. The response of the chassis to this input sprocket velocity 

is shown in Figs. 11-13. Figure 11 shows the forward velocity of the chassis. As expected, the 

velocity of the chassis follows the same pattern as the sprocket velocity. The results of Fig. 12 

and 13 show the forward and vertical positions of the chassis center of mass. It can be noticed 

from the results presented in Fig. 14 that the chassis has 0.03m downward displacement as a 

consequence of an initial settlement of the suspension springs. These springs, in addition to the 

contact forces, deform under the effect of the weight of the vehicle components until equilibrium 

positions are reached. From the results presented in Figs. 11 to 13, it is clear that the rigid body 

motion results of the two flexible chain models are in a good agreement with the results of the 

rigid body model. Figure 14 shows the forward position of an arbitrarily selected point (end point 

of link 31). At the beginning of the simulation, this node is in contact with the ground. After that, 

the vehicle starts moving, and this point moves and it comes into contact with the idler. It 

continues moving until it comes again into contact with the ground. This motion is repeated as 

the vehicle continues to move forward. Figure 15 shows the motion trajectory of the same node 

defined in the chassis coordinate system.  

8.3 Forces and Deformations 
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In tracked vehicle dynamics, it is important to study the reaction forces at the pin joints. These 

forces can be used to further analyze the strain and stress state of the chain and determine 

whether or not the chain can sustain the forces without failure. Figures 16 and 17 show the joint 

constraint forces of the first joint (marked in Fig. 21) in the longitudinal and the vertical 

directions for the rigid and ANCF joint models. One advantage of including the flexibility of the 

track links is to be able to calculate online the strains and stresses. The online computation of the 

track link deformation leads to a more realistic prediction of the system dynamics, this is due to a 

nature of the coupling between different displacement modes and simulation parameters. Figures 

18 and 19 show the axial and transverse deformations of the first link of the right chain at 5t s . 

In these figures, the deformation is magnified by a factor of 510 . The deformation of this link 

was calculated using a local tangent frame that has its longitudinal axis parallel to the first node 

position gradient vector. Figure 20 shows the axial stress of the right track chain at st 5 , while 

Fig. 21 shows the configuration of the chain at st 5 . It is clear from the results of Figs. 20 and 

21 that the chain span can be divided into three sections. First section, which is located before 

the sprocket and is directly affected by the sprocket forces, is the tight section which has the 

highest tension. The second section is the slack section located after the sprocket and has the 

lowest degree of tension. The third section is a transition section between the tight and slack 

sections of the chain.  

While all the results of rigid body motion of the different models presented show good 

agreement, the computational time of the flexible model is almost four times the computational 

time of the rigid tracked vehicle model. This can be justified because of the high frequencies 

associated with the track link deformation. The presence of high frequencies can be confirmed 

by considering the number of function evaluations of the flexible and the rigid tracked vehicle 
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models. The ratio between the numbers of function evaluations for the rigid and flexible tracked 

vehicle is approximately 5.8:1 . Considering both the simulation time and the number of function 

evaluations, it can be concluded that using the new ANCF linear mesh in modeling the flexible 

link tracked vehicles leads to significant computational saving. This computational saving is the 

result of the elimination of the joint constraints and the corresponding dependent coordinates and 

Lagrange multipliers. Furthermore, numerical experimentation showed that when a low modulus 

of elasticity is used, flexible-link tracked vehicle models become more efficient than the rigid-

link tracked vehicle model as the result of using the new ANCF finite element mesh. 

9.  SUMMARY AND CONCLUSIONS 

In this paper, a new class of ideal compliant joints that account for the distributed inertia and 

elasticity is introduced and used to discuss fundamental issues related to the integration of 

computer aided design and analysis (I-CAD-A). Additional degrees of freedom are introduced in 

order to capture modes of deformation that cannot be captured using existing formulations that 

employ rigid triads or unit vectors to formulate the joint equations. The ideal compliant joints 

developed, while more general and capture more modes of displacements, can be, for the most 

part, formulated using linear algebraic equations. These linear connectivity conditions allow for 

the elimination of the dependent variables at a preprocessing stage, thereby significantly 

reducing the problem dimension and array storage needed. Consequently, the constraint 

equations are automatically satisfied at the position, velocity, and acceleration levels. Therefore, 

when using the proposed approach to model large scale chain systems, differences in 

computational efficiency between the augmented formulation and the recursive methods are 

eliminated, and the CPU times resulting from the use of the two formulations become similar 

regardless of the complexity of the system. Furthermore, the elimination of the joint constraint 
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equations and the associated dependent variables contribute to the solution of a fundamental 

singularity problem encountered in the analysis of closed loop chains and mechanisms, and there 

is no need to repeatedly change the chain or mechanism independent coordinates.  

Using the concept of the ideal compliant joints, the fundamental problems that can be 

encountered when using computational geometry methods, can be explained. The concept of the 

knot multiplicity used in computational geometry methods is not suited for the formulation of 

ideal compliant joints that may require different degrees of continuity for different variables or 

elements of the gradient vector or require imposing constraints on the gradient vectors along 

directions that differ from the B-spline and NURBS coordinate lines. As explained in this paper, 

this issue is closely related to the inability of B-spline and NURBS to model structural 

discontinuities.  

Another contribution of this paper is demonstrating that large deformation ANCF finite 

elements can be effective in solving small deformation problems. The necessity of using the new 

concepts developed in this paper in modeling complex systems is demonstrated using a heavily 

constrained tracked vehicle with flexible link chains. Without using the proposed approach 

modeling such a complex system with flexible links can be a challenging task. The analysis 

presented in this paper also demonstrates that adding significant model details does not 

necessarily imply increasing the complexity of the MBS algorithm. In fact, including significant 

details such as body flexibility and joint deformations can be accomplished using MBS 

algorithms that are much simpler than the algorithms currently used for rigid body system 

analysis. 
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Table 1. Tracked vehicle components inertia properties 

 

Part Mass (kg) IXX (kg m
2
) IYY (kg m

2
) IZZ (kg m

2
) IXY, IYZ, IXZ (kg m

2
) 

Chassis 5489.24        1786.92                10449.67 10721.22 0 

Sprocket 436.67 13.87            12.22 12.22 0 

Idler 429.57 14.70            12.55 12.55 0 

Road Wheel 561.07 26.06             19.82           19.82 0 

Road Arm 

 

75.26      0.77 0.37 0.77 0 

Track link 

 

18.02 0.04 0.22 0.25 0 

 

Table 2. Tracked vehicle contact and suspension parameters 

 

Parameters 
Sprocket-Track 

Contact 

Roller-Track 

Contact 

Ground-Track 

Contact 
Suspension Tensioner 

k (N/m) 2×10
6
 2×10

6
 2×10

6
 1×10

6
 1×10

6
 

c (N·s/m) 5×10
3
 5×10

3
 5×10

3
 1.5×10

4
 1.4×10

4
 

  0.15 0.10 0.30 - - 
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Figure 1. Euler-Bernoulli beam element  

 

 
 

Figure 2. Structure without slope discontinuity  
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Figure 3. Structure with slope discontinuity    

 

 

 

 

 
 

Figure. 4 Intermediate coordinate system 
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Figure 5. Eight-link chain 
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Figure 6. Algorithm flow chart  

 (a)Nonlinear constraints   (b) New linear constraints 

Read initial data including initial Read initial data inc luding initial 
estimate for the system state estimate for the system state 

~ 
Evaluate the ANCF constant mass Evaluate the ANCF constant mass 

matrix matrix 

t 
Eliminate the dependent coordinates by 

applying the constra]nt equations 

Perform position analysis by solving the 
constraint equations using an iterative 

algorithm to get the dependent position 
coordinates 

• Solve the velocity constra int equations 
for the dependent velocities 

t 
Evaluate the quadratic velocity term in 

the second time derivative of the 
constraint equations 

• Solve for accelerations and Lagrange 
multipliers Solve for accelerations 

~ 
Integrate the independent accelerations Integrate the independent accelerations 

to get the independent velocities and to get the independent velocities and 
positions positions 

Check whether the end of simulation Check whether the end of simulation 
time is reached time is reached 

No Yes Yes No 

Stop Stop 

(a) (b) 
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Figure 7. Sliding joint 
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Figure 8. Deformation modes  

 (a) Tensile mode   (b) Bending mode  (c) Cross section deformation 
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Figure 9. Tracked vehicle model 
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Figure 10. Sprocket rotational velocity 
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Figure 11. Chassis forward velocity 

(            Rigid  model,            Closed loop flexible model , ------- Open loop flexible model  ) 

 
Figure 12. Forward displacement of the chassis 

(            Rigid  model,            Closed loop flexible model , ------- Open loop flexible model  ) 
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Figure 13. Vertical displacement of the chassis 

(            Rigid  model,            Closed loop flexible model , -------  Open loop flexible model  ) 

 

 
 

Figure 14. Node-32 forward position 

(            Rigid  model,  ------- Flexible models)               
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Figure 15. Motion trajectory of a flexible track link point  

 

Figure 16. First joint longitudinal forces 

(            Rigid  model, ------- Flexible models)               
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Figure 17. First joint vertical forces 

(            Rigid  model,  -------  Flexible models)    
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Figure 18. Axial deformation of first link of the right chain at s5t  magnified by a 

factor of 10
5 

 
( ------- Initial configuration,            Deformed configuration) 
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Figure 19. Transverse deformation of first link of the right chain at s5t  magnified by a factor 

of 10
5
 

( -------  Initial configuration,             Deformed configuration)  

 

             

 

Figure 20. Right chain axial stress at s5t  
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Figure 21. Right chain axial force distribution at s5t  


