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ABSTRACT 

This thesis is focused on the development of a six degrees 

of freedom (6DOF) simulation model of a commercial-off-the-

shelf quadrotor. The dynamics of the quadrotor and its 

control strategy are described. The Geometric Dilution of 

Precision (GDOP) of the Autonomous Systems Engineering and 

Integration Laboratory (ASEIL) laboratory used in 

conducting the experiments is also analyzed. Simulation 

results are then verified with actual flight data.  

A direct method of calculus of variations is employed 

in the development of an algorithm for optimal trajectory 

generation and collision-free flight. Using the 

differential-flatness characteristics of the system, the 

trajectory optimization is posed as a nonlinear constrained 

optimization problem in virtual domain, not explicitly 

related to the time domain. Appropriate parameterized 

functions employing an abstract argument, known as the 

virtual arc, are used to ensure initial and terminal 

constraints satisfaction. A speed factor maps the virtual 

to the time domain and controls the speed profile along any 

predetermined trajectory. An inner loop attitude controller 

was used to achieve almost global asymptotic attitude 

tracking for trajectory following. The trajectory 

generation and following algorithms were verified using the 

6DOF simulation model through a simulated collision 

avoidance scenario.  
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I. INTRODUCTION 

A. BACKGROUND 

Recent advances in miniature technology have brought a 

global spotlight on the development of Unmanned Aerial 

Vehicles (UAVs), also commonly known as drones or remotely 

piloted vehicles (RPVs). A UAV is defined as being capable 

of controlled, sustained level flight and powered by a jet 

or reciprocating engine driving a propeller. Electric, 

battery or fuel-cell powered motors are becoming usual on 

micro- and mini-UAVs (Kansas State University 2012). 

UAVs are mostly assigned to dull, dirty and dangerous 

missions, therefore preventing the exposure of humans to 

uncertain or hostile environments that can potentially pose 

a danger to the lives of operators. For instance, 

Honeywell's T-Hawk RQ-16, an autonomous micro air vehicle 

(MAV) with hover and stare capabilities had been deployed 

in Afghanistan to assist ground troops in counter 

improvised explosive devices (IEDs) activities, as well as 

in combat deployment in Iraq as Explosive Ordnance Disposal 

(EOD) UAVs (Croft 2010). The MAV also demonstrated its role 

in civilian applications when it was used to conduct 

surveillance of the damaged Fukushima Dai-Ichi nuclear 

power station in 2011 (Net Resources International 2012). 

These are just a few of the many examples of what UAVs are 

capable of doing. 

Among UAVs, those with rotary-wing configurations have 

advantages over small fixed-wing UAVs since they can hover 

in place and are more maneuverable, and they can be 

launched by an operator staying behind cover while small 
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fixed-wing drones have to be hand-launched with the 

operator either standing or running. Thus, rotorcrafts can 

be deployed in a much wider range of scenarios.  

Among the different types of rotorcrafts, quadrotors 

have been particularly popular in the research field since 

early 2000s. There have been many publications [4-9] in 

recent years describing the dynamics and controls of 

quadrotors. Quadrotors are mechanically simple and can be 

controlled only by changing the rotational speed of the 

four rotors. They are highly agile, but the dynamics of the 

quadrotors can make them difficult to control; thus 

electronic stability augmentation is usually required for 

stable flight (Hanford, Long and Horn 2005). 

Direct methods for real-time trajectory generation and 

trajectory following for UAVs are crucial for time-

critical, collision-free flight during a mission with a 

single UAV or cooperative control of multiple UAVs. Real-

time trajectory generation and following are motivated by 

applications of precision control. While computing optimal 

trajectories can be a complicated matter, there are many 

situations for which nothing less will solve the problem. 

This is evident during obstacle avoidance in close 

proximity and during formation flight by a swarm of UAVs. 

Motivated by these challenges, the objective of this 

thesis is comprised of two parts. First, the development of 

a six degrees of freedom (6DOF) model with animation for 

visualization of a commercial-off-the-shelf (COTS) 

quadrotor in the Simulink environment is explored. This 

allows testing of algorithms on the simulation model prior 

to implementation, testing and verification on the actual 
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platform itself. Second, this thesis examines the 

implementation of the direct method of calculus of 

variations exploiting the inverse dynamics of the quadrotor 

in virtual domain (IDVD) for optimal trajectory generation 

and employing a nonlinear attitude tracking controller for 

trajectory following. These algorithms are verified through 

a collision avoidance mission scenario. 

B. WHY USE QUADROTORS? 

1. ADVANTAGES 

There are several advantages associated with the use 

of quadrotors compared to small fixed-wing UAVs. A few of 

the advantages are listed here. 

Hover-Capable. Unlike conventional fixed-wing UAVs, 

quadrotors have the ability to hover in place over an 

extended duration. This gives quadrotors an advantage over 

fixed-wing UAVs when a mission requires persistent 

monitoring of a target. The ability to hover allows the 

vehicle to vertically takeoff and land (VTOL), thus 

minimizing the footprint needed to launch and land the 

vehicle and preventing exposure of human operators to 

possible dangers. Use of VTOL-capable UAVs also eliminates 

the need for any launch and recovery equipment, thus 

simplifying the logistics required for operating such 

systems. 

Highly Maneuverable. Quadrotors are highly agile. They 

can execute sharp turns almost instantaneously compared to 

fixed-wing UAVs, which have a much larger turning radius. 

Quadrotors are also better suited to operating in indoor 
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environments where room for maneuvering can be very 

restrictive. 

Small Size. Current miniature technology facilitates 

the construction of micro-size quadrotors. This allows them 

to be easily transported and deployed. Being small in size 

also means that they can easily fit through tight windows 

and doorways. The survivability of such vehicles is also 

increased since they are less likely to be detected by 

enemy forces when deployed in tactical missions. 

Mechanically Simple. Unlike conventional helicopters, 

quadrotors do not require mechanically complicated 

variable-pitch mechanisms for their rotors. Instead, they 

generally employ symmetrically pitched blades. Therefore, 

they only have a minimum number of moving parts. 

Maneuvering of the vehicle is accomplished merely by 

changing the rotational speed of the rotors. 

2. DISADVANTAGES 

Like all systems, quadrotors also have their 

disadvantages. Some of the disadvantages are listed here. 

Low Endurance. Fixed-wing UAVs leverage the air 

flowing across the wings to generate aerodynamic lift, 

while quadrotors have to carry their own weight via the 

thrust generated by the rotors. Thus, quadrotors consume 

more power to stay aloft than their fixed-wing UAV 

counterparts. With the current level in battery technology, 

the maximum endurance of quadrotors is typically less than 

an hour. 
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Limited Payload. Quadrotors generally have payload 

restrictions which limit the size and the number of sensors 

they can carry onboard. 

C. THESIS OUTLINE 

This section presents the outline for this thesis. 

Chapter I includes the background information and 

motivation for this thesis.  

Chapter II provides the literature review, and 

describes several direct and indirect methods in optimal 

control theory. Several related projects by universities 

are also described in this chapter. 

Chapter III describes the modeling of the quadrotor's 

dynamics. This involves deriving the equations of motion 

for the development of a complete 6DOF simulation model. 

Chapter IV describes the implementation of the 6DOF 

simulation model in Simulink and its interface with the 

controllers used for controlling the quadrotor (Qball-X4) 

used in the work of this thesis. 

Chapter V provides an analysis of the dilution of 

precision at different locations in the ASEIL laboratory 

used for conducting the experiments. 

Chapter VI compares the results from the simulation 

model to the actual flight data. 

Chapter 0 introduces the direct method of calculus of 

variations exploiting IDVD for optimal trajectory 

generation and trajectory following. 
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Chapter VIII demonstrates the application of the IDVD 

method in the 6DOF simulation model through a collision 

avoidance scenario and presents the results. 

Chapter IX highlights the conclusions drawn from the 

research and recommendations for future work. 
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II. LITERATURE REVIEW AND RECENT WORKS 

A. LITERATURE REVIEW 

In recent years, many researchers have addressed the 

control problem associated with quadrotors [4-19]. Typical 

control of quadrotors includes attitude stabilization and 

movement from one pose (position and attitude) to another.  

Dynamic modeling of quadrotors has been performed by 

many researchers [20-23]. Dynamic modeling of Draganflyer 

XP, a commercial quadrotor, was proposed by Bradford et al. 

(Bradford, Nelson and Palm 2010). Bristeau et al. published 

a paper describing the navigation and control technology 

inside the AR.Drone quadrotor (Bristeau, et al. 2011). 

Several researchers have also used the Qball-X4 quadrotor 

as the testbed for their algorithms [24,25]. 

Proportional, Integral and Derivative (PID) control, a 

technique developed in the 1890s (Bennett 1993), for 

controlling a quadrotor were studied by Szafranski and 

Czyba (Szafranski and Czyba 2011), Bouabdallah et al. 

(Bouabdallah, Noth and Siegwart 2004) and Salih et al. 

(Salih, et al. 2010). Nonlinear control problems for 

hovering quadrotors such as feedback linearization control 

and backstepping control laws were investigated by Altug et 

al. (Altug, Ostrowski and Mahony 2002) and Madani and 

Benallegue (Madani and Benallegue 2007). Recently in 2012, 

Serirojanakul (Serirojanakul 2012) suggested using state 

feedback linear parameter-varying (LPV) method for optimal 

control of a quadrotor. The nonlinear model of the 

quadrotor is first transformed into a linear model 

subjected to time-varying parameters; then the composite 
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quadratic Lyapunov function and quadratic cost functions 

are used to find the optimal state feedback gain.   

Stability of an inherently instable quadrotor is 

always a concern to researchers. A hybrid backstepping 

control and the Frenet-Serret theory used for attitude 

stabilization was proposed by Colorado and Barrientos 

(Colorado and Barrientos 2010) while Coza (Coza 2006) 

implemented a robust adaptive-fuzzy control method to 

stabilize a quadrotor. Shepherd and Tumer (Shepherd and 

Tumer 2010)used a hierarchical neuro-controller to 

stabilize flight of a micro quadrotor in the presence of 

five times more sensor noise and eight times more actuator 

noise compared to the PID controller. 

There is a growing interest in UAVs acquiring an 

increased level of autonomy as more complex mission 

scenarios are envisioned (Office of the Secretary of 

Defense 2005). This interest has inspired many researchers 

to develop algorithms for the optimal control of quadrotors 

in a nondeterministic environment. The Linear Quadratic 

Regulator (LQR) is one type of optimal control technique 

that constructs a control law in order to minimize a cost 

function in which the required state feedback matrix must 

be known. LQR is applied to the quadrotor by casting the 

differential equations describing the model into state-

space form, transforming all the differential equations 

into a first order system (Nuchkrua and Parnichkun 2012). 

The nonlinear matrix algebraic Riccati equation is solved 

for obtaining optimal feedback gain matrices. The 

disadvantage of those methods is the complexity in 

computing the matrix algebra in a digital computer 
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processor for real-time applications. As such, researchers 

have developed techniques to overcome this difficulty. 

Yakimenko developed algorithms using the direct method of 

calculus of variations exploiting the inverse dynamics in 

virtual domain that are capable of generating near optimal 

trajectories in real-time [11,27-28]. Cowling and Yakimenko 

(Cowling, Yakimenko, et al. 2010) tested this method on an 

autonomous quadrotor. Hehn and D'Andrea (Hehn and D'Andrea 

2012) also developed algorithms for real-time trajectory 

generation for interception maneuvers with quadrotors. 

Mellinger and Kumar (Mellinger and Kumar 2011) developed an 

algorithm that enables the real-time generation of optimal 

trajectories through a sequence of 3D positions and yaw 

angles for an aggressive maneuvering quadrotor. Their 

optimization approach minimizes the cost functional derived 

from the square of the norm of the snap (fourth derivative 

of position). 

At this point, it is convenient to review some of the 

optimal control methods, generally classified as either a 

direct or indirect method. Researchers who focus on 

indirect methods are largely interested in differential 

equation theory while researchers who focus on direct 

methods are more interested in optimization techniques (Rao 

2009). This difference in methods will be discussed in the 

next section.  

B. BACKGROUND IN OPTIMAL CONTROL 

Finding the best way for a quadrotor to get from one 

place to another can be described as an optimal control 

problem, while optimal control problems are generally 

nonlinear and, therefore, do not have analytic solutions. 
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It is necessary to employ numerical methods to solve for 

optimal control problems. When describing methods for 

solving optimal control problems, a technique is often 

classified as either a direct or an indirect method. In the 

early years of optimal control (circa 1950s to 1980s) the 

favored approach for solving optimal control problems was 

that of indirect methods. However, the disadvantage 

associated with indirect methods is that the boundary-value 

problem is often extremely difficult to solve. In recent 

decades, direct methods are becoming more popular. The 

nonlinear programming (NLP) problems arising from direct 

methods are usually easier to solve compared to boundary-

value problems. The approach used by direct and indirect 

methods is described in Figure 1. 

 

Figure 1: Approach in Direct and Indirect Methods (From Rao 2012). 

 

It should be noted that direct methods are the more 

practical ones for real-time applications since indirect 

methods generally take impractically long to find a valid 

solution if that is even possible. 

C. INDIRECT METHODS 

Indirect methods seek a solution to the (closed system 

of) necessary conditions of optimality. Discretization of 
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the control profile is not needed, but it requires a guess 

on the optimal solution structure which is often non-

intuitive. It is necessary to derive the adjoint equations, 

control equations and all the transversality conditions 

explicitly. Thus, solving optimal control problems using 

indirect methods becomes a root-finding problem. The 

optimality conditions are also often not trivial to 

formulate. Examples of indirect methods include the 

gradient method and the multiple shooting method, which are 

discussed in the following sections. 

1. Gradient Method 

The gradient method to solve for optimal control 

problems was first introduced by Lasdon et al. (Lasdon, 

Mitter and Waren 1967). The search directions used in this 

method are generated from the past and present values of 

the objective and its gradient. Iterations using linear 

minimization are always in the direction of descent; thus 

this method tends to converge even from poor approximations 

to the minimum. The advantage of the gradient method is 

that each iteration is inexpensive and does not require 

second derivatives; however, this method is often slow in 

attaining convergence and is scaling dependent, such that 

the number of iterations largely depends on the scale of 

the problem. The gradient method also cannot solve for non-

differentiable problems; however, there are various 

enhancements to the gradient method to address these 

drawbacks. To improve convergence, techniques such as 

variable metric methods (Turner and Huntley 1980), 

conjugate gradient methods (Lasdon, Mitter and Waren 1967) 

and accelerated gradient methods (Cotter, et al. 2011) were 
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used. To overcome non-differentiable or constrained 

problems, sub-gradient methods (Shor 1985), proximal 

gradient methods (Chen and Ozdaglar 2012), smoothing 

methods (Chen, Nashed and Qi 2000) and cutting-plane 

methods (Elhedhli, Goffin and Vial 2009) were also used.  

2. Multiple Shooting Method 

The multiple shooting method has proved to be an 

effective tool in solving highly nonlinear multi-point 

boundary value problems. This method is described by, for 

example, Stoer and Bulirsch (Stoer and Bulirsch 1980). 

Shooting refers to a strategy for finding unknown 

parameters, primarily the initial values of variables. A 

trial shot is made at solving the necessary conditions, 

primarily the multi-point boundary conditions, by 

integrating the equations with guessed parameters. Then, 

the shot is adjusted iteratively by varying the parameters, 

until the adjusted shot satisfies the necessary conditions. 

The indirect shooting method is depicted using an analogous 

illustration of a cannon shooting at a target in Figure 2. 
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Figure 2: Schematic of Indirect Shooting Method Using the Analogy of 

a Cannon Firing a Cannonball to Strike a Target (From Rao 2009). 

 

The major advantage of the multiple shooting method is 

its potential to obtain a highly accurate solution through 

the verification of the optimality conditions. The main 

drawbacks include the necessity to derive the necessary 

conditions (e.g., the adjoint differential equations), 

guess the optimal switching structure and make an 

appropriate initial estimate of the unknown state and 

adjoint variables in order to start the iteration process 

(Stryk 1996). 

D. DIRECT METHODS 

In direct methods, the optimal control problem is 

first discretized. Then NLP techniques are applied to the 

resulting finite-dimensional optimization problem. The 

state and control can be approximated using suitable 

function approximations, such as a polynomial approximation 

or piecewise constant parameterization. This leads to a 

finite number of unknown coefficients that are defined by 

the variation principles, boundary-value conditions and 

collocation requirements, which need to be determined. 
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The advantage of direct methods is that a priori 

knowledge of the solution structure is not required; 

however, they offer only an approximate solution due to 

control parameterization. Direct methods can generally be 

classified according to Figure 3. 

 

 

Figure 3: Different Types of Direct Methods (From Rao 2009). 

 

1. Direct Transcription Method 

In a direct transcription method, the dynamic system 

is transcribed into a problem with a finite set of 

variables. The finite dimensional problem is then solved 

using a parameter optimization method (i.e., the NLP sub-

problem). The accuracy of the finite dimensional problem is 

then assessed, and transcription and optimization steps are 

repeated, if necessary. This method is described by 

Engelsone (Engelsone 2006) and Betts (J. T. Betts 2001).  



 15 

2. Inverse Dynamics Approach 

Inverse dynamics is a design technique whereby the set 

of existing or undesirable dynamics of a system are 

eliminated and replaced by a designer selected set of 

desired dynamics. An illustration of this concept is given 

in Figure 4. 

 

Figure 4: Illustration of the Inverse Dynamics Approach (From Devasia 

n.d.). 

 

An advantage of using the inverse dynamics-based 

dynamic programming method over conventional dynamic 

programming methods is the elimination of the interpolation 

requirement for systems. This requirement can degenerate 

the accuracy due to errors associated to the interpolation 

process. This method is used by Chen and Tsong (Chen and 

Tsong 1998) to solve for optimal control problems of linear 

systems. 

3. Pseudospectral Methods 

In pseudospectral methods (PM), the continuous 

functions are approximated at a set of carefully selected 

quadrature nodes. The quadrature nodes are determined by 

the corresponding orthogonal polynomial basis used for the 
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approximation. Theoretically, quadrature nodes are capable 

of attaining high accuracy with a small number of points. 

The main appeal of the PM is its exponential (or 

spectral) rate of convergence, which is faster than any 

polynomial rate, and the possibility to achieve good 

accuracy with relatively coarse grids. 

These methods include forms of the collocation at the 

Legendre-Gauss-Lobatto (LGL) points (Gong, Kang and Ross 

2006), collocation at Chebyshev-Gauss-Lobatto (CGL) points 

(Elnagar and Kazemi 1998), Legendre-Gauss points (LG) 

(Benson, et al. 2006) and collocation at Legendre-Gauss-

Radau points (LGR) (Garg, et al. 2011). Two PM methods 

using the LG and LGR collocation aim at solving infinite-

horizon (i.e., the final time lies in an infinite duration 

from the actual horizon at t  ) optimal control problems 

were suggested by Garg et al. (Garg, Hager and Rao 2011) 

E. RELATED WORK 

In recent years, many universities have been using 

quadrotors as the testbed for their new ideas in a number 

of fields, including flight control, navigation and real-

time systems. The cross-fertilization of ideas and 

approaches that these projects generate can bring 

considerable benefits.  

1. University of Pennsylvania 

Perhaps the most astounding demonstrations of 

quadrotors come from the General Robotics, Automation, 

Sensing and Perception (GRASP) at the University of 

Pennsylvania (Upenn). Videos show quadrotors hovering in 

mid-air, flying in formation before autonomously performing 
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complex flying routines like flips, darting through hoops 

thrown into the air and organizing themselves to fly 

through windows as a group. A latest video also 

demonstrated a team of quadrotors playing musical 

instruments. 

An external localization system (VICON) comprised of 

20 infrared sensing cameras and onboard inertia measurement 

unit was used to facilitate these high precision maneuvers.  

 

 

Figure 5: Composite Image of a Single Quadrotor Flying through a 

Thrown Circular Hoop (From Mellinger and Kumar 2011). 

 

Figure 6: Composite Image of a Single Quadrotor Quickly Flying 

through Three Static Circular Hoops (From Mellinger and Kumar 2011). 
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2. Stanford University 

Stanford University developed its own Testbed of 

Autonomous Rotorcraft for Multi-Agent Control, known as 

STARMAC. The STARMAC quadrotor is shown performing an 

autonomous hover at a waypoint in Figure 7.  

 

 

Figure 7: STARMAC Quadrotor Developed by Stanford University (From 

Hoffmann and Waslander 2008). 

 

The STARMAC was also used as the testbed for an 

autonomous trajectory tracking algorithm through cluttered 

environments. The tracking controller decouples the path 

planning from the update rate of the control input. By 

accepting as inputs a path of waypoints and desired 

velocities, the control input can be updated frequently to 

accurately track the desired path, while the path planning 

occurs as a separate process on a slower timescale.  

The trajectory tracking algorithms are space-indexed 

rather than time-indexed, enforcing the requirement that 

the predetermined obstacle-free path be tracked without 
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deviation. The STARMAC platform is capable of path tracking 

with an indoor accuracy of 10 cm and an outdoor accuracy of 

50 cm (Hoffmann and Waslander 2008). 

3. Massachusetts Institute of Technology 

A variable-pitch quadrotor capable of aggressive 

aerobatic maneuvers (Figures 8 and 9) was developed by 

Massachusetts Institute of Technology (MIT). In comparison 

to typical fixed-pitch quadrotors, their variable-pitch 

quadrotor has a higher control bandwidth. An optimal 

algorithm based on Rapidly Expanding Random Trees (RRT*) 

that offers asymptotical optimality guarantees for 

trajectories while giving probabilistic completeness was 

tested on the variable-pitch quadrotor, together with a 

control law that tracks the reference position trajectories 

that are smooth through the third derivative (Chaudhari 

2011). 

 

 

Figure 8: Variable-Pitch Quadrotor Developed by MIT (From Cutler 

2011). 
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Figure 9: Variable-Pitch Quadrotor Performing 180 degree Flip (From 

Cutler and How 2012). 

 

4. Naval Postgraduate School 

At the Naval Postgraduate School, two AR Drone 

quadrotors were tasked to follow off-line computed 

predefined paths, while coordinating their position and 

attitude according to the scenario requirements. The path 

tracking controller makes each quadrotor converge and 

follow its own path independent of the temporal assignments 

of the scenario (Figure 10). The algorithm relies on the 

implementation of a virtual vehicle running along the path, 

synchronizing its position along the path as well as its 

attitude. Heading can also be controlled independently 

(Naval Postgraduate School 2013). Localization was also 

achieved through the external Vicon Motion Tracking system.  
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Figure 10: Trajectory Following by Two Parrot AR Drone Quadrotors 

(After Naval Postgraduate School 2013). 

 

5. Cranfield University 

Cranfield University employed the Model-Based 

Predictive Control (MBPC) technique for combined trajectory 

planning and following for a quadrotor (Cowling, Whidborne 

and Cooke 2006). MBPC is a process of repeated 

optimizations, at every time step, over a fixed finite time 

horizon to determine the control action, while a control 

law is determined on-line allowing for improved handling of 

constraints imposed on the state, inputs and outputs. The 

real-time trajectory planning allows continual adaptation 

to a changing environment. 
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III. MODELING OF QUADROTOR DYNAMICS AND CONTROL 

A. OVERVIEW 

The Qball-X4 is a COTS quadrotor helicopter developed 

by Quanser Consulting, Inc. It is designed mainly for 

academic research purposes, but it has the potential for 

commercial applications as well. It is equipped with four 

standard remotely controlled (RC) motors and electronic 

speed controllers (ESC), fitted with 10-inch propellers. 

The quadrotor is enclosed within a protective carbon fiber 

cage to ensure safe operation to the vehicle and protection 

to the personnel working with the vehicle in an indoor 

environment. The Qball-X4 employs fixed-pitched blades. It 

is equipped with a Quanser Embedded Control Module (QECM), 

which is comprised of the HiQ data acquisition card (DAQ) 

and a QuaRC-powered Gumstix embedded computer. A block 

diagram of the Qball-X4 system is shown in Figure 11. 

 

 

Figure 11: Qball-X4 System Block Diagram (From Zhang and Chamseddine 

2012). 

 

This chapter presents the modeling of the dynamics and 

controller design for the quadrotor. The equations of 

motion derived are used to construct the 6DOF simulation 

model, which is the topic of Chapter IV .The mass property 
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and thrust characteristics of the rotors were obtained 

through theoretical calculations and experiments. Several 

simplifying assumptions were also made. 

B. DEFINITION OF AXIS SYSTEMS 

Two coordinate systems were adopted for the 

development of the equations of motion and controller 

design for the quadrotor, namely the Local Tangent Plane 

(LTP), which in this case is also the Earth Inertial Frame 

(East-North-Up, ENU frame) and the Aircraft Body 

Coordinates (ABC) frame. The ENU frame assumes that the 

Earth is flat, with the x -axis pointing North, the y -axis 

pointing West and z -axis pointing Up. The flat Earth 

assumption is valid since the operating workspace is small

 5.5 3.5 m m
 
and the duration of the flight is short, i.e., 

 20min . The reference origin is taken to be at the center 

of the workspace. 

The Optitrack motion capture system, however, adopted 

a different coordinate frame as shown in Figure 12, where 

the x -axis is pointing East, y -axis pointing Up and z -axis 

pointing South. We will call this frame the Optitrack 

coordinate frame to avoid confusion. The ENU frame can be 

readily transformed to the Optitrack coordinate frame using 

an appropriate transformation matrix which will be given in 

Section D.   
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Figure 12: Definition of Axis Systems. 

 

C. ATTITUDE REPRESENTATION 

The sequence of rotation conventionally used to 

describe the instantaneous attitude of the aircraft with 

respect to the ENU frame is as follows, with the positive 

Euler angles (Yaw  , Pitch   and Roll  ) determined using 

the Right-Hand Rule: 

 Rotate about the body z axis, front beam points left 

(positive yaw  ). 

 Rotate about the new body y  axis, front beam points 

down (positive pitch ). 

 Rotate about the new body x axis, right beam points 

down (positive roll  ). 

It is also noted that from the first rotation step above, 

the yaw angle is assumed to be the same as the heading 

angle used for navigation purposes. 
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D. COORDINATE TRANSFORMATIONS 

1. ENU to ABC Transformation 

 The complete transformation from the ENU frame to the 

ABC frame is given by the following transformation matrix, 

commonly referred to as the Directional Cosine Matrix (DCM) 

or the B-matrix: 

 

11 12 13

2 21 22 23

31 32 33

ENU ABC

b b b

B b b b

b b b

 
 
 
  

 (1)      

where the elements are given by: 
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 

  

 



 

  



 

Conversely, the rotational matrix from ABC frame to ENU 

frame is given by the inverse of the above matrix, such 

that 
1

2ENU ABCB 

 
or 2ABC ENUB . Since the coordinate frames are 

orthogonal, 
1

2 2

T

ENU ABC ENU ABCB B  . 

2. ENU to Optitrack Coordinates Transformation 

The transformation matrix from ENU frame to the 

Optitrack coordinates frame is given by: 
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0 1 0

0 0 1

1 0 0
Optitrack ENU

X X

Y Y

Z Z

     
     
     

          

 (2) 

       

E. AIRCRAFT VARIABLES 

Table 1 toTable 3 list the aircraft variables used in 

the equations of motion with the corresponding 

nomenclature: 

 

Table 1: Angles, Angular Rates and Moments. 

Parameter Nomenclature 

Roll Angle in ENU Frame   

Pitch Angle in ENU Frame   

Yaw Angle in ENU Frame   

Angular Rate along Body x axis p  

Angular Rate along Body y  axis q  

Angular Rate along Body z axis r  

Rolling Moment L  

Pitching Moment M  

Yawing Moment N  
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Table 2: Position Variables. 

Parameter Nomenclature 

North Position in ENU Frame X  

West Position in ENU Frame Y  

Up Position in ENU Frame  Z  

 

 
Table 3: Velocity and Acceleration Variables. 

Parameter Nomenclature 

Velocity North in ENU Frame X  

Velocity West in ENU Frame Y  

Velocity Up in ENU Frame  Z  

Forward Velocity along Body x axis u  

Lateral Velocity along Body y  axis v  

Upward Velocity along Body z axis w 

Acceleration North in ENU Frame 
xa  

Acceleration West in ENU Frame 
ya  

Acceleration Up in ENU Frame 
za  

 

F. SIGN CONVENTION FOR PROPELLER ROTATION 

The motors and propellers are configured in such a way 

that the rear and front (1 and 2) motors spin counter-

clockwise, and the left and right (3 and 4) spin clockwise 

as shown in Figure 13. Each motor is located at a distance l 
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from the center of gravity (CG) of the quadrotor, and i  

refers to the torque generated by the 
thi  rotor.  

 

Figure 13: Sign Convention for Rotor Spin Direction. 

G. ASSUMPTIONS 

Several assumptions concerning the modeling of the 

quadrotor have been made. 

 Flat Earth approximation and non-rotating Earth 

are assumed. These assumptions are valid since 

the operating workspace is small and duration of 

flight is short. 

 Gravitational acceleration, 
29.81 g ms , is 

constant and directed along the negative z axis 

of the ENU frame.  

 The quadrotor design is symmetrical about the xz 

plane and yz  plane. 

 The quadrotor body and rotor blades are treated 

as rigid bodies. 
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 Small angle approximation is used since the 

quadrotor is maneuvering near to hovering 

conditions. 

 Aerodynamic drag is negligible since the speed is 

low. The effects of wind, including the ground 

and wall effects due to the reflected wind from 

the spinning of the propellers are also 

neglected. 

H. EQUATIONS OF MOTION 

This section describes the development of the 6DOF 

nonlinear aircraft model for the quadrotor. The 6DOF 

equations of motion are driven by forces and moments from 

the thrust and torque contribution of the four rotors, 

acting at the CG of the rigid aerial vehicle. Forces are 

given the notation F . Rolling, pitching and yawing moments 

have the notations L , M and N , respectively.  

1. Thrust Forces 

The thrust forces acting on the CG of the quadrotor 

are given as: 

In ABC frame,  

 

1 2 3 4

0

0

Tx

ABC

T Ty

Tz T T T TABC

F

F F

F F F F F

   
    
   

        

 (3) 

In ENU frame, 
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x

y
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T
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F
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            
            
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sin sin cos sin cos

sin cos cos sin sin

cos  

total total

total total

total

F F

F F

F cos

    

    

 

 
   
 
  

 (4)    

where TxF , TyF  and TzF  are the thrust forces acting in the 

respective coordinate frames. The subscripts ENU and ABC 

refer to the frame in which the thrust forces are acting.

  ( 1,2,3,4)TiF i 
 
is the thrust force generated by the 

thi  rotor. 

2. Gravity 

The forces due to gravity acting in the ENU frame are 

given as:    

 

0

0

Gx

ENU

G Gy

Gz ENU

F

F F

F mg

   
    
   

      

 (5) 

where m  is the mass of the quadrotor, and g
 
is the 

gravitational acceleration. 

3. Total Force 

The total force acting on the CG of the quadrotor in 

the ENU frame is given by the sum of the thrust and 

gravitational forces, while neglecting drag forces. 

 
ENU ENU

ENU T GF F F   

 

sin sin cos sin cos

sin cos cos sin sin

cos  

total total

total total

total

F F

F F

F cos mg

    

    

 

 
   
 

  

 (6) 
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4. Moments 

Roll, pitch and yaw moments are induced by the 

differential torque generated by the four rotors. To induce 

a rolling moment, the rotational speeds of rotors 3 and 4 

(refer to Figure 13) are varied. To induce a pitching 

moment, the rotational speeds of rotors 1 and 2 are varied, 

and finally the rotational speeds of all four rotors 

contribute to yawing moment.  

 

 Rolling moment:  3 4 3 4    T TL F F l      

Pitching moment:     3 4 1 2    T TM F F l      (7) 

 Yawing moment:   3 4 1 2  T T T TN F F F F d   
 

 

where d  is the force-to-moment scaling factor calculated to 

be 4 Nm, and l is the length of the moment arm measured from 

the rotor to the quadrotor's CG. 

5. Moments of Inertia 

The moment of inertia (MOI) about the body axes can be 

calculated, assuming the mass contributions mainly come 

from the central airframe body and the four motors of the 

quadrotor, and that they assume the shape of solid 

cylinders as shown in Figure 14. 
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Figure 14: Calculating the Moments of inertia about the body axes 
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 (8) 

The computed MOIs about the body axes are given as: 
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The cross-products of the moments of inertia are 0 since 

the quadrotor is assumed to be symmetrical about the xz 

plane and yz  plane. 
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6. Kinematic Equations 

The kinematic equations for the quadrotor are shown in 

Eqn.(9), and the simplified form assuming small angle 

approximations is shown in Eqn.(10). 

 

0 sin

cos sin

sin

1

0 cos

0 cos cosr

p

q 



 

  

  

    
         
        



 

 (9) 

Close to hovering conditions, the small angle approximation 

is valid; the above matrix is close to the identity matrix, 

and therefore the angular velocities in the body frame can 

be seen as angular velocities in the inertial frame.  

 

1 0 0

0 1 0

0 0 1

p

q

r







    
         
         

 (10) 

where ,  ,  p q r  are the body angular rates. Additionally, 

,  ,      and ,  ,    
 
are the Euler angles and Euler angular 

rates, respectively. 

7. Dynamic Equations 

The dynamic equations for the quadrotor are given in 

Eqn.(11). 
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           
         

   
      

 (11)   
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where u , v ,w and u , v ,w are the velocities along the body 

axes and their derivatives, and p , q , r  and p , q , r  are the 

angular rates in the body frame and their derivatives. 

8. Final Equations of Motion 

The complete 6DOF nonlinear aircraft model for the 

quadrotor can be summarized as: 

 

Force Equations: 

 

sin sin cos sin cos
1

sin cos cos sin sin

cos  

x total total

y total total

z total

a F F

a F F
m

a F cos mg

    
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 

   
     
   

      

 (12) 

 

Moments Equations: 
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 (13) 

 

Dynamics Equations: 

 

 

 

 
 

 
 

 
 

3 4

1 2

3 4 1 2

T T

zz yyzz yy
xx xxxx xx

T T

xx zz xx zz

yy yy yy yy

T T T T
yy xx yy xx

zz zz zz zz

F F l qrL qr
J JJ J

J JJ J
p

F F lM pr pr
q J J J J

J J J J
r

N pq F F F F d pq
J J J J

J J J J

    
      
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(14) 
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Kinematic Equations: 

  

1 0 0

0 1 0    

0 0 1

p

q small angles approximation

r







    
         
         

 (15) 

I. LINEARIZED DYNAMICS MODEL 

This section describes the linearized dynamic models 

for use in the controller development.   

1. State Vector Representation 

The elements of the state vector X  are comprised of 

the components of positions, velocities, Euler angles and 

angular rates. 

 
T

X x y z x y z         
 (16) 

The elements of the control vector U  are comprised of 

the following control inputs. 

 
T

zU U U U U       (17) 

where 

 

 

 

   

1 2 3 4

3 4

1 2

3 4 1 2 3 4 1 2

z T T T T

T T

T T

T T T T

U F F F F

U F F l

U F F l

U F F F F d





    

   

 

 

       

 

where T iF
 
is the thrust force from 

thi rotor, and d  is the 

force-to-moment scaling factor. 

Taking the derivatives of Eqn.(15) and equate with Eqn.(14) 

gives Eqn.(18).  
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 (18) 

By neglecting the gyroscopic and Coriolis-centripetal 

effects, the simplified form of Eqn.(18) is shown in 

Eqn.(19). 
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 (19) 

2. Actuator Dynamics Model 

The Qball-X4 uses outrunner brushless motors, and the 

thrust TiF  produced by the 
thi rotor is related to the pulse 

width modulation (PWM) input iu  by the first-order linear 

transfer function given as: 

  , for 1,2,3,4T iiF K u i
s




 


 (20) 

where iu
 
is the PWM (in percentage of a 20ms duty cycle) 

input to the 
thi  rotor (i.e., idle throttle occurs when 

0.05u  and maximum throttle occurs when 0.10u  ). Here   is 

the motor bandwidth    15 /rad s  , and K  is a positive gain 

   120 K N . Although   and K  are theoretically the same 
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for all four motors, this might not be true in practice. 

Thus this can be one possible source of modeling 

errors/uncertainties. 

The variable   used to represent the actuator dynamics 

is given as: 

  , for 1,2,3,4i iu i
s





 


 (21) 

Thus, Eqn.(20) can also be written as: 

 i iF Kv  (22) 

3. Roll and Pitch Dynamics Models 

Assuming that the rotations about the x  and y axes are 

decoupled, two propellers contribute to the motion in each 

axis. The thrust generated by each rotor can be calculated 

from Eqn.(20). The rotation around the center of gravity is 

produced by the difference in the generated thrusts.  

Roll Model: 

 
 3 4T T

xx xx

UF F l

J J





   (23) 

Pitch model: 

 
 1 2T T

yy yy

F F l U

J J




   (24) 

Putting Eqn.(20) through Eqn.(24) into state-space 

format gives 

3 4Δ rollu u u   
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 1 2Δ pitchu u u   
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 (26) 

The fourth state s 
 
and s   in Eqn.(25) and (26), 

respectively, are added to the state vector to facilitate 

the use of an integrator in the feedback structure. 

4. Altitude Dynamics Model 

The altitude of the quadrotor is affected by all four 

propellers. The altitude model of the quadrotor can be 

represented as: 

 
 1 2 3 4 cos cos cos cosT T T T z
F F F F U

Z g g
m m

   
  

     (27) 

where m is the total mass of the quadrotor, and Z  is the 

altitude. Assuming that the rotors produce approximately 

the same thrust, the altitude dynamics model can be 

represented in state-space form as shown in Eqn.(28). 
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 (28) 

5. Motion Dynamics Model 

The motion of the quadrotor along the horizontal plane 

of the ENU frame can be represented by Eqn.(29) 
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 (29) 

With small angle approximation, and assuming the rotors 

produce approximately the same thrust, the motion dynamics 

of the quadrotor can be represented as: 
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 (30) 

6. Yaw Dynamics Model 

The relationship between the torque i  generated by the 

    1,  2,  3,  4thi i   rotor and the PWM input to each rotor iu can 

be represented by Eqn.(31). 
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 i y iawK u   (31) 

where yawK  is a positive gain  4 yawK Nm .  

The motion in the yaw axis is caused by the difference 

between the torque exerted by the two clockwise and two 

counter-clockwise propellers. The yaw dynamics can be 

written as: 

  
3 4 1 2

3 4 1 2
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 (32) 

In state-space representation can be written as: 
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 (33) 

7. Control Mixer 

Control mixing combines the outputs from the altitude, 

roll, pitch and heading control channels to generate the 

following command inputs to the rotors: 
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 (34) 

where th ,  ,   and   are the output commands in PWM from 

the altitude, roll, pitch and heading control channels, 

respectively. The input commands to the individually 

controlled rotor are 1u , 2u , 3u  and 4u .  
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J. SUMMARY OF SYSTEM PARAMETERS 

The following system parameters shown in Table 4 were 

obtained from experimental results (Quanser 2011). 

 

Table 4:  System Parameters. 

Parameter Symbol Value 

Thrust coefficient K  120 N 

Actuator Bandwidth   15 rad/s 

MOI about x-axis 
xxJ  0.03 kgm

2
 

MOI about y-axis 
yyJ  0.03 kgm

2
 

MOI about z-axis 
zzJ  0.04 kgm

2
 

Total mass m 1.4 kg 

Torque coefficient 
yawK  4 Nm 

Length of moment arm l  0.2 m 
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IV.  SIMULINK IMPLEMENTATION 

A. OVERVIEW 

The implementation of the 6DOF simulation model in 

Simulink is described in this chapter. The default 

controller provided by Quanser with the Qball-X4 is 

illustrated. A new PID controller developed for each of the 

control channels for basic navigation is also proposed. 

B. OVERVIEW OF 6DOF SIMULATION MODEL 

An overview of the 6DOF simulation model is shown in 

Figure 15. It is comprised of five main modules and four 

auxiliary ones. 

 

 

Figure 15: Overview of 6-DOF Simulation Model. 
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The main modules are 1) Commands, 2) Controller, 3) 

Control Signal Mixing, 4) PWM to Rotor Force and Torque and 

5) Qball 6DOF subsystem blocks.  

The auxiliary modules are 1) Mode Control, 2) Joystick 

Commands, 3) Engineering Analysis Scopes and 4) Qball 

Animation Model blocks. 

The configuration parameters setting for the 

simulation model was set to be similar to the actual Qball-

X4 controller model, which employs ODE1 (Euler) for the 

solver with a step size of 0.005 sec (200 Hz).  

A description of each module is provided in Table 5. 

 
Table 5: Modules and Their Descriptions. 

Block Name Function 

Main Modules 

Commands Consists of a waypoint management 

module which provides the high-level 

commands to the controller module. 

Controller Consists of four control channels, 

namely X position, Z position, Height 

and Heading commands. Outputs 

commands from each channel are in 

PWM. 

Control signal 

mixing 

Combines the commands from each 

control channel and outputs PWM 

commands to individual motor. 

PWM to rotor force 

and torque 

Maps PWM inputs to corresponding 

force and torque generated by each 

motor. 

Qball 6DOF Consists of the equations of motion 
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of the Qball-X4 quadrotor to provide 

the instantaneous states of the 

aircraft. 

 

Auxiliary Modules 

Mode Control User-defined mode: Computer-In-

Control (CIC) or Pilot-In-Control 

(PIC). 

Joystick Commands Receives commands from manual 

joystick. 

Engineering Analysis 

Scopes 

Consists of various scopes to compare 

feedbacks to commands for engineering 

analysis purposes during simulation 

run. 

6DOF Animation Model Provides 3D animation of the 

quadrotor during simulation run.  

 

C. COMMANDS MODULE 

The waypoint management state machine resides in the 

Commands module. It handles the waypoint updates for the 

quadrotor and reports on the current state of the aircraft. 

The waypoint management state machine module is shown in 

Figure 16. 
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Figure 16: Waypoint Management State Machine Block. 

 

The outputs from the Waypoint Management State Machine 

are the position commands, altitude command, heading 

command, the current flight state of the quadrotor and the 

waypoint number.  

The process logic within the state machine is 

described in Figure 17. 
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State 0 (Initialize):

Height cmd = 0

Hdg cmd = current hdg

X pos cmd = 0

Z pos cmd = 0

State 1 (Take Off):

Height cmd = H_cmd(wp_index)

Hdg cmd = current hdg

X pos cmd = 0

Z pos cmd = 0

Time > 3 sec

Throttle > 0.1

State 2 (Go To Waypoint):

Height cmd = H_cmd(wp_index)

Hdg cmd = hdg_cmd(wp_index)

X pos cmd = Tx(wp_index)

Z pos cmd = Tz(wp_index)

Predetermined 

waypoint, height & 

heading commands

wp_index < last wp

State 4 (Continuous Hover):

Height cmd = H_cmd(end)

Hdg cmd = hdg_cmd(end)

X pos cmd = Tx(end)

Z pos cmd = Tz(end)

wp_index >= last wp

State 3 (Hover at Waypoint):

Height cmd = H_cmd(wp_index)

Hdg cmd = hdg_cmd(wp_index)

X pos cmd = Tx(wp_index)

Z pos cmd = Tz(wp_index)

Abs pos error < 0.1 m
Time > wp_wait_time

wp_index >= last wp

 

Figure 17: Process Logic in Waypoint Management State Machine. 

 

D. DEFAULT CONTROLLER DESIGN 

There are four decoupled control channels residing in 

the controller module, namely the Position outer-loop 

control, Attitude (Pitch and Yaw) inner-loop control, 

Heading control and Altitude control. The position and 

attitude controllers have very similar configurations since 

the quadrotor is symmetrical about the xz  plane and yz 

plane. 

1. Position Feedback Control 

The schematic diagram of the default position 

controller developed by Quanser is illustrated in Figure 
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18, with the actual implementation shown in Figure 19 and 

Figure 20. 

 

Figure 18: Schematic Diagram of the Default Position Controllers. 

 

 

Figure 19: Actual Implementation of Outer Loop Position Control. 
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Figure 20: Actual Implementation of Inner Loop Pitch and Roll Control. 

 

Velocities are estimated from the derivative of positions. 

The position information is obtained from the Optitrack 

system, while the roll and pitch attitude are computed from 

the inertial measurement unit (IMU) sensor onboard the 

Qball-X4. 

2. Heading Feedback Control 

The heading controller, which incorporates a yaw 

damper, adopted a simpler architecture as shown in Figure 

21. Heading control is performed as a separate process, 

independent of the pitch and roll of the quadrotor.  Figure 

22 displays the actual implementation of the heading 

controller in Simulink. 
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Figure 21: Schematic Diagram of the Default Heading Controller. 

 

 

Figure 22: Actual Implementation of Outer Loop Heading Controller. 

 

3. Altitude Feedback Control 

The schematic diagram of the altitude controller is 

given in Figure 23. It has a sigmoid modifier block which 

alters the altitude command so that it has a sigmoid 

profile instead of a step profile. The sonar sensor at the 

base of the quadrotor provides the altitude feedback. Gain 
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scheduling was also implemented so that it uses a different 

set of integrator gains during landing and takeoff. Figure 

24 shows the actual implementation of the altitude 

controller in Simulink. 

 

Figure 23: Schematic Diagram of the Default Altitude Controller. 
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Figure 24: Actual Implementation of Outer Loop Altitude Controller. 

 

E. PID CONTROLLER DESIGN 

It was realized that the default controller provides 

only basic control to the quadrotor. To improve the flight 

performance, a new PID controller for each of the control 

channels was proposed. Its main advantages include having a 

simple structure, as well as ease of use and tuning. 

1. Proposed PID Controllers 

The proposed control architecture (Figure 25) consists 

of a Position-to-Velocity and Velocity-to-Roll outer-loop 

PID controller and an inner-loop Roll PID controller for 

the roll control channel. Similarly for the pitch control 

channel, the proposed architecture consists of a Position-
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to-Velocity and Velocity-to-Pitch outer-loop PID controller 

and an inner-loop Pitch PID controller.  

 

Figure 25: Proposed Roll and Pitch PID Controller. 

 

The actual implementation of the outer-loop Position-

to-Velocity and Velocity-to-Pitch/Roll PID controllers is 

shown in Figure 26, and the inner-loop pitch/roll PID 

controllers are shown in Figure 27. 
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Figure 26: Outer Loop Position-to-Velocity and Velocity-to-Roll/Pitch 

PID Controller. 
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Figure 27: Inner Loop Pitch and Roll PID Controller. 

 

2. Heading Feedback Control 

No change in architecture was done to the heading 

feedback control. Since experimental results show the 

performance of the heading controller to be sufficient for 

the work of this thesis, such changes were unnecessary. 

3. Altitude Feedback Control 

The default altitude controller was used; however, the 

gains were retuned, since the original set of gains 

exhibited poor altitude control performance.  
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F. CONTROL SIGNAL MIXING 

The main purpose of the control signal mixer is to 

merge the command outputs from the individual control 

channels in order to achieve the control objectives. The 

output from the control signal mixer consists of the PWM 

input commands to the individual motors. The configuration 

of the control signal mixing block is shown in Figure 28. 

 

 

Figure 28: Control Signal Mixing Module. 

 

G. PWM TO ROTOR FORCE AND TORQUE 

This block typically converts PWM into the 

corresponding rotor forces and torques using the 

relationships shown in Eqn.(20) and Eqn.(31). The 

schematics for the PWM to rotor force and torque module are 

shown in Figure 29. The saturation limits for the PWM are 

0.05 and 0.1, which correspond to 1 ms and 2 ms, 

respectively.  
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Figure 29: PWM to Rotor Force and Torque Module. 

 

H. QBALL-X4 6DOF MODEL 

This block computes the states of the quadrotor in 

real-time using the equations of motion derived earlier in 

Chapter III. It should be noted that in reality position 

information is obtained via the external Optitrack motion 

capture system. In simulation, however, the position and 

orientation are computed using the force and moment 

equations. Figure 30 shows the schematic diagram of the 

Qball-X4 6DOF module. The red box as indicated in Figure 30 

creates an imaginary ground so that the quadrotor would not 

descend below ground level. 
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Figure 30: Qball-X4 6DOF Block. 

 

I. QBALL-X4 ANIMATION MODEL 

This block creates a 3D animation of the simulation 

results in real-time. The inputs to the block are the Euler 

angles  ,  ,    
 

and position information  ,  ,  x y z . The 

advantages of having an animation include acceleration and 

simplification of error analysis and self-explanatory 3D 

animation of the vehicle behavior. A snapshot of the 3D 

animation of the quadrotor performing a square trajectory 

flight profile is shown in Figure 31. 
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Figure 31: 3D Animation of Quadrotor Performing a Square Trajectory 

Flight Profile. 
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V. DILUTION OF PRECISION 

A. INTRODUCTION 

Dilution of precision (DOP) is typically used in 

global positioning system (GPS) and geomatics engineering 

to specify the additional multiplicative effect of GPS 

geometry on GPS precision. For this thesis, this concept is 

used to examine the Optitrack motion capture system's DOP 

and how it affects the accuracy in which the system can 

determine position. DOP comes in various flavors, including 

geometrical (GDOP), positional (PDOP), horizontal (HDOP), 

vertical (VDOP) and time (TDOP). 

B. GEOMETRY 

The idea of GDOP is to examine how errors in the 

measurement affect the final estimation of the state, such 

that 

 
 Output Location

GDOP
Measurements





 (35) 

 

It is desired that small errors in the measurement will not 

lead to significant changes in the output location, since a 

large change indicates that the solution is highly 

sensitive to errors. 

Examples of acceptable and poor GDOP resulting from 

the geometry of the location system are shown in Figure 32. 

When the visible localization cameras are close together, 

the geometry is said to be weak, and the DOP value is high. 

When the cameras are far apart, the geometry is said to be 

strong, and the DOP value is small. 
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Figure 32: Geometric Dilution of Precision (A) Triangulation  

(B) Triangulation with error (C) Triangulation with error and poor GDOP 

(From Xoneca 2013). 

 

C. PSEUDORANGE MEASUREMENTS 

The Optitrack system computes the vehicle's three-

dimensional coordinates from three or more simultaneous 

pseudorange measurements. The range can be measured from 

the infrared (IR) light emitted from the cameras as it 

reflects back to the camera from the reflective markers 

attached to the vehicle. The basic pseudorange model can be 

given by 

  2 1i i i iP c dT dT e     (36) 

where iP  is the pseudorange, i  is the geometric range 

between the 
thi  camera and the quadrotor, c  is the speed of 

light  8 13.0 10  ms , 2idT  and 1idT  are the time biases in the 

camera system at emission and receiving of the IR pulse. 

The measurement noise is accounted for by e . There are n
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such equations to solve using the n  simultaneous 

measurements. 

Without loss of generality, Eqn.(36) can be reduced to 

the form shown in Eqn.(37). 

      
2 2 2

i i i i iP x x y y z z E        (37) 

To determine the quadrotor coordinates, the 

pseudorange equations are first linearized using some 

initial estimates for the vehicle position (the 

linearization point).  

 cP H x   (38) 

where cP  is the n -length vector of differences between the 

corrected pseudorange measurements and the modeled 

pseudorange values based on the linearization point. The 

vector of corrections to an unknown position is x . In 

Eqn.(39), H  is the 3n  matrix of partial derivatives. 

 

     

     

     

2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

2 2 2

n n n

n n n

x x y y z z

x x y y z z

H

x x y y z z

  

  

  

   
 
 
 

   
  
 
 
 

  
 
  

 (39) 

Eqn.(38) is solved using the maximum likelihood parameter 

estimation method, which gives the following solution form 

  
1

T T

cx H WH H W P 


   (40) 
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where 
2 1

0 cPW C 


 
is the weight matrix, which is characterized 

by the differences in the errors of the simultaneous 

measurements. The inverse term in the weight matrix is the 

covariance matrix of the pseudorange errors, and 
2

0  is a 

scale factor (priori variance of unit weight). 

D. COVARIANCE MATRIX 

The covariance law determines how the estimated 

parameters obtained from Eqn.(40) are affected by the 

pseudorange measurements and model errors.  

      
11 1

1

c c

T
T T T T T

x P PC H WH H W C H WH H W H C H
 



  
    
      

 (41) 

where xC  is the covariance matrix of the parameter 

estimates. If it is assumed that the measurement and model 

errors are the same for all observations with a standard 

deviation   and they are uncorrelated, then 
2

cPC I  . 

Eqn.(41) can be simplified to that of the least-squares 

parameter estimation solution 

  
1

2 1 2T

xC H H G 




    (42) 

If we further assume that the measurement errors and model 

errors are independent, then the standard deviation   is 

obtained via the root-mean-square of these errors.  

E. DILUTION OF PRECISION 

The geometric dilution of precision (GDOP) measures 

the overall quality of the least-squares solution and is 

defined as 

  2 2 2 2 1

G x y z t trace G           (43) 



 65 

where 
2 2 2,  ,  x y z    are the variances in position estimates; 

2

t  

is the variance in time offset estimate, which is zero in 

the case for the Optitrack since it is using the same 

clock.  

The quality of the specific three-dimensional position 

component estimates can be given as 

 

2 2 2

2 2

2

:      =  

:  = 

:      =

P x y z

H x y

V z

position

horizontal

vertical

   

  

 

 

  (44) 

The corresponding position, horizontal and vertical DOPs 

can be computed using 

 

2 2 2

2 2

x y z

x y

z

PDOP

HDOP

VDOP

  



 







 







 (45) 

VDOP values are generally larger than HDOP values because 

all the cameras are above the vehicle. 

F. TEST SETUP AND RESULTS 

Figure 33 shows a procedure that was used to collect 

the position measurement errors from the origin of the 

coordinate frame used by the Qball-X4 in the laboratory 

setup (see Appendix A for laboratory setup). The Qball-X4 

was placed at the point of origin and then moved in 1 cm 

increments along the z -axis.  
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Figure 33: Procedure for Determining Position Accuracy of the 

Optitrack System. 

 

 

Figure 34: 3D projection of the ASEIL setup (a), and its bird-eye’s 

view (b). 

 

Figure 34(a) shows the three-dimensional projection of the 

space dedicated for the ASEIL lab with two Quanser Qballs 

sitting on the floor, and Figure 34(b) represents the 

bird’s-eye view of the lab. Circles (red) on both figures 

indicate locations of the ten V100:R2 low-end quality 

a. b. 
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Optitrack cameras. The physical coordinates of the camera 

locations are given in Table 6. 

 

Table 6: Location of the Optitrack Cameras in ASEIL Lab. 

Camera x coordinate, m y coordinate, m z coordinate, m 

1 -4.853995 5.619800 3.395093 

2 -4.173877 3.953969 3.383460 

3 -4.773333 2.288210 3.340947 

4 -4.853995 -1.311777 3.318943 

5 -4.798242 0.6756070 3.327053 

6 -1.127673 -1.624753 3.596775 

7 2.396973 -1.749930 3.660483 

8 2.3911163 0.7045230 3.656286 

9 2.410183 2.483713 3.707655 

10 2.184218 5.220389 3.700000 

 

There is no doubt that the correct number and placement of 

the Optitrack cameras is of fundamental importance to 

successful tracking of moving objects. Table 7 lists the 

recommended number of cameras for various room sizes along 

with approximate workspace volumes that are recommended for 

the various camera packages. 

 

Table 7: Setup Size and Capture Volume for Various Camera Packages. 

Number of Cameras Setup volume (room 

size) L×W×H 

Workspace volume 

(experiment) L×W×H 

6 4m × 4m × 3m 1.5m × 1.5m × 1m 

12 6m × 6m × 3m 3m × 3m × 1m 

18 7m × 7m × 3m 3.5m × 3.5m × 1.5m 

24 7m × 7m × 3m 4m × 4m × 1.5m 
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Figure 35: Example of the Camera Setup Inside a Room as Viewed from 

Above. 

 

The general rules for camera placement (since no single 

"perfect" setup exists) include the following: 

 Cameras should be mounted in as large a perimeter as 

possible (typically not larger than 7 m across). 

 The camera fields of view (FOV) must overlap so that 

objects are trackable in the workspace; so mounting 

them farther away allows for a larger overlapping 

volume. 

 Cameras should be mounted higher up along the walls or 

ceiling to provide an optimal viewpoint and create a 

large overlapping volume. 

As shown in Table 7, even though the ASEIL space is 

not very big, it definitely requires at least 18 to 24 

cameras (as compared to just 10 currently available in the 

ASEIL lab). Out of the 8.6 8.0 m m  area, only 3.9 5.8 m m  is 

dedicated for an experimental fly zone with the floor 

covered by a non-reflective material. Adding a safety 

buffer further shrinks the flyable zone to about 2.6 3.6 m m  
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area. The Optitrack cameras are distributed over the 

perimeter of the entire room, and the actual flyable zone 

is situated at the corner of the room. Another disadvantage 

is the low ceiling such that the highest mounted cameras 

are at 3.7 m above the floor. 

Figure 36 shows the isolines of DOP at four different 

altitude levels: at 0.5m, 1.2m, 1.8 m and 2.5 m above the 

floor, which is an indication of the "pureness" of the 

ASEIL setup. Obviously, with the Qball-X4 flying closer in 

the plane containing the Optitrack cameras, the DOP 

degrades and becomes quite nonlinear at the corners.  

 

Figure 36: Isolines of DOP for a 10-camera ASEIL Setup at 0.5m, 1.2m, 

1.8m and 2.5m Altitude. 

 

For the sake of comparison, Figure 37 shows what would 

happen if there were more height available. If the ceiling 
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was one or two meters higher, the DOP within the flyable 

zone would be much better. 

 

Figure 37: Isolines of DOP for a 10-camera ASEIL Setup at -1m and -2m 

Altitude. 

 

Figure 38 shows the case if we have two cameras 

installed at each existing camera location in the ASEIL 

lab, totaling of 20 cameras. It is expected that DOP would 

improve.  

 



 71 

 

 

Figure 38: Isolines of DOP at Different Heights for the Case of Two 

Optitrack Cameras at Each ASEIL Camera Location. 

 

It should be noted that thus far, we have considered 

an ideal rather than a practical case as we have not taken 

the FOV of the cameras into account. Figure 36 to Figure 38 

were obtained without accounting for the cameras’ FOV. 

Accounting for a 46° horizontal FOV of the V100:R2 
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Optitrack cameras (and 30° vertical FOV) leads to worsening 

of the DOP and shrinking further the flyable zone. 

Before proceeding with the analysis of the limited FOV 

effect, consider one of the scenarios where two Qball-X4 

quadrotors exchange places while avoiding some simulated 

obstacle as shown in Figure 39. For the case of unlimited 

FOV, the GDOP of both the Qball-X4 quadrotors while flying 

almost up to the ceiling, 2.8 m, is shown in Figure 40. We 

will use these results as our benchmark. As expected, most 

of the errors occur in the vertical channel. The bottom-

most graph in Figure 40 shows the ratio between the 

vertical error to horizontal error. The vertical errors are 

twice to eight times larger than the horizontal error. 

 

Figure 39: 3D Trajectory of Two Qballs Exchanging Places while 

Avoiding a Spherical Obstacle Placed at the Center. 
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Figure 40: Change in DOP for a Qball-X4 Flying the 3D Trajectory (see 

Figure 39) in an Ideal (Unlimited FOV) 10-camera ASEIL Setup. 

 

Figure 41 represents a more realistic DOP estimate, as 

compared to Figure 36, by taking into account the limited 

FOV of the cameras. As expected, the drastic change is 

caused by the number of visible cameras at each particular 

location in the lab as shown in Figure 42. It was observed 

that all ten cameras are centered at a point, which is 

approximately 1 m above the floor at the center of the 

coordinate frame established for the flyable zone. 
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Figure 41: Isolines of DOP at Different Heights for a 10-camera ASEIL 

Setup Accounting for the Cameras' FOV. 

 

 

Figure 42: Isolines of Visible Cameras at Different Heights for a 10-

camera ASEIL Setup. 
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Figure 43 features three plots, similar to those of 

Figure 40, for the more realistic case. For the realistic 

case, it can be observed that the DOP suffers a deeper 

degradation.  

 

 

Figure 43: Change in DOP for a Qball-X4 Flying the 3D Trajectory (see 

Figure 39) in the Current 10-camera ASEIL Setup. 

 

 

Doubling the number of cameras for the realistic case 

(with limited cameras' FOV) with the second set of cameras 

oriented exactly the same as the existing cameras, as shown 

in Figure 44, does not improve the situation as much as 

when the cameras' FOV is doubled. The cameras' FOV can be 

doubled by placing the second set of cameras at about the 

same location as the first set but orienting both sets of 

cameras to achieve a wider FOV as shown in Figure 45. 
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Figure 44: Isolines of DOP at Different Heights if the Number of 

Cameras is Doubled. 

 

Figure 45: Isolines of DOP at Different Heights if the FOV Angle is 

Doubled. 
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Figure 46 shows that when the FOV are doubled, a 

better coverage of the entire flyable zone can be achieved.  

 

 

Figure 46: Number of Cameras Visible at Different Locations when the 

FOV Angle is Doubled. 

 

Figure 47 shows the DOP for two Qball-X4 quadrotors 

flying on the same trajectories as those shown in Figure 

39, which gives lower and smoother results.  
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Figure 47: Change in DOP for a Qball-X4Quadrotor Flying a Typical 3D 

Trajectory in a Hypothetical 20-camera Doubled FOV ASEIL Setup. 

 

It is understood that the geometrical configuration of 

the Optitrack camera constellation can affect the DOP; let 

us now briefly discuss the expected magnitudes of the 

tracking error. Figure 48 shows a setup of two tests that 

were conducted to estimate the Optitrack tracking error 

affected by a nonlinear distribution of the DOP within the 

workspace.  

For the first test, a Qball-X4 quadrotor was placed on 

the floor close to the origin of the local tangent plane 

(LTP) and then manually moved along the z-coordinate as 

shown in Figure 48(a) by 1 cm for 20 intervals. Figure 

49(b) shows the Optitrack tracking errors in two 

dimensions. The relative error between two increments stays 

about ±2 mm, while the overall error for the 20 increments 

increased to about 5 cm.  
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Figure 48: Plan View of the Workspace with the Locations of the Two 

Test Setups Marked. 

 

 

 
Figure 49: (a) Measured versus True Range (Test 1), (b) Optitrack 

Measurement Errors (Test 1). 

(a) 

(b) 
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A similar test (Test 2) was conducted at a different 

location as shown in Figure 48. With a poorer DOP at that 

location, the tracking error grew to approximately 6 cm. 

Comparing Figure 49(a) and Figure 50(a), it can be observed 

that the closer the Qball is to the origin of the LTP, the 

smaller the relative errors between the increments. The 

largest error between two consecutive increments (about 0.7 

cm) is observed at the beginning of the second test. 

 

 

 

Figure 50: (a) Measured versus True range (Test 2), (b) Optitrack 

Measurement Errors (Test 2). 
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The altitude measurement errors are expected to be 

much larger. From the bottom-most plot in Figure 43, it can 

be noted that the error in the vertical channel can be 10 

times larger than the horizontal error at floor level. 

These findings agree with the results obtained from actual 

tests; the error in the vertical channel as measured by the 

Optitrack system in midair is of the order of 0.4 m. Thus, 

an ultrasonic sensor, which assures about 1 cm error, is 

used for altitude control of the Qball-X4 instead of using 

the Optitrack system which gives larger errors in the 

vertical channel.  
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VI. SIMULATED AND ACTUAL FLIGHT DATA 

A. OVERVIEW 

In this chapter, the simulated results are compared in 

detail to the actual flight data. The test plan is first 

described. The position control and altitude control 

performances using the default controllers provided by 

Quanser are assessed. Also discussed here are the velocity 

limits, which were adjusted to observe whether there is any 

impact on the flight performance. 

B. SENSORS RESOLUTION 

The resolution for the sensors are as follows (Quanser 

2011): 

 3-axis Accelerometer  3.33 mg/LSB 

 3-axis Gyroscopes   0.0125°/s/LSB 

 3-axis Magnetometer   0.5mGa/LSB 

 Sonar     1 cm 

 Optitrack     1 cm (best) 

C. TEST PLAN DESCRIPTION 

1. The Qball-X4 hovers at an altitude of 0.5 m and then 

executes an inverted L-shaped flight profile.  

2. The Qball-X4 climbs to an altitude of 0.5 m, increases 

to 1.0 m and 1.5 m, then returns to 1.0 m and 0.5 m before 

landing. 



 84 

3. The Qball-X4 performs a 120° heading (counter 

clockwise) turn, followed by a -120° heading (clockwise) 

turn. 

 

Figure 51: Illustration of Test Scenarios. 

 

D. DEFAULT PARAMETER VALUES 

Table 8 provides the list of the default saturator 

limits and gain values. 
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Table 8: List of Saturation Limits and Gains Values. 

Parameter Symbol Values Units 

Saturation Limits:    

Roll/Pitch PWM Limit Climit 0.025 % 20ms d.c. 

Velocity Limit vlimit 0.3 m/s 

Height Velocity Limit Vlimith 0.1 m/s 

Roll/Pitch Limit tlimit 0.0873 rad 

Gains:    

Roll/Pitch Control Channel   

P-gain (outer loop) Kp 0.7988 -- 

I-gain (outer loop) Ki 0.1 -- 

D-gain (outer loop) Kd 0.6901 -- 

Heading Control Channel   

P-gain (outer loop) Kpyaw 0.0316 -- 

D-gain (outer loop) Kdyaw 0.015 -- 

Height Control Channel   

P-gain (outer loop) Kph 0.0062 -- 

I-gain (outer loop) Kih 0.0032 -- 

D-gain (outer loop) Kdh 0.006 -- 

 

E. TEST SCENARIO 1 

1. Ground Track 

Figure 52 shows the actual and simulated ground track. 

It can be seen that the quadrotor tracks reasonably well 

with the commanded trajectory, with a maximum cross-track 

error of approximately 0.1 m (10% of commanded value). 
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Figure 52: Plot of Actual and Simulated Ground Track. 

2. X and Z Position 

 

Figure 53: Plot of Actual and Simulated X and Z Position. 
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3. Height 

 

Figure 54: Plot of Actual and Simulated Heights. 

4. Accelerations 

 

Figure 55: Plot of Actual and Simulated Accelerations. 
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5. Angular Rates 

 

Figure 56: Plot of Actual and Simulated Angular Rates. 

6. Euler Angles 

 

Figure 57: Plot of Actual and Simulated Euler Angles. 
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F. TEST SCENARIO 2 (HEIGHT INCREMENT) 

 

Figure 58: Plot of Actual and Simulated Incremental Heights. 

 

It can be observed from Figure 58 that the noises 

associated with the sonar sensor get larger as the altitude 

of the quadrotor increases, while the altitude information 

from the Optitrack motion capture system is less noisy. 

However the altitude error from the Optitrack system 

increases with altitude. If we are able to create a 

comprehensive correction table for the Optitrack altitude 

data, it can be used in place of the sonar sensor for 

altitude control in the future for indoor experiments (to 

take advantage of its reduced noise). Also, notice that the 

overshoot during descent tends to be larger than that 

during ascent. 

To make the altitude information obtained from the 

Optitrack system useful, the following methods were used.  
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 At discrete altitude intervals

   0.5,  0 <0.5,  0.5 <1.0, ...cmdh h h h     and when the sonar 

and y  Optitrack reached steady-state, collect 

all the steady-state data points and perform 

averaging. The greater the number of discrete 

intervals and data points, the better the 

accuracy. 

 Obtain a mapping factor for each discrete 

interval, where the mapping factor is given by: 

 
0.5, 0 h<0.5, 0.5 h<1.0, ...

0.5, 0 h<0.5, 0.5 h<1.0, ...
_

ave
map h

ave h

sonar
K

y optitrack  
  

 
  
 

 (46) 

 Produce a table to store all the mapping factors 

at each discrete interval. 

 Multiply the y  Optitrack data with the 

corresponding mapping factor, according to the 

interval into which it falls. 

 ( ) ( ) ( )_ i map i iy optitrack K sonar  (47) 

 

Figure 59 shows the result of the corrected y 

Optitrack information after multiplying with the 

appropriate mapping factor. 
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Figure 59: Optitrack Altitude After Corrected with Appropriate Mapping 

Function. 
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G. TEST SCENARIO 3 (HEADING CONTROL) 

 

Figure 60: Plot of Actual and Simulated Heading. 
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limits were varied between 0.2 to 0.9, with the default 

value being 0.3. 

 

Figure 61: Plots of Ground Track with Variation in vlimits. 

 

From Figure 61, it can be observed that there was no strong 

indication that position tracking improves with higher 
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VII. DIRECT METHOD USING INVERSE DYNAMICS IN 

VIRTUAL DOMAIN 

A. INTRODUCTION 

In Chapter 0, a mission scenario was created for the 

Qball-X4 quadrotor. The quadrotor is to perform an obstacle 

collision avoidance maneuver while using the direct method 

of calculus of variations exploiting the inverse dynamics 

in virtual domain (IDVD) in solving for the trajectory 

optimization problem. 

The IDVD method is the preferred choice for several 

reasons. Firstly, this method allows for the satisfaction 

of higher-order derivatives at both the initial and final 

points (allowing for very smooth transition to a newly 

generated trajectory). Second, it permits the use of any 

model and performance index, such that it is not subjected 

to the curse of dimensionality and does not require 

differentiability of the performance index. Finally, it 

requires significantly less optimizing parameters (i.e., 

typically fewer than 10) compared to other direct methods; 

thus, it greatly reduces the computational time required to 

generate a feasible trajectory, allowing for real-time 

trajectory generation onboard the quadrotor during flight 

(Yakimenko 2010).  

The 6DOF model of the quadrotor is already described 

in Chapter III. Following from there, the general 

architecture of the autonomous control system is first 

introduced. A conventional PID controller is used for 

trajectory following. Then the trajectory optimization 

problem is formulated along with the detailed numerical 
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trajectory optimization routine. The outcome of the 

simulation is presented in Chapter VII. 

B. CONTROLLER ARCHITECTURE 

The proposed control system architecture (O. Yakimenko 

2010) is presented in Figure 62. The top section represents 

the common feedback control for path tracking by the 

quadrotor while the bottom section provides periodic 

updates of the trajectory by the trajectory generator. The 

trajectory generator computes a quasi-optimal route in a 

relatively short time (typically on the order of 10 to 

100s) making it possible for re-optimization of the 

trajectory during flight. This is crucial in the event of 

unexpected obstruction along the original planned path. The 

interpolator produces samples of the reference trajectory 

at the desired high frequency rate required by the 

controller. 

During the mission, there might be a need to modify 

the mission scenario. When the discrepancy between the 

current and desired state becomes too large (i.e., due to 

wind or noise disturbances), for instance, the update 

switch triggers the trajectory generator to re-compute a 

new quasi-optimal trajectory, taking the current state as 

the new vector of initial conditions. 
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Figure 62: Proposed Controller Architecture (After O. Yakimenko 2010). 

 

C. TRAJECTORY OPTIMIZATION 

This section aims to find the reference trajectory refx  

and desired control profile refu  by solving the trajectory 

optimization problem, utilizing the differential flatness 

characteristics of the quadrotor dynamics. This is followed 

by a detailed optimization routine. 

1. Differential Flatness and Optimal Problem 

Formulation in Output Space 

The differential flatness property of a system refers 

to the possibility of expressing its states and control 

vectors in terms of the output vectors and their 

derivatives (Chelouah 1997). 

From Eqn.(17), the components of the control vector u  

can be easily expressed in terms of the states and their 

derivatives: 
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Expressing Eqn.(12) in the following form shown in Eqn.(49) 
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 (49) 

To simplify Eqn.(49), we assume the heading angle   to be 

very small, such that the rotational part of the state 

vector can then be expressed (in terms of the output vector 

and its derivatives) as: 
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x
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x y z g
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 (50) 

Singularities in Eqn.(50) can occur when z g  ; that is, 

when the quadrotor is experiencing a free-fall. To avoid 

this, we add the constraints 1 0,  <90  and <90o ou   . 

Taking the differentiation of Eqn.(50) using the quotient 

rule and trigonometric function, we can perform the 

following. 

Reviewing the differentiation of the trigonometric 

function: 
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Reviewing the differentiation using the quotient rule: 

 
 

2

( ) ( ) ( ) ( ) ( )

( ) ( )

d f t g t f t f t g t

dt g t g t

   
 

 
 

Derive  , such that 

 

   

 

 

 

2

2 2

22

1

1

( )
1

  

1

  

d x

dt z gx

z g

d d
z g x x z g

dt dt

z gx

z g

x z g xz

x z g


 

  
   

 
 

 
   

  
       

 


 

 (51) 

and   can also be derived as: 
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Eqn.(51) and Eqn.(52) can be differentiated once more, and 

the results substituted into Eqn.(48), 
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and 
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Eqn.(53) and Eqn.(54) can be substituted into Eqn.(48). 

The state vector x  and control vector u  can be expressed 

as some nonlinear function 1h  and 2h
 
as a function of the 

output vector y  and its derivatives 

 
1

2

( , ,...)

( , ,...)

x h y y

u h y y




 (55) 

Expressing the optimization problem within the output space 

by taking advantage of the differentially flat 

characteristics of the quadrotor dynamics can significantly 

reduce the computation time for constraint handling since 

most constraints arise, for instance, from obstacle 

avoidance occurring in the output space. 

Let the performance index for the obstacle collision 

avoidance be expressed as the following form: 

      
2

2 2 2

2

0 0

1
1

f ft t

r
h v r f

f

V
J w P x y P z dt P dt w t T

t D

 
       

 
 
   (56) 

 

( )

0 1 0

f 1

1

min ( ( ))   for 0,

. .   y ( ( )) 0

       y ( ( )) 0

       c ( ( )) 0

f
y t

f

J y t t t

s t g y t

g y t

y t

   

 

 



 (57) 

where ,   and h vw P P  are the weighting factors, ft  is the time of 

flight, rV  is the radial velocity, D is the distance from 

the quadrotor to the center of the obstacle, and T  is the 

desired time-of-arrival. 

Using a suitable parameterization of the output vector 

components, with some reference functions dependent on a 

few varied parameters, the boundary problem can be solved a 
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priori. As such, this eliminates the necessity to integrate 

differential equations, and the optimal problem can simply 

be formulated as: 

 

1

min ( ( ))

. .   c ( ( )) 0

J y

s t y




 
 (58) 

where   is the vector of varied parameters 

The optimal problem can be solved using the fminsearch or 

fmincon function in MATLAB. 

2. Decoupling Space and Time 

To decouple space and time, so as to allow independent 

optimization of the trajectory and speed profile, an 

abstract argument  , also known as the virtual arc, is to 

be introduced. The argument  , which is in the virtual 

domain, can be related back to time using the variable 

speed factor: 

 ( )
d

dt


    (59) 

It should be noted that scaling the virtual speed 

profile     does not really matter since higher values of 

  will only result in larger f , leaving other parameters 

in the time domain unchanged. Changing f  changes the shape 

of the candidate trajectory but does not affect the 

boundary conditions. 
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3. Parameterization 

To reduce the optimal problem into a finite amount, a 

suitable parameterization is to be performed. The detailed 

procedure is explained as follows: 

First, we assume that all these Cartesian coordinates 

follow some reference polynomial functions, where the order 

of the polynomials depends on the number of boundary 

conditions to be satisfied. The minimum degree of the 

polynomial is defined according to: 

 0 1fn d d    (60) 

where 0d , fd  are the maximum orders of the time derivative 

of the quadrotor coordinates at the initial and terminal 

points, respectively. It should be noted that other 

parameterization, such as that presented by Slegers and 

Yakimenko (Slegers and Yakimenko 2011), may also be used. 

Thus, let the Cartesian coordinates  , ,x y z  of the 

reference trajectory be represented by the following: 

 

 
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
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 



















 



 

  









 (61) 

In the same manner, we define for y
 
and z . 

It is desirable for the trajectory at the terminal 

stage to be smoother; thus, we exploit the case where 3fd 
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with 0 0,  0fx x    and the only varied parameter are thus 

0,  ,  f fx x  . Therefore, we are interested in the case where 

0 3,  3fd d   and 0 1 7fn d d    . 

The unknown coefficients in Eqn.(61) can then be found 

by solving the following matrix of algebraic equations: 
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(62) 

 

and using the following MATLAB codes to determine the 

coefficients: 

 

which yields 

symstaufx1x2x3x4x5x6x7x8 
A = [1 0 0 0 0 0 0 0;  

0 1 0 0 0 0 0 0; 

     0 0 1 0 0 0 0 0;  

     0 0 0 1 0 0 0 0; 
     1 tauf 0.5*tauf^2 (1/6*tauf^3) (1/24*tauf^4) (1/60*tauf^5)  

(1/120*tauf^6) (1/210*tauf^7); 
     0 1 tauf 0.5*tauf^2 (1/6*tauf^3) (1/12*tauf^4) (1/20*tauf^5)  

(1/30*tauf^6); 
     0 0 1 tauf 0.5*tauf^2 (1/3*tauf^3) (1/4*tauf^4) (1/5*tauf^5); 
0 0 0 1 tauf tauf^2 tauf^3 tauf^4]; 
B = [x1;x2;x3;x4;x5;x6;x7;x8]; 
pretty(inv(A)*B) 
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(63) 

 

Likewise, we perform the above routine to determine the 

unknown coefficients for y
 
and z . 

Similarly for the speed profile in virtual domain 

 
2 2 2( ) ( ) ( ) ( ) ( )V x y z           (64) 

We assume the speed factor can be expressed with the 

following reference functions: 
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

 (65) 

We set the initial and final value of   (i.e., 0  and f  

respectively) to 1, and the first order derivatives will be 

set to 0, while the second order derivatives at both 

endpoints will be used as varied parameters. This requires 

a polynomial function of degree 5n  . 
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Solving the following matrix of algebraic equations to 

determine the unknown coefficients for ( )  :  
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 (66) 

which yields 
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 (67) 

4. Numerical Computation 

The final step is to solve the trajectory optimization 

problem numerically. This involves discretization of the 

virtual arc f  into 1N   equal segments as shown in Figure 

63. Thus the length of each segment is: 

 
1

f

N


 


 (68) 
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Figure 63: Excluding Time and Converting Back to Time (O. Yakimenko 

2001). 

 

All the states x  and controls u  at the first node ( 1)j   

are defined. For each subsequent ( 2,3,..., )j N  node, the 

current value of the Cartesian coordinates ( ),  ( ),  ( )j j j j j jx y z    

and the speed factor ( )j j   are computed. 

The time passed since the last node is given as: 
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
 (69) 

and the current time is: 

 1 1j j jt t t     (70) 

The current value of the speed factor 

 

1

j

jt










 (71) 

The   derivatives can now be converted back to time domain 

using the following chain rule: 
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 (72) 

 

In the same manner, we can find ,  ,  ,...y y y  and ,  ,  ,...z z z  

Having computed the Cartesian coordinates and the 

speed factor, we can then substitute these coordinates back 

to Eqn.(16) and Eqn.(48) to determine the remaining states 

and controls. 

 

D. TRAJECTORY FOLLOWING CONTROL LAW 

The controller for the Qball-X4 quadrotor are designed 

to operate near hover conditions and the PID controller of 

the quadrotor autopilot for z  control is such that: 

 0z g   (73) 

To follow the optimal trajectory, the control input to 

maneuver the quadrotor in the horizontal plane is given as 

(Cichella, et al. 2012): 
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d p d d dc

x k x x k x x
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       
              

 (74) 

where, the left hand side of Eqn.(74) represents the 

commanded roll and pitch angles. Terms with subscript d on 

the right hand side represent the desired acceleration, 
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position and velocities generated from the optimal 

trajectory generator. 
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VIII.  SIMULINK IMPLEMENTATION OF THE IDVD 

METHOD 

A. MISSION SCENARIO 

A mission scenario was established to validate the 

IDVD direct method. In this scenario, the quadrotor was to 

navigate from 1.5 z m   to 1.5 z m  at a height of 1.0 m, with 

an 0.5   0.5   2.0 m m m   obstacle placed at the origin. Figure 

64(a) shows the isometric view of the mission scenario, and 

Figure 64(b) shows its plan view. 

 

Figure 64: Obstacle Collision Avoidance Mission Scenario. 

 

B. SIMULINK IMPLEMENTATION 

In general, there are two steps in implementing the 

IDVD method: generating the trajectory and interfacing with 

the controllers used for following the trajectory. The 

procedure of implementing these two steps in the developed 

6DOF simulation model is described in this section. 
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1.  Trajectory Generator 

Based on the methodology described earlier in Chapter 

0, the rapid prototyping of the quasi-optimal trajectory 

generator was developed in the Simulink modeling 

environment. The optimization script used for generating 

the trajectory is presented in Appendix D. An overview of 

the model used for implementing the algorithm is shown in 

Figure 65. 

 

Figure 65: Overview of the Optimal Trajectory Generator. 

 

Figure 66 shows the location at which the initial and final 

boundary conditions to be satisfied are set in the Simulink 

model. The model also computes the unknown coefficients of 

Eqn.(63) for the Cartesian coordinates ( ,  ,  x y z ) and Eqn.(67) 

for the speed profile. The model computes all states in the 

time domain as well. The outputs are the Cartesian 

coordinates, velocities and accelerations of the quasi-

optimal trajectory, as well as the reference pitch and roll 

angles. Two hundred sub-intervals were defined for the 

optimal trajectory generated. 
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Figure 66: Implementation of IDVD Optimization Algorithms. 

 

The discrepancies block ensures dynamics and control 

constraints satisfaction by the quadrotor. Also, the space 

(obstacle and laboratory space) constraints and desired 

time of arrival are also set in this block shown in Figure 

67. Higher weights are assigned in the performance index 

for meeting the desired time of arrival and obstacle 

avoidance, while smaller weights are given to the quadrotor 

dynamics and the laboratory space constraints.  
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Figure 67: Discrepancies Block. 

 

2. Trajectory Follower 

The following modifications were done for the Commands 

subsystem module and was shown in Figure 68. The Direct 

Method block outputs the desired accelerations, velocities 

and positions in inertia frame. These information is then 

sent to the path follower module which use them to generate 

the required roll and pitch commands for the Qball-X4. The 

inner loop controllers are then used to track these roll 

and pitch commands. 

There is also a switch feature which enables the 

operator to select either to use the Waypoint State Machine 

or the Direct method for guidance. 0 indicates to use the 

Waypoint State Machine and 1 indicates using the Direct 

Method. This is also being highlighted in Figure 68. 
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Figure 68: Modification to Controls Module to Include Optimal 

Trajectory Generator and Follower 

 

C. SIMULATED RESULTS 

This section shows the simulated results for the 

obstacle avoidance scenario. 

1. Ground Track 

Figure 69 shows the simulated ground track for the 

quadrotor. As can be seen from the figure, the quadrotor 

tracked the trajectory very well in the beginning but some 

overshoot was observed when it was near to the final 
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position. This can be attributed to the inner loop 

controller which requires tuning to improve its 

performance. 

 

Figure 69: Ground Track (Direct Method) 

  

2. Position Control 

 

Figure 70: Position Control (Direct Method) 
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Figure 70 shows the performance for the position 

control. It can be observed that the quadrotor tracks the 

commanded values very closely at the beginning, but 

overshoot slightly during the final phase.   

 

3. Height Control 

 

Figure 71: Height Performance (Direct Method) 
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performance, the inner loop attitude controller needs to be 

tuned better. Unfortunately, this had not been completed 

due to time constraints. However, it is being proposed as a 

future work in the Chapter 0.  

 

Figure 72: Attitude Control (Direct Method) 

 

5. 3D Trajectory 
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Figure 73: 3D Trajectory (Direct Method) 
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IX.  CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

The following conclusions can be drawn from the 

research of this thesis: 

 The simulated results using linearized quadrotor 

dynamics shows some degree of accuracy as 

compared to the actual results when the quadrotor 

flight does not deviate far from hover conditions 

(non-complex maneuvers). 

 Results obtained from the dilution of precision 

(GDOP) analysis of the ASEIL lab agree with the 

actual test results. 

 More Optitrack cameras (an additional 8 to 14 

cameras) are required to be installed around the 

ASEIL lab in order to provide better coverage of 

the test workspace. 

 The Inverse Dynamics in Virtual Domain (IDVD) 

method that depends only on a few varied 

parameters offers a viable solution to the Qball-

X4 quadrotor, as well as any other platforms, for 

real-time generation of feasible trajectories.  

 Path following using decoupled pitch and roll 

channel controllers are shown to give very poor 

position tracking. 

 The controller based on the Lyapunov approach in 

SO(3) is shown to be more effective in following 

the desired trajectory. 
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B. FUTURE WORK 

For the continuation of this thesis, several future 

efforts can be proposed as follows: 

 Develop a nonlinear dynamics 6DOF model for the 

quadrotor to allow for more complex maneuvers by 

the quadrotor. 

 Improve the inner loop controller of the 

quadrotor. 

 Optimize the Optitrack cameras' location and 

orientation in the ASEIL lab to allow for better 

coverage of the test workspace. 

 Implement and experiment with the path 

generation and path following algorithms in the 

actual Qball-X4 quadrotor. 

 Install optical or other types of sensors 

onboard the Qball-X4 to allow for real-time 

detection of obstacles and develop codes that 

interface with the IDVD algorithms for real-time 

generation of quasi-optimal trajectories for the 

quadrotor to navigate around those obstacles. 

 Develop the Qball-X4 fully into a field-

deployable quadrotor; this requires development 

of the following systems: 

1. Navigation (GPS, Lidar, etc.) 

2. Communication (Datalink) 

3. Ground Control Station (GUI, software 

programming, etc.) 
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4. Guidance and Control (from launch to 

recovery) 
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APPENDIX A. EQUIPMENT AND LABORATORY SETUP 

Details of the equipment and the application software 

that were used in the work of this thesis are presented in 

this appendix. The test setup procedures were also 

explained. 

A. OVERVIEW 

A ground control station running the host model of the 

Optitrack motion capture system and the Qball-X4 controller 

model collects localization data from a collection of 10 

infrared cameras and transfer this information to the 

aerial vehicle via an ad-hoc wireless network. 

 

Figure 74: Laboratory Layout. 
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The Qball-X4 controller model was built using MATLAB/ 

Simulink, which was compiled and uploaded into an 

executable onboard the embedded Gumstix target computer 

wirelessly. HiQ is an embedded avionics data acquisition 

card (DAQ) integrated with the Gumstix Target Computer. It 

provides the inertial measurements and output motor 

commands.   

B. APPLICATION SOFTWARE 

1. Quanser Real-Time Control Software (QuaRC) 

QuaRC version 2.2 was used for this thesis. QuaRC is a 

rapid prototyping and controller design and testing 

software developed by Quanser. The QuaRC package is used in 

concert with the Simulink and Real-Time workshop to allow 

high-level programming of the Qball-X4 controller and 

offers additional blockset in the Simulink library to 

interface with the third-party Natural Point Optitrack 

motion capture system. One or multiple controllers designed 

in Simulink can be converted into real-time executable 

codes via QuaRC and run on different target processors. On-

line parameters tuning is also made possible through the 

use of the software. 

2. Natural Point Tracking Tool 

Natural Point Tracking Tool version 2.3.3 was used. 

The tool allowed for 3D marker and 6DOF object motion 

tracking and for calibration of the Optitrack cameras. 

3. MATLAB/Simulink 

MATLAB(R2011b) version 7.13 and Simulink version 7.8 

were used. MATLAB is a high-level language and interactive 
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environment for numerical computation, visualization and 

programming, while Simulink toolbox offers a block diagram 

environment for multi-domain simulation and model-based 

design.  

C. HARDWARE 

1. Desktop Computer (Ground Control Station) 

A desktop computer with the following specifications 

was used. 

 

 

In addition, wireless communications were achieved 

through a wireless network adaptor inserted into the PC, 

while a USB 2.0 port was used for connecting the Optitrack 

motion capture system. 

2. HiQ DAC and Gumstix Target Computer 

The HiQ is the data acquisition card, which is 

integrated with the Gumstix target computer that runs on a 

Linux-based operating system. The HiQ-Gumstix functions as 

the IMU and flight computer for the Qball-X4 quadrotor.  

 

Processor:   Intel(R) Core i5 

     CPU @ 3.20 GHz 

Operating System:  Microsoft Windows 7  

     Professional SP1 

System Type:   32-bit 

RAM:    12.0 GB  
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Figure 75: HiQ-embedded Avionics Data Acquisition Card. 

 

Input/Outputs (I/Os) for the HiQ data acquisition card 

are the following: 

 

 Input power 10-20 V, 400 mA typical current draw 

 10 PWM outputs (servo motor outputs) 

 6 analog inputs, 12-bit, +3.3 V 

 11 reconfigurable digital I/O 

 3-axis accelerometer, resolution 3.33 mg/LSB 

 3-axis gyroscope, range configurable for ±75°/s, 

±150°/s, or ±300°/s, resolution of 0.0125°/s/LSB 

at range setting of ±75°/s 

 3-axis magnetometer, resolution of 0.5mGa/LSB 

IMU 

Servo PWM 

outputs 

Daughterboard 

with sonar and 

receiver  

inputs 

 

Embedded Computer 
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3. Optitrack Motion Capture System 

The Optitrack Motion Capture System is a camera-based 

localization and tracking system which supports the use of 

at least six motion capturing infrared cameras. Multiple 

objects with unique marker configurations can be tracked 

via the reflected light from the LEDs integrated into the 

cameras. Ten Optitrack IR cameras were employed for the 

laboratory setup to track the position of the Qball-X4. 

 

Figure 76: Natural Point Optitrack Cameras(Model V100:R2). 

 

 

The features and technical specifications of the 

Optitrack Motion Capture System are provided as follows: 

 4 sonar inputs, 1 cm resolution 

 TTL serial GPS input 

 2 general purpose TTL serial ports 

 8 channel RF receiver input 

 USB input for onboard camera (up to 9 fps) 

 2 pressure sensors, absolute and relative 

pressure 
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4. Qball-X4 Quadrotor 

The Qball-X4 is a quadrotor enclosed within a patented 

protective carbon fiber cage. The propulsion system 

consists of four E-Flite Park 400 (740 Kv) motors with 

paired counter-rotating APC 10'' 4.7''  propellers. Onboard the 

aerial vehicle is the HiQ DAC and Gumstix embedded target 

computer, powered by two3-cell, 2500 mAh, Lithium Polymer 

batteries. The maximum endurance for the vehicle is 

approximately 20 min.  

 Resolution: 640 x 480 

 Frame Rate: 100 fps 

 Latency:  10 ms 

 Up to 16 cameras can be connected and configured 

for single or multiple capture volumes 

 Capture volumes up to 400 feet 

 Single point tracking for up to 80 markers, or 10 

rigid-body objects 

 Calibration time varies. Might take minutes to 

approximately 3 hours for high resolution 

optimization solution.  

 Tracking accuracy on the order of mm 
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Figure 77: Dimensions of Qball-X4 and its Onboard Components. 

 

D. SETUP PROCEDURES 

Calibration of Optitrack Motion Capture System: 

1. Open Natural Point Tracking Tools software. 

2. Under "Choose a Starting Task" dialog box > Select 

"Perform Camera Calibration." 

 

block visible marker 

3-Marker Calibration 

Task Pane 
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3. Under "3-Marker Calibration" task pane> Choose "Very 

High" for Quality in the Solver options. 

4. Remove any reflective objects that are within the 

camera’s field of view. If the objects cannot be 

physically removed, click on the "Block Visible 

Marker" icon so that the objects are ignored during 

the calibration process. 

5. Click on "Start Wanding" button.  

6. Start swaying the calibration wand, as shown in Figure 

78(a), in the space in which the aerial vehicle 

operates. Once sufficient data points are collected, 

the background color of the "Calibration Engine" task 

pane will appear green.  

 

Figure 78: (a) Calibration Wand (b) Calibration Square. 

 

7. Click on the "Calculate" button under the "Calibration 

Engine" task pane. Wait until the "Ready to Apply" 

button appears. 

8. Click on "Apply Result" button. 

9. Save the file (.cal file). 
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10. The Ground Plane Calibration screen will pop up. Use  

 the Calibration Square as displayed in Figure 78(b), 

 to set the (0,0,0) position of the workspace.   

 Orient the calibration square similar to Figure 79. 

 

 

Figure 79: Orientation of Calibration Square in Workspace. 

 

11. Save the file (.cal file) again. 

12. Place the Qball-X4 with at least three attached 

 reflective markers in the workspace. (The position of 

 the markers must not be symmetrical, so that the 

 orientation of the vehicle is discernible by the 

 Optitrack motion capture system). 

13. Use the mouse to select the reflective markers. Then 

 click on "Create from Selection". Trackable 1 will be 

 created. Rename as desired. At the same location, 

 give the Qball-X4 an appropriate Trackable ID (i.e., 

 1 to 4). 
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14. Save the file (.tra file). 

15. Exit software. 

 

Setup Qball and Simulink Controller Model: 

1. Ensure Calibration of Optitrack Motion Capture System 

has been performed. 

2. Attached    Li-Po battery to the Qball-X4 and secure 

them tightly with the velcro straps provided.  

3. Place the Qball-X4 at the (0,0,0) position in the 

workspace, with the colored tape pointing towards the 

Ground Control Station. 

4. Switch On the Qball-X4. 

5. Ensure that the wireless adaptor and joystick are 

connected to the GCS. 

6. Open MATLAB/Simulink > Open the two model files 

i. Host_Joystick_TYPE_A_Optitrack_v4.mdl 

ii. qball_x4_control_v4.mdl 

7. Go to Model(i), double-click "OptiTrack Measurements" 

block > double-click "OptiTrack Trackables" block. 

8. Under "Calibration file," browse to the .cal file 

obtained from the Optitrack calibration process. 

9. Under "Trackables definition file," browse to the .tra 

file obtained from the Optitrack calibration process. 

10. For "Trackable IDs,"enter the assigned Trackable ID 

 (i.e., 1 to 4) for theQball-X4. 
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11. Go back to Model(i), double-click "Send Joystick to 

 Qball-X4" block > double-click "Stream Server" block. 

12. Under "URI upon which to listen," ensure the port 

 number is the same as in Model(ii). The format should 

 look similar to  

"tcpip://localhost:18005" 

 (without the quotation marks). 

13. Go back to Model(i), click on "Incremental Build" 

 icon     on the top task bar. 

14. Once completed building the codes, click on "Connect 

 to Target" icon     on the top task bar. 

15. Click on the "Run" icon. 

16. Confirm that the joystick is connected properly by 

 moving the sticks and observing the signals through 

 the scopes. Check that the trackable scope displays

 j1. 

17. Connect to the "GSAH" wireless network. 

18. Go to Model(ii), double-click "Joystick from host" 

 block > double-click "Stream Client". 

19. Under the "URI of host to which to connect," check 

 that the URI tcpip address is synchronized to the 

 host computer IP address. The format should look 

 similar to 

"tcpip://182.168.1.65:18005" 

 (without the quotation marks). 

20. Go back to Model(ii), go to "QUARC" on the menu list

 > "Options..." > "Code Generation" > "Interface". 
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 Under "MEX-file arguments, "check that the IP address 

 matches that of the Qball-X4. The format should like 

 similar to 

'-w -d /tmp -uri %u','tcpip://182.168.1.202:17001' 

 with the single quotation marks, where the 

highlighted portion is the IP address of the Qball-X4. 

 

Qball IP address 

A 182.168.1.202 

B 182.168.1.236 

C 182.168.1.235 

D 182.168.1.234 

 

21. Go back to Model(ii), click on "Incremental Build" 

 icon     on the top task bar. 

22. Once completed building the codes, click on "Connect 

 to Target" icon     on the top task bar. 

23. Click on "Run" icon. 

24. Push the joystick throttle stick up to start mission. 

25. Once the mission is completed or when there is a need 

to stop the flight, push the joystick throttle stick 

down to land the Qball-X4 and stop the motors. 

26. Stop Simulation, and switch off the Qball-X4 power.   
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APPENDIX B. PLOTTING SCRIPTS FOR ANALYSIS 

For 6-DOF Model Simulation: 

%%% This script generates the following plots for the Qball 6DOF Simulator 

%%% Please use the [ENABLE PLOTS] section to enable/disable which plots you 

%%% would want/dont want to analyze 

% 1. 2D trajectory 

% 2. X and Y Position Control 

% 3. Height Control and Thrust 

% 4. Roll, Pitch and Yaw Control 

% 5. Body-Frame Accelerations 

% 6. PQR (Angular Rates) 

% 7. NED Accelerations 

% 8. NED Velocities 

% 9. Euler Rates 

% 10. True Speed 

% 11. Torque 

 

%%% ENABLE PLOTS 

% This section decides which plot to enable or disable 

%              1  2  3  4  5  6  7  8  9  10 11 

enable_plot = [1  1  1  1  1  1  1  1  1  1  1]; 

 

%%% DATA EXTRACT 

closeall 

sign = -1; rad2deg = 180/pi; 

time         = telemetry.time; 

pos_x_cmd    = telemetry.signals.values(:,1);               ned_Az       = 

telemetry.signals.values(:,16); 

pos_z_cmd    = telemetry.signals.values(:,2);               ned_Vx       = 

telemetry.signals.values(:,17); 

yaw_cmd      = telemetry.signals.values(:,3).*rad2deg;      ned_Vy       = 

telemetry.signals.values(:,18); 

roll_cmd     = telemetry.signals.values(:,4).*rad2deg;      ned_Vz       = 

telemetry.signals.values(:,19); 

pitch_cmd    = telemetry.signals.values(:,5).*rad2deg;      pos_x        = 

telemetry.signals.values(:,20); 

hgt_cmd      = telemetry.signals.values(:,6);               pos_y        = 

telemetry.signals.values(:,21);    

accel_x      = telemetry.signals.values(:,7);               pos_z        = 

telemetry.signals.values(:,22).*sign; 

accel_y      = telemetry.signals.values(:,8);               phidot       = 

telemetry.signals.values(:,23).*rad2deg; 

accel_z      = telemetry.signals.values(:,9);               thetadot     = 

telemetry.signals.values(:,24).*sign*rad2deg; 

gyro_x       = telemetry.signals.values(:,10).*rad2deg;     psidot       = 

telemetry.signals.values(:,25).*rad2deg; 

gyro_y       = telemetry.signals.values(:,11).*rad2deg;     phi          = 

telemetry.signals.values(:,26).*rad2deg; 

gyro_z       = telemetry.signals.values(:,12).*rad2deg;     theta        = 

telemetry.signals.values(:,27).*sign*rad2deg; 

thrust_comp  =telemetry.signals.values(:,13);              psi          = 

telemetry.signals.values(:,28).*rad2deg; 

ned_Ax       = telemetry.signals.values(:,14);              true_speed   = 

telemetry.signals.values(:,29); 

ned_Ay       = telemetry.signals.values(:,15);              torque       = 

telemetry.signals.values(:,30); 

 

%% 1. 2D Trajectory 

if (enable_plot(1) == 1) 

figure('name','2D Trajectory'); 

holdon; 

plot(pos_y, pos_x,'r','LineWidth',1.5);  

plot(pos_x_cmd, pos_z_cmd, 'ko--','LineWidth',1.5); 

title('2D Trajectory'); 
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xlabel('Deflection (x coordinate) (m)'); ylabel('Range (z coordinate) (m)'); 

axisequal; 

text(pos_x_cmd(1)+0.04,pos_z_cmd(1)+0.04,'start pt'); 

text(pos_x_cmd(end)+0.04, pos_z_cmd(end)-0.04, 'end pt'); 

legend('Qballtrajectory','Waypoints'); 

end 

%% 2. X and Y Position Control 

if (enable_plot(2) == 1) 

figure('name','X& Y Position Control'); 

subplot(211) 

plot(time,pos_y,'r',time,pos_x_cmd,'k--','LineWidth',1.5); grid on; 

ylabel('Deflection, x coordinate (m)'); 

legend('Actual','Commanded',0); 

subplot(212) 

plot(time,pos_x,'r',time,pos_z_cmd,'k--','LineWidth',1.5); grid on; 

xlabel('Time (sec)'); ylabel('Range, z coordinate (m)'); 

end 

%% 3. Height Control and Thrust 

if (enable_plot(3) == 1) 

figure('name','Height Control and Thrust'); 

subplot(211) 

plot(time,pos_z,'r',time,hgt_cmd,'k--','LineWidth',1.5); grid on; 

ylabel('Height (m)'); 

legend('Actual','Commanded',0); 

subplot(212) 

plot(time,thrust_comp,'r','LineWidth',1.5); grid on; 

xlabel('Time (sec)'); ylabel('Thrust (G)');  

end 

%% 4. Roll, Pitch and Yaw Control 

if (enable_plot(4) == 1) 

figure('name','Roll, Pitch and Yaw Control'); 

subplot(311) 

plot(time,phi,'r',time,roll_cmd,'k--','LineWidth',1.5); grid on; 

ylabel('Roll angle,  \phi  (^o)'); 

legend('Actual','Commanded',0); 

subplot(312) 

plot(time,theta,'r',time,pitch_cmd,'k--','LineWidth',1.5); grid on; 

ylabel('Pitch angle,  \theta  (^o)'); 

subplot(313) 

plot(time,psi,'r',time,yaw_cmd,'k--','LineWidth',1.5); grid on; 

ylabel('Yaw angle,  \psi  (^o)'); 

end 

%% 5. Body-Frame Accelerations 

if (enable_plot(5) == 1) 

figure('name','Body Accelerations'); 

holdon;  

subplot(311); 

plot(time,accel_x,'r','LineWidth',1.5); 

ylabel('a_x (m/s^2)'); grid on; 

subplot(312); 

plot(time,accel_y,'r','LineWidth',1.5); 

ylabel('a_y (m/s^2)'); grid on; 

subplot(313); 

plot(time,accel_z,'r','LineWidth',1.5); 

xlabel('Time (sec)'); ylabel('a_z (m/s^2)'); grid on; 

end 

%% 6. PQR (Angular Rates) 

if (enable_plot(6) == 1) 

figure('name','Gyroscopes'); 

holdon;  

subplot(311); 

plot(time,gyro_x,'r','LineWidth',1.5); grid on; 

title('PQR (Angular Rates)');  

ylabel('\itp\rm  (^o/s)') 

subplot(312); 

plot(time,gyro_y,'r','LineWidth',1.5); grid on; 

ylabel('\itq\rm  (^o/s)') 

subplot(313); 

plot(time,gyro_z,'r','LineWidth',1.5); grid on; 

xlabel('Time (sec)'); ylabel('\itr\rm  (^o/s)') 
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end 

%% 7. NED Accelerations 

if (enable_plot(7) == 1) 

figure('name','NED Accelerations'); 

holdon;  

subplot(311); 

plot(time,ned_Ax,'r','LineWidth',1.5); grid on; 

ylabel('a_N (m/s^2)') 

subplot(312); 

plot(time,ned_Ay,'r','LineWidth',1.5); grid on; 

ylabel('a_E (m/s^2)') 

subplot(313); 

plot(time,ned_Az,'r','LineWidth',1.5); grid on; 

xlabel('Time (sec)'); ylabel('a_D (m/s^2)') 

end 

%% 8. NED Velocities 

if (enable_plot(8) == 1) 

figure('name','NED Velocities'); 

holdon;  

subplot(311); 

plot(time,ned_Vx,'r','LineWidth',1.5); grid on; 

ylabel('V_N (m/s)') 

subplot(312); 

plot(time,ned_Vy,'r','LineWidth',1.5); grid on; 

ylabel('V_E (m/s)') 

subplot(313); 

plot(time,ned_Vz,'r','LineWidth',1.5); grid on; 

xlabel('Time (sec)'); ylabel('V_D (m/s)') 

end 

%% 9. Euler Rates 

if (enable_plot(9) == 1) 

figure('name','Euler Rates'); 

holdon;  

subplot(311); 

plot(time,phidot,'r','LineWidth',1.5); grid on; 

ylabel('\phi'' (^o/s)') 

subplot(312); 

plot(time,thetadot,'r','LineWidth',1.5); grid on; 

ylabel('\theta'' (^o/s)') 

subplot(313); 

plot(time,psidot,'r','LineWidth',1.5); grid on 

xlabel('Time (sec)'); ylabel('\psi'' (^o/s)'); 

end 

%% 10. True Speed 

if (enable_plot(10) == 1) 

figure('name','True Speed'); 

holdon; grid on; 

plot(time,true_speed,'r','LineWidth',1.5); 

title('True Speed'); 

xlabel('Time (sec)'); ylabel('V_t (m/s)'); 

end 

%% 11. Torque 

if (enable_plot(11) == 1) 

figure('name','Torque'); 

holdon; grid on; 

plot(time,torque,'r','LineWidth',1.5); 

title('Torque'); 

xlabel('Time (sec)'); ylabel('Torque (N/m)'); 

end 
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For QBall-X4 Test Flight: 

%%% This script generates the plots for Qball Test Flight for Post Analysis 

%%% SIGNALS: 

%%% 1.  pwm output (rotor 1)      32. zoptitrack 

%%% 2.  pwm output (rotor 2)      33. optitrack tracking 

%%% 3.  pwm output (rotor 3)      34. new (flag) 

%%% 4.  pwm output (rotor 4)      35. - empty -  "z_optitrack_TF" 

%%% 5.  gyro x                    36. - empty - 

%%% 6.  gyro y                    37. timeout (flag) 

%%% 7.  gyro z                    38. optitrack timeout (flag) 

%%% 8.  accel x                   39. sonar 

%%% 9.  accel y                   40. land (flag) 

%%% 10. accel z                   41. throttlecmd 

%%% 11. mag x                     42. height mode (mode) 

%%% 12. mag y                     43. heading mode (mode) 

%%% 13. mag z                     44. position mode (mode) 

%%% 14. batt volt                 45. u_roll (pwm) 

%%% 15. sonar                     46. u_pitch (pwm) 

%%% 16. - empty-                  47. u_yaw (pwm) 

%%% 17. roll comp                 48. optitrack roll 

%%% 18. pitch comp                49. optitrack pitch 

%%% 19. rollcmd                  50. optitrack yaw 

%%% 20. pitchcmd                 51. heightcmd aft sigmoid 

%%% 21. - empty -                   

%%% 22. roll 

%%% 23. pitch 

%%% 24. headingobs 

%%% 25. mag heading 

%%% 26. throttle joystick 

%%% 27. xposcmd 

%%% 28. zposcmd 

%%% 29. heightcmd 

%%% 30. xoptitrack 

%%% 31. yoptitrack 

 

%%% INPUT THE .MAT FILE NAME THAT YOU WANT TO ANALYZE 

%%% e.g. load qball_flight_data_29-Apr-2013_15-04-34 

clearall; close all; 

loadqball_flight_data_13-May-2013_transfer_func 

 

sign = -1; rad2deg = 180/pi; 

 

runtime         = qball_data(1,:);                  z_optitrack       = qball_data(32,:); 

pwm_rotor1      = qball_data(2,:);                  optitrack_flag    = qball_data(33,:); 

pwm_rotor2      = qball_data(3,:);                  new_flag          = qball_data(34,:); 

pwm_rotor3      = qball_data(4,:);                  z_optitrack_TF    = qball_data(35,:); 

pwm_rotor4      = qball_data(5,:);                  % -empty-         = qball_data(36,:); 

gyro_x          = qball_data(6,:)*rad2deg;          timeout_flag      = qball_data(37,:); 

gyro_y          = qball_data(7,:)*rad2deg;          opti_timeout_flag = qball_data(38,:); 

gyro_z          = qball_data(8,:)*rad2deg;          sonar             = qball_data(39,:); 

accel_x         = qball_data(9,:);                  land_flag         = qball_data(40,:); 

accel_y         = qball_data(10,:);                 throt_cmd         = qball_data(41,:); 

accel_z         = qball_data(11,:);                 height_mode       = qball_data(42,:); 

mag_x           = qball_data(12,:)*rad2deg;         heading_mode      = qball_data(43,:); 

mag_y           = qball_data(13,:)*rad2deg;         position_mode     = qball_data(44,:); 

mag_z           = qball_data(14,:)*rad2deg;         u_roll            = qball_data(45,:); 

batt_volt       = qball_data(15,:);                 u_pitch           = qball_data(46,:); 

sonar           = qball_data(16,:);                 u_yaw             = qball_data(47,:); 

optitrack_roll    = qball_data(48,:)*sign*rad2deg; 

roll_comp       = qball_data(18,:)*rad2deg;         optitrack_pitch   = 

qball_data(49,:)*rad2deg; 

pitch_comp      = qball_data(19,:)*rad2deg;         optitrack_yaw     = 

qball_data(50,:)*rad2deg; 

roll_cmd        = qball_data(20,:)*rad2deg;         hgt_cmd_sigmoid   = qball_data(51,:); 

pitch_cmd       = qball_data(21,:)*rad2deg; 

roll            = qball_data(22,:)*rad2deg; 

pitch           = qball_data(23,:)*rad2deg; 

heading_obs     = qball_data(24,:)*rad2deg; 
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mag_heading     = qball_data(25,:)*rad2deg; 

throt_joystick  =qball_data(26,:); 

x_pos_cmd       = qball_data(27,:); 

z_pos_cmd       = qball_data(28,:); 

height_cmd      = qball_data(29,:); 

x_optitrack     = qball_data(30,:); 

y_optitrack     = qball_data(31,:); 

 

%%% FILTER DATA 

%%% To find the start and end index 

start_index = find(throt_joystick> 0.1);   %% START Condition: Detect throttle joystick 

position > 10% 

start_index = min(start_index); 

end_index   = find(abs(accel_z) > 20);      %% END Condition: Detect Acceleration Z 

exceeds 20 m/s^2 

end_index   = min(end_index); 

 

%% 1. 2D Trajectory 

 

figure('name','2D Trajectory'); 

holdon; 

plot(x_optitrack(start_index:end_index), 

z_optitrack(start_index:end_index),'r','LineWidth',1.5); 

plot(x_pos_cmd(start_index:end_index), z_pos_cmd(start_index:end_index), 'ko--

','LineWidth',1.5); 

title('2D Trajectory'); 

xlabel('Deflection (x coordinate) (m)'); ylabel('Range (z coordinate) (m)'); 

axisequal; 

text(x_pos_cmd(start_index)+0.04,z_pos_cmd(start_index)+ 0.04,'start pt'); 

text(x_pos_cmd(end_index)+0.04, z_pos_cmd(end_index)-0.04, 'end pt'); 

legend('Qballtrajectory','Waypoints'); 

 

%% 2. X and Y Position Control 

figure('name','X& Y Position Control'); 

subplot(211) 

plot(runtime(start_index:end_index),x_optitrack(start_index:end_index),'r',... 

runtime(start_index:end_index),x_pos_cmd(start_index:end_index),'k--','LineWidth',1.5); 

grid on; 

ylabel('Deflection, x coordinate (m)'); 

legend('Optitrack','Commanded'); 

subplot(212) 

plot(runtime(start_index:end_index),z_optitrack(start_index:end_index),'r',... 

runtime(start_index:end_index),z_pos_cmd(start_index:end_index),'k--','LineWidth',1.5); 

grid on; 

xlabel('Time (sec)'); ylabel('Range, z coordinate (m)'); 

 

%% 3. Height Control and Throttle Command 

figure('name','Height Control and Throttle'); 

subplot(211); 

plot(runtime(start_index:end_index),sonar(start_index:end_index),'r',... 

runtime(start_index:end_index),y_optitrack(start_index:end_index),'b',... 

runtime(start_index:end_index),hgt_cmd_sigmoid(start_index:end_index),'k--

','LineWidth',1.5);  

holdon; grid on; 

ylabel('Height (m)'); 

legend('Sonar','Optitrack','Commanded'); 

subplot(212); 

plot(runtime(start_index:end_index),throt_cmd(start_index:end_index),'r','LineWidth',1.5)

;  

xlabel('Time (sec)'); ylabel('Throttle (% d.c)'); grid on; 

 

 

%% 4. Roll, Pitch and Yaw Control  

figure('name','Roll, Pitch and Yaw Control'); 

subplot(311); 

plot(runtime(start_index:end_index),roll_comp(start_index:end_index),'r',... 

runtime(start_index:end_index),optitrack_roll(start_index:end_index),'b',... 

runtime(start_index:end_index),roll_cmd(start_index:end_index),'k--','LineWidth',1.5); 

grid on; 

ylabel('Roll angle,  \phi  (^o)'); 
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legend('Qball','Optitrack','Commanded',0); 

subplot(312); 

plot(runtime(start_index:end_index),pitch_comp(start_index:end_index),'r',... 

runtime(start_index:end_index),optitrack_pitch(start_index:end_index),'b',... 

runtime(start_index:end_index),pitch_cmd(start_index:end_index),'k--','LineWidth',1.5); 

grid on; 

ylabel('Pitch angle,  \theta  (^o)'); 

subplot(313); 

hdg_cmd = zeros(length(runtime),1); 

plot(runtime(start_index:end_index),mag_heading(start_index:end_index),'r',... 

runtime(start_index:end_index),optitrack_yaw(start_index:end_index),'b',... 

runtime(start_index:end_index),hdg_cmd(start_index:end_index),'k--','LineWidth',1.5); 

grid on; 

%plot(runtime,heading_obs,'r',runtime,yaw_cmd,'k--','LineWidth',1.5); grid on; 

ylabel('Yaw angle,  \psi  (^o)'); 

 

%% 5. ROTOR PWM (% Duty Cycle)  

figure('name','pwm outputs'); 

holdon; 

subplot(411); 

plot(runtime(start_index:end_index),pwm_rotor1(start_index:end_index),'r','LineWidth',1.5

); grid on; 

title('Rear Rotor'); ylabel('% d.c.'); 

subplot(412); 

plot(runtime(start_index:end_index),pwm_rotor2(start_index:end_index),'r','LineWidth',1.5

); grid on; 

title('Front Rotor'); ylabel('% d.c.'); 

subplot(413); 

plot(runtime(start_index:end_index),pwm_rotor3(start_index:end_index),'r','LineWidth',1.5

); grid on; 

title('Left Rotor'); ylabel('% d.c.'); 

subplot(414); 

plot(runtime(start_index:end_index),pwm_rotor4(start_index:end_index),'r','LineWidth',1.5

); grid on; 

title('Right Rotor'); ylabel('% d.c.'); xlabel('Time (sec)'); 

 

%% 6. PQR (Angular Rates) 

figure('name','Gyroscopes'); 

holdon; 

subplot(311); 

plot(runtime(start_index:end_index),gyro_x(start_index:end_index),'r','LineWidth',1.5); 

grid on; 

title('PQR (Angular Rates)'); 

ylabel('\itp\rm  (^o/s)') 

subplot(312); 

plot(runtime(start_index:end_index),gyro_y(start_index:end_index),'r','LineWidth',1.5); 

grid on; 

ylabel('\itq\rm  (^o/s)') 

subplot(313); 

plot(runtime(start_index:end_index),gyro_z(start_index:end_index),'r','LineWidth',1.5); 

grid on; 

xlabel('Time (sec)'); ylabel('\itr\rm  (^o/s)') 

 

%% 7. Body Accelerations 

figure('name','Body Accelerations'); 

holdon; 

subplot(311); 

plot(runtime(start_index:end_index),accel_x(start_index:end_index),'r','LineWidth',1.5); 

title('Body Accelerations'); ylabel('a_x (m/s^2)'); grid on; 

subplot(312); 

plot(runtime(start_index:end_index),accel_y(start_index:end_index),'r','LineWidth',1.5); 

ylabel('a_y (m/s^2)'); grid on; 

subplot(313); 

plot(runtime(start_index:end_index),accel_z(start_index:end_index),'r','LineWidth',1.5); 

xlabel('Time (sec)'); ylabel('a_z (m/s^2)'); grid on; 

 

%% 8. Magnetometer 

figure('name','Magnetometer'); 

holdon; 

subplot(311); 
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plot(runtime(start_index:end_index),mag_x(start_index:end_index),'r','LineWidth',1.5); 

title('Magnetometer'); ylabel('Mag_x (^o)'); grid on; 

subplot(312); 

plot(runtime(start_index:end_index),mag_y(start_index:end_index),'r','LineWidth',1.5); 

ylabel('Mag_y (^o)'); grid on; 

subplot(313); 

plot(runtime(start_index:end_index),mag_z(start_index:end_index),'r','LineWidth',1.5); 

xlabel('Time (sec)'); ylabel('Mag_z (^o)'); grid on; 

 

%% 9. Battery Voltage 

figure('name','Battery Voltage'); 

batt_threshold = zeros(length(runtime),1); 

batt_threshold(:) = 10.6;   %% Battery threshold as stated in manual 

plot(runtime(start_index:end_index),batt_volt(start_index:end_index),'r',... 

runtime(start_index:end_index),batt_threshold(start_index:end_index),'k--

','LineWidth',1.5); 

title('Battery Voltage'); ylabel('Volt'); grid on; 

ylimits = ylim; ylim([ylimits(1)-0.1 ylimits(2)]); 

xlabel('Time (sec)'); 

legend('battery','threshold'); 

 

%% 10. Status Flags 

figure('name','Status Flags'); 

subplot(511); 

plot(runtime(start_index:end_index),optitrack_flag(start_index:end_index),'r','LineWidth'

,1.5); 

title('Optitrack Status'); 

subplot(512); 

plot(runtime(start_index:end_index),new_flag(start_index:end_index),'r','LineWidth',1.5); 

title('New data pkt'); 

subplot(513); 

plot(runtime(start_index:end_index),timeout_flag(start_index:end_index),'r','LineWidth',1

.5); 

title('Timeout'); 

subplot(514); 

plot(runtime(start_index:end_index),opti_timeout_flag(start_index:end_index),'r','LineWid

th',1.5); 

title('Optitrack Timeout'); 

subplot(515); 

plot(runtime(start_index:end_index),land_flag(start_index:end_index),'r','LineWidth',1.5)

; 

title('Land (Failure)'); xlabel('Time (sec)'); 

 

%% 11. Modes (1 = close loop, 0 = open loop) 

figure('name','Control Modes'); 

subplot(311); 

plot(runtime(start_index:end_index),position_mode(start_index:end_index),'r','LineWidth',

1.5); 

title('0: Open Loop   1: Close Loop'); 

ylabel('Position');  

subplot(312); 

plot(runtime(start_index:end_index),height_mode(start_index:end_index),'r','LineWidth',1.

5); 

ylabel('Height'); 

subplot(313); 

plot(runtime(start_index:end_index),heading_mode(start_index:end_index),'r','LineWidth',1

.5); 

ylabel('Heading'); 

xlabel('Time (sec)'); 

 

%% 12. z_optitrack before and after transfer function 

figure('name','z_optitrack_pos before and after TF = 20s/(s+20)'); 

plot(runtime(start_index:end_index),z_optitrack(start_index:end_index),'r',runtime(start_

index:end_index),z_optitrack_TF(start_index:end_index)); 

title('z-optitrack before and aft of TF = 20s/(s+20)'); 

legend('before','after'); 

xlabel('Time (sec)'); 
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APPENDIX C. OPTIMIZATION SCRIPT 

closeall, clear all, clc 

warningoff 

D2R = pi/180; 

 

%% Mission inputs 

globaltime_des 

globalobxobyrsafeattlimit 

global a0XYZ a0XYZd a0XYZ2d  

global afXYZ afXYZd afXYZ2d 

attlimit = 5*D2R;          % attitude angle limit (rad) 

obx=0.0; oby=0; rsafe=0.8; % safe radius (r obstacle is 0.4, Qball radius is 0.3) 

time_des = 30;             % Tdes desired time of mission  

a0XYZ   = [ -1.5;  0;  1];  % initial position for Qball A 

a0XYZd  = [   0;  0;  0];  % initial velocity for Qball A 

a0XYZ2d = [   0;  0;  0];  % initial acceleration for Qball A 

afXYZ   = [1.5;  0;  1];  % final position for Qball A 

afXYZd  = [   0;  0;  0];  % final velocity for Qball A 

afXYZ2d = [   0;  0;  0];  % final acceleration for Qball A 

 

%% Initial Guess for varied parameters 

x0=[0.015           % lam0_2pr_a 

    0.015           % lamf_2pr_a 

    0.1             % X0a_tpl_prime 

    135*D2R         % X0a_tpl_prime_angle, radians (0 deg - Pointing North) 

    0.1             % Xfa_tpl_prime 

    -135*D2R        % Xfa_tpl_prime_angle, radians (0 deg - Pointing North) 

time_des/1000];       % tauf_a 

 

%% Optimization 

t = cputime; 

options=optimset('TolFun',1e-1,'TolX',1e-1,'Display','iter'); %,'MaxIter',1000); 

%options=optimset('TolFun',1e-1,'TolX',1e-1,'Display','final'); 

[x0,fval,exitflag,output] = fminsearch(@DMlfun,x0,options) 

%[x0,fval,exitflag,output]=fminunc(@DMlfun,x0,options) 

time_elapsed       = cputime - t 

    lam0_2pr_a     = x0(1); 

    lamf_2pr_a     = x0(2); 

X0a_tpl_prime  = x0(3); 

    X0a_tpl_primeA = x0(4); 

Xfa_tpl_prime  = x0(5); 

Xfa_tpl_primeA = x0(6); 

tauf_a         = x0(7); 

 

%% Do a single run to record all parameters 

sim('DM3', [0 200]) 

    time_a         = a(:,1); 

    phi_a          = a(:,2); 

    theta_a        = a(:,3); 

    x_a            = a(:,4); 

    y_a            = a(:,5); 

    z_a            = a(:,6); 

    lambda_a       = a(:,7); 

    x_vel_a        = a(:,8); 

    y_vel_a        = a(:,9); 

    z_vel_a        = a(:,10); 

    x_accel_a      = a(:,11); 

y_accel_a      = a(:,12); 

z_accel_a      = a(:,13); 

 

%% Interpolate data between points at the same frequency the controller runs at 

ctrl_t_step = .005; % Controller speed 

    [m_a,n_a]   = size(a); 

t_a_end     = a(m_a,1); 

t_a         = 0:ctrl_t_step:t_a_end; 
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phi_a     = interp1(time_a,phi_a,t_a,'pchip'); 

theta_a   = interp1(time_a,theta_a,t_a,'pchip'); 

x_a       = interp1(time_a,x_a,t_a,'pchip'); 

y_a       = interp1(time_a,y_a,t_a,'pchip'); 

z_a       = interp1(time_a,z_a,t_a,'pchip'); 

x_vel_a   = interp1(time_a,x_vel_a,t_a,'pchip'); 

y_vel_a   = interp1(time_a,y_vel_a,t_a,'pchip'); 

z_vel_a   = interp1(time_a,z_vel_a,t_a,'pchip'); 

x_accel_a = interp1(time_a,x_accel_a,t_a,'pchip'); 

y_accel_a = interp1(time_a,y_accel_a,t_a,'pchip'); 

z_accel_a = interp1(time_a,z_accel_a,t_a,'pchip'); 

 

%% Plot all data 

cleara; close all 

[X,Y,Z] = cylinder(rsafe,20); 

X=X+obx; Y=Y+oby; Z=Z*2; % obstacle data 

figure% 3D projection 

plot3(x_a(1),y_a(1),z_a(1),'bo'); hold on; 

plot3(x_a(end),y_a(end),z_a(end),'rx') 

%plot3(x_a,y_a,z_a,'b-','LineWidth',2) 

legend('Start point','Final point',0) 

%legend('Obstacle','Startpoint','Final point','Qball trajectory',0) 

mesh(X,Y,Z), hold 

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[2 2 2 2]','b') 

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[0 0 0 0]','b') 

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 -0.25 -0.25]',[0 0 2 2]','b') 

patch([0.25 0.25 0.25 0.25]',  [-0.25 0.25 0.25 -0.25]',[0 0 2 2]','b') 

patch([0.25 -0.25 -0.25 0.25]', [0.25 0.25 0.25 0.25]',[0 0 2 2]','b') 

patch([-0.25 -0.25 -0.25 -0.25]', [0.25 -0.25 -0.25 0.25]',[0 0 2 2]','b') 

 

patch([2.43 2.43 -3.05 -3.05 2.03]',[1.84 -1.84 -1.84 1.84 1.84]',... 

                                             0.01+zeros(5,1),[0.83 0.82 0.78]) 

patch([2 2 -1.5 -1.5 2]',[1 -1.5 -1.5 1 1]',0.02+zeros(5,1),'y') 

axis([-3 3 -2 2 0 2]), axis equal 

xlabel('x, m'), ylabel('y, m'),zlabel('z, m') 

view([-130 25]) 

 

figure% 2D projection 

plot3(x_a(1),y_a(1),z_a(1),'bo'); hold on; 

plot3(x_a(end),y_a(end),z_a(end),'rx') 

%plot3(x_a,y_a,z_a,'b-','LineWidth',2) 

legend('Start point','Final point',0) 

mesh(X,Y,Z), hold 

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[2 2 2 2]','b') 

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 0.25 0.25]',[0 0 0 0]','b') 

patch([-0.25 0.25 0.25 -0.25]', [-0.25 -0.25 -0.25 -0.25]',[0 0 2 2]','b') 

patch([0.25 0.25 0.25 0.25]',  [-0.25 0.25 0.25 -0.25]',[0 0 2 2]','b') 

patch([0.25 -0.25 -0.25 0.25]', [0.25 0.25 0.25 0.25]',[0 0 2 2]','b') 

patch([-0.25 -0.25 -0.25 -0.25]', [0.25 -0.25 -0.25 0.25]',[0 0 2 2]','b') 

patch([2.43 2.43 -3.05 -3.05 2.03]',[1.84 -1.84 -1.84 1.84 1.84]',... 

                                                 0.01+zeros(5,1),[0.83 0.82 0.78]) 

    patch([2 2 -1.5 -1.5 2]',[1 -1.5 -1.5 1 1]',0.02+zeros(5,1),'y') 

axis([-3 3 -2 2 0 2]), axis equal 

xlabel('x, m'), ylabel('y, m'), zlabel('z, m') 

view(2) 

 

figure% attitude vs time 

subplot(211) 

plot(t_a,phi_a/D2R), hold on 

plot([time_a(1) time_a(end)],attlimit/D2R*[1 1],'r--') 

legend('Qball','Limitations',0) 

plot([time_a(1) time_a(end)],-attlimit/D2R*[1 1],'r--') 

xlabel('Time, s'), ylabel('\phi, ^o') 

subplot(212) 

plot(t_a,theta_a/D2R), hold on 

plot([time_a(1) time_a(end)],attlimit/D2R*[1 1],'r--') 

plot([time_a(1) time_a(end)],-attlimit/D2R*[1 1],'r--') 

xlabel('Time, s'), ylabel('\theta, ^o') 

 

figure% velocities vs time 
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subplot(311) 

plot(t_a,x_vel_a) 

xlabel('Time, s'), ylabel('V_x, m/s') 

subplot(312) 

plot(t_a,y_vel_a) 

xlabel('Time, s'), ylabel('V_y, m/s') 

subplot(313) 

plot(t_a,z_vel_a) 

xlabel('Time, s'), ylabel('V_z, m/s') 

 

figure% speed and lambda vs time 

subplot(211) 

plot(t_a,sqrt(x_vel_a.^2+y_vel_a.^2+z_vel_a.^2)) 

xlabel('Time, s'), ylabel('V, m/s') 

subplot(212) 

plot(time_a,lambda_a), hold on 

plot(time_des*[1 1],[1 1.2],'r--') 

legend('Qball','Desired time',0) 

xlabel('Time, s'), ylabel('\lambda') 

 

%% Setup data for use in controller 

% Setup a series of commands for the first waypoint 

t_start = 20; %Start time for maneuver 

t_a = t_a+t_start; 

t_beginning = 0:ctrl_t_step:t_start-ctrl_t_step; 

z_comp = ones(1,length(t_beginning)); 

t_comp_a = [t_beginning' t_beginning';t_a' t_a']; 

x_command_a = [t_beginning' x_a(1)*z_comp';t_a' x_a']; 

y_command_a = [t_beginning' y_a(1)*z_comp';t_a' y_a']; 

z_command_a = [t_beginning' z_a(1)*z_comp';t_a' z_a']; 

theta_command_a = [t_beginning' theta_a(1)*z_comp'; t_a' theta_a']; 

phi_command_a = [t_beginning' phi_a(1)*z_comp'; t_a' phi_a']; 
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