

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEVELOPMENT AND VALIDATION OF A CONTROLLED

VIRTUAL ENVIRONMENT FOR GUIDANCE, NAVIGATION

AND CONTROL OF QUADROTOR UAV

by

Junwei Choon

September 2013

 Thesis Advisor: Oleg Yakimenko

 Thesis Co-Advisor: Isaac Kaminer

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE
Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per

response, including the time for reviewing instruction, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington headquarters Services, Directorate

for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,

VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

WashingtonDC20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2013

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

DEVELOPMENT AND VALIDATION OF A CONTROLLED VIRTUAL

ENVIRONMENT FOR GUIDANCE, NAVIGATION AND CONTROL OF

QUADROTOR UAV

5. FUNDING NUMBERS

6. AUTHOR(S)Junwei, Choon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and

do not reflect the official policy or position of the Department of Defense or the U.S.

Government.IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200words)

This thesis is focused on the development of a six degrees of freedom (6DOF)

simulation model of a commercial-off-the-shelf quadrotor. The dynamics of the

quadrotor and its control strategy are described. The Geometric Dilution of

Precision (GDOP) of the Autonomous Systems Engineering and Integration

Laboratory (ASEIL) laboratory used in conducting the experiments is also

analyzed. Simulation results are then verified with actual flight data.

A direct method of calculus of variations is employed in the development

of an algorithm for optimal trajectory generation and collision-free flight.

Using the differential-flatness characteristics of the system, the trajectory

optimization is posed as a nonlinear constrained optimization problem in

virtual domain, not explicitly related to the time domain. Appropriate

parameterized functions employing an abstract argument, known as the virtual

arc, are used to ensure initial and terminal constraints satisfaction. A speed

factor maps the virtual to the time domain and controls the speed profile

along any predetermined trajectory. An inner loop attitude controller was used

to achieve almost global asymptotic attitude tracking for trajectory

following. The trajectory generation and following algorithms were verified

using the 6DOF simulation model through a simulated collision avoidance

scenario.

14. SUBJECT TERMS Quadrotor, Qball, 6DOF Model, PID, Direct Methods,

Trajectory, Optimization, Inverse Dynamics, IDVD, Collision

Avoidance

15. NUMBER OF

PAGES

179

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEVELOPMENT AND VALIDATION OF A CONTROLLED VIRTUAL

ENVIRONMENT FOR GUIDANCE, NAVIGATION AND CONTROL OF

QUADROTOR UAV

Junwei Choon

Civilian Engineer, Singapore Technologies Aerospace

B.Eng (Mechanical), Nanyang Technological University,

Singapore, 2008

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATESCHOOL

September 2013

Author: Junwei Choon

Approved by: Oleg Yakimenko

 Thesis Advisor

Isaac Kaminer

Thesis Co-Advisor

Knox Millsaps

Chair, Department of Mechanical and

Aerospace Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis is focused on the development of a six degrees

of freedom (6DOF) simulation model of a commercial-off-the-

shelf quadrotor. The dynamics of the quadrotor and its

control strategy are described. The Geometric Dilution of

Precision (GDOP) of the Autonomous Systems Engineering and

Integration Laboratory (ASEIL) laboratory used in

conducting the experiments is also analyzed. Simulation

results are then verified with actual flight data.

A direct method of calculus of variations is employed

in the development of an algorithm for optimal trajectory

generation and collision-free flight. Using the

differential-flatness characteristics of the system, the

trajectory optimization is posed as a nonlinear constrained

optimization problem in virtual domain, not explicitly

related to the time domain. Appropriate parameterized

functions employing an abstract argument, known as the

virtual arc, are used to ensure initial and terminal

constraints satisfaction. A speed factor maps the virtual

to the time domain and controls the speed profile along any

predetermined trajectory. An inner loop attitude controller

was used to achieve almost global asymptotic attitude

tracking for trajectory following. The trajectory

generation and following algorithms were verified using the

6DOF simulation model through a simulated collision

avoidance scenario.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. BACKGROUND ...1
B. WHY USE QUADROTORS?3

1. ADVANTAGES3
2. DISADVANTAGES4

C. THESIS OUTLINE5

II. LITERATURE REVIEW AND RECENT WORKS7
A. LITERATURE REVIEW7
B. BACKGROUND IN OPTIMAL CONTROL9
C. INDIRECT METHODS10

1. Gradient Method11
2. Multiple Shooting Method12

D. DIRECT METHODS13
1. Direct Transcription Method14
2. Inverse Dynamics Approach15
3. Pseudospectral Methods15

E. RELATED WORK16
1. University of Pennsylvania16
2. Stanford University18
3. Massachusetts Institute of Technology19
4. Naval Postgraduate School20
5. Cranfield University21

III. MODELING OF QUADROTOR DYNAMICS AND CONTROL23
A. OVERVIEW ..23
B. DEFINITION OF AXIS SYSTEMS24
C. ATTITUDE REPRESENTATION25
D. COORDINATE TRANSFORMATIONS26

1. ENU to ABC Transformation26
2. ENU to Optitrack Coordinates Transformation ..26

E. AIRCRAFT VARIABLES27
F. SIGN CONVENTION FOR PROPELLER ROTATION28
G. ASSUMPTIONS29
H. EQUATIONS OF MOTION30

1. Thrust Forces30
2. Gravity31
3. Total Force31
4. Moments32
5. Moments of Inertia32
6. Kinematic Equations34
7. Dynamic Equations34
8. Final Equations of Motion35

I. LINEARIZED DYNAMICS MODEL36

 viii

1. State Vector Representation36
2. Actuator Dynamics Model37
3. Roll and Pitch Dynamics Models38
4. Altitude Dynamics Model39
5. Motion Dynamics Model40
6. Yaw Dynamics Model40
7. Control Mixer41

J. SUMMARY OF SYSTEM PARAMETERS42

IV. SIMULINK IMPLEMENTATION43
A. OVERVIEW ..43
B. OVERVIEW OF 6DOF SIMULATION MODEL43
C. COMMANDS MODULE45
D. DEFAULT CONTROLLER DESIGN47

1. Position Feedback Control47
2. Heading Feedback Control49
3. Altitude Feedback Control50

E. PID CONTROLLER DESIGN52
1. Proposed PID Controllers52
2. Heading Feedback Control55
3. Altitude Feedback Control55

F. CONTROL SIGNAL MIXING56
G. PWM TO ROTOR FORCE AND TORQUE56
H. QBALL-X4 6DOF MODEL57
I. QBALL-X4 ANIMATION MODEL58

V. DILUTION OF PRECISION61
A. INTRODUCTION61
B. GEOMETRY ..61
C. PSEUDORANGE MEASUREMENTS62
D. COVARIANCE MATRIX64
E. DILUTION OF PRECISION64
F. TEST SETUP AND RESULTS65

VI. SIMULATED AND ACTUAL FLIGHT DATA83
A. OVERVIEW ..83
B. SENSORS RESOLUTION83
C. TEST PLAN DESCRIPTION83
D. DEFAULT PARAMETER VALUES84
E. TEST SCENARIO 185

1. Ground Track85
2. X and Z Position86
3. Height87
4. Accelerations87
5. Angular Rates88
6. Euler Angles88

F. TEST SCENARIO 2 (HEIGHT INCREMENT)89
G. TEST SCENARIO 3 (HEADING CONTROL)92

 ix

H. VELOCITY LIMITS TEST92

VII. DIRECT METHOD USING INVERSE DYNAMICS IN VIRTUAL DOMAIN .95
A. INTRODUCTION95
B. CONTROLLER ARCHITECTURE96
C. TRAJECTORY OPTIMIZATION97

1. Differential Flatness and Optimal Problem

Formulation in Output Space97
2. Decoupling Space and Time102
3. Parameterization103
4. Numerical Computation106

D. TRAJECTORY FOLLOWING CONTROL LAW108

VIII. SIMULINK IMPLEMENTATION OF THE IDVD METHOD111
A. MISSION SCENARIO111
B. SIMULINK IMPLEMENTATION111

1. Trajectory Generator112
2. Trajectory Follower114

C. SIMULATED RESULTS115
1. Ground Track115
2. Position Control116
3. Height Control117
4. Attitude Control117
5. 3D Trajectory118

IX. CONCLUSION AND FUTURE WORK121
A. CONCLUSION121
B. FUTURE WORK122

APPENDIX A. EQUIPMENT AND LABORATORY SETUP125
A. OVERVIEW ...125
B. APPLICATION SOFTWARE126

1. Quanser Real-Time Control Software (QuaRC) ..126
2. Natural Point Tracking Tool126
3. MATLAB/Simulink126

C. HARDWARE ...127
1. Desktop Computer (Ground Control Station) ...127
2. HiQ DAC and Gumstix Target Computer127
3. Optitrack Motion Capture System129
4. Qball-X4 Quadrotor130

D. SETUP PROCEDURES131

APPENDIX B. PLOTTING SCRIPTS FOR ANALYSIS137

APPENDIX C. OPTIMIZATION SCRIPT145

BIBLIOGRAPHY ...149

INITIAL DISTRIBUTION LIST157

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1: Approach in Direct and Indirect Methods (From

Rao 2012).10
Figure 2: Schematic of Indirect Shooting Method Using the

Analogy of a Cannon Firing a Cannonball to

Strike a Target (From Rao 2009).13
Figure 3: Different Types of Direct Methods (From Rao

2009). ...14
Figure 4: Illustration of the Inverse Dynamics Approach

(From Devasia n.d.).15
Figure 5: Composite Image of a Single Quadrotor Flying

through a Thrown Circular Hoop (From Mellinger

and Kumar 2011).17
Figure 6: Composite Image of a Single Quadrotor Quickly

Flying through Three Static Circular Hoops (From

Mellinger and Kumar 2011).17
Figure 7: STARMAC Quadrotor Developed by Stanford

University (From Hoffmann and Waslander 2008). ...18
Figure 8: Variable-Pitch Quadrotor Developed by MIT (From

Cutler 2011).19
Figure 9: Variable-Pitch Quadrotor Performing 180 degree

Flip (From Cutler and How 2012).20
Figure 10: Trajectory Following by Two Parrot AR Drone

Quadrotors (After Naval Postgraduate School

2013). ...21
Figure 11: Qball-X4 System Block Diagram (From Zhang and

Chamseddine 2012).23
Figure 12: Definition of Axis Systems.25
Figure 13: Sign Convention for Rotor Spin Direction.29
Figure 14: Calculating the Moments of inertia about the

body axes ..33
Figure 15: Overview of 6-DOF Simulation Model.43
Figure 16: Waypoint Management State Machine Block.46
Figure 17: Process Logic in Waypoint Management State

Machine. ...47
Figure 18: Schematic Diagram of the Default Position

Controllers.48
Figure 19: Actual Implementation of Outer Loop Position

Control. ...48
Figure 20: Actual Implementation of Inner Loop Pitch and

Roll Control.49
Figure 21: Schematic Diagram of the Default Heading

Controller.50

 xii

Figure 22: Actual Implementation of Outer Loop Heading
Controller.50

Figure 23: Schematic Diagram of the Default Altitude
Controller.51

Figure 24: Actual Implementation of Outer Loop Altitude
Controller.52

Figure 25: Proposed Roll and Pitch PID Controller.53
Figure 26: Outer Loop Position-to-Velocity and Velocity-to-

Roll/Pitch PID Controller.54
Figure 27: Inner Loop Pitch and Roll PID Controller.55
Figure 28: Control Signal Mixing Module.56
Figure 29: PWM to Rotor Force and Torque Module.57
Figure 30: Qball-X4 6DOF Block.58
Figure 31: 3D Animation of Quadrotor Performing a Square

Trajectory Flight Profile.59
Figure 32: Geometric Dilution of Precision (A)

Triangulation (B) Triangulation with error (C)

Triangulation with error and poor GDOP (From

Xoneca 2013).62
Figure 33: Procedure for Determining Position Accuracy of

the Optitrack System.66
Figure 34: 3D projection of the ASEIL setup (a), and its

bird-eye’s view (b).66
Figure 35: Example of the Camera Setup Inside a Room as

Viewed from Above.68
Figure 36: Isolines of DOP for a 10-camera ASEIL Setup at

0.5m, 1.2m, 1.8m and 2.5m Altitude.69
Figure 37: Isolines of DOP for a 10-camera ASEIL Setup at -

1m and -2m Altitude.70
Figure 38: Isolines of DOP at Different Heights for the

Case of Two Optitrack Cameras at Each ASEIL

Camera Location.71
Figure 39: 3D Trajectory of Two Qballs Exchanging Places

while Avoiding a Spherical Obstacle Placed at

the Center.72
Figure 40: Change in DOP for a Qball-X4 Flying the 3D

Trajectory (see Figure 39) in an Ideal

(Unlimited FOV) 10-camera ASEIL Setup.73
Figure 41: Isolines of DOP at Different Heights for a 10-

camera ASEIL Setup Accounting for the Cameras'

FOV. ...74
Figure 42: Isolines of Visible Cameras at Different Heights

for a 10-camera ASEIL Setup.74
Figure 43: Change in DOP for a Qball-X4 Flying the 3D

Trajectory (see Figure 39) in the Current 10-

camera ASEIL Setup.75

 xiii

Figure 44: Isolines of DOP at Different Heights if the
Number of Cameras is Doubled.76

Figure 45: Isolines of DOP at Different Heights if the FOV
Angle is Doubled.76

Figure 46: Number of Cameras Visible at Different Locations
when the FOV Angle is Doubled.77

Figure 47: Change in DOP for a Qball-X4Quadrotor Flying a
Typical 3D Trajectory in a Hypothetical 20-

camera Doubled FOV ASEIL Setup.78
Figure 48: Plan View of the Workspace with the Locations of

the Two Test Setups Marked.79
Figure 49: (a) Measured versus True Range (Test 1), (b)

Optitrack Measurement Errors (Test 1).79
Figure 50: (a) Measured versus True range (Test 2), (b)

Optitrack Measurement Errors (Test 2).80
Figure 51: Illustration of Test Scenarios.84
Figure 52: Plot of Actual and Simulated Ground Track.86
Figure 53: Plot of Actual and Simulated X and Z Position. ...86
Figure 54: Plot of Actual and Simulated Heights.87
Figure 55: Plot of Actual and Simulated Accelerations.87
Figure 56: Plot of Actual and Simulated Angular Rates.88
Figure 57: Plot of Actual and Simulated Euler Angles.88
Figure 58: Plot of Actual and Simulated Incremental

Heights. ...89
Figure 59: Optitrack Altitude After Corrected with

Appropriate Mapping Function.91
Figure 60: Plot of Actual and Simulated Heading.92
Figure 61: Plots of Ground Track with Variation in vlimits. .93
Figure 62: Proposed Controller Architecture (After O.

Yakimenko 2010).97
Figure 63: Excluding Time and Converting Back to Time (O.

Yakimenko 2001).107
Figure 64: Obstacle Collision Avoidance Mission Scenario. ..111
Figure 65: Overview of the Optimal Trajectory Generator. ...112
Figure 66: Implementation of IDVD Optimization Algorithms. .113
Figure 67: Discrepancies Block.114
Figure 68: Modification to Controls Module to Include

Optimal Trajectory Generator and Follower115
Figure 69: Ground Track (Direct Method)116
Figure 70: Position Control (Direct Method)116
Figure 71: Height Performance (Direct Method)117
Figure 72: Attitude Control (Direct Method)118
Figure 73: 3D Trajectory (Direct Method)119
Figure 74: Laboratory Layout.125
Figure 75: HiQ-embedded Avionics Data Acquisition Card.128
Figure 76: Natural Point Optitrack Cameras(Model V100:R2). .129

 xiv

Figure 77: Dimensions of Qball-X4 and its Onboard
Components.131

Figure 78: (a) Calibration Wand (b) Calibration Square.132
Figure 79: Orientation of Calibration Square in Workspace. .133

 xv

LIST OF TABLES

Table 1: Angles, Angular Rates and Moments.27
Table 2: Position Variables.28
Table 3: Velocity and Acceleration Variables.28
Table 4: System Parameters.42
Table 5: Modules and Their Descriptions.44
Table 6: Location of the Optitrack Cameras in ASEIL Lab. ..67
Table 7: Setup Size and Capture Volume for Various Camera

Packages. ..67
Table 8: List of Saturation Limits and Gains Values.85

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ABC Aircraft Body Coordinates

ASEIL Autonomous Systems Engineering and Integration

 Laboratory

COTS Commercial-Off-the-Shelf

DAC Data Acquisition Card

DCM Directional Cosine Matrix

EOD Explosive Ordnance Disposal

ESC Electronic Speed Controller

ENU East-North-Up

GPS Global Positioning System

IMU Inertial Measurement Unit

I/O Input/Output

IED Improvised Explosive Device

IDVD Inverse Dynamics In Virtual Domain

LTP Local Tangent Plane

MAV Micro Air Vehicles

MOI Moments Of Inertia

NLP Nonlinear Programming

ODE Ordinary Differential Equation

PID Proportional Integral Derivative

PWM Pulse Width Modulation

QuarC Quanser Real-time Control

RC Remote Controlled

RPV Remotely Piloted Vehicles

SLAM Simultaneous Localization and Mapping

UAV Unmanned Air Vehicle

USB Universal Serial Bus

VTOL Vertical Takeoff and Landing

6DOF Six Degrees-0f-Freedom

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

To find what you seek in the road of life, the best

proverb of all is that which says:

"Leave no stone unturned.”

- Henry David Thoreau

Looking back on my experience as a master’s candidate,

only now do I realize that it is more like a journey than

the end result. In that respect, I feel an even greater

sense of achievement and growth than I do for the results

in this thesis. I owe this accomplishment to the fact that

I had an extraordinary thesis advisor, Prof Oleg Yakimenko

and continuous strong support from Prof Issac Kaminer and

Prof Vladimir Dobrokhodov. Prof Oleg Yakimenko, your

tireless effort and attention to details inspired me and

gave me direction.

I would like to thank Prof Isaac Kaminer for his

patience and guidance. Special thanks to Prof Vladimir

Dobrokhodov for putting his best effort in teaching me in

the area of controls engineering.

Appreciation is also extended to lab technicians Juan

Gonzales and Tommy Pierce for their technical support

during the course of my studies and to Cameron Fulford for

providing valuable information on the Quanser Qball-X4.

Last but not least, I want to thank my parents for

their love and support. Without them, I could never have

accomplished so much.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Recent advances in miniature technology have brought a

global spotlight on the development of Unmanned Aerial

Vehicles (UAVs), also commonly known as drones or remotely

piloted vehicles (RPVs). A UAV is defined as being capable

of controlled, sustained level flight and powered by a jet

or reciprocating engine driving a propeller. Electric,

battery or fuel-cell powered motors are becoming usual on

micro- and mini-UAVs (Kansas State University 2012).

UAVs are mostly assigned to dull, dirty and dangerous

missions, therefore preventing the exposure of humans to

uncertain or hostile environments that can potentially pose

a danger to the lives of operators. For instance,

Honeywell's T-Hawk RQ-16, an autonomous micro air vehicle

(MAV) with hover and stare capabilities had been deployed

in Afghanistan to assist ground troops in counter

improvised explosive devices (IEDs) activities, as well as

in combat deployment in Iraq as Explosive Ordnance Disposal

(EOD) UAVs (Croft 2010). The MAV also demonstrated its role

in civilian applications when it was used to conduct

surveillance of the damaged Fukushima Dai-Ichi nuclear

power station in 2011 (Net Resources International 2012).

These are just a few of the many examples of what UAVs are

capable of doing.

Among UAVs, those with rotary-wing configurations have

advantages over small fixed-wing UAVs since they can hover

in place and are more maneuverable, and they can be

launched by an operator staying behind cover while small

 2

fixed-wing drones have to be hand-launched with the

operator either standing or running. Thus, rotorcrafts can

be deployed in a much wider range of scenarios.

Among the different types of rotorcrafts, quadrotors

have been particularly popular in the research field since

early 2000s. There have been many publications [4-9] in

recent years describing the dynamics and controls of

quadrotors. Quadrotors are mechanically simple and can be

controlled only by changing the rotational speed of the

four rotors. They are highly agile, but the dynamics of the

quadrotors can make them difficult to control; thus

electronic stability augmentation is usually required for

stable flight (Hanford, Long and Horn 2005).

Direct methods for real-time trajectory generation and

trajectory following for UAVs are crucial for time-

critical, collision-free flight during a mission with a

single UAV or cooperative control of multiple UAVs. Real-

time trajectory generation and following are motivated by

applications of precision control. While computing optimal

trajectories can be a complicated matter, there are many

situations for which nothing less will solve the problem.

This is evident during obstacle avoidance in close

proximity and during formation flight by a swarm of UAVs.

Motivated by these challenges, the objective of this

thesis is comprised of two parts. First, the development of

a six degrees of freedom (6DOF) model with animation for

visualization of a commercial-off-the-shelf (COTS)

quadrotor in the Simulink environment is explored. This

allows testing of algorithms on the simulation model prior

to implementation, testing and verification on the actual

 3

platform itself. Second, this thesis examines the

implementation of the direct method of calculus of

variations exploiting the inverse dynamics of the quadrotor

in virtual domain (IDVD) for optimal trajectory generation

and employing a nonlinear attitude tracking controller for

trajectory following. These algorithms are verified through

a collision avoidance mission scenario.

B. WHY USE QUADROTORS?

1. ADVANTAGES

There are several advantages associated with the use

of quadrotors compared to small fixed-wing UAVs. A few of

the advantages are listed here.

Hover-Capable. Unlike conventional fixed-wing UAVs,

quadrotors have the ability to hover in place over an

extended duration. This gives quadrotors an advantage over

fixed-wing UAVs when a mission requires persistent

monitoring of a target. The ability to hover allows the

vehicle to vertically takeoff and land (VTOL), thus

minimizing the footprint needed to launch and land the

vehicle and preventing exposure of human operators to

possible dangers. Use of VTOL-capable UAVs also eliminates

the need for any launch and recovery equipment, thus

simplifying the logistics required for operating such

systems.

Highly Maneuverable. Quadrotors are highly agile. They

can execute sharp turns almost instantaneously compared to

fixed-wing UAVs, which have a much larger turning radius.

Quadrotors are also better suited to operating in indoor

 4

environments where room for maneuvering can be very

restrictive.

Small Size. Current miniature technology facilitates

the construction of micro-size quadrotors. This allows them

to be easily transported and deployed. Being small in size

also means that they can easily fit through tight windows

and doorways. The survivability of such vehicles is also

increased since they are less likely to be detected by

enemy forces when deployed in tactical missions.

Mechanically Simple. Unlike conventional helicopters,

quadrotors do not require mechanically complicated

variable-pitch mechanisms for their rotors. Instead, they

generally employ symmetrically pitched blades. Therefore,

they only have a minimum number of moving parts.

Maneuvering of the vehicle is accomplished merely by

changing the rotational speed of the rotors.

2. DISADVANTAGES

Like all systems, quadrotors also have their

disadvantages. Some of the disadvantages are listed here.

Low Endurance. Fixed-wing UAVs leverage the air

flowing across the wings to generate aerodynamic lift,

while quadrotors have to carry their own weight via the

thrust generated by the rotors. Thus, quadrotors consume

more power to stay aloft than their fixed-wing UAV

counterparts. With the current level in battery technology,

the maximum endurance of quadrotors is typically less than

an hour.

 5

Limited Payload. Quadrotors generally have payload

restrictions which limit the size and the number of sensors

they can carry onboard.

C. THESIS OUTLINE

This section presents the outline for this thesis.

Chapter I includes the background information and

motivation for this thesis.

Chapter II provides the literature review, and

describes several direct and indirect methods in optimal

control theory. Several related projects by universities

are also described in this chapter.

Chapter III describes the modeling of the quadrotor's

dynamics. This involves deriving the equations of motion

for the development of a complete 6DOF simulation model.

Chapter IV describes the implementation of the 6DOF

simulation model in Simulink and its interface with the

controllers used for controlling the quadrotor (Qball-X4)

used in the work of this thesis.

Chapter V provides an analysis of the dilution of

precision at different locations in the ASEIL laboratory

used for conducting the experiments.

Chapter VI compares the results from the simulation

model to the actual flight data.

Chapter 0 introduces the direct method of calculus of

variations exploiting IDVD for optimal trajectory

generation and trajectory following.

 6

Chapter VIII demonstrates the application of the IDVD

method in the 6DOF simulation model through a collision

avoidance scenario and presents the results.

Chapter IX highlights the conclusions drawn from the

research and recommendations for future work.

 7

II. LITERATURE REVIEW AND RECENT WORKS

A. LITERATURE REVIEW

In recent years, many researchers have addressed the

control problem associated with quadrotors [4-19]. Typical

control of quadrotors includes attitude stabilization and

movement from one pose (position and attitude) to another.

Dynamic modeling of quadrotors has been performed by

many researchers [20-23]. Dynamic modeling of Draganflyer

XP, a commercial quadrotor, was proposed by Bradford et al.

(Bradford, Nelson and Palm 2010). Bristeau et al. published

a paper describing the navigation and control technology

inside the AR.Drone quadrotor (Bristeau, et al. 2011).

Several researchers have also used the Qball-X4 quadrotor

as the testbed for their algorithms [24,25].

Proportional, Integral and Derivative (PID) control, a

technique developed in the 1890s (Bennett 1993), for

controlling a quadrotor were studied by Szafranski and

Czyba (Szafranski and Czyba 2011), Bouabdallah et al.

(Bouabdallah, Noth and Siegwart 2004) and Salih et al.

(Salih, et al. 2010). Nonlinear control problems for

hovering quadrotors such as feedback linearization control

and backstepping control laws were investigated by Altug et

al. (Altug, Ostrowski and Mahony 2002) and Madani and

Benallegue (Madani and Benallegue 2007). Recently in 2012,

Serirojanakul (Serirojanakul 2012) suggested using state

feedback linear parameter-varying (LPV) method for optimal

control of a quadrotor. The nonlinear model of the

quadrotor is first transformed into a linear model

subjected to time-varying parameters; then the composite

 8

quadratic Lyapunov function and quadratic cost functions

are used to find the optimal state feedback gain.

Stability of an inherently instable quadrotor is

always a concern to researchers. A hybrid backstepping

control and the Frenet-Serret theory used for attitude

stabilization was proposed by Colorado and Barrientos

(Colorado and Barrientos 2010) while Coza (Coza 2006)

implemented a robust adaptive-fuzzy control method to

stabilize a quadrotor. Shepherd and Tumer (Shepherd and

Tumer 2010)used a hierarchical neuro-controller to

stabilize flight of a micro quadrotor in the presence of

five times more sensor noise and eight times more actuator

noise compared to the PID controller.

There is a growing interest in UAVs acquiring an

increased level of autonomy as more complex mission

scenarios are envisioned (Office of the Secretary of

Defense 2005). This interest has inspired many researchers

to develop algorithms for the optimal control of quadrotors

in a nondeterministic environment. The Linear Quadratic

Regulator (LQR) is one type of optimal control technique

that constructs a control law in order to minimize a cost

function in which the required state feedback matrix must

be known. LQR is applied to the quadrotor by casting the

differential equations describing the model into state-

space form, transforming all the differential equations

into a first order system (Nuchkrua and Parnichkun 2012).

The nonlinear matrix algebraic Riccati equation is solved

for obtaining optimal feedback gain matrices. The

disadvantage of those methods is the complexity in

computing the matrix algebra in a digital computer

 9

processor for real-time applications. As such, researchers

have developed techniques to overcome this difficulty.

Yakimenko developed algorithms using the direct method of

calculus of variations exploiting the inverse dynamics in

virtual domain that are capable of generating near optimal

trajectories in real-time [11,27-28]. Cowling and Yakimenko

(Cowling, Yakimenko, et al. 2010) tested this method on an

autonomous quadrotor. Hehn and D'Andrea (Hehn and D'Andrea

2012) also developed algorithms for real-time trajectory

generation for interception maneuvers with quadrotors.

Mellinger and Kumar (Mellinger and Kumar 2011) developed an

algorithm that enables the real-time generation of optimal

trajectories through a sequence of 3D positions and yaw

angles for an aggressive maneuvering quadrotor. Their

optimization approach minimizes the cost functional derived

from the square of the norm of the snap (fourth derivative

of position).

At this point, it is convenient to review some of the

optimal control methods, generally classified as either a

direct or indirect method. Researchers who focus on

indirect methods are largely interested in differential

equation theory while researchers who focus on direct

methods are more interested in optimization techniques (Rao

2009). This difference in methods will be discussed in the

next section.

B. BACKGROUND IN OPTIMAL CONTROL

Finding the best way for a quadrotor to get from one

place to another can be described as an optimal control

problem, while optimal control problems are generally

nonlinear and, therefore, do not have analytic solutions.

 10

It is necessary to employ numerical methods to solve for

optimal control problems. When describing methods for

solving optimal control problems, a technique is often

classified as either a direct or an indirect method. In the

early years of optimal control (circa 1950s to 1980s) the

favored approach for solving optimal control problems was

that of indirect methods. However, the disadvantage

associated with indirect methods is that the boundary-value

problem is often extremely difficult to solve. In recent

decades, direct methods are becoming more popular. The

nonlinear programming (NLP) problems arising from direct

methods are usually easier to solve compared to boundary-

value problems. The approach used by direct and indirect

methods is described in Figure 1.

Figure 1: Approach in Direct and Indirect Methods (From Rao 2012).

It should be noted that direct methods are the more

practical ones for real-time applications since indirect

methods generally take impractically long to find a valid

solution if that is even possible.

C. INDIRECT METHODS

Indirect methods seek a solution to the (closed system

of) necessary conditions of optimality. Discretization of

 11

the control profile is not needed, but it requires a guess

on the optimal solution structure which is often non-

intuitive. It is necessary to derive the adjoint equations,

control equations and all the transversality conditions

explicitly. Thus, solving optimal control problems using

indirect methods becomes a root-finding problem. The

optimality conditions are also often not trivial to

formulate. Examples of indirect methods include the

gradient method and the multiple shooting method, which are

discussed in the following sections.

1. Gradient Method

The gradient method to solve for optimal control

problems was first introduced by Lasdon et al. (Lasdon,

Mitter and Waren 1967). The search directions used in this

method are generated from the past and present values of

the objective and its gradient. Iterations using linear

minimization are always in the direction of descent; thus

this method tends to converge even from poor approximations

to the minimum. The advantage of the gradient method is

that each iteration is inexpensive and does not require

second derivatives; however, this method is often slow in

attaining convergence and is scaling dependent, such that

the number of iterations largely depends on the scale of

the problem. The gradient method also cannot solve for non-

differentiable problems; however, there are various

enhancements to the gradient method to address these

drawbacks. To improve convergence, techniques such as

variable metric methods (Turner and Huntley 1980),

conjugate gradient methods (Lasdon, Mitter and Waren 1967)

and accelerated gradient methods (Cotter, et al. 2011) were

 12

used. To overcome non-differentiable or constrained

problems, sub-gradient methods (Shor 1985), proximal

gradient methods (Chen and Ozdaglar 2012), smoothing

methods (Chen, Nashed and Qi 2000) and cutting-plane

methods (Elhedhli, Goffin and Vial 2009) were also used.

2. Multiple Shooting Method

The multiple shooting method has proved to be an

effective tool in solving highly nonlinear multi-point

boundary value problems. This method is described by, for

example, Stoer and Bulirsch (Stoer and Bulirsch 1980).

Shooting refers to a strategy for finding unknown

parameters, primarily the initial values of variables. A

trial shot is made at solving the necessary conditions,

primarily the multi-point boundary conditions, by

integrating the equations with guessed parameters. Then,

the shot is adjusted iteratively by varying the parameters,

until the adjusted shot satisfies the necessary conditions.

The indirect shooting method is depicted using an analogous

illustration of a cannon shooting at a target in Figure 2.

 13

Figure 2: Schematic of Indirect Shooting Method Using the Analogy of

a Cannon Firing a Cannonball to Strike a Target (From Rao 2009).

The major advantage of the multiple shooting method is

its potential to obtain a highly accurate solution through

the verification of the optimality conditions. The main

drawbacks include the necessity to derive the necessary

conditions (e.g., the adjoint differential equations),

guess the optimal switching structure and make an

appropriate initial estimate of the unknown state and

adjoint variables in order to start the iteration process

(Stryk 1996).

D. DIRECT METHODS

In direct methods, the optimal control problem is

first discretized. Then NLP techniques are applied to the

resulting finite-dimensional optimization problem. The

state and control can be approximated using suitable

function approximations, such as a polynomial approximation

or piecewise constant parameterization. This leads to a

finite number of unknown coefficients that are defined by

the variation principles, boundary-value conditions and

collocation requirements, which need to be determined.

 14

The advantage of direct methods is that a priori

knowledge of the solution structure is not required;

however, they offer only an approximate solution due to

control parameterization. Direct methods can generally be

classified according to Figure 3.

Figure 3: Different Types of Direct Methods (From Rao 2009).

1. Direct Transcription Method

In a direct transcription method, the dynamic system

is transcribed into a problem with a finite set of

variables. The finite dimensional problem is then solved

using a parameter optimization method (i.e., the NLP sub-

problem). The accuracy of the finite dimensional problem is

then assessed, and transcription and optimization steps are

repeated, if necessary. This method is described by

Engelsone (Engelsone 2006) and Betts (J. T. Betts 2001).

 15

2. Inverse Dynamics Approach

Inverse dynamics is a design technique whereby the set

of existing or undesirable dynamics of a system are

eliminated and replaced by a designer selected set of

desired dynamics. An illustration of this concept is given

in Figure 4.

Figure 4: Illustration of the Inverse Dynamics Approach (From Devasia

n.d.).

An advantage of using the inverse dynamics-based

dynamic programming method over conventional dynamic

programming methods is the elimination of the interpolation

requirement for systems. This requirement can degenerate

the accuracy due to errors associated to the interpolation

process. This method is used by Chen and Tsong (Chen and

Tsong 1998) to solve for optimal control problems of linear

systems.

3. Pseudospectral Methods

In pseudospectral methods (PM), the continuous

functions are approximated at a set of carefully selected

quadrature nodes. The quadrature nodes are determined by

the corresponding orthogonal polynomial basis used for the

 16

approximation. Theoretically, quadrature nodes are capable

of attaining high accuracy with a small number of points.

The main appeal of the PM is its exponential (or

spectral) rate of convergence, which is faster than any

polynomial rate, and the possibility to achieve good

accuracy with relatively coarse grids.

These methods include forms of the collocation at the

Legendre-Gauss-Lobatto (LGL) points (Gong, Kang and Ross

2006), collocation at Chebyshev-Gauss-Lobatto (CGL) points

(Elnagar and Kazemi 1998), Legendre-Gauss points (LG)

(Benson, et al. 2006) and collocation at Legendre-Gauss-

Radau points (LGR) (Garg, et al. 2011). Two PM methods

using the LG and LGR collocation aim at solving infinite-

horizon (i.e., the final time lies in an infinite duration

from the actual horizon at t  ) optimal control problems

were suggested by Garg et al. (Garg, Hager and Rao 2011)

E. RELATED WORK

In recent years, many universities have been using

quadrotors as the testbed for their new ideas in a number

of fields, including flight control, navigation and real-

time systems. The cross-fertilization of ideas and

approaches that these projects generate can bring

considerable benefits.

1. University of Pennsylvania

Perhaps the most astounding demonstrations of

quadrotors come from the General Robotics, Automation,

Sensing and Perception (GRASP) at the University of

Pennsylvania (Upenn). Videos show quadrotors hovering in

mid-air, flying in formation before autonomously performing

 17

complex flying routines like flips, darting through hoops

thrown into the air and organizing themselves to fly

through windows as a group. A latest video also

demonstrated a team of quadrotors playing musical

instruments.

An external localization system (VICON) comprised of

20 infrared sensing cameras and onboard inertia measurement

unit was used to facilitate these high precision maneuvers.

Figure 5: Composite Image of a Single Quadrotor Flying through a

Thrown Circular Hoop (From Mellinger and Kumar 2011).

Figure 6: Composite Image of a Single Quadrotor Quickly Flying

through Three Static Circular Hoops (From Mellinger and Kumar 2011).

 18

2. Stanford University

Stanford University developed its own Testbed of

Autonomous Rotorcraft for Multi-Agent Control, known as

STARMAC. The STARMAC quadrotor is shown performing an

autonomous hover at a waypoint in Figure 7.

Figure 7: STARMAC Quadrotor Developed by Stanford University (From

Hoffmann and Waslander 2008).

The STARMAC was also used as the testbed for an

autonomous trajectory tracking algorithm through cluttered

environments. The tracking controller decouples the path

planning from the update rate of the control input. By

accepting as inputs a path of waypoints and desired

velocities, the control input can be updated frequently to

accurately track the desired path, while the path planning

occurs as a separate process on a slower timescale.

The trajectory tracking algorithms are space-indexed

rather than time-indexed, enforcing the requirement that

the predetermined obstacle-free path be tracked without

 19

deviation. The STARMAC platform is capable of path tracking

with an indoor accuracy of 10 cm and an outdoor accuracy of

50 cm (Hoffmann and Waslander 2008).

3. Massachusetts Institute of Technology

A variable-pitch quadrotor capable of aggressive

aerobatic maneuvers (Figures 8 and 9) was developed by

Massachusetts Institute of Technology (MIT). In comparison

to typical fixed-pitch quadrotors, their variable-pitch

quadrotor has a higher control bandwidth. An optimal

algorithm based on Rapidly Expanding Random Trees (RRT*)

that offers asymptotical optimality guarantees for

trajectories while giving probabilistic completeness was

tested on the variable-pitch quadrotor, together with a

control law that tracks the reference position trajectories

that are smooth through the third derivative (Chaudhari

2011).

Figure 8: Variable-Pitch Quadrotor Developed by MIT (From Cutler

2011).

 20

Figure 9: Variable-Pitch Quadrotor Performing 180 degree Flip (From

Cutler and How 2012).

4. Naval Postgraduate School

At the Naval Postgraduate School, two AR Drone

quadrotors were tasked to follow off-line computed

predefined paths, while coordinating their position and

attitude according to the scenario requirements. The path

tracking controller makes each quadrotor converge and

follow its own path independent of the temporal assignments

of the scenario (Figure 10). The algorithm relies on the

implementation of a virtual vehicle running along the path,

synchronizing its position along the path as well as its

attitude. Heading can also be controlled independently

(Naval Postgraduate School 2013). Localization was also

achieved through the external Vicon Motion Tracking system.

 21

Figure 10: Trajectory Following by Two Parrot AR Drone Quadrotors

(After Naval Postgraduate School 2013).

5. Cranfield University

Cranfield University employed the Model-Based

Predictive Control (MBPC) technique for combined trajectory

planning and following for a quadrotor (Cowling, Whidborne

and Cooke 2006). MBPC is a process of repeated

optimizations, at every time step, over a fixed finite time

horizon to determine the control action, while a control

law is determined on-line allowing for improved handling of

constraints imposed on the state, inputs and outputs. The

real-time trajectory planning allows continual adaptation

to a changing environment.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. MODELING OF QUADROTOR DYNAMICS AND CONTROL

A. OVERVIEW

The Qball-X4 is a COTS quadrotor helicopter developed

by Quanser Consulting, Inc. It is designed mainly for

academic research purposes, but it has the potential for

commercial applications as well. It is equipped with four

standard remotely controlled (RC) motors and electronic

speed controllers (ESC), fitted with 10-inch propellers.

The quadrotor is enclosed within a protective carbon fiber

cage to ensure safe operation to the vehicle and protection

to the personnel working with the vehicle in an indoor

environment. The Qball-X4 employs fixed-pitched blades. It

is equipped with a Quanser Embedded Control Module (QECM),

which is comprised of the HiQ data acquisition card (DAQ)

and a QuaRC-powered Gumstix embedded computer. A block

diagram of the Qball-X4 system is shown in Figure 11.

Figure 11: Qball-X4 System Block Diagram (From Zhang and Chamseddine

2012).

This chapter presents the modeling of the dynamics and

controller design for the quadrotor. The equations of

motion derived are used to construct the 6DOF simulation

model, which is the topic of Chapter IV .The mass property

 24

and thrust characteristics of the rotors were obtained

through theoretical calculations and experiments. Several

simplifying assumptions were also made.

B. DEFINITION OF AXIS SYSTEMS

Two coordinate systems were adopted for the

development of the equations of motion and controller

design for the quadrotor, namely the Local Tangent Plane

(LTP), which in this case is also the Earth Inertial Frame

(East-North-Up, ENU frame) and the Aircraft Body

Coordinates (ABC) frame. The ENU frame assumes that the

Earth is flat, with the x -axis pointing North, the y -axis

pointing West and z -axis pointing Up. The flat Earth

assumption is valid since the operating workspace is small

 5.5 3.5 m m

and the duration of the flight is short, i.e.,

 20min . The reference origin is taken to be at the center

of the workspace.

The Optitrack motion capture system, however, adopted

a different coordinate frame as shown in Figure 12, where

the x -axis is pointing East, y -axis pointing Up and z -axis

pointing South. We will call this frame the Optitrack

coordinate frame to avoid confusion. The ENU frame can be

readily transformed to the Optitrack coordinate frame using

an appropriate transformation matrix which will be given in

Section D.

 25

Figure 12: Definition of Axis Systems.

C. ATTITUDE REPRESENTATION

The sequence of rotation conventionally used to

describe the instantaneous attitude of the aircraft with

respect to the ENU frame is as follows, with the positive

Euler angles (Yaw  , Pitch  and Roll ) determined using

the Right-Hand Rule:

 Rotate about the body z axis, front beam points left

(positive yaw ).

 Rotate about the new body y  axis, front beam points

down (positive pitch).

 Rotate about the new body x axis, right beam points

down (positive roll ).

It is also noted that from the first rotation step above,

the yaw angle is assumed to be the same as the heading

angle used for navigation purposes.

 26

D. COORDINATE TRANSFORMATIONS

1. ENU to ABC Transformation

 The complete transformation from the ENU frame to the

ABC frame is given by the following transformation matrix,

commonly referred to as the Directional Cosine Matrix (DCM)

or the B-matrix:

11 12 13

2 21 22 23

31 32 33

ENU ABC

b b b

B b b b

b b b

 
 
 
  

 (1)

where the elements are given by:

11

12

13

21

22

23

31

32

33

cos cos

cos sin

sin

cos sin sin sin θcos

cos cos sin sin θsin

sin cosθ

sin sin cos sin θcos

sin cos cos sin θsin

cos cos

b

b

b

b

b

b

b

b

b

 

 



   

   



   

   

 





 

  

 



 

  



Conversely, the rotational matrix from ABC frame to ENU

frame is given by the inverse of the above matrix, such

that
1

2ENU ABCB 

or 2ABC ENUB . Since the coordinate frames are

orthogonal,
1

2 2

T

ENU ABC ENU ABCB B  .

2. ENU to Optitrack Coordinates Transformation

The transformation matrix from ENU frame to the

Optitrack coordinates frame is given by:

 27

0 1 0

0 0 1

1 0 0
Optitrack ENU

X X

Y Y

Z Z

     
     
     

          

 (2)

E. AIRCRAFT VARIABLES

Table 1 toTable 3 list the aircraft variables used in

the equations of motion with the corresponding

nomenclature:

Table 1: Angles, Angular Rates and Moments.

Parameter Nomenclature

Roll Angle in ENU Frame 

Pitch Angle in ENU Frame 

Yaw Angle in ENU Frame 

Angular Rate along Body x axis p

Angular Rate along Body y  axis q

Angular Rate along Body z axis r

Rolling Moment L

Pitching Moment M

Yawing Moment N

 28

Table 2: Position Variables.

Parameter Nomenclature

North Position in ENU Frame X

West Position in ENU Frame Y

Up Position in ENU Frame Z

Table 3: Velocity and Acceleration Variables.

Parameter Nomenclature

Velocity North in ENU Frame X

Velocity West in ENU Frame Y

Velocity Up in ENU Frame Z

Forward Velocity along Body x axis u

Lateral Velocity along Body y  axis v

Upward Velocity along Body z axis w

Acceleration North in ENU Frame
xa

Acceleration West in ENU Frame
ya

Acceleration Up in ENU Frame
za

F. SIGN CONVENTION FOR PROPELLER ROTATION

The motors and propellers are configured in such a way

that the rear and front (1 and 2) motors spin counter-

clockwise, and the left and right (3 and 4) spin clockwise

as shown in Figure 13. Each motor is located at a distance l

 29

from the center of gravity (CG) of the quadrotor, and i

refers to the torque generated by the
thi rotor.

Figure 13: Sign Convention for Rotor Spin Direction.

G. ASSUMPTIONS

Several assumptions concerning the modeling of the

quadrotor have been made.

 Flat Earth approximation and non-rotating Earth

are assumed. These assumptions are valid since

the operating workspace is small and duration of

flight is short.

 Gravitational acceleration,
29.81 g ms , is

constant and directed along the negative z axis

of the ENU frame.

 The quadrotor design is symmetrical about the xz 

plane and yz  plane.

 The quadrotor body and rotor blades are treated

as rigid bodies.

 30

 Small angle approximation is used since the

quadrotor is maneuvering near to hovering

conditions.

 Aerodynamic drag is negligible since the speed is

low. The effects of wind, including the ground

and wall effects due to the reflected wind from

the spinning of the propellers are also

neglected.

H. EQUATIONS OF MOTION

This section describes the development of the 6DOF

nonlinear aircraft model for the quadrotor. The 6DOF

equations of motion are driven by forces and moments from

the thrust and torque contribution of the four rotors,

acting at the CG of the rigid aerial vehicle. Forces are

given the notation F . Rolling, pitching and yawing moments

have the notations L , M and N , respectively.

1. Thrust Forces

The thrust forces acting on the CG of the quadrotor

are given as:

In ABC frame,

1 2 3 4

0

0

Tx

ABC

T Ty

Tz T T T TABC

F

F F

F F F F F

   
    
   

        

 (3)

In ENU frame,

2 2

1 2 3 4

0 0

0 0

x

y

z

T

ENU

T T ABC ENU ABC ENU

T T T T totalT
ENU

F

F F B B

F F F F FF

     
            
            

 31

sin sin cos sin cos

sin cos cos sin sin

cos

total total

total total

total

F F

F F

F cos

    

    

 

 
   
 
  

 (4)

where TxF , TyF and TzF are the thrust forces acting in the

respective coordinate frames. The subscripts ENU and ABC

refer to the frame in which the thrust forces are acting.

 (1,2,3,4)TiF i 

is the thrust force generated by the

thi rotor.

2. Gravity

The forces due to gravity acting in the ENU frame are

given as:

0

0

Gx

ENU

G Gy

Gz ENU

F

F F

F mg

   
    
   

      

 (5)

where m is the mass of the quadrotor, and g

is the

gravitational acceleration.

3. Total Force

The total force acting on the CG of the quadrotor in

the ENU frame is given by the sum of the thrust and

gravitational forces, while neglecting drag forces.

ENU ENU

ENU T GF F F 

sin sin cos sin cos

sin cos cos sin sin

cos

total total

total total

total

F F

F F

F cos mg

    

    

 

 
   
 

  

 (6)

 32

4. Moments

Roll, pitch and yaw moments are induced by the

differential torque generated by the four rotors. To induce

a rolling moment, the rotational speeds of rotors 3 and 4

(refer to Figure 13) are varied. To induce a pitching

moment, the rotational speeds of rotors 1 and 2 are varied,

and finally the rotational speeds of all four rotors

contribute to yawing moment.

 Rolling moment:  3 4 3 4 T TL F F l    

Pitching moment:  3 4 1 2 T TM F F l     (7)

 Yawing moment:  3 4 1 2 T T T TN F F F F d   

where d is the force-to-moment scaling factor calculated to

be 4 Nm, and l is the length of the moment arm measured from

the rotor to the quadrotor's CG.

5. Moments of Inertia

The moment of inertia (MOI) about the body axes can be

calculated, assuming the mass contributions mainly come

from the central airframe body and the four motors of the

quadrotor, and that they assume the shape of solid

cylinders as shown in Figure 14.

 33

Figure 14: Calculating the Moments of inertia about the body axes

2 2 2 2
2

2 2 2 2

2
2

2
2 6 4 12

2
2 6 4 12

4
2

xx

yy

zz

mr mh MR MH
J ml

mr mh MR MH
J ml

MR
J ml

    

    

 

 (8)

The computed MOIs about the body axes are given as:

2

2

2

0.03

0.03

0.04

xx

yy

zz

J kgm

J kgm

J kgm







The cross-products of the moments of inertia are 0 since

the quadrotor is assumed to be symmetrical about the xz 

plane and yz  plane.

 34

6. Kinematic Equations

The kinematic equations for the quadrotor are shown in

Eqn.(9), and the simplified form assuming small angle

approximations is shown in Eqn.(10).

0 sin

cos sin

sin

1

0 cos

0 cos cosr

p

q 



 

  

  

    
         
        



 

 (9)

Close to hovering conditions, the small angle approximation

is valid; the above matrix is close to the identity matrix,

and therefore the angular velocities in the body frame can

be seen as angular velocities in the inertial frame.

1 0 0

0 1 0

0 0 1

p

q

r







    
         
         

 (10)

where , , p q r are the body angular rates. Additionally,

, ,    and , ,   

are the Euler angles and Euler angular

rates, respectively.

7. Dynamic Equations

The dynamic equations for the quadrotor are given in

Eqn.(11).

 

 

 

zz yy

xx xx

xx zz

yy yy

yy xx

zz zz

L qr
J J

J J
p

M pr
q J J

J J
r

N pq
J J

J J

   
   

    
           
         

   
      

 (11)

 35

where u , v ,w and u , v ,w are the velocities along the body

axes and their derivatives, and p , q , r and p , q , r are the

angular rates in the body frame and their derivatives.

8. Final Equations of Motion

The complete 6DOF nonlinear aircraft model for the

quadrotor can be summarized as:

Force Equations:

sin sin cos sin cos
1

sin cos cos sin sin

cos

x total total

y total total

z total

a F F

a F F
m

a F cos mg

    

    

 

   
     
   

      

 (12)

Moments Equations:

 

 

 

3 4

1 2

3 4 1 2

T T

T T

T T T T

L F F l

M F F l

N F F F F d

  
      
       

 (13)

Dynamics Equations:

 

 

 

 
 

 
 

 
 

3 4

1 2

3 4 1 2

T T

zz yyzz yy
xx xxxx xx

T T

xx zz xx zz

yy yy yy yy

T T T T
yy xx yy xx

zz zz zz zz

F F l qrL qr
J JJ J

J JJ J
p

F F lM pr pr
q J J J J

J J J J
r

N pq F F F F d pq
J J J J

J J J J

    
      

                                       
        









(14)

 36

Kinematic Equations:

  

1 0 0

0 1 0

0 0 1

p

q small angles approximation

r







    
         
         

 (15)

I. LINEARIZED DYNAMICS MODEL

This section describes the linearized dynamic models

for use in the controller development.

1. State Vector Representation

The elements of the state vector X are comprised of

the components of positions, velocities, Euler angles and

angular rates.

T

X x y z x y z         
 (16)

The elements of the control vector U are comprised of

the following control inputs.

T

zU U U U U      (17)

where

 

 

   

1 2 3 4

3 4

1 2

3 4 1 2 3 4 1 2

z T T T T

T T

T T

T T T T

U F F F F

U F F l

U F F l

U F F F F d





    

   

 

 

       

where T iF

is the thrust force from

thi rotor, and d is the

force-to-moment scaling factor.

Taking the derivatives of Eqn.(15) and equate with Eqn.(14)

gives Eqn.(18).

 37

 
 

 
 

 
 

 

 

 

3 4

1 2

3 4 1 2

T T

zz yy zz yy

xx xx xx xx

T T

xx zz xx zz

yy yy yy yy

T T T T

yy xxyy xx

zz zzzz zz

F F l qr
J J J J

J J J J

F F l pr
J J J J

J J J J

F F F F d pq
J JJ J

J J

U

U

J J

U

















   
      

    
    

         
    

     
       

     

 (18)

By neglecting the gyroscopic and Coriolis-centripetal

effects, the simplified form of Eqn.(18) is shown in

Eqn.(19).

 

 

 3 4 1 2

3 4

1 2

T T

xx xx

T T

yy yy

T T T T

zzzz

F F l U

J J

F F l U

J J

UF F F F d

JJ













   
   
    
    

      
    

     
     

     

 (19)

2. Actuator Dynamics Model

The Qball-X4 uses outrunner brushless motors, and the

thrust TiF produced by the
thi rotor is related to the pulse

width modulation (PWM) input iu by the first-order linear

transfer function given as:

 , for 1,2,3,4T iiF K u i
s




 


 (20)

where iu

is the PWM (in percentage of a 20ms duty cycle)

input to the
thi rotor (i.e., idle throttle occurs when

0.05u  and maximum throttle occurs when 0.10u ). Here  is

the motor bandwidth   15 /rad s  , and K is a positive gain

  120 K N . Although  and K are theoretically the same

 38

for all four motors, this might not be true in practice.

Thus this can be one possible source of modeling

errors/uncertainties.

The variable  used to represent the actuator dynamics

is given as:

 , for 1,2,3,4i iu i
s





 


 (21)

Thus, Eqn.(20) can also be written as:

 i iF Kv (22)

3. Roll and Pitch Dynamics Models

Assuming that the rotations about the x and y axes are

decoupled, two propellers contribute to the motion in each

axis. The thrust generated by each rotor can be calculated

from Eqn.(20). The rotation around the center of gravity is

produced by the difference in the generated thrusts.

Roll Model:

 3 4T T

xx xx

UF F l

J J





  (23)

Pitch model:

 1 2T T

yy yy

F F l U

J J




  (24)

Putting Eqn.(20) through Eqn.(24) into state-space

format gives

3 4Δ rollu u u 

 39

0 1 0 0
0

0 0 0 0

0 0 0
0

1 0 0 0

Δ Δxxroll roll

Kl

Ju u

s ss

A B

 

 

  


 
        
        
           
        
        

         

 (25)

 1 2Δ pitchu u u 

0 1 0 0
0

0 0 0 0

0 0 0

1 0 0 0

Δ Δ

0

pitch pitcy hyB u u

s ss

Kl

JA

 

 

  






 
        
        
          
        
        

         

 (26)

The fourth state s 

and s  in Eqn.(25) and (26),

respectively, are added to the state vector to facilitate

the use of an integrator in the feedback structure.

4. Altitude Dynamics Model

The altitude of the quadrotor is affected by all four

propellers. The altitude model of the quadrotor can be

represented as:

 1 2 3 4 cos cos cos cosT T T T z
F F F F U

Z g g
m m

   
  

    (27)

where m is the total mass of the quadrotor, and Z is the

altitude. Assuming that the rotors produce approximately

the same thrust, the altitude dynamics model can be

represented in state-space form as shown in Eqn.(28).

 40

0 1 0 0
0 0

4
00 0 0

0
0 0 0

0 0
1 0 0 0

Z ZZ
K

Z Z gZ
A Bu um

s ss

  


 
          
           
              
                               

 (28)

5. Motion Dynamics Model

The motion of the quadrotor along the horizontal plane

of the ENU frame can be represented by Eqn.(29)

 

 

sin sin cos sin cos

sin cos cos sin sin

z

x

y z

U
aX m

a UY

m

    

    

 
   

     
      

  

 (29)

With small angle approximation, and assuming the rotors

produce approximately the same thrust, the motion dynamics

of the quadrotor can be represented as:

0 1 0 0
0

4
00 0 0

u

0 0 0
0

1 0 0 0

0 1 0 0

4
0 0 0

u

0 0 0

1 0 0 0

X XX
K

X XX
A B u

s ss

Y YY
K

Y YY
A B

ss

m

m



  




 


 
        
        
           
                         

 
     
            
               

0

0

0

u

s



   
   
   
   
   
   

 (30)

6. Yaw Dynamics Model

The relationship between the torque i generated by the

  1, 2, 3, 4thi i  rotor and the PWM input to each rotor iu can

be represented by Eqn.(31).

 41

 i y iawK u  (31)

where yawK is a positive gain  4 yawK Nm .

The motion in the yaw axis is caused by the difference

between the torque exerted by the two clockwise and two

counter-clockwise propellers. The yaw dynamics can be

written as:

  
3 4 1 2

3 4 1 2

Δ

Δ
yawT T T T

zz zz

u u u u u

KF F F F d
u

J J


  

  
 

 (32)

In state-space representation can be written as:

0
0 1

Δ Δ
0 0

yaw

zz

A B u K u

J

  

  

 
                     
       

  

 (33)

7. Control Mixer

Control mixing combines the outputs from the altitude,

roll, pitch and heading control channels to generate the

following command inputs to the rotors:

3

1

2

4

th

th

th

th

u

u

u

u

 

 

 

 

  

  

  

  



  

 

 

 





 (34)

where th ,  ,  and  are the output commands in PWM from

the altitude, roll, pitch and heading control channels,

respectively. The input commands to the individually

controlled rotor are 1u , 2u , 3u and 4u .

 42

J. SUMMARY OF SYSTEM PARAMETERS

The following system parameters shown in Table 4 were

obtained from experimental results (Quanser 2011).

Table 4: System Parameters.

Parameter Symbol Value

Thrust coefficient K 120 N

Actuator Bandwidth  15 rad/s

MOI about x-axis
xxJ 0.03 kgm

2

MOI about y-axis
yyJ 0.03 kgm

2

MOI about z-axis
zzJ 0.04 kgm

2

Total mass m 1.4 kg

Torque coefficient
yawK 4 Nm

Length of moment arm l 0.2 m

 43

IV. SIMULINK IMPLEMENTATION

A. OVERVIEW

The implementation of the 6DOF simulation model in

Simulink is described in this chapter. The default

controller provided by Quanser with the Qball-X4 is

illustrated. A new PID controller developed for each of the

control channels for basic navigation is also proposed.

B. OVERVIEW OF 6DOF SIMULATION MODEL

An overview of the 6DOF simulation model is shown in

Figure 15. It is comprised of five main modules and four

auxiliary ones.

Figure 15: Overview of 6-DOF Simulation Model.

6DOF ANIMATION MODEL

DETERMINE COMPUTER-IN-CONTROL
OR

PILOT-IN-CONTROL

COMMANDS FROM JOYSTICK

ENGINEERING ANALYSIS SCOPES

x
e

  

Qball Anim Model

rotor_thrust

rotor_torque

Qball 6DOF

Mode Control

Joystick Commands

-K-

euler_comp

XYZ

Engineering Analysis Scopes

x_pos_cmd

z_pos_cmd

heading_cmd

height_cmd

u_euler_cmd

throttle_cmd

Controller

u_euler_cmd

throttle_cmd

motor_outputs

Control signal mixing

x_pos_cmd

z_pos_cmd

heading_cmd

height_cmd

Commands

motor_outputs

rotor_thrust

rotor_torque

 PWM to rotor force and torque

Solver: ode1 (Euler)

Fixed-step size: 0.005

 44

The main modules are 1) Commands, 2) Controller, 3)

Control Signal Mixing, 4) PWM to Rotor Force and Torque and

5) Qball 6DOF subsystem blocks.

The auxiliary modules are 1) Mode Control, 2) Joystick

Commands, 3) Engineering Analysis Scopes and 4) Qball

Animation Model blocks.

The configuration parameters setting for the

simulation model was set to be similar to the actual Qball-

X4 controller model, which employs ODE1 (Euler) for the

solver with a step size of 0.005 sec (200 Hz).

A description of each module is provided in Table 5.

Table 5: Modules and Their Descriptions.

Block Name Function

Main Modules

Commands Consists of a waypoint management

module which provides the high-level

commands to the controller module.

Controller Consists of four control channels,

namely X position, Z position, Height

and Heading commands. Outputs

commands from each channel are in

PWM.

Control signal

mixing

Combines the commands from each

control channel and outputs PWM

commands to individual motor.

PWM to rotor force

and torque

Maps PWM inputs to corresponding

force and torque generated by each

motor.

Qball 6DOF Consists of the equations of motion

 45

of the Qball-X4 quadrotor to provide

the instantaneous states of the

aircraft.

Auxiliary Modules

Mode Control User-defined mode: Computer-In-

Control (CIC) or Pilot-In-Control

(PIC).

Joystick Commands Receives commands from manual

joystick.

Engineering Analysis

Scopes

Consists of various scopes to compare

feedbacks to commands for engineering

analysis purposes during simulation

run.

6DOF Animation Model Provides 3D animation of the

quadrotor during simulation run.

C. COMMANDS MODULE

The waypoint management state machine resides in the

Commands module. It handles the waypoint updates for the

quadrotor and reports on the current state of the aircraft.

The waypoint management state machine module is shown in

Figure 16.

 46

Figure 16: Waypoint Management State Machine Block.

The outputs from the Waypoint Management State Machine

are the position commands, altitude command, heading

command, the current flight state of the quadrotor and the

waypoint number.

The process logic within the state machine is

described in Figure 17.

X POSITION COMMAND

Z POSITION COMMAND

HEADING COMMAND

HEIGHT COMMAND OPTITRACK

 ------------>x
|
|
|
z

QBALL

 x
 |
 |
 |
 y <----------

4

height_cmd

3

heading_cmd

2

z_pos_cmd

1

x_pos_cmd

z_pos
-2 to 2 m

x_pos
-2 to 2 m

height

x

z

hdg

state

wp_num

Waypoint State Machine

WP number

pos_z_cmd

yaw_cmd

pos_x_cmd

0 to 2 m

0 = Initialize
1 = Takeoff

2 = GoTo WP
3 = Hover at Waypoint

4 = Continuous Hover at End WP

 47

State 0 (Initialize):

Height cmd = 0

Hdg cmd = current hdg

X pos cmd = 0

Z pos cmd = 0

State 1 (Take Off):

Height cmd = H_cmd(wp_index)

Hdg cmd = current hdg

X pos cmd = 0

Z pos cmd = 0

Time > 3 sec

Throttle > 0.1

State 2 (Go To Waypoint):

Height cmd = H_cmd(wp_index)

Hdg cmd = hdg_cmd(wp_index)

X pos cmd = Tx(wp_index)

Z pos cmd = Tz(wp_index)

Predetermined

waypoint, height &

heading commands

wp_index < last wp

State 4 (Continuous Hover):

Height cmd = H_cmd(end)

Hdg cmd = hdg_cmd(end)

X pos cmd = Tx(end)

Z pos cmd = Tz(end)

wp_index >= last wp

State 3 (Hover at Waypoint):

Height cmd = H_cmd(wp_index)

Hdg cmd = hdg_cmd(wp_index)

X pos cmd = Tx(wp_index)

Z pos cmd = Tz(wp_index)

Abs pos error < 0.1 m
Time > wp_wait_time

wp_index >= last wp

Figure 17: Process Logic in Waypoint Management State Machine.

D. DEFAULT CONTROLLER DESIGN

There are four decoupled control channels residing in

the controller module, namely the Position outer-loop

control, Attitude (Pitch and Yaw) inner-loop control,

Heading control and Altitude control. The position and

attitude controllers have very similar configurations since

the quadrotor is symmetrical about the xz  plane and yz 

plane.

1. Position Feedback Control

The schematic diagram of the default position

controller developed by Quanser is illustrated in Figure

 48

18, with the actual implementation shown in Figure 19 and

Figure 20.

Figure 18: Schematic Diagram of the Default Position Controllers.

Figure 19: Actual Implementation of Outer Loop Position Control.

 49

Figure 20: Actual Implementation of Inner Loop Pitch and Roll Control.

Velocities are estimated from the derivative of positions.

The position information is obtained from the Optitrack

system, while the roll and pitch attitude are computed from

the inertial measurement unit (IMU) sensor onboard the

Qball-X4.

2. Heading Feedback Control

The heading controller, which incorporates a yaw

damper, adopted a simpler architecture as shown in Figure

21. Heading control is performed as a separate process,

independent of the pitch and roll of the quadrotor. Figure

22 displays the actual implementation of the heading

controller in Simulink.

 50

Figure 21: Schematic Diagram of the Default Heading Controller.

Figure 22: Actual Implementation of Outer Loop Heading Controller.

3. Altitude Feedback Control

The schematic diagram of the altitude controller is

given in Figure 23. It has a sigmoid modifier block which

alters the altitude command so that it has a sigmoid

profile instead of a step profile. The sonar sensor at the

base of the quadrotor provides the altitude feedback. Gain

 51

scheduling was also implemented so that it uses a different

set of integrator gains during landing and takeoff. Figure

24 shows the actual implementation of the altitude

controller in Simulink.

Figure 23: Schematic Diagram of the Default Altitude Controller.

 52

Figure 24: Actual Implementation of Outer Loop Altitude Controller.

E. PID CONTROLLER DESIGN

It was realized that the default controller provides

only basic control to the quadrotor. To improve the flight

performance, a new PID controller for each of the control

channels was proposed. Its main advantages include having a

simple structure, as well as ease of use and tuning.

1. Proposed PID Controllers

The proposed control architecture (Figure 25) consists

of a Position-to-Velocity and Velocity-to-Roll outer-loop

PID controller and an inner-loop Roll PID controller for

the roll control channel. Similarly for the pitch control

channel, the proposed architecture consists of a Position-

 53

to-Velocity and Velocity-to-Pitch outer-loop PID controller

and an inner-loop Pitch PID controller.

Figure 25: Proposed Roll and Pitch PID Controller.

The actual implementation of the outer-loop Position-

to-Velocity and Velocity-to-Pitch/Roll PID controllers is

shown in Figure 26, and the inner-loop pitch/roll PID

controllers are shown in Figure 27.

 54

Figure 26: Outer Loop Position-to-Velocity and Velocity-to-Roll/Pitch

PID Controller.

 55

Figure 27: Inner Loop Pitch and Roll PID Controller.

2. Heading Feedback Control

No change in architecture was done to the heading

feedback control. Since experimental results show the

performance of the heading controller to be sufficient for

the work of this thesis, such changes were unnecessary.

3. Altitude Feedback Control

The default altitude controller was used; however, the

gains were retuned, since the original set of gains

exhibited poor altitude control performance.

 56

F. CONTROL SIGNAL MIXING

The main purpose of the control signal mixer is to

merge the command outputs from the individual control

channels in order to achieve the control objectives. The

output from the control signal mixer consists of the PWM

input commands to the individual motors. The configuration

of the control signal mixing block is shown in Figure 28.

Figure 28: Control Signal Mixing Module.

G. PWM TO ROTOR FORCE AND TORQUE

This block typically converts PWM into the

corresponding rotor forces and torques using the

relationships shown in Eqn.(20) and Eqn.(31). The

schematics for the PWM to rotor force and torque module are

shown in Figure 29. The saturation limits for the PWM are

0.05 and 0.1, which correspond to 1 ms and 2 ms,

respectively.

v_theta

v_psi

v_phi

u_throt

1

motor_outputs

u_yaw

u_roll

u_pitch

motors in motors

safety

-K-

enable/disable
motors

-1

2

throttle_cmd

1

u_euler_cmd

 57

Figure 29: PWM to Rotor Force and Torque Module.

H. QBALL-X4 6DOF MODEL

This block computes the states of the quadrotor in

real-time using the equations of motion derived earlier in

Chapter III. It should be noted that in reality position

information is obtained via the external Optitrack motion

capture system. In simulation, however, the position and

orientation are computed using the force and moment

equations. Figure 30 shows the schematic diagram of the

Qball-X4 6DOF module. The red box as indicated in Figure 30

creates an imaginary ground so that the quadrotor would not

descend below ground level.

ROTOR THRUST

ROTOR TORQUE

2

rotor_torque

1

rotor_thrust

w

s+w
rotor thrust3

w

s+w
rotor thrust2

w

s+w
rotor thrust1

w

s+w
rotor thrust

u-0.05
offset min
throttle setting

-K-

Kyaw

-K-

K

-K-

Enable/Disable
0.05 to 0.1

1

motor_outputs

pwm

 58

Figure 30: Qball-X4 6DOF Block.

I. QBALL-X4 ANIMATION MODEL

This block creates a 3D animation of the simulation

results in real-time. The inputs to the block are the Euler

angles  , ,   

and position information  , , x y z . The

advantages of having an animation include acceleration and

simplification of error analysis and self-explanatory 3D

animation of the vehicle behavior. A snapshot of the 3D

animation of the quadrotor performing a square trajectory

flight profile is shown in Figure 31.

0

theta0

rotor_thrust

rotor_torque

euler

param

mass

drag

ned_acc

angular_acc

total_thrust

resultant_torque

body_acc

qball

qball_6dof

0

psi0

0

phi0

0

Z2

0

Y0

0

X0

0

W0

f(u)

Vtrue

Sensors Model

U Y

U Y

>

Param

Quadrotor System

Parameters

1

s

1

s

1

sxo

1

s

1

s
xo

1

s
xo

1

sxo

1

sxo

1

sxo

1

sxo

1

s

1

s

[0]

XYZacc

body_accel

Vt

XYZ

nedVel

torque

thrust

[reset]

euler_rates

Euler

euler_comp

[reset]

[reset]

3

rotor_torque

2

drag

1

rotor_thrust

3

4

3

3

3
3

3

3

3

acc_N

acc_E

acc_D

acc_roll

acc_pitch

acc_yaw

3

5

5

5

4

3

3

4

3

3

3

create an

imaginary

ground

 59

Figure 31: 3D Animation of Quadrotor Performing a Square Trajectory

Flight Profile.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

V. DILUTION OF PRECISION

A. INTRODUCTION

Dilution of precision (DOP) is typically used in

global positioning system (GPS) and geomatics engineering

to specify the additional multiplicative effect of GPS

geometry on GPS precision. For this thesis, this concept is

used to examine the Optitrack motion capture system's DOP

and how it affects the accuracy in which the system can

determine position. DOP comes in various flavors, including

geometrical (GDOP), positional (PDOP), horizontal (HDOP),

vertical (VDOP) and time (TDOP).

B. GEOMETRY

The idea of GDOP is to examine how errors in the

measurement affect the final estimation of the state, such

that

 Output Location

GDOP
Measurements





 (35)

It is desired that small errors in the measurement will not

lead to significant changes in the output location, since a

large change indicates that the solution is highly

sensitive to errors.

Examples of acceptable and poor GDOP resulting from

the geometry of the location system are shown in Figure 32.

When the visible localization cameras are close together,

the geometry is said to be weak, and the DOP value is high.

When the cameras are far apart, the geometry is said to be

strong, and the DOP value is small.

 62

Figure 32: Geometric Dilution of Precision (A) Triangulation

(B) Triangulation with error (C) Triangulation with error and poor GDOP

(From Xoneca 2013).

C. PSEUDORANGE MEASUREMENTS

The Optitrack system computes the vehicle's three-

dimensional coordinates from three or more simultaneous

pseudorange measurements. The range can be measured from

the infrared (IR) light emitted from the cameras as it

reflects back to the camera from the reflective markers

attached to the vehicle. The basic pseudorange model can be

given by

  2 1i i i iP c dT dT e    (36)

where iP is the pseudorange, i is the geometric range

between the
thi camera and the quadrotor, c is the speed of

light  8 13.0 10 ms , 2idT and 1idT are the time biases in the

camera system at emission and receiving of the IR pulse.

The measurement noise is accounted for by e . There are n

 63

such equations to solve using the n simultaneous

measurements.

Without loss of generality, Eqn.(36) can be reduced to

the form shown in Eqn.(37).

      
2 2 2

i i i i iP x x y y z z E       (37)

To determine the quadrotor coordinates, the

pseudorange equations are first linearized using some

initial estimates for the vehicle position (the

linearization point).

 cP H x  (38)

where cP is the n -length vector of differences between the

corrected pseudorange measurements and the modeled

pseudorange values based on the linearization point. The

vector of corrections to an unknown position is x . In

Eqn.(39), H is the 3n matrix of partial derivatives.

     

     

     

2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

2 2 2

n n n

n n n

x x y y z z

x x y y z z

H

x x y y z z

  

  

  

   
 
 
 

   
  
 
 
 

  
 
  

 (39)

Eqn.(38) is solved using the maximum likelihood parameter

estimation method, which gives the following solution form

  
1

T T

cx H WH H W P 


  (40)

 64

where
2 1

0 cPW C 



is the weight matrix, which is characterized

by the differences in the errors of the simultaneous

measurements. The inverse term in the weight matrix is the

covariance matrix of the pseudorange errors, and
2

0 is a

scale factor (priori variance of unit weight).

D. COVARIANCE MATRIX

The covariance law determines how the estimated

parameters obtained from Eqn.(40) are affected by the

pseudorange measurements and model errors.

      
11 1

1

c c

T
T T T T T

x P PC H WH H W C H WH H W H C H
 



  
    
      

 (41)

where xC is the covariance matrix of the parameter

estimates. If it is assumed that the measurement and model

errors are the same for all observations with a standard

deviation  and they are uncorrelated, then
2

cPC I  .

Eqn.(41) can be simplified to that of the least-squares

parameter estimation solution

  
1

2 1 2T

xC H H G 




   (42)

If we further assume that the measurement errors and model

errors are independent, then the standard deviation  is

obtained via the root-mean-square of these errors.

E. DILUTION OF PRECISION

The geometric dilution of precision (GDOP) measures

the overall quality of the least-squares solution and is

defined as

  2 2 2 2 1

G x y z t trace G          (43)

 65

where
2 2 2, , x y z   are the variances in position estimates;

2

t

is the variance in time offset estimate, which is zero in

the case for the Optitrack since it is using the same

clock.

The quality of the specific three-dimensional position

component estimates can be given as

2 2 2

2 2

2

: =

: =

: =

P x y z

H x y

V z

position

horizontal

vertical

   

  

 

 

 (44)

The corresponding position, horizontal and vertical DOPs

can be computed using

2 2 2

2 2

x y z

x y

z

PDOP

HDOP

VDOP

  



 







 







 (45)

VDOP values are generally larger than HDOP values because

all the cameras are above the vehicle.

F. TEST SETUP AND RESULTS

Figure 33 shows a procedure that was used to collect

the position measurement errors from the origin of the

coordinate frame used by the Qball-X4 in the laboratory

setup (see Appendix A for laboratory setup). The Qball-X4

was placed at the point of origin and then moved in 1 cm

increments along the z -axis.

 66

Figure 33: Procedure for Determining Position Accuracy of the

Optitrack System.

Figure 34: 3D projection of the ASEIL setup (a), and its bird-eye’s

view (b).

Figure 34(a) shows the three-dimensional projection of the

space dedicated for the ASEIL lab with two Quanser Qballs

sitting on the floor, and Figure 34(b) represents the

bird’s-eye view of the lab. Circles (red) on both figures

indicate locations of the ten V100:R2 low-end quality

a. b.

 67

Optitrack cameras. The physical coordinates of the camera

locations are given in Table 6.

Table 6: Location of the Optitrack Cameras in ASEIL Lab.

Camera x coordinate, m y coordinate, m z coordinate, m

1 -4.853995 5.619800 3.395093

2 -4.173877 3.953969 3.383460

3 -4.773333 2.288210 3.340947

4 -4.853995 -1.311777 3.318943

5 -4.798242 0.6756070 3.327053

6 -1.127673 -1.624753 3.596775

7 2.396973 -1.749930 3.660483

8 2.3911163 0.7045230 3.656286

9 2.410183 2.483713 3.707655

10 2.184218 5.220389 3.700000

There is no doubt that the correct number and placement of

the Optitrack cameras is of fundamental importance to

successful tracking of moving objects. Table 7 lists the

recommended number of cameras for various room sizes along

with approximate workspace volumes that are recommended for

the various camera packages.

Table 7: Setup Size and Capture Volume for Various Camera Packages.

Number of Cameras Setup volume (room

size) L×W×H

Workspace volume

(experiment) L×W×H

6 4m × 4m × 3m 1.5m × 1.5m × 1m

12 6m × 6m × 3m 3m × 3m × 1m

18 7m × 7m × 3m 3.5m × 3.5m × 1.5m

24 7m × 7m × 3m 4m × 4m × 1.5m

 68

Figure 35: Example of the Camera Setup Inside a Room as Viewed from

Above.

The general rules for camera placement (since no single

"perfect" setup exists) include the following:

 Cameras should be mounted in as large a perimeter as

possible (typically not larger than 7 m across).

 The camera fields of view (FOV) must overlap so that

objects are trackable in the workspace; so mounting

them farther away allows for a larger overlapping

volume.

 Cameras should be mounted higher up along the walls or

ceiling to provide an optimal viewpoint and create a

large overlapping volume.

As shown in Table 7, even though the ASEIL space is

not very big, it definitely requires at least 18 to 24

cameras (as compared to just 10 currently available in the

ASEIL lab). Out of the 8.6 8.0 m m area, only 3.9 5.8 m m is

dedicated for an experimental fly zone with the floor

covered by a non-reflective material. Adding a safety

buffer further shrinks the flyable zone to about 2.6 3.6 m m

 69

area. The Optitrack cameras are distributed over the

perimeter of the entire room, and the actual flyable zone

is situated at the corner of the room. Another disadvantage

is the low ceiling such that the highest mounted cameras

are at 3.7 m above the floor.

Figure 36 shows the isolines of DOP at four different

altitude levels: at 0.5m, 1.2m, 1.8 m and 2.5 m above the

floor, which is an indication of the "pureness" of the

ASEIL setup. Obviously, with the Qball-X4 flying closer in

the plane containing the Optitrack cameras, the DOP

degrades and becomes quite nonlinear at the corners.

Figure 36: Isolines of DOP for a 10-camera ASEIL Setup at 0.5m, 1.2m,

1.8m and 2.5m Altitude.

For the sake of comparison, Figure 37 shows what would

happen if there were more height available. If the ceiling

 70

was one or two meters higher, the DOP within the flyable

zone would be much better.

Figure 37: Isolines of DOP for a 10-camera ASEIL Setup at -1m and -2m

Altitude.

Figure 38 shows the case if we have two cameras

installed at each existing camera location in the ASEIL

lab, totaling of 20 cameras. It is expected that DOP would

improve.

 71

Figure 38: Isolines of DOP at Different Heights for the Case of Two

Optitrack Cameras at Each ASEIL Camera Location.

It should be noted that thus far, we have considered

an ideal rather than a practical case as we have not taken

the FOV of the cameras into account. Figure 36 to Figure 38

were obtained without accounting for the cameras’ FOV.

Accounting for a 46° horizontal FOV of the V100:R2

 72

Optitrack cameras (and 30° vertical FOV) leads to worsening

of the DOP and shrinking further the flyable zone.

Before proceeding with the analysis of the limited FOV

effect, consider one of the scenarios where two Qball-X4

quadrotors exchange places while avoiding some simulated

obstacle as shown in Figure 39. For the case of unlimited

FOV, the GDOP of both the Qball-X4 quadrotors while flying

almost up to the ceiling, 2.8 m, is shown in Figure 40. We

will use these results as our benchmark. As expected, most

of the errors occur in the vertical channel. The bottom-

most graph in Figure 40 shows the ratio between the

vertical error to horizontal error. The vertical errors are

twice to eight times larger than the horizontal error.

Figure 39: 3D Trajectory of Two Qballs Exchanging Places while

Avoiding a Spherical Obstacle Placed at the Center.

 73

Figure 40: Change in DOP for a Qball-X4 Flying the 3D Trajectory (see

Figure 39) in an Ideal (Unlimited FOV) 10-camera ASEIL Setup.

Figure 41 represents a more realistic DOP estimate, as

compared to Figure 36, by taking into account the limited

FOV of the cameras. As expected, the drastic change is

caused by the number of visible cameras at each particular

location in the lab as shown in Figure 42. It was observed

that all ten cameras are centered at a point, which is

approximately 1 m above the floor at the center of the

coordinate frame established for the flyable zone.

 74

Figure 41: Isolines of DOP at Different Heights for a 10-camera ASEIL

Setup Accounting for the Cameras' FOV.

Figure 42: Isolines of Visible Cameras at Different Heights for a 10-

camera ASEIL Setup.

 75

Figure 43 features three plots, similar to those of

Figure 40, for the more realistic case. For the realistic

case, it can be observed that the DOP suffers a deeper

degradation.

Figure 43: Change in DOP for a Qball-X4 Flying the 3D Trajectory (see

Figure 39) in the Current 10-camera ASEIL Setup.

Doubling the number of cameras for the realistic case

(with limited cameras' FOV) with the second set of cameras

oriented exactly the same as the existing cameras, as shown

in Figure 44, does not improve the situation as much as

when the cameras' FOV is doubled. The cameras' FOV can be

doubled by placing the second set of cameras at about the

same location as the first set but orienting both sets of

cameras to achieve a wider FOV as shown in Figure 45.

 76

Figure 44: Isolines of DOP at Different Heights if the Number of

Cameras is Doubled.

Figure 45: Isolines of DOP at Different Heights if the FOV Angle is

Doubled.

 77

Figure 46 shows that when the FOV are doubled, a

better coverage of the entire flyable zone can be achieved.

Figure 46: Number of Cameras Visible at Different Locations when the

FOV Angle is Doubled.

Figure 47 shows the DOP for two Qball-X4 quadrotors

flying on the same trajectories as those shown in Figure

39, which gives lower and smoother results.

 78

Figure 47: Change in DOP for a Qball-X4Quadrotor Flying a Typical 3D

Trajectory in a Hypothetical 20-camera Doubled FOV ASEIL Setup.

It is understood that the geometrical configuration of

the Optitrack camera constellation can affect the DOP; let

us now briefly discuss the expected magnitudes of the

tracking error. Figure 48 shows a setup of two tests that

were conducted to estimate the Optitrack tracking error

affected by a nonlinear distribution of the DOP within the

workspace.

For the first test, a Qball-X4 quadrotor was placed on

the floor close to the origin of the local tangent plane

(LTP) and then manually moved along the z-coordinate as

shown in Figure 48(a) by 1 cm for 20 intervals. Figure

49(b) shows the Optitrack tracking errors in two

dimensions. The relative error between two increments stays

about ±2 mm, while the overall error for the 20 increments

increased to about 5 cm.

 79

Figure 48: Plan View of the Workspace with the Locations of the Two

Test Setups Marked.

Figure 49: (a) Measured versus True Range (Test 1), (b) Optitrack

Measurement Errors (Test 1).

(a)

(b)

 80

A similar test (Test 2) was conducted at a different

location as shown in Figure 48. With a poorer DOP at that

location, the tracking error grew to approximately 6 cm.

Comparing Figure 49(a) and Figure 50(a), it can be observed

that the closer the Qball is to the origin of the LTP, the

smaller the relative errors between the increments. The

largest error between two consecutive increments (about 0.7

cm) is observed at the beginning of the second test.

Figure 50: (a) Measured versus True range (Test 2), (b) Optitrack

Measurement Errors (Test 2).

 81

The altitude measurement errors are expected to be

much larger. From the bottom-most plot in Figure 43, it can

be noted that the error in the vertical channel can be 10

times larger than the horizontal error at floor level.

These findings agree with the results obtained from actual

tests; the error in the vertical channel as measured by the

Optitrack system in midair is of the order of 0.4 m. Thus,

an ultrasonic sensor, which assures about 1 cm error, is

used for altitude control of the Qball-X4 instead of using

the Optitrack system which gives larger errors in the

vertical channel.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

VI. SIMULATED AND ACTUAL FLIGHT DATA

A. OVERVIEW

In this chapter, the simulated results are compared in

detail to the actual flight data. The test plan is first

described. The position control and altitude control

performances using the default controllers provided by

Quanser are assessed. Also discussed here are the velocity

limits, which were adjusted to observe whether there is any

impact on the flight performance.

B. SENSORS RESOLUTION

The resolution for the sensors are as follows (Quanser

2011):

 3-axis Accelerometer 3.33 mg/LSB

 3-axis Gyroscopes 0.0125°/s/LSB

 3-axis Magnetometer 0.5mGa/LSB

 Sonar 1 cm

 Optitrack 1 cm (best)

C. TEST PLAN DESCRIPTION

1. The Qball-X4 hovers at an altitude of 0.5 m and then

executes an inverted L-shaped flight profile.

2. The Qball-X4 climbs to an altitude of 0.5 m, increases

to 1.0 m and 1.5 m, then returns to 1.0 m and 0.5 m before

landing.

 84

3. The Qball-X4 performs a 120° heading (counter

clockwise) turn, followed by a -120° heading (clockwise)

turn.

Figure 51: Illustration of Test Scenarios.

D. DEFAULT PARAMETER VALUES

Table 8 provides the list of the default saturator

limits and gain values.

 85

Table 8: List of Saturation Limits and Gains Values.

Parameter Symbol Values Units

Saturation Limits:

Roll/Pitch PWM Limit Climit 0.025 % 20ms d.c.

Velocity Limit vlimit 0.3 m/s

Height Velocity Limit Vlimith 0.1 m/s

Roll/Pitch Limit tlimit 0.0873 rad

Gains:

Roll/Pitch Control Channel

P-gain (outer loop) Kp 0.7988 --

I-gain (outer loop) Ki 0.1 --

D-gain (outer loop) Kd 0.6901 --

Heading Control Channel

P-gain (outer loop) Kpyaw 0.0316 --

D-gain (outer loop) Kdyaw 0.015 --

Height Control Channel

P-gain (outer loop) Kph 0.0062 --

I-gain (outer loop) Kih 0.0032 --

D-gain (outer loop) Kdh 0.006 --

E. TEST SCENARIO 1

1. Ground Track

Figure 52 shows the actual and simulated ground track.

It can be seen that the quadrotor tracks reasonably well

with the commanded trajectory, with a maximum cross-track

error of approximately 0.1 m (10% of commanded value).

 86

Figure 52: Plot of Actual and Simulated Ground Track.

2. X and Z Position

Figure 53: Plot of Actual and Simulated X and Z Position.

-0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

2D Trajectory

Deflection (x coordinate) (m)

R
a
n

g
e
 (

z
 c

o
o

rd
in

a
te

)
(m

)

start pt

end pt

Actual

Simulation

Commanded

14 16 18 20 22 24 26 28 30
-0.5

0

0.5

1

1.5

D
e
fl

e
c
ti

o
n

,
x

 c
o

o
rd

in
a
te

 (
m

)

X & Y Position Control

Actual

Simulation

Commanded

14 16 18 20 22 24 26 28 30
-0.5

0

0.5

1

1.5

Time (sec)

R
a
n

g
e
,

z
 c

o
o

rd
in

a
te

 (
m

)

error caused by coupling effect

when quadrotor maneuver in the

z-direction.

2.24secrt 

4.95secst 

2.64secrt 

4.81secst 

 87

3. Height

Figure 54: Plot of Actual and Simulated Heights.

4. Accelerations

Figure 55: Plot of Actual and Simulated Accelerations.

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Height Control

H
e
ig

h
t

(m
)

Time (sec)

Sonar (selected for controls)

Optitrack

Simulation

Commanded

10 15 20 25 30
-5

0

5
Actual

A
c
c

 X
 (

m
/s

2
)

10 15 20 25 30
-1

0

1

2
Simulation

10 15 20 25 30
-2

0

2

A
c
c

 Y
 (

m
/s

2
)

10 15 20 25 30
-2

0

2

10 15 20 25 30
-15

-10

-5

A
c
c

 Z
 (

m
/s

2
)

Time (sec)

10 15 20 25 30
-10

-9.5

-9

-8.5

Time (sec)

min detection range

of sonar sensor

0.7secrt 

13.56secst 

0.2485e m

 88

5. Angular Rates

Figure 56: Plot of Actual and Simulated Angular Rates.

6. Euler Angles

Figure 57: Plot of Actual and Simulated Euler Angles.

10 15 20 25 30
-100

-50

0

50

100
Actual

P
 (

o
/s

e
c

)

10 15 20 25 30
-40

-20

0

20
Simulation

10 15 20 25 30
-100

-50

0

50

Q
 (

o
/s

e
c

)

10 15 20 25 30
-20

-10

0

10

20

10 15 20 25 30
-5

0

5

10

R
 (

o
/s

e
c

)

Time (sec)

10 15 20 25 30
-1

-0.5

0

0.5

1

Time (sec)

10 15 20 25 30
-5

0

5
Actual

R
o

ll
, 

 (
o
)

10 15 20 25 30
-4

-2

0

2

4

6
Simulation

10 15 20 25 30
-6

-4

-2

0

2

4

Time (sec)

P
it

c
h

, 
 (

o
)

10 15 20 25 30
-6

-4

-2

0

2

Time (sec)

 89

F. TEST SCENARIO 2 (HEIGHT INCREMENT)

Figure 58: Plot of Actual and Simulated Incremental Heights.

It can be observed from Figure 58 that the noises

associated with the sonar sensor get larger as the altitude

of the quadrotor increases, while the altitude information

from the Optitrack motion capture system is less noisy.

However the altitude error from the Optitrack system

increases with altitude. If we are able to create a

comprehensive correction table for the Optitrack altitude

data, it can be used in place of the sonar sensor for

altitude control in the future for indoor experiments (to

take advantage of its reduced noise). Also, notice that the

overshoot during descent tends to be larger than that

during ascent.

To make the altitude information obtained from the

Optitrack system useful, the following methods were used.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
Height Control

H
e
ig

h
t

(m
)

Time (sec)

Sonar (selected for controls)

Optitrack

Simulation

Commanded

0.5 0.2641e m

1.0 0.414e m

1.5 0.518e m

1.0 0.406e m

0.5 0.28e m

 90

 At discrete altitude intervals

  0.5, 0 <0.5, 0.5 <1.0, ...cmdh h h h    and when the sonar

and y  Optitrack reached steady-state, collect

all the steady-state data points and perform

averaging. The greater the number of discrete

intervals and data points, the better the

accuracy.

 Obtain a mapping factor for each discrete

interval, where the mapping factor is given by:

0.5, 0 h<0.5, 0.5 h<1.0, ...

0.5, 0 h<0.5, 0.5 h<1.0, ...
_

ave
map h

ave h

sonar
K

y optitrack  
  

 
  
 

 (46)

 Produce a table to store all the mapping factors

at each discrete interval.

 Multiply the y  Optitrack data with the

corresponding mapping factor, according to the

interval into which it falls.

 () () ()_ i map i iy optitrack K sonar (47)

Figure 59 shows the result of the corrected y 

Optitrack information after multiplying with the

appropriate mapping factor.

 91

Figure 59: Optitrack Altitude After Corrected with Appropriate Mapping

Function.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
Height Control

H
e
ig

h
t

(m
)

Time (sec)

Sonar (selected for controls)

Optitrack

Simulation

Commanded

Mapping Equation:

0.5, 0 h<0.5, 0.5 h<1.0, ...
0.5, 0 h<0.5, 0.5 h<1.0, ...

_

ave
map h

ave h

sonar
K

y optitrack  
  

 
  
 

 92

G. TEST SCENARIO 3 (HEADING CONTROL)

Figure 60: Plot of Actual and Simulated Heading.

From Figure 60, it can be seen that the Optitrack

heading tracks the commanded value very closely, while

there are errors associated with the magnetic heading when

the heading are positive but gradually reduces as the

heading turns negative. This indicates a need to

recalibrate the magnetometer onboard the Qball-X4 quadrotor

if we are to use the sensor information for the heading

feedback control.

H. VELOCITY LIMITS TEST

The velocity saturation limits were adjusted, and the

impact on the ground track performance was observed. The

15 20 25 30 35 40 45 50 55 60
-150

-100

-50

0

50

100

150
Heading Control

Y
a
w

,


 (
o
)

Time (sec)

Magnetic Heading

Optitrack (selected for controls)

Simulation

Commanded
23.1oe 

 93

limits were varied between 0.2 to 0.9, with the default

value being 0.3.

Figure 61: Plots of Ground Track with Variation in vlimits.

From Figure 61, it can be observed that there was no strong

indication that position tracking improves with higher

velocity limits. In fact, reduction in the velocity limit

to 0.2 resulted in poorer performance, likely due to lower

control effectiveness caused by lower gain values.

-1 0 1 2
0

0.5

1

1.5

vlimit = 0.2

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.3

Actual

Commanded

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.4

-0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.5

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.6

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.7

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.8

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

vlimit = 0.9-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

2D Trajectory

Deflection (x coordinate) (m)

R
a
n

g
e
 (

z
 c

o
o

rd
in

a
te

)
(m

)

start pt

end pt

Actual

Simulation

Commanded

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

2D Trajectory

Deflection (x coordinate) (m)

R
a
n

g
e
 (

z
 c

o
o

rd
in

a
te

)
(m

)

start pt

end pt

Actual

Simulation

Commanded

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

VII. DIRECT METHOD USING INVERSE DYNAMICS IN

VIRTUAL DOMAIN

A. INTRODUCTION

In Chapter 0, a mission scenario was created for the

Qball-X4 quadrotor. The quadrotor is to perform an obstacle

collision avoidance maneuver while using the direct method

of calculus of variations exploiting the inverse dynamics

in virtual domain (IDVD) in solving for the trajectory

optimization problem.

The IDVD method is the preferred choice for several

reasons. Firstly, this method allows for the satisfaction

of higher-order derivatives at both the initial and final

points (allowing for very smooth transition to a newly

generated trajectory). Second, it permits the use of any

model and performance index, such that it is not subjected

to the curse of dimensionality and does not require

differentiability of the performance index. Finally, it

requires significantly less optimizing parameters (i.e.,

typically fewer than 10) compared to other direct methods;

thus, it greatly reduces the computational time required to

generate a feasible trajectory, allowing for real-time

trajectory generation onboard the quadrotor during flight

(Yakimenko 2010).

The 6DOF model of the quadrotor is already described

in Chapter III. Following from there, the general

architecture of the autonomous control system is first

introduced. A conventional PID controller is used for

trajectory following. Then the trajectory optimization

problem is formulated along with the detailed numerical

 96

trajectory optimization routine. The outcome of the

simulation is presented in Chapter VII.

B. CONTROLLER ARCHITECTURE

The proposed control system architecture (O. Yakimenko

2010) is presented in Figure 62. The top section represents

the common feedback control for path tracking by the

quadrotor while the bottom section provides periodic

updates of the trajectory by the trajectory generator. The

trajectory generator computes a quasi-optimal route in a

relatively short time (typically on the order of 10 to

100s) making it possible for re-optimization of the

trajectory during flight. This is crucial in the event of

unexpected obstruction along the original planned path. The

interpolator produces samples of the reference trajectory

at the desired high frequency rate required by the

controller.

During the mission, there might be a need to modify

the mission scenario. When the discrepancy between the

current and desired state becomes too large (i.e., due to

wind or noise disturbances), for instance, the update

switch triggers the trajectory generator to re-compute a

new quasi-optimal trajectory, taking the current state as

the new vector of initial conditions.

 97

Figure 62: Proposed Controller Architecture (After O. Yakimenko 2010).

C. TRAJECTORY OPTIMIZATION

This section aims to find the reference trajectory refx

and desired control profile refu by solving the trajectory

optimization problem, utilizing the differential flatness

characteristics of the quadrotor dynamics. This is followed

by a detailed optimization routine.

1. Differential Flatness and Optimal Problem

Formulation in Output Space

The differential flatness property of a system refers

to the possibility of expressing its states and control

vectors in terms of the output vectors and their

derivatives (Chelouah 1997).

From Eqn.(17), the components of the control vector u

can be easily expressed in terms of the states and their

derivatives:

 98

 

 

 

 
22 2

1 2 3 41

3 42

1 23

3 4 1 24

T T T T

T T
xx

T T
yy

zz

F F F Fu m x y z g

F F lu Ju
F F lu J

u J




    

        
              
   

         

 (48)

Expressing Eqn.(12) in the following form shown in Eqn.(49)

1 1

1 1

1

sin sin cos sin cos
1

sin cos cos sin sin

cos

u u

u

x

y

z

u
m

u cos mg

    

    

 

   
     
   

      

 (49)

To simplify Eqn.(49), we assume the heading angle  to be

very small, such that the rotational part of the state

vector can then be expressed (in terms of the output vector

and its derivatives) as:

 

1

1

22 2

tan

sin

x

z g

y

x y z g









 
  

 

 
  
    

 (50)

Singularities in Eqn.(50) can occur when z g  ; that is,

when the quadrotor is experiencing a free-fall. To avoid

this, we add the constraints 1 0, <90 and <90o ou   .

Taking the differentiation of Eqn.(50) using the quotient

rule and trigonometric function, we can perform the

following.

Reviewing the differentiation of the trigonometric

function:

 99

 

 

1

2

1

2

1
tan () ()

() 1

1
sin () ()

1 ()

d
f t f t

dt f t

d
f t f t

dt f t











Reviewing the differentiation using the quotient rule:

 

2

() () () () ()

() ()

d f t g t f t f t g t

dt g t g t

   
 

 

Derive  , such that

   

 

 

 

2

2 2

22

1

1

()
1

1

d x

dt z gx

z g

d d
z g x x z g

dt dt

z gx

z g

x z g xz

x z g


 

  
   

 
 

 
   

  
       

 


 

 (51)

and  can also be derived as:

 

 

 

       

 

2 22 2

22 2

2 22 2 2 2

22
22 2

22 2

1

1

1
 =

1

d y

dt x y z g
y

x y z g

d d
x y z g y y x y z g

dt dt

x y z gy

x y z g



 
 

  
      

  
    

                    
 

       
      

    

 100

   

     

2 2 2

2 22 2 2

() ()
 =

y xx yy z z g y x y z g

x y z g x z g

      

    
 (52)

Eqn.(51) and Eqn.(52) can be differentiated once more, and

the results substituted into Eqn.(48),

           
  

 

 

     

  

2 22 2

2
22

2 22 22

2

d d
x z g x z g xz x z g xz x z g

dt dt

x z g

xx z z g x z g xzx z g x z

x z g x z g


        



 

    
 

   

 (53)

and

     
      

    

      

2 22 2 2

1

2
2 22 2 2

2 2 2

2

2
2 22 2 2

() ()

x y z g x z g C

x y z g x z g

y xx yy z z g y x y z g C

x y z g x z g


    

 

    

      

    

 (54)

where

  

  

  
     

 

 

2 2 2

1

22 2

22 2

2 22

22

 2

C y x y z xx yy z g z

y xx yy z g z

y x y z g

x y z g xx z g z
C

x z g

x z g xx yy

       

   

  

    
 

 

     z g z 

 101

Eqn.(53) and Eqn.(54) can be substituted into Eqn.(48).

The state vector x and control vector u can be expressed

as some nonlinear function 1h and 2h

as a function of the

output vector y and its derivatives

1

2

(, ,...)

(, ,...)

x h y y

u h y y




 (55)

Expressing the optimization problem within the output space

by taking advantage of the differentially flat

characteristics of the quadrotor dynamics can significantly

reduce the computation time for constraint handling since

most constraints arise, for instance, from obstacle

avoidance occurring in the output space.

Let the performance index for the obstacle collision

avoidance be expressed as the following form:

      
2

2 2 2

2

0 0

1
1

f ft t

r
h v r f

f

V
J w P x y P z dt P dt w t T

t D

 
       

 
 
  (56)

()

0 1 0

f 1

1

min (()) for 0,

. . y (()) 0

 y (()) 0

 c (()) 0

f
y t

f

J y t t t

s t g y t

g y t

y t

   

 

 



 (57)

where , and h vw P P are the weighting factors, ft is the time of

flight, rV is the radial velocity, D is the distance from

the quadrotor to the center of the obstacle, and T is the

desired time-of-arrival.

Using a suitable parameterization of the output vector

components, with some reference functions dependent on a

few varied parameters, the boundary problem can be solved a

 102

priori. As such, this eliminates the necessity to integrate

differential equations, and the optimal problem can simply

be formulated as:

1

min (())

. . c (()) 0

J y

s t y




 
 (58)

where  is the vector of varied parameters

The optimal problem can be solved using the fminsearch or

fmincon function in MATLAB.

2. Decoupling Space and Time

To decouple space and time, so as to allow independent

optimization of the trajectory and speed profile, an

abstract argument  , also known as the virtual arc, is to

be introduced. The argument  , which is in the virtual

domain, can be related back to time using the variable

speed factor:

 ()
d

dt


   (59)

It should be noted that scaling the virtual speed

profile    does not really matter since higher values of

 will only result in larger f , leaving other parameters

in the time domain unchanged. Changing f changes the shape

of the candidate trajectory but does not affect the

boundary conditions.

 103

3. Parameterization

To reduce the optimal problem into a finite amount, a

suitable parameterization is to be performed. The detailed

procedure is explained as follows:

First, we assume that all these Cartesian coordinates

follow some reference polynomial functions, where the order

of the polynomials depends on the number of boundary

conditions to be satisfied. The minimum degree of the

polynomial is defined according to:

 0 1fn d d   (60)

where 0d , fd are the maximum orders of the time derivative

of the quadrotor coordinates at the initial and terminal

points, respectively. It should be noted that other

parameterization, such as that presented by Slegers and

Yakimenko (Slegers and Yakimenko 2011), may also be used.

Thus, let the Cartesian coordinates  , ,x y z of the

reference trajectory be represented by the following:

 
  

 
  
 

 

   

0

1

1

2

2

3

2

max 1, 2 !

!

max 1, 2 !

1 !

2

kn

k

k

kn

k

k

n
k

k

k

n
k

k

k

k
x a

k

k
x a

k

x a

x k a







 

 



















 



 

  









 (61)

In the same manner, we define for y

and z .

It is desirable for the trajectory at the terminal

stage to be smoother; thus, we exploit the case where 3fd 

 104

with 0 0, 0fx x   and the only varied parameter are thus

0, , f fx x  . Therefore, we are interested in the case where

0 3, 3fd d  and 0 1 7fn d d    .

The unknown coefficients in Eqn.(61) can then be found

by solving the following matrix of algebraic equations:

0

1

2

2 3 4 5 6 7
3

4

2 3 4 5 6

5

6
2 3 4 5

7

2 3 4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 1 1 1 1 1
1

2 6 24 60 120 210

1 1 1 1 1
0 1

2 6 12 20 30

1 1 1 1
0 0 1

2 3 4 5

0 0 0 1

f f f f f f f

f f f f f f

f f f f f

f f f f

a

a

a

a

a

a

a

a

      

     

    

   

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 

0

0

0

0

f

f

f

f

x

x

x

x

x

x

x

x

 
  
 
 

  
  
 
 
  

   
  
   

(62)

and using the following MATLAB codes to determine the

coefficients:

which yields

symstaufx1x2x3x4x5x6x7x8
A = [1 0 0 0 0 0 0 0;

0 1 0 0 0 0 0 0;

 0 0 1 0 0 0 0 0;

 0 0 0 1 0 0 0 0;
 1 tauf 0.5*tauf^2 (1/6*tauf^3) (1/24*tauf^4) (1/60*tauf^5)

(1/120*tauf^6) (1/210*tauf^7);
 0 1 tauf 0.5*tauf^2 (1/6*tauf^3) (1/12*tauf^4) (1/20*tauf^5)

(1/30*tauf^6);
 0 0 1 tauf 0.5*tauf^2 (1/3*tauf^3) (1/4*tauf^4) (1/5*tauf^5);
0 0 0 1 tauf tauf^2 tauf^3 tauf^4];
B = [x1;x2;x3;x4;x5;x6;x7;x8];
pretty(inv(A)*B)

 105

0

4 2 3 4

0

5 2

0 0

1 0

2 0

3 0

0 0

3 4 5

6 3

0

0 0 0

0

4 16 60 120 360 480 840 840

30 60 420 600 2340 2700 5040 5040

60 80 78

f f f f

f f f f

f f f f

f f f f

f

f

a

x x x x x
a

x x

x

a x

a x

a x

x x x

x x x

x

x x x
a

x
a

   

   



       
   

       
   

 









  

  






0

4 5 6

0 0

0 0

7 4 5 6 7

00 0

0 900 4080 4320 8400 8400

35 35 2100 2100 4200 4200420 420

f f f

f f f

f f f

f f f f

x x x x

x x x x
a

x x

x xx x

  

   

 



    
 

       
  

 


(63)

Likewise, we perform the above routine to determine the

unknown coefficients for y

and z .

Similarly for the speed profile in virtual domain

2 2 2() () () () ()V x y z          (64)

We assume the speed factor can be expressed with the

following reference functions:

 
  

 
  
 

 

0

1

1

2

2

max 1, 2 !

!

max 1, 2 !

1 !

kn

k

k

kn

k

k

n
k

k

k

k
b

k

k
b

k

b


 


 

  















 



 







 (65)

We set the initial and final value of  (i.e., 0  and f

respectively) to 1, and the first order derivatives will be

set to 0, while the second order derivatives at both

endpoints will be used as varied parameters. This requires

a polynomial function of degree 5n  .

 106

Solving the following matrix of algebraic equations to

determine the unknown coefficients for ()  :

00

01

022 3 4 5

3

2 3 4

5
2 3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 1 1 1
1

2 6 12 20

1 1 1
0 1 4

2 3 4

0 0 1

f f f f f
f

f
f f f

f

f f f

b

b

b

b

b

b






    




   


  

 
    
         
    
     
    
    
    

      
  

 (66)

which yields

0 0 0

3 2 3

0 0 0

4 2

0 0 1 0

3 4

0 0 0

5 3

2

4

0

5

3 9 24 36 60 60

12 18 84 96 180 180

10 10 60 60 120 120

f f f

f f f

f f f

f f f

f f f

f f f

b b b

b

b

b

     

  

     

  

     



 

 



      
  

       
  

      

 

  

 

 (67)

4. Numerical Computation

The final step is to solve the trajectory optimization

problem numerically. This involves discretization of the

virtual arc f into 1N  equal segments as shown in Figure

63. Thus the length of each segment is:

1

f

N


 


 (68)

 107

Figure 63: Excluding Time and Converting Back to Time (O. Yakimenko

2001).

All the states x and controls u at the first node (1)j 

are defined. For each subsequent (2,3,...,)j N node, the

current value of the Cartesian coordinates (), (), ()j j j j j jx y z  

and the speed factor ()j j  are computed.

The time passed since the last node is given as:

     

2 2 2

1 1 1

1

1

2 j j j j j j

j

j j

x x y y z z
t

V V

  





    
 


 (69)

and the current time is:

 1 1j j jt t t    (70)

The current value of the speed factor

1

j

jt










 (71)

The  derivatives can now be converted back to time domain

using the following chain rule:

 108

   

  

   

2

2

3

3

 2

dx dx d
x x

dt d dt

d x d
x x x x

dt dt

d x d
x x x

dt dt

x x x x x

and so on






   

  

      

  

      

    

            

 (72)

In the same manner, we can find , , ,...y y y and , , ,...z z z

Having computed the Cartesian coordinates and the

speed factor, we can then substitute these coordinates back

to Eqn.(16) and Eqn.(48) to determine the remaining states

and controls.

D. TRAJECTORY FOLLOWING CONTROL LAW

The controller for the Qball-X4 quadrotor are designed

to operate near hover conditions and the PID controller of

the quadrotor autopilot for z control is such that:

 0z g  (73)

To follow the optimal trajectory, the control input to

maneuver the quadrotor in the horizontal plane is given as

(Cichella, et al. 2012):

   

   

cos sin1

sin cos

d p d d dc

d p d d dc

x k x x k x x

y k y y k y yz g

  

  

       
              

 (74)

where, the left hand side of Eqn.(74) represents the

commanded roll and pitch angles. Terms with subscript d on

the right hand side represent the desired acceleration,

 109

position and velocities generated from the optimal

trajectory generator.

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

VIII. SIMULINK IMPLEMENTATION OF THE IDVD

METHOD

A. MISSION SCENARIO

A mission scenario was established to validate the

IDVD direct method. In this scenario, the quadrotor was to

navigate from 1.5 z m  to 1.5 z m at a height of 1.0 m, with

an 0.5 0.5 2.0 m m m  obstacle placed at the origin. Figure

64(a) shows the isometric view of the mission scenario, and

Figure 64(b) shows its plan view.

Figure 64: Obstacle Collision Avoidance Mission Scenario.

B. SIMULINK IMPLEMENTATION

In general, there are two steps in implementing the

IDVD method: generating the trajectory and interfacing with

the controllers used for following the trajectory. The

procedure of implementing these two steps in the developed

6DOF simulation model is described in this section.

 112

1. Trajectory Generator

Based on the methodology described earlier in Chapter

0, the rapid prototyping of the quasi-optimal trajectory

generator was developed in the Simulink modeling

environment. The optimization script used for generating

the trajectory is presented in Appendix D. An overview of

the model used for implementing the algorithm is shown in

Figure 65.

Figure 65: Overview of the Optimal Trajectory Generator.

Figure 66 shows the location at which the initial and final

boundary conditions to be satisfied are set in the Simulink

model. The model also computes the unknown coefficients of

Eqn.(63) for the Cartesian coordinates (, , x y z) and Eqn.(67)

for the speed profile. The model computes all states in the

time domain as well. The outputs are the Cartesian

coordinates, velocities and accelerations of the quasi-

optimal trajectory, as well as the reference pitch and roll

angles. Two hundred sub-intervals were defined for the

optimal trajectory generated.

1

Out1
In1

time_a

phi_a

theta_a

xyz_a

lambda

xyzdot_a

xyz2dot_a

UAVa

time_des

Time Desired

Step

Time_a

phi_a

thetha_a

xyz_a

Time_desired

Discrepancy

Discrepancies

 113

Figure 66: Implementation of IDVD Optimization Algorithms.

The discrepancies block ensures dynamics and control

constraints satisfaction by the quadrotor. Also, the space

(obstacle and laboratory space) constraints and desired

time of arrival are also set in this block shown in Figure

67. Higher weights are assigned in the performance index

for meeting the desired time of arrival and obstacle

avoidance, while smaller weights are given to the quadrotor

dynamics and the laboratory space constraints.

7

xyz2dot_a

6

xyzdot_a

5

lambda

4

xyz_a

3

theta_a

2

phi_a

1

time_a

1

lambda initial

1

lambda final

lamf_2pr_a

Var2

lam0_2pr_a

Var1

tau

coefficients

coeff 4 lambda

pos

pos_dot

pos_dbl_dot

phi

theta

time

lambda

Product

200

Number of Points

x, y, z

x_pr, y_pr, z_pr

x_dblpr, y_dblpr, z_dblpr

v_0

x_tplpr, y_tplpr, z_tplpr

Initial Conditions

tauf_a*1000

Final arc4

x, y, z

x_pr, y_pr, z_pr

x_dblpr, y_dblpr, z_dblpr

v_f

x_tplpr, y_tplpr, z_tplpr

Final Conditions

12:34

Digital Clock

tau_f

lambda0

lambda0_2pr

lambdaf_2pr

lambdaf

A

Coefficients

for lambda(tau)

tay_f

x0

x0_pr

x0_dblpr

x0_tplpr

xf

xf_pr

xf_dblpr

xf_tplpr

A

Coefficients

1

In1

 114

Figure 67: Discrepancies Block.

2. Trajectory Follower

The following modifications were done for the Commands

subsystem module and was shown in Figure 68. The Direct

Method block outputs the desired accelerations, velocities

and positions in inertia frame. These information is then

sent to the path follower module which use them to generate

the required roll and pitch commands for the Qball-X4. The

inner loop controllers are then used to track these roll

and pitch commands.

There is also a switch feature which enables the

operator to select either to use the Waypoint State Machine

or the Direct method for guidance. 0 indicates to use the

Waypoint State Machine and 1 indicates using the Direct

Method. This is also being highlighted in Figure 68.

1

Discrepancy

10

weight4

1

weight3

1

weight2

10

weight1

min_UAVA_obs5

min_UAVA_obs4

min_UAVA_obs3

min_UAVA_obs2

min_UAVA_obs1

In1

In2

Out1

Quadrotors Dynamics

In1 Out

Obstacle Avoidance

xyz A Out

Lab Space Constarints

Time A

Time Desired

Out1

Arrival Time

5

Time_desired

4

xyz_a

3

theta_a

2

phi_a

1

Time_a

 115

Figure 68: Modification to Controls Module to Include Optimal

Trajectory Generator and Follower

C. SIMULATED RESULTS

This section shows the simulated results for the

obstacle avoidance scenario.

1. Ground Track

Figure 69 shows the simulated ground track for the

quadrotor. As can be seen from the figure, the quadrotor

tracked the trajectory very well in the beginning but some

overshoot was observed when it was near to the final

X POSITION COMMAND

Z POSITION COMMAND

HEADING COMMAND

HEIGHT COMMAND

OPTITRACK

 ------------>x

|

|

|

z

QBALL

 x

 |

 |

 |

 y <----------

4
height_cmd

3
heading_cmd

2
z_pos_cmd

1
x_pos_cmd

z_pos

-2 to 2

x_pos

-2 to 2

cmd rate limiter

10 m/s1

cmd rate limiter

10 m/s

height

x

z

hdg

state

wp_num

Waypoint State Machine

WP number

xdot

xoptitrack

commnads

att_cmds

poscmd

Path Follower

AND

DM_flag

attcmd

pos_z_cmd

yaw_cmd

flight_state

pos_x_cmd

-K-

z_optitrack

Vx_optitrack

y_optitrack

Vz_optitrack

x_optitrack

Vy_optitrack

flight_state

Commands

Direct Method

>= 2

0 to height limit

1

0 = Waypoint Control

1 = Direct Method

0 = Initialize

1 = Takeoff

2 = GoTo WP

3 = Hover at Waypoint

4 = Continuous Hover at End WP

+/- 170 deg

selector

 116

position. This can be attributed to the inner loop

controller which requires tuning to improve its

performance.

Figure 69: Ground Track (Direct Method)

2. Position Control

Figure 70: Position Control (Direct Method)

-2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2D Trajectory

Deflection (x coordinate) (m)

R
a
n

g
e
 (

z
 c

o
o

rd
in

a
te

)
(m

)

start pt

end pt

Qball trajectory

Waypoints

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

D
e
fl

e
c
ti

o
n

,
x

 c
o

o
rd

in
a
te

 (
m

)

Actual

Commanded

0 5 10 15 20 25 30 35 40 45
-4

-2

0

2

4

Time (sec)

R
a
n

g
e
,

z
 c

o
o

rd
in

a
te

 (
m

)

 117

Figure 70 shows the performance for the position

control. It can be observed that the quadrotor tracks the

commanded values very closely at the beginning, but

overshoot slightly during the final phase.

3. Height Control

Figure 71: Height Performance (Direct Method)

Figure 71 shows the height performance of the

quadrotor. It should be noted that height control is

independent of the attitude  , ,   control, such that the

controllers for height and attitude control are decoupled.

4. Attitude Control

Figure 72 shows the performance for the attitude

control. It can be seen from the figure that the command

tracking is not very good. This resulted in some overshoot

in the position control. Thus, to improve the tracking

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
e
ig

h
t

(m
)

Time (sec)

Actual

Commanded

 118

performance, the inner loop attitude controller needs to be

tuned better. Unfortunately, this had not been completed

due to time constraints. However, it is being proposed as a

future work in the Chapter 0.

Figure 72: Attitude Control (Direct Method)

5. 3D Trajectory

Figure 73 shows the screenshot of the 3D trajectory

performed by the quadrotor with an obstacle positioned in

the centre between the starting and final positions.

0 5 10 15 20 25 30 35 40 45
-1

-0.5

0

0.5

R
o

ll
 a

n
g

le
,

 

(o
)

Actual

Commanded

0 5 10 15 20 25 30 35 40 45
-5

0

5

P
it

c
h

 a
n

g
le

,
 

(o

)

0 5 10 15 20 25 30 35 40 45
-1

0

1

Y
a
w

 a
n

g
le

,
 

(o

)

 119

Figure 73: 3D Trajectory (Direct Method)

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

IX. CONCLUSION AND FUTURE WORK

A. CONCLUSION

The following conclusions can be drawn from the

research of this thesis:

 The simulated results using linearized quadrotor

dynamics shows some degree of accuracy as

compared to the actual results when the quadrotor

flight does not deviate far from hover conditions

(non-complex maneuvers).

 Results obtained from the dilution of precision

(GDOP) analysis of the ASEIL lab agree with the

actual test results.

 More Optitrack cameras (an additional 8 to 14

cameras) are required to be installed around the

ASEIL lab in order to provide better coverage of

the test workspace.

 The Inverse Dynamics in Virtual Domain (IDVD)

method that depends only on a few varied

parameters offers a viable solution to the Qball-

X4 quadrotor, as well as any other platforms, for

real-time generation of feasible trajectories.

 Path following using decoupled pitch and roll

channel controllers are shown to give very poor

position tracking.

 The controller based on the Lyapunov approach in

SO(3) is shown to be more effective in following

the desired trajectory.

 122

B. FUTURE WORK

For the continuation of this thesis, several future

efforts can be proposed as follows:

 Develop a nonlinear dynamics 6DOF model for the

quadrotor to allow for more complex maneuvers by

the quadrotor.

 Improve the inner loop controller of the

quadrotor.

 Optimize the Optitrack cameras' location and

orientation in the ASEIL lab to allow for better

coverage of the test workspace.

 Implement and experiment with the path

generation and path following algorithms in the

actual Qball-X4 quadrotor.

 Install optical or other types of sensors

onboard the Qball-X4 to allow for real-time

detection of obstacles and develop codes that

interface with the IDVD algorithms for real-time

generation of quasi-optimal trajectories for the

quadrotor to navigate around those obstacles.

 Develop the Qball-X4 fully into a field-

deployable quadrotor; this requires development

of the following systems:

1. Navigation (GPS, Lidar, etc.)

2. Communication (Datalink)

3. Ground Control Station (GUI, software

programming, etc.)

 123

4. Guidance and Control (from launch to

recovery)

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX A. EQUIPMENT AND LABORATORY SETUP

Details of the equipment and the application software

that were used in the work of this thesis are presented in

this appendix. The test setup procedures were also

explained.

A. OVERVIEW

A ground control station running the host model of the

Optitrack motion capture system and the Qball-X4 controller

model collects localization data from a collection of 10

infrared cameras and transfer this information to the

aerial vehicle via an ad-hoc wireless network.

Figure 74: Laboratory Layout.

 126

The Qball-X4 controller model was built using MATLAB/

Simulink, which was compiled and uploaded into an

executable onboard the embedded Gumstix target computer

wirelessly. HiQ is an embedded avionics data acquisition

card (DAQ) integrated with the Gumstix Target Computer. It

provides the inertial measurements and output motor

commands.

B. APPLICATION SOFTWARE

1. Quanser Real-Time Control Software (QuaRC)

QuaRC version 2.2 was used for this thesis. QuaRC is a

rapid prototyping and controller design and testing

software developed by Quanser. The QuaRC package is used in

concert with the Simulink and Real-Time workshop to allow

high-level programming of the Qball-X4 controller and

offers additional blockset in the Simulink library to

interface with the third-party Natural Point Optitrack

motion capture system. One or multiple controllers designed

in Simulink can be converted into real-time executable

codes via QuaRC and run on different target processors. On-

line parameters tuning is also made possible through the

use of the software.

2. Natural Point Tracking Tool

Natural Point Tracking Tool version 2.3.3 was used.

The tool allowed for 3D marker and 6DOF object motion

tracking and for calibration of the Optitrack cameras.

3. MATLAB/Simulink

MATLAB(R2011b) version 7.13 and Simulink version 7.8

were used. MATLAB is a high-level language and interactive

 127

environment for numerical computation, visualization and

programming, while Simulink toolbox offers a block diagram

environment for multi-domain simulation and model-based

design.

C. HARDWARE

1. Desktop Computer (Ground Control Station)

A desktop computer with the following specifications

was used.

In addition, wireless communications were achieved

through a wireless network adaptor inserted into the PC,

while a USB 2.0 port was used for connecting the Optitrack

motion capture system.

2. HiQ DAC and Gumstix Target Computer

The HiQ is the data acquisition card, which is

integrated with the Gumstix target computer that runs on a

Linux-based operating system. The HiQ-Gumstix functions as

the IMU and flight computer for the Qball-X4 quadrotor.

Processor: Intel(R) Core i5

 CPU @ 3.20 GHz

Operating System: Microsoft Windows 7

 Professional SP1

System Type: 32-bit

RAM: 12.0 GB

 128

Figure 75: HiQ-embedded Avionics Data Acquisition Card.

Input/Outputs (I/Os) for the HiQ data acquisition card

are the following:

 Input power 10-20 V, 400 mA typical current draw

 10 PWM outputs (servo motor outputs)

 6 analog inputs, 12-bit, +3.3 V

 11 reconfigurable digital I/O

 3-axis accelerometer, resolution 3.33 mg/LSB

 3-axis gyroscope, range configurable for ±75°/s,

±150°/s, or ±300°/s, resolution of 0.0125°/s/LSB

at range setting of ±75°/s

 3-axis magnetometer, resolution of 0.5mGa/LSB

IMU

Servo PWM

outputs

Daughterboard

with sonar and

receiver

inputs

Embedded Computer

 129

3. Optitrack Motion Capture System

The Optitrack Motion Capture System is a camera-based

localization and tracking system which supports the use of

at least six motion capturing infrared cameras. Multiple

objects with unique marker configurations can be tracked

via the reflected light from the LEDs integrated into the

cameras. Ten Optitrack IR cameras were employed for the

laboratory setup to track the position of the Qball-X4.

Figure 76: Natural Point Optitrack Cameras(Model V100:R2).

The features and technical specifications of the

Optitrack Motion Capture System are provided as follows:

 4 sonar inputs, 1 cm resolution

 TTL serial GPS input

 2 general purpose TTL serial ports

 8 channel RF receiver input

 USB input for onboard camera (up to 9 fps)

 2 pressure sensors, absolute and relative

pressure

 130

4. Qball-X4 Quadrotor

The Qball-X4 is a quadrotor enclosed within a patented

protective carbon fiber cage. The propulsion system

consists of four E-Flite Park 400 (740 Kv) motors with

paired counter-rotating APC 10'' 4.7'' propellers. Onboard the

aerial vehicle is the HiQ DAC and Gumstix embedded target

computer, powered by two3-cell, 2500 mAh, Lithium Polymer

batteries. The maximum endurance for the vehicle is

approximately 20 min.

 Resolution: 640 x 480

 Frame Rate: 100 fps

 Latency: 10 ms

 Up to 16 cameras can be connected and configured

for single or multiple capture volumes

 Capture volumes up to 400 feet

 Single point tracking for up to 80 markers, or 10

rigid-body objects

 Calibration time varies. Might take minutes to

approximately 3 hours for high resolution

optimization solution.

 Tracking accuracy on the order of mm

 131

Figure 77: Dimensions of Qball-X4 and its Onboard Components.

D. SETUP PROCEDURES

Calibration of Optitrack Motion Capture System:

1. Open Natural Point Tracking Tools software.

2. Under "Choose a Starting Task" dialog box > Select

"Perform Camera Calibration."

block visible marker

3-Marker Calibration

Task Pane

 132

3. Under "3-Marker Calibration" task pane> Choose "Very

High" for Quality in the Solver options.

4. Remove any reflective objects that are within the

camera’s field of view. If the objects cannot be

physically removed, click on the "Block Visible

Marker" icon so that the objects are ignored during

the calibration process.

5. Click on "Start Wanding" button.

6. Start swaying the calibration wand, as shown in Figure

78(a), in the space in which the aerial vehicle

operates. Once sufficient data points are collected,

the background color of the "Calibration Engine" task

pane will appear green.

Figure 78: (a) Calibration Wand (b) Calibration Square.

7. Click on the "Calculate" button under the "Calibration

Engine" task pane. Wait until the "Ready to Apply"

button appears.

8. Click on "Apply Result" button.

9. Save the file (.cal file).

 133

10. The Ground Plane Calibration screen will pop up. Use

 the Calibration Square as displayed in Figure 78(b),

 to set the (0,0,0) position of the workspace.

 Orient the calibration square similar to Figure 79.

Figure 79: Orientation of Calibration Square in Workspace.

11. Save the file (.cal file) again.

12. Place the Qball-X4 with at least three attached

 reflective markers in the workspace. (The position of

 the markers must not be symmetrical, so that the

 orientation of the vehicle is discernible by the

 Optitrack motion capture system).

13. Use the mouse to select the reflective markers. Then

 click on "Create from Selection". Trackable 1 will be

 created. Rename as desired. At the same location,

 give the Qball-X4 an appropriate Trackable ID (i.e.,

 1 to 4).

 134

14. Save the file (.tra file).

15. Exit software.

Setup Qball and Simulink Controller Model:

1. Ensure Calibration of Optitrack Motion Capture System

has been performed.

2. Attached Li-Po battery to the Qball-X4 and secure

them tightly with the velcro straps provided.

3. Place the Qball-X4 at the (0,0,0) position in the

workspace, with the colored tape pointing towards the

Ground Control Station.

4. Switch On the Qball-X4.

5. Ensure that the wireless adaptor and joystick are

connected to the GCS.

6. Open MATLAB/Simulink > Open the two model files

i. Host_Joystick_TYPE_A_Optitrack_v4.mdl

ii. qball_x4_control_v4.mdl

7. Go to Model(i), double-click "OptiTrack Measurements"

block > double-click "OptiTrack Trackables" block.

8. Under "Calibration file," browse to the .cal file

obtained from the Optitrack calibration process.

9. Under "Trackables definition file," browse to the .tra

file obtained from the Optitrack calibration process.

10. For "Trackable IDs,"enter the assigned Trackable ID

 (i.e., 1 to 4) for theQball-X4.

 135

11. Go back to Model(i), double-click "Send Joystick to

 Qball-X4" block > double-click "Stream Server" block.

12. Under "URI upon which to listen," ensure the port

 number is the same as in Model(ii). The format should

 look similar to

"tcpip://localhost:18005"

 (without the quotation marks).

13. Go back to Model(i), click on "Incremental Build"

 icon on the top task bar.

14. Once completed building the codes, click on "Connect

 to Target" icon on the top task bar.

15. Click on the "Run" icon.

16. Confirm that the joystick is connected properly by

 moving the sticks and observing the signals through

 the scopes. Check that the trackable scope displays

 j1.

17. Connect to the "GSAH" wireless network.

18. Go to Model(ii), double-click "Joystick from host"

 block > double-click "Stream Client".

19. Under the "URI of host to which to connect," check

 that the URI tcpip address is synchronized to the

 host computer IP address. The format should look

 similar to

"tcpip://182.168.1.65:18005"

 (without the quotation marks).

20. Go back to Model(ii), go to "QUARC" on the menu list

 > "Options..." > "Code Generation" > "Interface".

 136

 Under "MEX-file arguments, "check that the IP address

 matches that of the Qball-X4. The format should like

 similar to

'-w -d /tmp -uri %u','tcpip://182.168.1.202:17001'

 with the single quotation marks, where the

highlighted portion is the IP address of the Qball-X4.

Qball IP address

A 182.168.1.202

B 182.168.1.236

C 182.168.1.235

D 182.168.1.234

21. Go back to Model(ii), click on "Incremental Build"

 icon on the top task bar.

22. Once completed building the codes, click on "Connect

 to Target" icon on the top task bar.

23. Click on "Run" icon.

24. Push the joystick throttle stick up to start mission.

25. Once the mission is completed or when there is a need

to stop the flight, push the joystick throttle stick

down to land the Qball-X4 and stop the motors.

26. Stop Simulation, and switch off the Qball-X4 power.

 137

APPENDIX B. PLOTTING SCRIPTS FOR ANALYSIS

For 6-DOF Model Simulation:

%%% This script generates the following plots for the Qball 6DOF Simulator

%%% Please use the [ENABLE PLOTS] section to enable/disable which plots you

%%% would want/dont want to analyze

% 1. 2D trajectory

% 2. X and Y Position Control

% 3. Height Control and Thrust

% 4. Roll, Pitch and Yaw Control

% 5. Body-Frame Accelerations

% 6. PQR (Angular Rates)

% 7. NED Accelerations

% 8. NED Velocities

% 9. Euler Rates

% 10. True Speed

% 11. Torque

%%% ENABLE PLOTS

% This section decides which plot to enable or disable

% 1 2 3 4 5 6 7 8 9 10 11

enable_plot = [1 1 1 1 1 1 1 1 1 1 1];

%%% DATA EXTRACT

closeall

sign = -1; rad2deg = 180/pi;

time = telemetry.time;

pos_x_cmd = telemetry.signals.values(:,1); ned_Az =

telemetry.signals.values(:,16);

pos_z_cmd = telemetry.signals.values(:,2); ned_Vx =

telemetry.signals.values(:,17);

yaw_cmd = telemetry.signals.values(:,3).*rad2deg; ned_Vy =

telemetry.signals.values(:,18);

roll_cmd = telemetry.signals.values(:,4).*rad2deg; ned_Vz =

telemetry.signals.values(:,19);

pitch_cmd = telemetry.signals.values(:,5).*rad2deg; pos_x =

telemetry.signals.values(:,20);

hgt_cmd = telemetry.signals.values(:,6); pos_y =

telemetry.signals.values(:,21);

accel_x = telemetry.signals.values(:,7); pos_z =

telemetry.signals.values(:,22).*sign;

accel_y = telemetry.signals.values(:,8); phidot =

telemetry.signals.values(:,23).*rad2deg;

accel_z = telemetry.signals.values(:,9); thetadot =

telemetry.signals.values(:,24).*sign*rad2deg;

gyro_x = telemetry.signals.values(:,10).*rad2deg; psidot =

telemetry.signals.values(:,25).*rad2deg;

gyro_y = telemetry.signals.values(:,11).*rad2deg; phi =

telemetry.signals.values(:,26).*rad2deg;

gyro_z = telemetry.signals.values(:,12).*rad2deg; theta =

telemetry.signals.values(:,27).*sign*rad2deg;

thrust_comp =telemetry.signals.values(:,13); psi =

telemetry.signals.values(:,28).*rad2deg;

ned_Ax = telemetry.signals.values(:,14); true_speed =

telemetry.signals.values(:,29);

ned_Ay = telemetry.signals.values(:,15); torque =

telemetry.signals.values(:,30);

%% 1. 2D Trajectory

if (enable_plot(1) == 1)

figure('name','2D Trajectory');

holdon;

plot(pos_y, pos_x,'r','LineWidth',1.5);

plot(pos_x_cmd, pos_z_cmd, 'ko--','LineWidth',1.5);

title('2D Trajectory');

 138

xlabel('Deflection (x coordinate) (m)'); ylabel('Range (z coordinate) (m)');

axisequal;

text(pos_x_cmd(1)+0.04,pos_z_cmd(1)+0.04,'start pt');

text(pos_x_cmd(end)+0.04, pos_z_cmd(end)-0.04, 'end pt');

legend('Qballtrajectory','Waypoints');

end

%% 2. X and Y Position Control

if (enable_plot(2) == 1)

figure('name','X& Y Position Control');

subplot(211)

plot(time,pos_y,'r',time,pos_x_cmd,'k--','LineWidth',1.5); grid on;

ylabel('Deflection, x coordinate (m)');

legend('Actual','Commanded',0);

subplot(212)

plot(time,pos_x,'r',time,pos_z_cmd,'k--','LineWidth',1.5); grid on;

xlabel('Time (sec)'); ylabel('Range, z coordinate (m)');

end

%% 3. Height Control and Thrust

if (enable_plot(3) == 1)

figure('name','Height Control and Thrust');

subplot(211)

plot(time,pos_z,'r',time,hgt_cmd,'k--','LineWidth',1.5); grid on;

ylabel('Height (m)');

legend('Actual','Commanded',0);

subplot(212)

plot(time,thrust_comp,'r','LineWidth',1.5); grid on;

xlabel('Time (sec)'); ylabel('Thrust (G)');

end

%% 4. Roll, Pitch and Yaw Control

if (enable_plot(4) == 1)

figure('name','Roll, Pitch and Yaw Control');

subplot(311)

plot(time,phi,'r',time,roll_cmd,'k--','LineWidth',1.5); grid on;

ylabel('Roll angle, \phi (^o)');

legend('Actual','Commanded',0);

subplot(312)

plot(time,theta,'r',time,pitch_cmd,'k--','LineWidth',1.5); grid on;

ylabel('Pitch angle, \theta (^o)');

subplot(313)

plot(time,psi,'r',time,yaw_cmd,'k--','LineWidth',1.5); grid on;

ylabel('Yaw angle, \psi (^o)');

end

%% 5. Body-Frame Accelerations

if (enable_plot(5) == 1)

figure('name','Body Accelerations');

holdon;

subplot(311);

plot(time,accel_x,'r','LineWidth',1.5);

ylabel('a_x (m/s^2)'); grid on;

subplot(312);

plot(time,accel_y,'r','LineWidth',1.5);

ylabel('a_y (m/s^2)'); grid on;

subplot(313);

plot(time,accel_z,'r','LineWidth',1.5);

xlabel('Time (sec)'); ylabel('a_z (m/s^2)'); grid on;

end

%% 6. PQR (Angular Rates)

if (enable_plot(6) == 1)

figure('name','Gyroscopes');

holdon;

subplot(311);

plot(time,gyro_x,'r','LineWidth',1.5); grid on;

title('PQR (Angular Rates)');

ylabel('\itp\rm (^o/s)')

subplot(312);

plot(time,gyro_y,'r','LineWidth',1.5); grid on;

ylabel('\itq\rm (^o/s)')

subplot(313);

plot(time,gyro_z,'r','LineWidth',1.5); grid on;

xlabel('Time (sec)'); ylabel('\itr\rm (^o/s)')

 139

end

%% 7. NED Accelerations

if (enable_plot(7) == 1)

figure('name','NED Accelerations');

holdon;

subplot(311);

plot(time,ned_Ax,'r','LineWidth',1.5); grid on;

ylabel('a_N (m/s^2)')

subplot(312);

plot(time,ned_Ay,'r','LineWidth',1.5); grid on;

ylabel('a_E (m/s^2)')

subplot(313);

plot(time,ned_Az,'r','LineWidth',1.5); grid on;

xlabel('Time (sec)'); ylabel('a_D (m/s^2)')

end

%% 8. NED Velocities

if (enable_plot(8) == 1)

figure('name','NED Velocities');

holdon;

subplot(311);

plot(time,ned_Vx,'r','LineWidth',1.5); grid on;

ylabel('V_N (m/s)')

subplot(312);

plot(time,ned_Vy,'r','LineWidth',1.5); grid on;

ylabel('V_E (m/s)')

subplot(313);

plot(time,ned_Vz,'r','LineWidth',1.5); grid on;

xlabel('Time (sec)'); ylabel('V_D (m/s)')

end

%% 9. Euler Rates

if (enable_plot(9) == 1)

figure('name','Euler Rates');

holdon;

subplot(311);

plot(time,phidot,'r','LineWidth',1.5); grid on;

ylabel('\phi'' (^o/s)')

subplot(312);

plot(time,thetadot,'r','LineWidth',1.5); grid on;

ylabel('\theta'' (^o/s)')

subplot(313);

plot(time,psidot,'r','LineWidth',1.5); grid on

xlabel('Time (sec)'); ylabel('\psi'' (^o/s)');

end

%% 10. True Speed

if (enable_plot(10) == 1)

figure('name','True Speed');

holdon; grid on;

plot(time,true_speed,'r','LineWidth',1.5);

title('True Speed');

xlabel('Time (sec)'); ylabel('V_t (m/s)');

end

%% 11. Torque

if (enable_plot(11) == 1)

figure('name','Torque');

holdon; grid on;

plot(time,torque,'r','LineWidth',1.5);

title('Torque');

xlabel('Time (sec)'); ylabel('Torque (N/m)');

end

 140

For QBall-X4 Test Flight:

%%% This script generates the plots for Qball Test Flight for Post Analysis

%%% SIGNALS:

%%% 1. pwm output (rotor 1) 32. zoptitrack

%%% 2. pwm output (rotor 2) 33. optitrack tracking

%%% 3. pwm output (rotor 3) 34. new (flag)

%%% 4. pwm output (rotor 4) 35. - empty - "z_optitrack_TF"

%%% 5. gyro x 36. - empty -

%%% 6. gyro y 37. timeout (flag)

%%% 7. gyro z 38. optitrack timeout (flag)

%%% 8. accel x 39. sonar

%%% 9. accel y 40. land (flag)

%%% 10. accel z 41. throttlecmd

%%% 11. mag x 42. height mode (mode)

%%% 12. mag y 43. heading mode (mode)

%%% 13. mag z 44. position mode (mode)

%%% 14. batt volt 45. u_roll (pwm)

%%% 15. sonar 46. u_pitch (pwm)

%%% 16. - empty- 47. u_yaw (pwm)

%%% 17. roll comp 48. optitrack roll

%%% 18. pitch comp 49. optitrack pitch

%%% 19. rollcmd 50. optitrack yaw

%%% 20. pitchcmd 51. heightcmd aft sigmoid

%%% 21. - empty -

%%% 22. roll

%%% 23. pitch

%%% 24. headingobs

%%% 25. mag heading

%%% 26. throttle joystick

%%% 27. xposcmd

%%% 28. zposcmd

%%% 29. heightcmd

%%% 30. xoptitrack

%%% 31. yoptitrack

%%% INPUT THE .MAT FILE NAME THAT YOU WANT TO ANALYZE

%%% e.g. load qball_flight_data_29-Apr-2013_15-04-34

clearall; close all;

loadqball_flight_data_13-May-2013_transfer_func

sign = -1; rad2deg = 180/pi;

runtime = qball_data(1,:); z_optitrack = qball_data(32,:);

pwm_rotor1 = qball_data(2,:); optitrack_flag = qball_data(33,:);

pwm_rotor2 = qball_data(3,:); new_flag = qball_data(34,:);

pwm_rotor3 = qball_data(4,:); z_optitrack_TF = qball_data(35,:);

pwm_rotor4 = qball_data(5,:); % -empty- = qball_data(36,:);

gyro_x = qball_data(6,:)*rad2deg; timeout_flag = qball_data(37,:);

gyro_y = qball_data(7,:)*rad2deg; opti_timeout_flag = qball_data(38,:);

gyro_z = qball_data(8,:)*rad2deg; sonar = qball_data(39,:);

accel_x = qball_data(9,:); land_flag = qball_data(40,:);

accel_y = qball_data(10,:); throt_cmd = qball_data(41,:);

accel_z = qball_data(11,:); height_mode = qball_data(42,:);

mag_x = qball_data(12,:)*rad2deg; heading_mode = qball_data(43,:);

mag_y = qball_data(13,:)*rad2deg; position_mode = qball_data(44,:);

mag_z = qball_data(14,:)*rad2deg; u_roll = qball_data(45,:);

batt_volt = qball_data(15,:); u_pitch = qball_data(46,:);

sonar = qball_data(16,:); u_yaw = qball_data(47,:);

optitrack_roll = qball_data(48,:)*sign*rad2deg;

roll_comp = qball_data(18,:)*rad2deg; optitrack_pitch =

qball_data(49,:)*rad2deg;

pitch_comp = qball_data(19,:)*rad2deg; optitrack_yaw =

qball_data(50,:)*rad2deg;

roll_cmd = qball_data(20,:)*rad2deg; hgt_cmd_sigmoid = qball_data(51,:);

pitch_cmd = qball_data(21,:)*rad2deg;

roll = qball_data(22,:)*rad2deg;

pitch = qball_data(23,:)*rad2deg;

heading_obs = qball_data(24,:)*rad2deg;

 141

mag_heading = qball_data(25,:)*rad2deg;

throt_joystick =qball_data(26,:);

x_pos_cmd = qball_data(27,:);

z_pos_cmd = qball_data(28,:);

height_cmd = qball_data(29,:);

x_optitrack = qball_data(30,:);

y_optitrack = qball_data(31,:);

%%% FILTER DATA

%%% To find the start and end index

start_index = find(throt_joystick> 0.1); %% START Condition: Detect throttle joystick

position > 10%

start_index = min(start_index);

end_index = find(abs(accel_z) > 20); %% END Condition: Detect Acceleration Z

exceeds 20 m/s^2

end_index = min(end_index);

%% 1. 2D Trajectory

figure('name','2D Trajectory');

holdon;

plot(x_optitrack(start_index:end_index),

z_optitrack(start_index:end_index),'r','LineWidth',1.5);

plot(x_pos_cmd(start_index:end_index), z_pos_cmd(start_index:end_index), 'ko--

','LineWidth',1.5);

title('2D Trajectory');

xlabel('Deflection (x coordinate) (m)'); ylabel('Range (z coordinate) (m)');

axisequal;

text(x_pos_cmd(start_index)+0.04,z_pos_cmd(start_index)+ 0.04,'start pt');

text(x_pos_cmd(end_index)+0.04, z_pos_cmd(end_index)-0.04, 'end pt');

legend('Qballtrajectory','Waypoints');

%% 2. X and Y Position Control

figure('name','X& Y Position Control');

subplot(211)

plot(runtime(start_index:end_index),x_optitrack(start_index:end_index),'r',...

runtime(start_index:end_index),x_pos_cmd(start_index:end_index),'k--','LineWidth',1.5);

grid on;

ylabel('Deflection, x coordinate (m)');

legend('Optitrack','Commanded');

subplot(212)

plot(runtime(start_index:end_index),z_optitrack(start_index:end_index),'r',...

runtime(start_index:end_index),z_pos_cmd(start_index:end_index),'k--','LineWidth',1.5);

grid on;

xlabel('Time (sec)'); ylabel('Range, z coordinate (m)');

%% 3. Height Control and Throttle Command

figure('name','Height Control and Throttle');

subplot(211);

plot(runtime(start_index:end_index),sonar(start_index:end_index),'r',...

runtime(start_index:end_index),y_optitrack(start_index:end_index),'b',...

runtime(start_index:end_index),hgt_cmd_sigmoid(start_index:end_index),'k--

','LineWidth',1.5);

holdon; grid on;

ylabel('Height (m)');

legend('Sonar','Optitrack','Commanded');

subplot(212);

plot(runtime(start_index:end_index),throt_cmd(start_index:end_index),'r','LineWidth',1.5)

;

xlabel('Time (sec)'); ylabel('Throttle (% d.c)'); grid on;

%% 4. Roll, Pitch and Yaw Control

figure('name','Roll, Pitch and Yaw Control');

subplot(311);

plot(runtime(start_index:end_index),roll_comp(start_index:end_index),'r',...

runtime(start_index:end_index),optitrack_roll(start_index:end_index),'b',...

runtime(start_index:end_index),roll_cmd(start_index:end_index),'k--','LineWidth',1.5);

grid on;

ylabel('Roll angle, \phi (^o)');

 142

legend('Qball','Optitrack','Commanded',0);

subplot(312);

plot(runtime(start_index:end_index),pitch_comp(start_index:end_index),'r',...

runtime(start_index:end_index),optitrack_pitch(start_index:end_index),'b',...

runtime(start_index:end_index),pitch_cmd(start_index:end_index),'k--','LineWidth',1.5);

grid on;

ylabel('Pitch angle, \theta (^o)');

subplot(313);

hdg_cmd = zeros(length(runtime),1);

plot(runtime(start_index:end_index),mag_heading(start_index:end_index),'r',...

runtime(start_index:end_index),optitrack_yaw(start_index:end_index),'b',...

runtime(start_index:end_index),hdg_cmd(start_index:end_index),'k--','LineWidth',1.5);

grid on;

%plot(runtime,heading_obs,'r',runtime,yaw_cmd,'k--','LineWidth',1.5); grid on;

ylabel('Yaw angle, \psi (^o)');

%% 5. ROTOR PWM (% Duty Cycle)

figure('name','pwm outputs');

holdon;

subplot(411);

plot(runtime(start_index:end_index),pwm_rotor1(start_index:end_index),'r','LineWidth',1.5

); grid on;

title('Rear Rotor'); ylabel('% d.c.');

subplot(412);

plot(runtime(start_index:end_index),pwm_rotor2(start_index:end_index),'r','LineWidth',1.5

); grid on;

title('Front Rotor'); ylabel('% d.c.');

subplot(413);

plot(runtime(start_index:end_index),pwm_rotor3(start_index:end_index),'r','LineWidth',1.5

); grid on;

title('Left Rotor'); ylabel('% d.c.');

subplot(414);

plot(runtime(start_index:end_index),pwm_rotor4(start_index:end_index),'r','LineWidth',1.5

); grid on;

title('Right Rotor'); ylabel('% d.c.'); xlabel('Time (sec)');

%% 6. PQR (Angular Rates)

figure('name','Gyroscopes');

holdon;

subplot(311);

plot(runtime(start_index:end_index),gyro_x(start_index:end_index),'r','LineWidth',1.5);

grid on;

title('PQR (Angular Rates)');

ylabel('\itp\rm (^o/s)')

subplot(312);

plot(runtime(start_index:end_index),gyro_y(start_index:end_index),'r','LineWidth',1.5);

grid on;

ylabel('\itq\rm (^o/s)')

subplot(313);

plot(runtime(start_index:end_index),gyro_z(start_index:end_index),'r','LineWidth',1.5);

grid on;

xlabel('Time (sec)'); ylabel('\itr\rm (^o/s)')

%% 7. Body Accelerations

figure('name','Body Accelerations');

holdon;

subplot(311);

plot(runtime(start_index:end_index),accel_x(start_index:end_index),'r','LineWidth',1.5);

title('Body Accelerations'); ylabel('a_x (m/s^2)'); grid on;

subplot(312);

plot(runtime(start_index:end_index),accel_y(start_index:end_index),'r','LineWidth',1.5);

ylabel('a_y (m/s^2)'); grid on;

subplot(313);

plot(runtime(start_index:end_index),accel_z(start_index:end_index),'r','LineWidth',1.5);

xlabel('Time (sec)'); ylabel('a_z (m/s^2)'); grid on;

%% 8. Magnetometer

figure('name','Magnetometer');

holdon;

subplot(311);

 143

plot(runtime(start_index:end_index),mag_x(start_index:end_index),'r','LineWidth',1.5);

title('Magnetometer'); ylabel('Mag_x (^o)'); grid on;

subplot(312);

plot(runtime(start_index:end_index),mag_y(start_index:end_index),'r','LineWidth',1.5);

ylabel('Mag_y (^o)'); grid on;

subplot(313);

plot(runtime(start_index:end_index),mag_z(start_index:end_index),'r','LineWidth',1.5);

xlabel('Time (sec)'); ylabel('Mag_z (^o)'); grid on;

%% 9. Battery Voltage

figure('name','Battery Voltage');

batt_threshold = zeros(length(runtime),1);

batt_threshold(:) = 10.6; %% Battery threshold as stated in manual

plot(runtime(start_index:end_index),batt_volt(start_index:end_index),'r',...

runtime(start_index:end_index),batt_threshold(start_index:end_index),'k--

','LineWidth',1.5);

title('Battery Voltage'); ylabel('Volt'); grid on;

ylimits = ylim; ylim([ylimits(1)-0.1 ylimits(2)]);

xlabel('Time (sec)');

legend('battery','threshold');

%% 10. Status Flags

figure('name','Status Flags');

subplot(511);

plot(runtime(start_index:end_index),optitrack_flag(start_index:end_index),'r','LineWidth'

,1.5);

title('Optitrack Status');

subplot(512);

plot(runtime(start_index:end_index),new_flag(start_index:end_index),'r','LineWidth',1.5);

title('New data pkt');

subplot(513);

plot(runtime(start_index:end_index),timeout_flag(start_index:end_index),'r','LineWidth',1

.5);

title('Timeout');

subplot(514);

plot(runtime(start_index:end_index),opti_timeout_flag(start_index:end_index),'r','LineWid

th',1.5);

title('Optitrack Timeout');

subplot(515);

plot(runtime(start_index:end_index),land_flag(start_index:end_index),'r','LineWidth',1.5)

;

title('Land (Failure)'); xlabel('Time (sec)');

%% 11. Modes (1 = close loop, 0 = open loop)

figure('name','Control Modes');

subplot(311);

plot(runtime(start_index:end_index),position_mode(start_index:end_index),'r','LineWidth',

1.5);

title('0: Open Loop 1: Close Loop');

ylabel('Position');

subplot(312);

plot(runtime(start_index:end_index),height_mode(start_index:end_index),'r','LineWidth',1.

5);

ylabel('Height');

subplot(313);

plot(runtime(start_index:end_index),heading_mode(start_index:end_index),'r','LineWidth',1

.5);

ylabel('Heading');

xlabel('Time (sec)');

%% 12. z_optitrack before and after transfer function

figure('name','z_optitrack_pos before and after TF = 20s/(s+20)');

plot(runtime(start_index:end_index),z_optitrack(start_index:end_index),'r',runtime(start_

index:end_index),z_optitrack_TF(start_index:end_index));

title('z-optitrack before and aft of TF = 20s/(s+20)');

legend('before','after');

xlabel('Time (sec)');

 144

THIS PAGE INTENTIONALLY LEFT BLANK

 145

APPENDIX C. OPTIMIZATION SCRIPT

closeall, clear all, clc

warningoff

D2R = pi/180;

%% Mission inputs

globaltime_des

globalobxobyrsafeattlimit

global a0XYZ a0XYZd a0XYZ2d

global afXYZ afXYZd afXYZ2d

attlimit = 5*D2R; % attitude angle limit (rad)

obx=0.0; oby=0; rsafe=0.8; % safe radius (r obstacle is 0.4, Qball radius is 0.3)

time_des = 30; % Tdes desired time of mission

a0XYZ = [-1.5; 0; 1]; % initial position for Qball A

a0XYZd = [0; 0; 0]; % initial velocity for Qball A

a0XYZ2d = [0; 0; 0]; % initial acceleration for Qball A

afXYZ = [1.5; 0; 1]; % final position for Qball A

afXYZd = [0; 0; 0]; % final velocity for Qball A

afXYZ2d = [0; 0; 0]; % final acceleration for Qball A

%% Initial Guess for varied parameters

x0=[0.015 % lam0_2pr_a

 0.015 % lamf_2pr_a

 0.1 % X0a_tpl_prime

 135*D2R % X0a_tpl_prime_angle, radians (0 deg - Pointing North)

 0.1 % Xfa_tpl_prime

 -135*D2R % Xfa_tpl_prime_angle, radians (0 deg - Pointing North)

time_des/1000]; % tauf_a

%% Optimization

t = cputime;

options=optimset('TolFun',1e-1,'TolX',1e-1,'Display','iter'); %,'MaxIter',1000);

%options=optimset('TolFun',1e-1,'TolX',1e-1,'Display','final');

[x0,fval,exitflag,output] = fminsearch(@DMlfun,x0,options)

%[x0,fval,exitflag,output]=fminunc(@DMlfun,x0,options)

time_elapsed = cputime - t

 lam0_2pr_a = x0(1);

 lamf_2pr_a = x0(2);

X0a_tpl_prime = x0(3);

 X0a_tpl_primeA = x0(4);

Xfa_tpl_prime = x0(5);

Xfa_tpl_primeA = x0(6);

tauf_a = x0(7);

%% Do a single run to record all parameters

sim('DM3', [0 200])

 time_a = a(:,1);

 phi_a = a(:,2);

 theta_a = a(:,3);

 x_a = a(:,4);

 y_a = a(:,5);

 z_a = a(:,6);

 lambda_a = a(:,7);

 x_vel_a = a(:,8);

 y_vel_a = a(:,9);

 z_vel_a = a(:,10);

 x_accel_a = a(:,11);

y_accel_a = a(:,12);

z_accel_a = a(:,13);

%% Interpolate data between points at the same frequency the controller runs at

ctrl_t_step = .005; % Controller speed

 [m_a,n_a] = size(a);

t_a_end = a(m_a,1);

t_a = 0:ctrl_t_step:t_a_end;

 146

phi_a = interp1(time_a,phi_a,t_a,'pchip');

theta_a = interp1(time_a,theta_a,t_a,'pchip');

x_a = interp1(time_a,x_a,t_a,'pchip');

y_a = interp1(time_a,y_a,t_a,'pchip');

z_a = interp1(time_a,z_a,t_a,'pchip');

x_vel_a = interp1(time_a,x_vel_a,t_a,'pchip');

y_vel_a = interp1(time_a,y_vel_a,t_a,'pchip');

z_vel_a = interp1(time_a,z_vel_a,t_a,'pchip');

x_accel_a = interp1(time_a,x_accel_a,t_a,'pchip');

y_accel_a = interp1(time_a,y_accel_a,t_a,'pchip');

z_accel_a = interp1(time_a,z_accel_a,t_a,'pchip');

%% Plot all data

cleara; close all

[X,Y,Z] = cylinder(rsafe,20);

X=X+obx; Y=Y+oby; Z=Z*2; % obstacle data

figure% 3D projection

plot3(x_a(1),y_a(1),z_a(1),'bo'); hold on;

plot3(x_a(end),y_a(end),z_a(end),'rx')

%plot3(x_a,y_a,z_a,'b-','LineWidth',2)

legend('Start point','Final point',0)

%legend('Obstacle','Startpoint','Final point','Qball trajectory',0)

mesh(X,Y,Z), hold

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[2 2 2 2]','b')

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[0 0 0 0]','b')

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 -0.25 -0.25]',[0 0 2 2]','b')

patch([0.25 0.25 0.25 0.25]', [-0.25 0.25 0.25 -0.25]',[0 0 2 2]','b')

patch([0.25 -0.25 -0.25 0.25]', [0.25 0.25 0.25 0.25]',[0 0 2 2]','b')

patch([-0.25 -0.25 -0.25 -0.25]', [0.25 -0.25 -0.25 0.25]',[0 0 2 2]','b')

patch([2.43 2.43 -3.05 -3.05 2.03]',[1.84 -1.84 -1.84 1.84 1.84]',...

 0.01+zeros(5,1),[0.83 0.82 0.78])

patch([2 2 -1.5 -1.5 2]',[1 -1.5 -1.5 1 1]',0.02+zeros(5,1),'y')

axis([-3 3 -2 2 0 2]), axis equal

xlabel('x, m'), ylabel('y, m'),zlabel('z, m')

view([-130 25])

figure% 2D projection

plot3(x_a(1),y_a(1),z_a(1),'bo'); hold on;

plot3(x_a(end),y_a(end),z_a(end),'rx')

%plot3(x_a,y_a,z_a,'b-','LineWidth',2)

legend('Start point','Final point',0)

mesh(X,Y,Z), hold

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[2 2 2 2]','b')

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[0 0 0 0]','b')

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 -0.25 -0.25]',[0 0 2 2]','b')

patch([0.25 0.25 0.25 0.25]', [-0.25 0.25 0.25 -0.25]',[0 0 2 2]','b')

patch([0.25 -0.25 -0.25 0.25]', [0.25 0.25 0.25 0.25]',[0 0 2 2]','b')

patch([-0.25 -0.25 -0.25 -0.25]', [0.25 -0.25 -0.25 0.25]',[0 0 2 2]','b')

patch([2.43 2.43 -3.05 -3.05 2.03]',[1.84 -1.84 -1.84 1.84 1.84]',...

 0.01+zeros(5,1),[0.83 0.82 0.78])

 patch([2 2 -1.5 -1.5 2]',[1 -1.5 -1.5 1 1]',0.02+zeros(5,1),'y')

axis([-3 3 -2 2 0 2]), axis equal

xlabel('x, m'), ylabel('y, m'), zlabel('z, m')

view(2)

figure% attitude vs time

subplot(211)

plot(t_a,phi_a/D2R), hold on

plot([time_a(1) time_a(end)],attlimit/D2R*[1 1],'r--')

legend('Qball','Limitations',0)

plot([time_a(1) time_a(end)],-attlimit/D2R*[1 1],'r--')

xlabel('Time, s'), ylabel('\phi, ^o')

subplot(212)

plot(t_a,theta_a/D2R), hold on

plot([time_a(1) time_a(end)],attlimit/D2R*[1 1],'r--')

plot([time_a(1) time_a(end)],-attlimit/D2R*[1 1],'r--')

xlabel('Time, s'), ylabel('\theta, ^o')

figure% velocities vs time

 147

subplot(311)

plot(t_a,x_vel_a)

xlabel('Time, s'), ylabel('V_x, m/s')

subplot(312)

plot(t_a,y_vel_a)

xlabel('Time, s'), ylabel('V_y, m/s')

subplot(313)

plot(t_a,z_vel_a)

xlabel('Time, s'), ylabel('V_z, m/s')

figure% speed and lambda vs time

subplot(211)

plot(t_a,sqrt(x_vel_a.^2+y_vel_a.^2+z_vel_a.^2))

xlabel('Time, s'), ylabel('V, m/s')

subplot(212)

plot(time_a,lambda_a), hold on

plot(time_des*[1 1],[1 1.2],'r--')

legend('Qball','Desired time',0)

xlabel('Time, s'), ylabel('\lambda')

%% Setup data for use in controller

% Setup a series of commands for the first waypoint

t_start = 20; %Start time for maneuver

t_a = t_a+t_start;

t_beginning = 0:ctrl_t_step:t_start-ctrl_t_step;

z_comp = ones(1,length(t_beginning));

t_comp_a = [t_beginning' t_beginning';t_a' t_a'];

x_command_a = [t_beginning' x_a(1)*z_comp';t_a' x_a'];

y_command_a = [t_beginning' y_a(1)*z_comp';t_a' y_a'];

z_command_a = [t_beginning' z_a(1)*z_comp';t_a' z_a'];

theta_command_a = [t_beginning' theta_a(1)*z_comp'; t_a' theta_a'];

phi_command_a = [t_beginning' phi_a(1)*z_comp'; t_a' phi_a'];

 148

THIS PAGE INTENTIONALLY LEFT BLANK

 149

BIBLIOGRAPHY

[1] Kansas State University. October 18, 2012.

 http://www.salina.k-state.edu/aviation/uas/uavs.html

 (accessed April 25, 2013).

[2] J. Croft, Flightglobal. August 17, 2010.

 http://www.flightglobal.com/news/articles/honeywell-

 readies-t-hawk-incremental-and-leap-upgrades-346118/

 (accessed April 26, 2013).

[3] Net Resources International. army-technology.com.

 2012. http://www.army-

 technology.com/projects/honeywell-thawk-mav-us-army/

 (accessed April 26, 2013).

[4] E. Altug, J. P. Ostrowski, and R. Mahony. "Control of

 a quadrotor helicopter using visual feedback.",

 Proceedings of the 2002 IEEE International Conference

 on Robotics and Automation. Washington D.C., 2002. 72-

 77.

[5] Bouabdallah, Samir, A. Noth, and R. Siegwart. "PID vs

 LQ control techniques applied to an indoor micro

 Quadrotor." International Conference on Intelligent

 Robots and Systems. 2004.

[6] T. Bresciani. “Modelling, Identification and Control

of a Quadrotor helicopter.” Master’s Thesis, Sweden:

Lund University, 2008.

[7] Bristeau, Pierre-Jean, F. Callou, D. Vissiere, and N.

 Petit. "The navigation and control technology

 inside the AR. Drone micro UAV." 18th IFAC World

 Congress. Milano: International Federation of

 Automatic Control, 2011.

[8] P. Chaudhari, "Aggressive maneuvers using differential

flatness for a Quadrotor.” Massachusetts Institute of

Technology, December 12, 2011.

[9] J. Colorado, and A. Barrientos. "Mini-quadrotor

 attitude control based on hybrid backstepping &

 Frenet-Serret theory." Robotics and Automation (ICRA),

 2010 IEEE International Conference. Anchorage, 2010.

[10] I. D. Cowling, J. F. Whidborne, and A. K. Cooke. "MBPC

 for autonomous operation of a Quadrotor air vehicle."

 150

 Proc 21st International UAV Systems Conference.

 Bristol, 2006.

[11] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and

 A. K. Cooke. "Direct method based control system for

 an autonomous Quadrotor." Journal of Intelligent and

 Robotic Systems, 2010: 285–316.

[12] C. Coza. "A new robust Adaptive-Fuzzy control method

 applied to Quadrotor helicopter stabilization." Fuzzy

 Information Processing Society, 2006. NAFIPS 2006.

 Annual meeting of the North American. Montreal, 2006.

 454 - 458.

[13] Cutler, Mark, and J. P. How. "Actuator constrained

trajectory generation and control for variable-pitch

Quadrotor.", Massachusetts Institute of Technology,

2012.

[14] Hoffmann, M. Gabriel, and S. L. Waslander.

 "Quadrotor helicopter trajectory tracking control."

 AIAA Guidance, Navigation and Control Conference and

 Exhibit. Hawaii, 2008.

[15] Madani, Tarek, and A. Benallegue. "Backstepping

 control with exact 2-Sliding mode estimation for a

 Quadrotor Unmanned Aerial Vehicle." Proceedings of the

 2007 IEEE/RSJ International Conference on Intelligent

 Robots and Systems. San Diego, 2007.

[16] Mellinger, Daniel, and V. Kumar. "Minimum snap

 trajectory generation and control for Quadrotors."

 Robotics and Automation (ICRA), 2011 IEEE

 International Conference. Shanghai, 2011. 2520 -

 2525.

[17] A. L. Salih, M. Moghavvemi, H. A. F. Mohamed, and K.

 Sallom. "Flight PID controller design for a UAV

 quadrotor." Scientific Research and Essays, 2010:

 3660-3667.

[18] J. F. Shepherd, and K. Tumer. "Robust neuro-control

 for a micro Quadrotor." Genetic and Evolutionary

 Computation Conference 2010. Portland, 2010. 1131-

 1138.

[19] G. Szafranski, and R. Czyba. "Different approaches of

 PID control UAV type Quadrotor." International Micro

 Air Vehicles. 2011.

 151

[20] P. Pounds, R. Mahony, and P. Corke. "Modeling and

control of a large Quadrotor robot.", Yale University,

2010.

[21] A. Bradford, A. Nelson, and J. Palm. "System modeling

and dynamics of the Drafanflyer XP Quadrotor UAV."

2010. http://depts.washington.edu/soslab/mw/images

/e/e1/Group3_Spring_2010_MS2_Presentation.pdf \

(accessed January 5, 2013).

[22] I. E. Putro, A. Budiyono, and K. J. Yoon. "Nonlinear

modeling of Quadrotor Aerial Vehicle." Konkuk

University, 2011.

[23] Goela, Rahul, S. M. Shahb, N. K. Guptac, and N.

 Ananthkrishnanc. "Modeling, simulation and flight

 testing of an autonomous Quadrotor." International

 Conference on Environmental and Agriculture

 Engineering. International Conference on Environmental

 and Agriculture Engineering, 2009.

[24] T. Li. "Nonlinear and fault-tolerant control

 techniques for a Quadrotor Unmanned Aerial Vehicle."

 Master’s Thesis, Montreal, 2011.

[25] Y. Zhang, and A. Chamseddine. "Fault tolerant

 flight control techniques with application to a

 Quadrotor UAV testbed." In Automatic Flight Control

 Systems - Latest Developments, by Thomas Lombaerts,

 199-151. InTech, 2012.

[26] Office of the Secretary of Defense. Unmanned aircraft

 systems. 2005. http://www.acq.osd.mil/usd/Roadmap

 (accessed January 15, 2013).

[27] N. Slegers, and O. Yakimenko. "Terminal guidance of

 autonomous parafoils in high wind-to-airspeed ratios."

 Journal of Aerospace Engineering, 2011: 225-336.

[28] O. Yakimenko, J. A. Lukacs IV. "Trajectory-shaping

 guidance for interception of ballistic missiles

 during the boost phase." Journal of Guidance,

 Control and Dynamics, 2008: 1524-1531.

[29] A. Rao. "A survey of numerical methods for optimal

 control." AAS/AIAA Astrodynamics Specialist

 Conference. Pittsburgh, 2009.

[30] S. Bennett. “A History of Control Engineering 1930-

 1955.” London: Peter Peregrinum Ltd, 1993.

 152

[31] A. Serirojanakul. "Optimal control of quad-rotor

 helicopter using state feedback LPV method."

 Electrical Engineering/Electronics, Computer,

 Telecommunications and Information Technology (ECTI-

 CON), 2012 9th International Conference. Phetchaburi:

 ECTI-CON, 2012. 1-4.

[32] Nuchkrua, Thanana, and M. Parnichkun. "Identification

and optimal control of Quadrotor." Thammasat

International Journal of Science and Technology, 2012.

[33] Hehn, Markus, and R. D'Andrea. "Real-time

 trajectory generation for interception maneuvers with

 Quadrocopters." Intelligent Robots and Systems (IROS),

 2012 IEEE/RSJ International Conference. Vilamoura,

 2012. 4979 - 4984.

[34] L. S. Lasdon, S. K. Mitter, and A. D. Waren. "The

 conjugate gradient method for optimal control

 problems." IEEE Transactions on Automatic Control,

 1967: 132-138.

[35] P. R. Turner and E. Huntley. "Self-scaling variable

 metric methods in hilbert space with applications to

 control problems." Optimal Control Applications and

 Methods, 1: 155-166, 1980.

[36] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan.

“Better mini-batch algorithms via Accelerated Gradient

Methods.” Cornell University, 2011.

[37] Shor, Z. Naum. “Minimization methods for non-

differentiable functions.” Springer Berlin Heidelberg,

1985.

[38] A. I. Chen and A. Ozdaglar. “A fast distributed

 Proximal-Gradient method.” Cornell University, 2012.

[39] X. Chen, Z. Nashed, and L. Qi. "Smoothing methods and

 semismooth methods for nondifferentiable operator

 equations." Society for Industrial and Applied

 Mathematics, 2000: 1200-1216.

[40] Elhedhli, Samir, J. L. Goffin and J. P. Vial.

 "Nondifferentiable Optimization: Cutting Plane

 Methods." In Encyclopedia of Optimization, 2590-2595.

 Springer, 2009.

[41] Stoer, Josef, and R. Bulirsch. “Introduction to

 numerical analysis.” New York: Springer-Verlag, 1980.

 153

[42] O. V. Stryk. Multiple Shooting Method. April 5,

 1996. http://www.sim.informatik.tu-

 darmstadt.de/publ/download/1993-manutec/node5.html

 (accessed January 20, 2013).

[43] A. Engelsone. “Direct transcription methods in optimal

control: Theory and Practice.” Master’s Thesis,

Raleigh: North Carolina State University, 2006.

[44] J. T. Betts. “Practical methods for optimal control

using nonlinear programming.” Philadelphia: Society

for Industrial and Applied Mathematics, 2001.

[45] S. Devasia. Inversion-based Feedforward.

 http://faculty.washington.edu/devasia/Inversion.html

 (accessed March 15, 2013).

[46] W. V. Y. Chen, and Z. L. Tsong. "Optimal control

 applications and methods." Optimal Control

 Applications and Methods, 1998: 363–370.

[47] Q. Gong, W. Kang, and I. M. Ross. "A Pseudospectral

 method for the optimal control of constrained feedback

 linearizable systems." IEEE Transactions on Automatic

 Control, 2006: 1115–1129.

[48] G. N. Elnagar and M. A. Kazemi. "Pseudospectral

 chebyshev optimal control of constrained nonlinear

 dynamical systems." Computational Optimization and

 Applications 11, 1998: 195-217.

[49] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen,

 and A. V. Rao. "Direct trajectory optimization and

 costate estimation via an orthogonal collocation

 method." Journal of Guidance, Control and Dynamics,

 2006: 1435–1440.

[50] D. A. Garg, D. A., et al. "Direct trajectory

 optimization and costate estimation of finite-horizon

 and infinite-horizon optimal control problems using a

 Radau Pseudospectral Method." Computational

 Optimization and Applications, 2011: 335-358.

[51] Garg, Divya, W. W. Hager and A. V. Rao.

 "Pseudospectral methods for solving infinite-horizon

 optimal control problems." Automatica, 2011: 829-837.

[52] Quanser. "Quanser Qball-X4 user manual." User Manual,

 Markham, 2011.

 154

[53] Xoneca. Wikepedia.

 http://en.wikipedia.org/wiki/File:Geometric_Dilution_O

 f_Precision.svg (accessed June 16, 2013).

[54] A. Chelouah. "Extensions of differential flat fields

 and Liouvillian systems." 36th IEEE Conf. Decision

 Contr. CA, 1997.

[55] S. D. Hanford, L. N. Long, and J. F. Horn. "A small

 semi-autonomous rotary-wing Unmanned Air Vehicle

 (UAV)." Infotech@Aerospace Conference. American

 Institude of Aeronautics and Astronautics, 2005.

[56] G. F. Andrews. "A multiple-shooting technique for

 optimal control." Journal of Optimization Theory and

 Applications, 1999: 299-313.

[57] G. Arfken. “The method of steepest descents.” Orlando:

 Academic Press, 1985.

[58] M. A. Athans, and P. L. Falb. “Optimal control.” New

 York: McGraw-Hill, 1966.

[59] J. Betts. "Optimal low thrust trajectories to the

 moon." Applied Dynamical Systems, 2003: 144-170.

[60] Bock, H. Georg, and K. J. Plitt. "A multiple

 shooting algorithm for direct solution of optimal

 control." International Federation of Automatic

 Control. Budapest: International Federation of

 Automatic Control, 1984.

[61] Brandi, Primo, and A. Salvadori. "On measure

 differential inclusions in optimal control theory."

 Rendiconti del Seminario Matematico, 1998: 69-86.

[62] F. Fahroo, and I. M. Ross. "Pseudospectral methods for

 infinite-horizon optimal control problems." Journal

 of Guidance, Control and Dynamics, 2008.

[63] F. Fahroo, and M. Ross. "Costate estimation by a

 Legendre Pseudospectral Method." Journal of Guidance,

 Control and Dynamics, 2001: 270-277.

[64] L. S. Pontryagin, V. G. Boltjanskiy, R. V.

 Gamkrelidze, and Mishenko E. F. “The mathematical

 theory of optimal processes.” New York: Interscience

 Publishers, 1962.

[65] R. V. Mayorga, V. H. Quintana. "A family of variable

 metric methods in function space, without exact line

 searches." Journal of Optimization Theory and

 Applications, 1980.

 155

[66] H. Schattler, and U. Ledzwewicz. “Geometric optimal

 control.” Springer, 2012.

[67] Shankar, Praveen, and R. K. Yedavalli. "Dynamic

 inversion via state dependent Riccati equation

 approach: Application to flight vehicles." American

 Institute of Aeronautics and Astronautics, 2009.

[68] V. T. Taranenko. "Experience on application of Ritz's,

 Poincare's and Lyapunov's methods in solving flight

 dynamics problems." Air Force Engineering Academy

 Press, 1968.

[69] O. Yakimenko. Lecture Notes on Direct Methods for

 Rapid Prototyping of Optimal Maneuvers. 2001.

[70] V. Cichella, et al. "A Lyapunov-based approach for

 time-coordinated 3D path-following of multiple

 Quadrotors." Decision and Control (CDC), 2012 IEEE

 51st Annual Conference, 2012: 1776-1781.

 156

THIS PAGE INTENTIONALLY LEFT BLANK

 157

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

