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EXECUTIVE SUMMARY

This technical memorandum investigates insights gained for future use of knowledge maps
informing dynamic behavior in the Combined Arms Analysis Tool of the 21st Century
(COMBATXXI). Current methods of knowledge representation are brittle applications of
dynamic decision making. The capability to model robust agent behavior will reduce the
time required by scenario developers, potentially improving the agility of simulation
models, and provide explainable and traceable agent level decision making.

This project partly addresses TRAC research requirements 4.1, 4.5, 4.9, 4.10, 4.13, 4.18,
and 4.19 under Support for TRAC Modeling and Simulation and Scenario Enterprise [2].
This work, which focuses on developing complex decision making within the current release
version of COMBATXXI, is in line with TRAC research priorities.

Currently, decision making agents generally depend on immediate sensing to determine the
state of the simulation environment. This often short sighted, first hand sensing supports
limited courses of action development and selection by a decision making agent.

The approach investigated by this project overcomes this limitation by developing a means
to synthesize and store pertinent information representing knowledge. The technical
approach includes using Python script in the development of a knowledge map to inform
behavior in COMBATXXI. This approach is intended to enable autonomous, but
explainable, behavior and potentially reduce the time required to “hard-wire” behaviors
within COMBATXXI. This approach will allow non-prescriptive dynamic behavior as well
as a representation of collective knowledge. Integrating a knowledge map into
COMBATXXI is accomplished through BSL scripting language calls in COMBATXXI to
supporting Python scripts. One script controls the knowledge map, collecting and
processing agent knowledge into a common picture. Another script serves as the behavior
control defining how the agent processes the knowledge map in order to determine a course
of action.

We demonstrate it is possible to implement non-prescriptive dynamic behavior through use
of a knowledge map without modification to the COMBATXXI base code. We also show
there are several secondary benefits to this methodology, including representing collective
awareness. The application of this new technique is applied to the COMBATXXI Deployed
Force Protection (DFP) scenario, successfully demonstrating complex decision making.
Future work is required to identify how the behavior affects runtime.
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1. INTRODUCTION

Combat models, including Combined Arms Analysis Tool of the 21st Century
(COMBATXXI) [3], simulate military operations in order to answer analysis questions.
This technical memorandum investigates insights gained for future use of knowledge maps
informing dynamic behavior in COMBATXXI. Current methods of knowledge
representation are brittle applications of dynamic decision making. The capability to
model robust agent behavior will reduce time required by scenario developers. This can
potentially improve the agility of simulation models, and provide explainable and traceable
agent level decision making and may contribute greatly to answering analysis questions.
The techniques explored in this proof of concept may prove valuable to a methodology to
mass produce scenarios that inform on increased study space and maintain doctrinal
integrity. All data, scenarios, and documentation referenced in this report is located under
project 643 in the TRAC Knowledge Management System at the address
trac/Projects/643/.

1.1. Problem Description

The need exists to represent dynamic behavior for decision making agents in combat
simulations. This project partly addresses TRAC research requirements 4.1, 4.5, 4.9, 4.10,
4.13, 4.18, and 4.19 under Support for TRAC M&S and Scenario Enterprise. [2] Currently,
COMBATXXI can model decision making agents in many ways including in the SITS
Orders Behavior Tables 2.3 or in a supporting behavior module such as an hierarchical task
network editor. These methods rely on conditional rules that use only immediately sensed
influenced to identify the appropriate behavior rule. Processing and organizing sensed
information will improve the current means to control behavior. This project focuses on
developing capabilities in representing knowledge in support of complex decision making
agents using the Stablebuild 20130514 version of COMBATXXI [3].

1.2. Scope

Problem Statement. This project demonstrates a proof of concept use of graphs to
represent knowledge enabling dynamic behaviors within COMBATXXI.

Constraints. Constraints limit the team’s options to conduct the project [16].

• Demonstrate complex decision making with knowledge maps within the current
release version of COMBATXXI and must not rely on modification to the source
code.

• Software development support was constrained to two TRAC-WSMR developers for
the month of April 2013.
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Limitations. Limitations are a team’s inability to investigate issues within the sponsor’s
bounds.

• Verification of new techniques is limited to the DFP scenario and addressing UAS
control.

• The demonstrated capability is applicable to existing scenarios.

Assumptions. Assumptions are specific statements that are taken as true in the absence of
facts.

• Behaviors will integrate with COMBATXXI general use to enable autonomous
decision making for a variety of use cases.

• The specific military situation of a UAS (representing an operator and aerial vehicle)
simulating a search for a target adequately demonstrates the utility of a knowledge
map. This situation is leveraged throughout this report.

• The methods demonstrating UAS control can be generally applied to controlling
other military systems.

1.3. Methodology

An incremental approach was used, first demonstrating the concept in Python alone and
then using this Python demonstrator to guide the development of a Python behavior in
COMBATXXI. Finally, the method was applied to a specific COMBATXXI scenario. The
following list is the project’s approach to the problem. Figure 1.1 graphically shows the
methodology for this project.

1. Define the problem.

2. Identify potential solution for prototyping.

3. Develop Python proof of principle including:

• UAS target search scenario.

• Network based representation of knowledge.

• Action selection using greedy algorithm.

4. TRAC-WSMR implements knowledge map based search behavior with UAS into
COMBATXXI.

• Integrate COMBATXXI and knowledge map script.

• Implement knowledge map informing agent behavior.

2



• Update knowledge map according to new agent sensing.

5. Apply technique to DFP scenario to demonstrate a proof of concept.

6. Verification.

7. Complete Technical Memorandum.

Figure 1.1: Methodology flowchart for Project 643, Knowledge Representation for Decision
Making Agents from initial IPR brief, 15 March 2013 [12].

3
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2. BACKGROUND

Knowledge representation is the focus of this technical memorandum. We consider
knowledge representation as the means to which information is collected, processed and
shared for the purpose of making a decision. In a military scenario, an agent’s behavior is
dependent on its perceived state of the world. In this chapter, we discuss current and
proposed methods determining agent actions.

2.1. COMBATXXI

COMBATXXI is a combat model owned by and currently used to support analysis in
TRAC. It is a high-resolution, stochastic simulation used for analysis generally at brigade
and below. As a closed form simulation, it requires a means of decision-making and
behavior that replicate the effects of combat without a human in the loop. [13]. The
current approach of behavior control in COMBATXXI is very capable of controlling single
entities based on what it senses. Current techniques also allow one entity to sense an event
and communicate orders to one or many other entities to act. Decision making agents
generally depend on immediate sensing to determine the current state of the simulation
environment. This often short sighted, first hand sensing supports limited courses of action
development and selection by a decision making agent. Dynamic behavior techniques allow
for better case handling, however these techniques require a means to categorize a situation
in order to select an appropriate behavior.

2.2. Explicit Script Control

One basic method of developing a scenario is to explicitly script every action of the agent.
This method is common and tightly controls every agent’s behavior to a predetermined
script, see Figure 2.1. Every action is determined and can be laborious by the scenario
developer. UAS air routes created with this method can be seen in Figure 2.2.

Figure 2.1: Concept sketch including a single UAS agent simulating a scripted search for a
target. As it searches, the effects of sensors do not inform a knowledge map or any change
in behavior.
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Figure 2.2: Example of scripted control in COMBATXXI. The three air routes of waypoints
are used to explicitly control the a single UAS search route [11].

2.3. Behavior in COMBATXXI

A COMBATXXI behavior is a set of instructions that simulates the decision making
process. These instructions map an agent’s perceived state to next necessary action
demonstrated in Figure 2.3. Behaviors are similar to what Soldiers call tactics, techniques
and procedures (TTPs). Behaviors operate at different levels: Cognitive, Tactical,
Procedural, and Primitive. COMBATXXI Behavior Development Tools include Behavior
Specification Language (BSL), Python (Jython), Cognitive Behaviors for Units and
Soldiers (CBUS), Behavior Tables, and Maneuver & Fires Tools [9].

Figure 2.3: Concept sketch including a single UAS agent simulating a dynamic search for
a target. A behavior control module assesses only the immediate available information and
selects a next location to search.

Following are a few tools available that build behaviors in COMBATXXI.

• SITS IDE - The Scenario Integration Tool Suite (SITS) has a Behavior Properties
Editor enabling the development of behavior criteria for decision making agents
defining force structures, unit organizations, entity configurations and operational
details. [15]
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• HTN Editor - Hierarchal Task Network organizes the dependencies and sequence of
mapping states of the simulated environment to directed actions of the decision
making agent in the form of networks or trees.

The current behavior methods can benefit from knowledge representation methods that
allow for decision making agents to synthesize disparate sources of information in the
scenario and maintain a flexible representation of the current state for the application of
their behavior criteria. This approach is intended to enable autonomous, but explainable,
behavior and potentially reduce the time required to “hard-wire” behaviors within
COMBATXXI.

2.4. Knowledge Representation

Current behavior control methods generally have access only to immediate sensing to
determine the current state of the simulation environment. This method of representing
knowledge is brittle and has difficulty accounting for situations not specifically considered
by the developer of the scenario due to a limited means to assess the options in the context
of other important information in the scenario. The decision is essentially conducted in a
memoryless condition depending only on available information about the current time and
not on information from further in the past. We saw an example of this in Figure 2.3.
Generally, it is necessary to explicitly control every scenario developed so the the range of
possible courses of action by a decision making agent are covered in a set of state-to-action
cases in SITS Orders Behavior Tables [15] or handled by a branch in an HTN. To avoid
states for which there is no direct mapping and mitigate invalid behavior, strict control is
maintained for each agent through control measures and transition of goals. This strict
control is potentially laborious.

There are many benefits to improving knowledge representation by using knowledge maps
to inform behaviors. This dynamic mapping from assessment of a perceived state to an
available action allows for the following:

1. The extension of limited scenario resources may be achieved through use of behavior
modules informed by knowledge map modules. These modules are created to describe
how an agent understands its environment, behaves, and communicates regardless of
scenario and are applied across multiple environments and studies. The capability to
build behaviors with modules transfers development time away from prescribed micro
movements and communications, reducing scripting time. Using these approved and
appropriate building blocks to create battlefield geometries necessary for study
scenarios may not only simplify the scenario construction process, but also serve to
be a clear translation from mission intent graphics to execution.

2. Behavior consistency is maintained across differing situations. The capability to
build behaviors as modules allows for approval and verification of one behavior

7



Figure 2.4: Concept sketch including a single UAS agent simulating a search for a target. As
it searches, the effects of sensors inform a single knowledge map. A behavior control module
assesses the information in the knowledge map, as well as other sources (such as current
location of the agent) and selects a next location to search separately for each agent. This
single knowledge map application allows for collective behavior coordination.

module for application in many different scenarios as seen in Figure 2.5. This robust
implementation of intended agent’s behavior is achieved through implicit application
of behavior criteria. An agent transitions between approved actions in accordance
with its assigned modules as the situation and transition criteria dictates.

3. Persistence of previously sensed information in a graph allows knowledge of the past
to be carried forward in time for use in later decisions. A diagram of a decision
making agent in contact with a source of information and collecting it as knowledge
for the application of its rules of behavior is demonstrated in Figure 2.4.

4. Appropriately complex representation of decision making agents. An agent’s behavior
can be quickly modified through a behavior module swap to meet the needs of the
study.

5. Collective awareness is the representation of the collected and processed information
from a set of agents updated during the simulation. Decision making agents in
contact with sources of information not directly sensed by the agent will use these
sources in the application of its rules of behavior demonstrated in Figure 2.6. The
capability for representation of group awareness to inform individual agent’s decisions
can contribute in the support of a study in several ways and allows for the following:

• Networked behavior augments the quantity and quality of information available
to a decision making agent in assessing the state of the simulated environment.

8



Figure 2.5: Concept sketch including a multiple UAS agents simulating searches for targets.
As each UAS agent searches the effects of its sensors its own knowledge map. A single
UAS behavior control module assesses the information of each particular knowledge map
and selects a next location to search separately for each agent. This multiple knowledge
map application requires a single UAS behavior, and multiple agents with their its own copy
of one type of knowledge map.

The ability to converge disparate reports and create a state of communal
knowledge allows a capability to answer and execute the following behaviors. It
is possible to allow many agents to sense individually inconsequential events and
combine the information into a knowledge map. The combination of the many
disparate reports builds a more complete picture of the perfect knowledge state.
Accessing the synthesized information in the knowledge map allows agents to
make a decision based on the group’s understanding of the current situation.

• Coordination of effort is dynamically achieved. Decision making agents can act
within the restrictions and guidelines of a group. The simulation can account for
the individuals acting in a coordinated effort of the group across space and time.
This achieves the effect of a group of UAS controllers sharing information in a
single room, coordinating their search. Also, if important information is not
obtained by any contributer to the knowledge map, it is not available in the
knowledge map.

9



Figure 2.6: Concept sketch including two UAS agents simulating a search for a target. As
they search, the effects of both agents inform a single knowledge map. A single or multiple
behavior control modules assesses the information in the knowledge map, as well as other
sources (such as current location of the agent) and selects a next location to search sepa-
rately for each agent. This single knowledge map application allows for collective behavior
coordination.

10



3. TECHNICAL APPROACH

This technical report investigates the development of a knowledge map to inform behavior
control and improve dynamic behavior in COMBATXXI. In order to accomplish this, there
is a requirement for a means to collect and store pertinent information in the scenario to
aid in decision making. A knowledge map in the form of a graph will accounts for and
represent changes in an agent’s perceived knowledge giving the effect of situational
awareness. The behavior control methods then have access to this important information
as knowledge to make more informed decisions and possibly allow for an extensive
application of dynamic behaviors.

3.1. Knowledge Map as a Graph

Simulation agents access the knowledge map maintained in a graph in order inform a
behavior and select a specific action available for the given situation. We define our graph
(also called a network) as a collection of nodes and edges.

n ∈ N node n representing a location in set of all locations N.
e ∈ E edge e representing a location in set of all edges E.

Table 3.1: Table of indices and sets for knowledge map as a graph.

Associating information to each node allows information to be processed, stored and
persist as knowledge for use in later decisions. In our demonstration, there is a value for
the likelihood of enemy presence at each node shown in Table 3.2.

γ(n) coordinates for location of node n in simulation. [MGRS]
λ(n) likelihood of enemy presence at node n. [0,1]

Table 3.2: Table of data for knowledge map as a graph.

We will demonstrate the method of action selection with a simple greedy algorithm. Figure
3.1 shows our simple behavior that selects a next way point for our agent.

Define GreedyAlgorithm(M ):
maxLikely = 0
for every n ∈ N,

if λ(n) > maxLikely:
maxLikely = λ(n)
waypoint = γ(n)

return waypoint

Figure 3.1: Pseudo code for greedy algorithm selecting next waypoint using definitions from
Table 3.1 and 3.2 .
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For our demonstration, the knowledge map M = (N,E) is a finite, fully connected,
directed graph. Even though nodes can be added to the graph, removed or otherwise
modified by aggregation or partitioning, we do not change the structure of the graph after
instantiation[1]. Changing λ(n) reflects changes in the environment from the perspective of
the agent such as effects of sensors, speed of evasive enemy, etc. The behavior selects the
next waypoint as the location with the most obvious immediate advantage by maximizing
the likelihood of enemy presence. At this location λ(n) is updated with the effects of the
information gained through sensing. This process continues until an event changes the
behavior such as finding the target, low fuel or destruction of the agent. Figure 2.4 is a
concept sketch demonstrating how the agent (UAS team) senses and updates a knowledge
map.

12



4. APPLICATION

This report demonstrates the use of a knowledge map as a graph and behavior control in
the scenario of simulating dynamic search behavior in first Python, then COMBATXXI.
The use of a knowledge map is not limited to this demonstration scenario or combat model.

4.1. Application in Python

TRAC-MTRY developed Python scripts for knowledge map demonstration titled
virtualCBTXXI v2.4.py with code found in APPENDIX A, greedyModule.py found in
APPENDIX B, and myopicGreedyModule.py found in APPENDIX C. The script
virtualCBTXXI v2.4.py contains a knowledge map that accounts for and represents the
UAS’s understanding of enemy presence. This simple knowledge map in the form of a
Python dictionary data structure is a collection of locations identified by a x,y coordinate
and the associated belief of enemy presence at that location. The scripts greedyModule.py
and myopicGreedyModule.py are separate behavior control methods that leverage the
knowledge representation. The basic pseudo code for the process of updating and accessing
the knowledge map is as follows.

1. Instantiate knowledge map.

2. Check stopping criteria.

3. Select course of action using a knowledge map informing behavior.

4. Execute behavior.

5. Sense the environment.

6. Update knowledge map.

7. Repeat steps 2 through 6.

Using the steps above, the following procedure further details the order of events during
the search.

1. Instantiate knowledge map. This knowledge map is a dictionary data structure
called tmap in the code. It represents a network of locations with a number [0,1]
representing the UAS perception of likelihood of enemy presence at that location.
This number is modified by the effects of initial belief, terrain, sensors, enemy
templates or reports. The demonstrator allows for one of three ways to initially fill
these attribute values, controlled by the variable initialBelief.

• initialBelief = 1 uses fillUniform(): Call to fill all cells with same uniform
probability (Random Walk).
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• initialBelief = 2 uses fillRandom(): Informed initial tmap distribution
(randomly generated per node) with belief one.

• initialBelief = 3 uses fillCenter(): normal distribution centered on the
network.

• initialBelief = 4 uses fillSin(): sin curve with apex centered on network.

2. Check stopping criteria. Validation of stopping criteria is checked before a new
search location is assessed. This code includes three stopping criteria: limit on
distance traveled, limit on glimpses (sensor uses) and an acceptable tolerance on
believed lack of enemy presence. If any stopping criteria are met, the search is
complete.

3. Select course of action using a knowledge map informing behavior. If a
stopping criteria is not met, a new location is selected for the continued search. Two
modules demonstrate how a UAS agent could use the knowledge map to select a
location to fly to next. These modules are greedyModule.py and
myopicGreedyModule.py.

• greedyModule.py -guides the UAS to fly to the location anywhere in the search
area with the greatest likelihood of enemy presence. It iterates over the
knowledge map in one pass finding the max likelihood and returns the associated
way point. Figure 4.1 shows a typical flight pattern using this behavior control.

Figure 4.1: Route of simulated UAS (current location is the circle) searching a 5 x 5 node
network using a global greedy behavior algorithm after ten glimpses. Notice how some legs
span the width of the search box. Initial enemy likelihood was randomly assigned. Red
represents belief of high probability of enemy presence, with yellow, white and green repre-
senting decreased belief of enemy presence. This picture was created by code titled virtual-
CBTXXI v2.4.py written in Python scripting language using the Tkinter package.
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• myopicGreedyModule.py -guides the UAS to fly to the location that is a single
arc length away with the greatest likelihood of enemy presence. Checks only the
way points that are one arc length away, in this case these are identified by
combination of looking +/- 1 away from the current way point, which is
corresponds to keys in the dictionary. This would likely be done by geometry or
sets in another application. Figure 4.2 shows a typical flight pattern using this
behavior control.

Figure 4.2: Route of simulated UAS (current location is the circle) searching a 5 x 5 node
network using a myopic greedy behavior algorithm after ten glimpses. Only adjacent locations
are considered when Initial enemy likelihood was randomly assigned. Red represents belief
of high probability of enemy presence, with yellow, white and green representing decreased
belief of enemy presence. This picture was created by code titled virtualCBTXXI v2.4.py
written in Python scripting language using the Tkinter package.

4. Execute behavior. In this Python only example, the move is simply an assumption
the UAS arrives to the new location. This is confirmed with a print statement in the
log and a circle drawn on the graphic at the new location.

5. Sense the environment. In this Python only example, there is no enemy target to
find. However, there would be a return of ‘found’ or ‘not found’. If ‘found’, the
behavior should change to track this detected target or continue to search for more.
This code contains only the case for ‘not found’.

6. Update knowledge map. This demonstration uses a Bayesian update method.
The method updateBelief() accomplishes this and is derived from code written by
LTC Francisco Baez . This can be turned off with the Boolean variable
updateBelief. It transfers the belief of the enemy in the cleared location and
distributes it across the other locations.

The idea of diffusion is another option used in updating the knowledge map.
Diffusion considers the effects of a moving target. After a glimpse in one location, the
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target could move from where it was hiding into the location previously searched.
The effect of this is similar to leveling of water in a cup. Essentially, each neighboring
node in the network gives a percentage of its value to all its neighbors. In this code,
it is done by reducing each location’s level of belief by a percentage (say 10%) then
adds to it that same percentage of each of its neighbors, divided by the number of
neighbors. The method diffuse() accomplished this. This can be turned off with
the Boolean variable Diffusion.

7. Repeat steps 2 through 6.

4.2. Application in COMBATXXI

The application of this capability is accomplished in COMBATXXI through BSL calls to
supporting Python scripts. The TRAC-WSMR team contributed greatly to this integration
and their work is preserved on the TRAC Knowledge management site under
trac/Projects/643/. The effort to integrate the demonstration Python into a
COMBATXXI scenario progressing through four phases.

4.2.1. Phase 1, Motivate Route Planning.

The first phase consisted of implementing non-dynamic route planning for a single decision
making agent. The knowledge map is instantiated the same as the Python demonstration.
The locations of knowledge map nodes are oriented in a 5 by 5 grid centered on the center
of a generic scenario box. The likelihood of enemy presence at each node is initialized with
randomly generated values using fillRandom(). The route for the agent is essentially
determined at the beginning of the scenario. Without any mechanism to update λ(n)
(likelihood), the route is set at the beginning of the scenario visiting γ(n) (locations) in
descending order of λ(n). A UH-60 (chosen for its hover capability) called
DEFAULT UH-60A 31 serves as our agent. The agent moves to the most likely location on
the list, conducts a stationary search, then moves to the next location repeatedly until
stopping criteria is met. Eleven threat entities (Red T-72 entities) are positioned in the
scenario to observe search performance.

4.2.2. Phase 2, Updating the Knowledge Map.

For phase 2, the agent moves to a location, searches, updates the knowledge map, selects a
next location, then moves to the next location. The route for the agent is not determined
at the beginning of the scenario. The route is created one leg at a time as determined by
the behavior greedyModule.py before the next move. This process continues until the
agent has reached a max distance traveled as defined in the Python script. The original
flyroute() Python method is separated into 3 methods in order to allow the interaction
between model and script: initialize search() , continue search(), and
finish search().
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4.2.3. Phase 3, Multiple Agents with Transferred Knowledge Map.

For phase 3, multiple agents conduct knowledge map informed searches. The first agent
conducts its search as in phase 2 and reaches a search stopping criteria, then a second
agent, named DEFAULT UH-60A 77, receives a copy of the knowledge map to conduct its
search. The copied knowledge map dictates the search locations and initial likelihood of
the second agents are the same as those of the first agent at the conclusion of its search.
This is an example of multiple agents using a single behavior with separate knowledge
maps. This procedure is best described in the following flow chart:

1. KickOff (APPENDIX I.1 ) BSL behavior triggered on
AllMyFMsHaveBeenInitialized.

2. Executes main.py

• Initializes knowledge map labeled tmap.

• Calls initialize search()

– resets distanceTot and glimpses variables.

• Calls continue search() (APPENDIX I.2 )

– continue search() replaces the while loop construct from the original
python script.

– Calls greedyModule.py to select the next way point to search.

– Calls cxxiintegration.cxxi send uav to() Sends agent to selected way
point, hovers and searches for 300 seconds.

– Calls NewThreatDetected (APPENDIX I.3 ) if target is detected.

– Updates tmap from search results.

• Call finish search() if either maxGlimpses or maxDistance stopping criteria
are met, ending the search for this agent.

3. Call finish search()

• The original tmap is copied and stored in a LinkedHashMap . The tmap itself can
not be passed through the generic event.

• This LinkedHashMap is passed by a GenericEvent and used to create a new
knowledge map for the next agent (DEFAULT UH-60A 77) to take over the search.

4. DEFAULT UH-60A 77 receives a GenericEvent generated by agent DEFAULT UH-60A 31.

5. Values for tmap are passed in a GenericEvent in a LinkedHashMap.

6. Executes main.py

• main.py is called to initialize the namespace making the necessary Python
methods available.

• Call handoff search() (APPENDIX I.4 ) to rebuild another tmap using values
from LinkedHashMap.
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• Call initialize search() and continue search() to continue search pattern
for second agent.

• If either maxGlimpses or maxDistance stopping criteria are met, the search is
complete.

4.2.4. Phase 4, Multiple Agents, Single Knowledge Map.

For phase 4, multiple agents use the same knowledge map to inform their search. The
knowledge map is instantiated in a class that allows access from every agent in the
scenario. This removes the necessary procedure of copying tmap to a LinkedHashMap for
the next agent to take over the search. This single universal knowledge map changes the
procedure of passing knowledge between the agents. Even though the two agents can now
modify the same knowledge map, we do not observe a change of behavior due to the
sequential nature their searches in this scenario. This is not true when we apply this
technique to an existing scenario, discussed later.

4.3. Using Knowledge Maps in Existing Scenarios

With success of implementing the knowledge map concept into a generic COMBATXXI
environment, we investigate implementing them into an existing scenario. The Deployed
Force Protection scenario will serve as the existing scenario. We discuss applying the
techniques developed in phase 3 and 4 separately.

4.3.1. Phase 3 Techniques in an Existing Scenario

TRAC-MTRY implemented knowledge map informed UAS search behavior in an existing
scenario using phase 3 techniques. The observed behavior proves reasonable. Two hours
were required to implement a behavior that simulates UAS search to the scenario by two
individuals possessing minimum experience with COMBATXXI. This time included adding
the agent entities, the BSL code and modifying the Python code to center tmap on the
combat outpost. As this technique is refined, less time is likely necessary.

Analysis of this scenario would not be complete if it supported a study. There is a
deliberate process of verification and validation necessary to ensure the scenario is proper.
Verification would check good general programming practice, and the intermediate trace
and final outputs are produced properly. Validation would ensure the data (including
behavior rules) reflect the effects of real world and the outputs are within statistical
expected or feasible results [7] [5] [6] [8]. The log file located in APPENDIX J assists
verifying the behavior.

We show a scenario developer can create a single behavior module for use in any scenario.
Once created, this behavior can quickly be added to a scenario with minimum concern of
invalid behavior or laborious re-scripting. The UAS decision making agent will use the
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knowledge map to assess the state in the new scenario and apply the behavior control to
execute actions appropriate to the new scenario.

4.3.2. Phase 4 Techniques in an Existing Scenario

TRAC-MTRY implemented knowledge map informed UAS search behavior in an existing
scenario using phase 4 techniques. The observed behavior was not as expected. Instead of
two, separate sequential searches, we observed a coordinated search. The first agent
initiated its search as expected. However, the second agent initiated its search soon after
the first. Since the single knowledge map informed their behavior and both modified the
knowledge map according to sensing effects they were likely simulating a coordinated
search with perfectly shared information. The log file in APPENDIX J further describes
this scenario. It is suspected a stray GenericEvent from the scenario initiated the search
for the second agent. The TRAC-MTRY team did not investigate further. There is value
in understanding that attention should be given to mitigating this risk before using this
technique.
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5. RESULTS AND CONCLUSIONS

This project demonstrates a proof of concept use of graphs to represent knowledge enabling
dynamic behaviors within COMBATXXI. This chapter discusses summary results,
conclusions and finally future work.

5.1. Results

The following are our methodological steps and summary results.

1. Defined knowledge maps and possible applications. Military simulations
supporting analysis should allow a means to gain insight and assist in answering
study questions. Supporting this effort, knowledge maps promise to assist in rapid
scenario development. Assembling excepted behaviors and knowledge maps into
scenarios reduces limited development resources. It is feasible behaviors and the way
they are connected and informed through knowledge maps can carry over between
multiple agents in a scenario, across multiple scenarios and even multiple projects.
This approach has potential to focus the scenario developers time on the specific
needs of answering the research questions of the project, and not on the monotonous
explicit scripting of agent behavior and control.

2. Developed Python code knowledge map and behavior. A simple set of
Python scripts developed specifically for this project simulate UAS behavior with
situational awareness.

3. Created a generic COMBATXXI scenario that used the Python code. This
approach is particularly useful when creating many similar agents in the same
scenario. Each agent would receive its own knowledge map representing its particular
understanding of the simulated environment. This application is demonstrated in
Figure 2.5. A single behavior control module would access the knowledge map
associated to an agent and determine its next location for each agent separately.

4. Integrated the Python and BSL methods into an existing COMBATXXI
scenario. The technique was applied to an existing scenario. Knowledge map
informed decision making was relatively quickly integrated into the scenario that
resulted in agent behavior appropriately applying its particular behavior within its
authorized scope of information. We also show there are several secondary benefits to
this methodology including representing collective awareness. Additional capability is
to allow the sensed information processed from many entities to inform the decisions.
This convergence of information allows for a representation of a group based
knowledge of the environment and individual actions that reflect awareness of this
greater knowledge of the group. This technical report documents the implementation
of using knowledge to inform dynamic behaviors within COMBATXXI.
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5.2. Conclusion

We demonstrate it is possible to implement non-prescriptive dynamic behavior through use
of a knowledge map without modification to the COMBATXXI base code. There is great
potential benefit to rapid scenario creation. We also show there are several secondary
benefits to this methodology, including representing collective awareness.

5.3. Future Work

The use of knowledge maps will depend on future work addressing the following issues:

• Development and adoption of standards and procedures necessary for efficient, quick
turnaround scenario building capability to increase agility and responsiveness of
COMBATXXI.

• Methods to modularized knowledge maps and behaviors to represent common
requirements for studies.

• Identify how use of knowledge map informed behavior impacts runtime.

• Determine a means to assess an appropriate use of knowledge maps according to
echelon with attention to the number of knowledge maps and behavior modules to
support a scenario.

• Application of state-space partitioning techniques, route planning and complex
knowledge representation [4] [14].

• Application of artificial intelligence algorithms, such as Monte-Carlo Tree Search, for
greater insight to analyzing the effects of changing parameters of a scenario on
aspects of mission command [10].
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APPENDIX A. virtualCBTXXI.py Script

# Threat tmap Demonstration

# In support of TRAC Project Code 642

# author: Peter Nesbitt TRAC -MTRY

# peter.nesbitt@us.army.mil

#

#

# This program builds a dictionary representing a threat tmap ,

# selects cells to move a sensor to (initially greedy algorithm),

# reduces the probability , then moves to the next cell.

#

#

#--------------------------------------------#

# IMPORTS #

#--------------------------------------------#

# packages

from random import *

from Tkinter import *

import time

from math import *

# modules for behavior to place into CBTXXI

import greedyModule

# import waveFrontModule

import myopicGreedyModule

import myopicLeastModule

#--------------------------------------------#

# GLOBAL CONSTANTS #

#--------------------------------------------#

# The area to be searched is grid [1] by grid [0]

grid= 30, 30 # grid [0] * grid [1] nodes in rectangular shaped graph

window= 800, 800 # size of window for graphics

platLoc= 0,0 # initial location of UAV

# sensor capability

glimpseEffect= 1 # glimpseEffect is the placeholder for p infinity as calculated by Acquire

maxGlimpses= 4*grid [0]* grid [1] # stopping criteria for number of glimpses allowed

maxDistance= 2*grid [0]* grid [1] # stopping criteria for distance traveled

# Data structures , representing a network of locations

tmap= {} # initialize empty probability dictionary

cmap= {} # initialize empty color dictionary

# Setting for initial probability distribution for beleif

initialBelief= 3

# 1 uses fillUniform (): # Call to fill all cells with same uniform probability (Random Walk)

# 2 uses fillRandom (): # Informed initial tmap distribution (random gen per node) with

belief one

# 3 uses fillCenter (): # normal distribution centered on network

# Settings for behavior in selecting the next WP to move the UAV to

behavior= 3

# 1 is greedy # always fly to the greatest probability

# 2 is wavefront # not ready

# 3 is myopicGreedy # greedy with very short sight , must move to another node per glimpse

# 4 is myopicTrapping # least greedy with very short sight , must move to another node per

glimpse

# 5 is zamboni # not ready

# 6 is lawnmower # not ready

updateBelief= False # Bayesian update
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Diffusion= False # Do % of probabilities ’diffuse ’ to adjacent cells?

difRate= .05 # rate of diffusion between adjacent cells , rate of loss in value of

information

Norm= False # re -Normalize after every glimpse?

## Settings for program output to user through text

printOn= True

# Graphical settings for output to user through pictures

visual= True

i f visual:

pause= .5 # time in seconds per glimpse for visualization of search

root = Tk()

iconSize= 10

pEx= 1.0 ,0.0 # set the low to 1 and the high to 0

tolerance= 0

extCol ,highCol ,midCol ,lowCol ,noneCol= ’red’,’orange ’,’yellow ’,’white’,’green ’

extProb ,highProb ,midProb ,lowProb ,= 0,0,0,0

colorBins= extProb ,highProb ,midProb ,lowProb

fieldX= .9* window [0]

fieldY= .9* window [1]

unitX= float(fieldX)/float(grid [0])

unitY= float(fieldY)/float(grid [1])

baseX= .05* window [0]+ .5* unitX

baseY= .05* window [1]+ .5* unitY

#--------------------------------------------#

# FUNCTIONS AND CLASSES #

#--------------------------------------------#

### ------ Graphical Functions ------ ###

def buildBbox(x,y): # build canvas coordinates for ovals and rectangles

bbox= (x*unitX+baseX ,

y*unitY+baseY ,

x*unitX+baseX+iconSize ,

y*unitY+baseY+iconSize)

return bbox

def buildLine(WP1 ,WP2): # build canvas coordinates for lines between nodes

bbox= (WP1 [0]* unitX+baseX ,

WP1 [1]* unitY+baseY ,

WP2 [0]* unitX+baseX ,

WP2 [1]* unitY+baseY)

return bbox

def setColors(WP,pEx): # identify the extreme probabilities

i f tmap[WP]<pEx [0]: # is the new prob lower than the low extreme?

pEx= tmap[WP],pEx[1]

span=pEx[1]-tmap[WP]

i f printOn:

print ’l prob range changed to ’, pEx

i f tmap[WP]>pEx [1]: # is the new prob higher than the high extreme?

pEx= pEx[0],tmap[WP]

span=tmap[WP]-pEx[0]

i f printOn:

print ’u prob range changed to ’, pEx

else :
span= pEx[1]-pEx[0] # if no change , keep span as

# set span to the range between high and low

extProb ,highProb ,midProb ,lowProb= .75* span+pEx [0] ,.5* span+pEx [0] ,.25* span+pEx[0],pEx[0]

colorBins= extProb ,highProb ,midProb ,lowProb

i f printOn:

print ’setColors ’, WP , pEx

return colorBins , pEx

def showNode(WP,colorBins): # initial instantiation and show for nodes
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prob= tmap[WP]

bbox=buildBbox(WP[0],WP[1])

extProb ,highProb ,midProb ,lowProb= colorBins

i f prob >= extProb:

color= extCol

e l i f prob >= highProb:

color= highCol

e l i f prob >= midProb:

color= midCol

e l i f prob >= lowProb:

color= lowCol

else :

color= noneCol

cmap[WP]= canv.create_oval(bbox , fill=color)

i f printOn:

print ’showNode ’, WP ,’ ’, "%0.3f" % (tmap[WP]), color , cmap[WP]

item= cmap[WP]

# time.sleep(pause /10)

root.update ()

def changeNodeColor(WP,colorBins): # subsequent change of color for nodes

extProb ,highProb ,midProb ,lowProb= colorBins

prob= tmap[WP]

item= cmap[WP]

i f prob >= extProb:

color= extCol

e l i f prob >= highProb:

color= highCol

e l i f prob >= midProb:

color= midCol

e l i f prob >= lowProb:

color= lowCol

else :

color= noneCol

canv.itemconfig(item , fill=color)

root.update ()

i f printOn:

print ’updated ’,WP,’ ’, "%0.3f" % (tmap[WP]), color , item

def buildUAV(WP): # initial UAV icon build

x,y= WP[0],WP[1]

i f printOn:

print ’buildUAV ’, WP

uavLoc= (x*unitX+baseX -5,

y*unitY+baseY -5,

x*unitX+baseX+iconSize+5,

y*unitY+baseY+iconSize +5)

canv.create_oval(uavLoc , outline=’gray’,tags=’uav’)

root.update ()

def moveUAV(WP): # subsequent UAV move to node

canv.delete(’uav’)

x,y= WP[0],WP[1]

i f printOn:

print ’moveUAV ’, WP

uavLoc= (x*unitX+baseX -5,

y*unitY+baseY -5,

x*unitX+baseX+iconSize+5,

y*unitY+baseY+iconSize +5)

canv.create_oval(uavLoc , outline=’gray’,tags=’uav’)

root.update ()

def buildCanvas (): # Instantiation and settings for canvas

Label(text="Threat Map Demonstration").pack()

searchareaX= float (1.2* window [0])

searchareaY= float (1.2* window [1])

canv = Canvas(root , height=window [1], width=window [0], bg="black")

canv.pack()
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Button(text="Dismiss", command=root.quit).pack(side=LEFT)

tlc= .025* window [0], .025* window [1]

trc= .975* window [0], .025* window [1]

blc= .025* window [0], .975* window [1]

brc= .975* window [0], .975* window [1]

canv.create_line(tlc , trc , fill="red", width =1)

canv.create_line(tlc , blc , fill="red", width =1)

canv.create_line(brc , trc , fill="red", width =1)

canv.create_line(brc , blc , fill="red", width =1)

root.update ()

return canv

### ------ Printing Functions ------ ###

def reporttmap (): # print the keys and values of all nodes in tmap

for key , value in tmap.iteritems ():

print key , "%0.3f" % (value)

### ------ Search related Functions ------ ###

def fillUniform(pEx): # Call to fill all cells with uniform probability

print ’fillUniform ’

for y in range(grid [1]):

for x in range(grid [0]):

nWP= x,y

tmap[nWP]= 1/( float(grid [1])*float(grid [0]))

i f visual:

i f tmap[nWP]>highProb or tmap[nWP]<lowProb:

colorBins , pEx= setColors(nWP ,pEx)

return colorBins , pEx

def fillRandom(pEx): # Informed initial tmap distribution (random gen) with belief one

print ’fillRandom ’

for y in range(grid [1]):

for x in range(grid [0]):

nWP= x,y

tmap[nWP] = uniform (0,1)

i f visual:

i f tmap[nWP]>highProb or tmap[nWP]<lowProb:

colorBins , pEx= setColors(nWP ,pEx)

return colorBins , pEx

def normpdf(x, mu, sigma):

u = (x-mu)/abs(sigma)

y = (1/( sqrt (2*pi)*abs(sigma)))*exp(-u*u/2)

return y

def fillNormalCenter(pEx):

print ’fillNormalCenter ’

xmu , ymu= .5* grid [0] ,.5* grid [1]

print xmu

xsigma , ysigma= .1* grid[0], .1* grid [1]

for y in range(grid [1]):

for x in range(grid [0]):

print x,y, normpdf(x+.5,xmu ,xsigma)+normpdf(y+.5,ymu ,ysigma)

nWP= x,y

tmap[nWP]= normpdf(x+.5,xmu ,xsigma)+normpdf(y+.5,ymu ,ysigma)

colorBins , pEx= setColors(nWP ,pEx)

# print nWP , tmap[nWP]

return colorBins , pEx

def normProb () : # Normalize probability for unsearched cells

sum=0

for y in range(grid [1]):

for x in range(grid [0]):

WP= x,y

sum+= tmap[WP]
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for y in range(grid [1]):

for x in range(grid [0]):

WP= x,y

i f tmap[WP]!= 0:

tmap[WP] = tmap[WP]/sum

def diffuse(WP,colorBins): # allow a fraction of beleif to move between adjacent nodes

i f printOn:

print ’start diffuse ’

reporttmap ()

tmap2=tmap

for key , value in tmap.iteritems ():

for i in range (3):

for j in range (3):

dWP=key [0]+(i-1),key [1]+(j-1)

i f dWP== key: # reduce itself by 1-difRate

tmap[key]= (1-difRate)*tmap2[key]

e l i f dWP in tmap:

tmap[key]= value+ (difRate*tmap2[dWP])/8.0

changeNodeColor(key ,colorBins)

i f printOn:

print ’diffuse complete ’

reporttmap ()

def updateBelief(WP, glimpseEffect , tmap):

# Derived from Francisco Baez Toledo , MOVES , NPS

# Derived from Bayesian update

# xLoc and yLoc represent the current cell inspected

# glimpseEffect is the placeholder for p infinity as calculated by Acquire

i f printOn:

print ’Bayesian belief update ’

ntmap= tmap

s = 0

#calculate non -normalized posterior probability

for key , value in tmap.iteritems ():

i f key == WP:

hit = 0

else :
hit = 1

ntmap[key]= value*hit + value *(1 - glimpseEffect) * (1 - hit)

s += ntmap[key]

#calculate normalized posterior probability

for key , value in ntmap.iteritems ():

ntmap[key]= value / s

changeNodeColor(key ,colorBins)

return ntmap

def distanceLeg(platLoc ,WP): # calculates straight line distance between nodes

dist= ((( platLoc [0]-WP[0]) **2) +(( platLoc [1]-WP[1]) **2))**.5

return dist

def findWeightedMax (): # finds max in tmap dictionary

# future editions may weigh distance for gain

# WP= 0,0

fWP= 0,0

firstMax= 0

# secondMax= 0

for y in range(grid [1]):

for x in range(grid [0]):

testWP= x,y

i f tmap[testWP] > firstMax:

firstMax= tmap[testWP]

fWP= x,y

return fWP

def flyRoute(platLoc , tmap):

## --- Initial Conditions to execute search

search= True # Start the search
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distanceTot= 0

glimpses= 0

i f behavior ==1: # always fly to the greatest probability

print ’global greedy method ’# Find next highest probability

i f behavior ==2: # not ready

print ’wavefront method not ready , using global greedy ’ # Find next highest probability

i f behavior ==3: # greedy with very short sight , must move to another node per glimpse

print ’myopic greedy method ’

i f behavior ==4: # least greedy with very short sight , must move to another node per

glimpse

print ’myopic trapping method ’

i f behavior ==5: # shifting concentric circling for consistant wide turns

print ’zamboni method ’ # not ready

i f behavior ==6: # start in one corner , up and down rows across network

print ’lawnmower method ’ # not ready

# Identify first destination

WP= platLoc

i f visual:

buildUAV(platLoc)

for key , value in tmap.iteritems ():

showNode(key ,colorBins)

## --- Logic Loop controlling continued search

while search: # While search == True , continue to search

i f behavior ==1:

WP= greedyModule.findMaxWP(tmap) # Find next highest probability

i f behavior ==3:

WP= myopicGreedyModule.myopicGreedy(tmap ,platLoc)

i f behavior ==4:

WP= myopicLeastModule.myopicLeast(tmap ,platLoc ,tolerance)

# UAV will stop if all it can see is less than acceptable tolerance

i f tmap[WP]< tolerance : # Completion criteria

print tmap[WP],’<’,tolerance ,’ Tolerance met in all cells.’

search= False # search complete

i f printOn: # report action

print ’Send UAV to’, WP, ’ with ’, "%0.3f" % (tmap[WP])

# update distance traveled

distanceTot += distanceLeg(platLoc ,WP)

glimpses += 1

i f printOn:

print ’dist= ’,distanceTot ,’ glimpse= ’,glimpses

# display cleared status on canvas

i f visual:

moveUAV(WP)

bboxL= buildLine(platLoc ,WP)

canv.create_line(bboxL , fill="white", width =1)

root.update ()

time.sleep(pause) # slow the search for visualization

# glimpse at location WP reduces its probability

i f updateBelief == True:

tmap = updateBelief(WP, glimpseEffect , tmap)

else :
# probabilities diffuse between locations during movement since last assessment

i f printOn:

print ’No Bayesian update ’

i f Diffusion:

diffuse(WP,colorBins)

tmap[WP]= (1- glimpseEffect)*tmap[WP]

# normalize the tmap after glimpse

i f Norm:

normProb ()

platLoc= WP # UAV now at goal

i f printOn: # report action
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print ’UAV clears ’, WP,’ now ’, "%0.3f" % (tmap[WP])

# Update all colors if necessaruy

i f visual:

i f Diffusion or updateBelief ==True:

for key , value in tmap.iteritems ():

changeNodeColor(key ,colorBins)

else :
changeNodeColor(WP,colorBins)

i f glimpses >= maxGlimpses : # Completion criteria

print "Max glimpses reached."

search= False # search complete

i f distanceTot >= maxDistance: # Completion criteria

print "Max distance reached."

search= False # search complete

print ’Return UAV to base.’

return distanceTot , glimpses

#--------------------------------------------#

# M A I N B L O C K #

#--------------------------------------------#

i f visual:

canv= buildCanvas () # create tk graphic canvas

# Fill tmap with initial belief of target location

i f initialBelief == 1:

colorBins , pEx= fillUniform(pEx) # Call to fill all cells with uniform probability

i f initialBelief == 2:

colorBins , pEx= fillRandom(pEx) # Informed initial tmap distribution (random gen per node)

with belief one

i f initialBelief == 3:

colorBins , pEx= fillNormalCenter(pEx) # normal distribution centered on network

# normProb ()

i f Norm:

normProb ()

i f printOn:

print ’Initial threat map probabilities:’

reporttmap () # print tmap data to screen

distanceTot , glimpses= flyRoute(platLoc , tmap) # execute search algorithm

i f printOn:

print ’Final threat map probabilities:’

reporttmap () # print tmap data to screen

print ’Complete , total distance traveled: ’, "%0.3f" % (distanceTot), ’ glimpses: ’,

glimpses

i f visual:

root.mainloop ()
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APPENDIX B. greedyModule.py Script

# Knowledge Representation Demonstration in Python

# Greedy Behavior Module

# In support of TRAC Project Code 642

# author: Peter Nesbitt TRAC -MTRY

# peter.nesbitt@us.army.mil

#

#

# This program represents a strictly greedy algorithm

# to move a sensor to the next location to search.

def findMaxWP(tmap) :

maxProb= 0

# print "greedyModule"

for key , value in tmap.iteritems ():

i f value > maxProb:

maxProb= value

WP= key

return WP
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APPENDIX C. myopicGreedyModule.py Script

# Knowledge Representation Demonstration in Python

# Myopic Greedy Behavior Module

# In support of TRAC Project Code 642

# author: Peter Nesbitt TRAC -MTRY

# peter.nesbitt@us.army.mil

#

#

# This program represents a myopic greedy agorithm

# to move a sensor to the next location to search.

def myopicGreedy(tmap ,platLoc) :

print ’start myopicGreedy ’

WP= platLoc

maxProb= tmap[platLoc]

xlook= (0,1,1,1,0,-1,-1,-1)

ylook= (-1,-1,0,1,1,1,0,-1)

for i in range (8):

target= (platLoc [0]+ xlook[i],platLoc [1]+ ylook[i])

i f (target) in tmap:

i f tmap[target] > maxProb:

WP= target

maxProb= tmap[target]

return WP
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APPENDIX D. main.py Script

# Threat tmap Demonstration

# In support of TRAC Project Code 642

# author: Peter Nesbitt TRAC -MTRY

# peter.nesbitt@us.army.mil

#

#

# This program builds a dictionary representing a threat tmap ,

# selects cells to move a sensor to (initially greedy algorithm),

# reduces the probability , then moves to the next cell.

#

#

#--------------------------------------------#

# IMPORTS #

#--------------------------------------------#

# packages

from random import *

#from Tkinter import *

import time

from math import *

# modules for behavior to place into CBTXXI

import greedyModule

# import waveFrontModule

import myopicGreedyModule

import cxxiintegration

#import Debugger

#import myopicLeastModule

#--------------------------------------------#

# GLOBAL CONSTANTS #

#--------------------------------------------#

orders2=orders

obs2=obs

state2=state

# The area to be searched is grid [1] by grid [0]

grid= 5, 5 # grid [0] * grid [1] nodes in rectangular shaped graph

window= 800, 800 # size of window for graphics

platLoc= 0,0 # initial location of UAV

# sensor capability

glimpseEffect= 1 # glimpseEffect is the placeholder for p infinity as calculated by Acquire

maxGlimpses= 4*grid [0]* grid [1] # stopping criteria for number of glimpses allowed

#maxDistance= 2*grid [0]* grid [1] # stopping criteria for distance traveled

maxDistance =100000

# Data structures , representing a network of locations

tmap= {} # initialize empty probability dictionary

cmap= {} # initialize empty color dictionary

# Setting for initial probability distribution for beleif

initialBelief= 3

# 1 uses fillUniform (): # Call to fill all cells with same uniform probability (Random Walk)

# 2 uses fillRandom (): # Informed initial tmap distribution (random gen per node) with

belief one

# 3 uses fillCenter (): # normal distribution centered on network

# Settings for behavior in selecting the next WP to move the UAV to

behavior= 1

# 1 is greedy # always fly to the greatest probability

# 2 is wavefront # not ready

# 3 is myopicGreedy # greedy with very short sight , must move to another node per glimpse

# 4 is myopicTrapping # least greedy with very short sight , must move to another node per

glimpse

# 5 is zamboni # not ready
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# 6 is lawnmower # not ready

updateBelief= True # Bayesian update

Diffusion= True # Do % of probabilities ’diffuse ’ to adjacent cells?

difRate= .05 # rate of diffusion between adjacent cells , rate of loss in value of

information

Norm= False # re -Normalize after every glimpse?

## Settings for program output to user through text

printOn= True

# Graphical settings for output to user through pictures

visual= False

i f visual:

pause= .5 # time in seconds per glimpse for visualization of search

root = Tk()

iconSize= 10

extCol ,highCol ,midCol ,lowCol ,noneCol= ’red’,’orange ’,’yellow ’,’white’,’green ’

extProb ,highProb ,midProb ,lowProb ,= 0,0,0,0

colorBins= extProb ,highProb ,midProb ,lowProb

fieldX= .9* window [0]

fieldY= .9* window [1]

unitX= float(fieldX)/float(grid [0])

unitY= float(fieldY)/float(grid [1])

baseX= .05* window [0]+ .5* unitX

baseY= .05* window [1]+ .5* unitY

pEx= 1.0 ,0.0 # set the low to 1 and the high to 0

tolerance= 0

#--------------------------------------------#

# FUNCTIONS AND CLASSES #

#--------------------------------------------#

### ------ Graphical Functions ------ ###

def buildBbox(x,y): # build canvas coordinates for ovals and rectangles

bbox= (x*unitX+baseX ,

y*unitY+baseY ,

x*unitX+baseX+iconSize ,

y*unitY+baseY+iconSize)

return bbox

def buildLine(WP1 ,WP2): # build canvas coordinates for lines between nodes

bbox= (WP1 [0]* unitX+baseX ,

WP1 [1]* unitY+baseY ,

WP2 [0]* unitX+baseX ,

WP2 [1]* unitY+baseY)

return bbox

def setColors(WP,pEx): # identify the extreme probabilities

i f tmap[WP]<pEx [0]: # is the new prob lower than the low extreme?

pEx= tmap[WP],pEx[1]

span=pEx[1]-tmap[WP]

i f printOn:

print ’l prob range changed to ’, pEx

i f tmap[WP]>pEx [1]: # is the new prob higher than the high extreme?

pEx= pEx[0],tmap[WP]

span=tmap[WP]-pEx[0]

i f printOn:

print ’u prob range changed to ’, pEx

else :
span= pEx[1]-pEx[0] # if no change , keep span as

# set span to the range between high and low

extProb ,highProb ,midProb ,lowProb= .75* span+pEx [0] ,.5* span+pEx [0] ,.25* span+pEx[0],pEx[0]

colorBins= extProb ,highProb ,midProb ,lowProb
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i f printOn:

print ’setColors ’, WP , pEx

return colorBins , pEx

def showNode(WP,colorBins): # initial instantiation and show for nodes

prob= tmap[WP]

bbox=buildBbox(WP[0],WP[1])

extProb ,highProb ,midProb ,lowProb= colorBins

i f prob >= extProb:

color= extCol

e l i f prob >= highProb:

color= highCol

e l i f prob >= midProb:

color= midCol

e l i f prob >= lowProb:

color= lowCol

else :

color= noneCol

cmap[WP]= canv.create_oval(bbox , fill=color)

i f printOn:

print ’showNode ’, WP ,’ ’, "%0.3f" % (tmap[WP]), color , cmap[WP]

item= cmap[WP]

# time.sleep(pause /10)

root.update ()

def changeNodeColor(WP,colorBins): # subsequent change of color for nodes

extProb ,highProb ,midProb ,lowProb= colorBins

prob= tmap[WP]

item= cmap[WP]

i f prob >= extProb:

color= extCol

e l i f prob >= highProb:

color= highCol

e l i f prob >= midProb:

color= midCol

e l i f prob >= lowProb:

color= lowCol

else :

color= noneCol

canv.itemconfig(item , fill=color)

root.update ()

i f printOn:

print ’updated ’,WP,’ ’, "%0.3f" % (tmap[WP]), color , item

def buildUAV(WP): # initial UAV icon build

x,y= WP[0],WP[1]

i f printOn:

print ’buildUAV ’, WP

uavLoc= (x*unitX+baseX -5,

y*unitY+baseY -5,

x*unitX+baseX+iconSize+5,

y*unitY+baseY+iconSize +5)

canv.create_oval(uavLoc , outline=’gray’,tags=’uav’)

root.update ()

def moveUAV(WP): # subsequent UAV move to node

canv.delete(’uav’)

x,y= WP[0],WP[1]

i f printOn:

print ’moveUAV ’, WP

uavLoc= (x*unitX+baseX -5,

y*unitY+baseY -5,

x*unitX+baseX+iconSize+5,

y*unitY+baseY+iconSize +5)

canv.create_oval(uavLoc , outline=’gray’,tags=’uav’)

root.update ()

def buildCanvas (): # Instantiation and settings for canvas
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Label(text="Threat Map Demonstration").pack()

searchareaX= float (1.2* window [0])

searchareaY= float (1.2* window [1])

canv = Canvas(root , height=window [1], width=window [0], bg="black")

canv.pack()

Button(text="Dismiss", command=root.quit).pack(side=LEFT)

tlc= .025* window [0], .025* window [1]

trc= .975* window [0], .025* window [1]

blc= .025* window [0], .975* window [1]

brc= .975* window [0], .975* window [1]

canv.create_line(tlc , trc , fill="red", width =1)

canv.create_line(tlc , blc , fill="red", width =1)

canv.create_line(brc , trc , fill="red", width =1)

canv.create_line(brc , blc , fill="red", width =1)

root.update ()

return canv

### ------ Printing Functions ------ ###

def reporttmap (): # print the keys and values of all nodes in tmap

for key , value in tmap.iteritems ():

print key , "%0.3f" % (value)

### ------ Search related Functions ------ ###

def fillUniform(pEx): # Call to fill all cells with uniform probability

print ’fillUniform ’

for y in range(grid [1]):

for x in range(grid [0]):

nWP= x,y

tmap[nWP]= 1/( float(grid [1])*float(grid [0]))

i f visual:

i f tmap[nWP]>highProb or tmap[nWP]<lowProb:

colorBins , pEx= setColors(nWP ,pEx)

return colorBins , pEx

def fillRandom(pEx): # Informed initial tmap distribution (random gen) with belief one

print ’fillRandom ’

for y in range(grid [1]):

for x in range(grid [0]):

nWP= x,y

tmap[nWP] = uniform (0,1)

i f visual:

i f tmap[nWP]>highProb or tmap[nWP]<lowProb:

colorBins , pEx= setColors(nWP ,pEx)

return colorBins , pEx

def normpdf(x, mu, sigma):

u = (x-mu)/abs(sigma)

y = (1/( sqrt (2*pi)*abs(sigma)))*exp(-u*u/2)

return y

def fillNormalCenter(pEx):

print ’fillNormalCenter ’

xmu , ymu= .5* grid [0] ,.5* grid [1]

print xmu

xsigma , ysigma= .1* grid[0], .1* grid [1]

for y in range(grid [1]):

for x in range(grid [0]):

print x,y, normpdf(x+.5,xmu ,xsigma)+normpdf(y+.5,ymu ,ysigma)

nWP= x,y

tmap[nWP]= normpdf(x+.5,xmu ,xsigma)+normpdf(y+.5,ymu ,ysigma)

colorBins , pEx= setColors(nWP ,pEx)

# print nWP , tmap[nWP]

return colorBins , pEx

def normProb () : # Normalize probability for unsearched cells
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sum=0

for y in range(grid [1]):

for x in range(grid [0]):

WP= x,y

sum+= tmap[WP]

for y in range(grid [1]):

for x in range(grid [0]):

WP= x,y

i f tmap[WP]!= 0:

tmap[WP] = tmap[WP]/sum

def diffuse(WP,colorBins): # allow a fraction of beleif to move between adjacent nodes

i f printOn:

print ’start diffuse ’

reporttmap ()

tmap2=tmap

for key , value in tmap.iteritems ():

for i in range (3):

for j in range (3):

dWP=key [0]+(i-1),key [1]+(j-1)

i f dWP== key: # reduce itself by 1-difRate

tmap[key]= (1-difRate)*tmap2[key]

e l i f dWP in tmap:

tmap[key]= value+ (difRate*tmap2[dWP])/8.0

i f visual:

changeNodeColor(key ,colorBins)

i f printOn:

print ’diffuse complete ’

reporttmap ()

def updateBelief(WP, glimpseEffect , tmap):

# Derived from Francisco Baez Toledo , MOVES , NPS

# Derived from Bayesian update

# xLoc and yLoc represent the current cell inspected

# glimpseEffect is the placeholder for p infinity as calculated by Acquire

i f printOn:

print ’Bayesian belief update ’

ntmap= tmap

s = 0

#calculate non -normalized posterior probability

for key , value in tmap.iteritems ():

i f key == WP:

hit = 0

else :
hit = 1

ntmap[key]= value*hit + value *(1 - glimpseEffect) * (1 - hit)

s += ntmap[key]

#calculate normalized posterior probability

for key , value in ntmap.iteritems ():

ntmap[key]= value / s

#changeNodeColor(key ,colorBins)

return ntmap

def distanceLeg(platLoc ,WP): # calculates straight line distance between nodes

dist= ((( platLoc [0]-WP[0]) **2) +(( platLoc [1]-WP[1]) **2))**.5

return dist

def findWeightedMax (): # finds max in tmap dictionary

# future editions may weigh distance for gain

# WP= 0,0

fWP= 0,0

firstMax= 0

# secondMax= 0

for y in range(grid [1]):

for x in range(grid [0]):

testWP= x,y

i f tmap[testWP] > firstMax:

firstMax= tmap[testWP]

D-5



fWP= x,y

return fWP

#

########################################################################################################

# search now needs to be a module variable

def initialize_search ():

print ’initialize_search () called ’

## --- Initial Conditions to execute search

#search= True # Start the search

#distanceTot= 0

#glimpses= 0

i f behavior ==1: # always fly to the greatest probability

print ’global greedy method ’# Find next highest probability

i f behavior ==2: # not ready

print ’wavefront method not ready , using global greedy ’ # Find next highest probability

i f behavior ==3: # greedy with very short sight , must move to another node per glimpse

print ’myopic greedy method ’

i f behavior ==4: # least greedy with very short sight , must move to another node per

glimpse

print ’myopic trapping method ’

i f behavior ==5: # shifting concentric circling for consistant wide turns

print ’zamboni method ’ # not ready

i f behavior ==6: # start in one corner , up and down rows across network

print ’lawnmower method ’ # not ready

distanceTot =0

glimpses =0

# used to pass updated tmap to entity taking over search

def initialize_search2(new_tmap):

tmap=new_tmap

initialize_search ()

def continue_search ():

global search

global platLoc

global tmap

global distanceTot

global glimpses

global orders

global obs

global state

# Identify first destination

WP=platLoc

## --- Logic Loop controlling continued search

# not a loop anymore

i f search: # While search == True , continue to search

i f behavior ==1:

WP= greedyModule.findMaxWP(tmap) # Find next highest probability

i f behavior ==3:

WP= myopicGreedyModule.myopicGreedy(tmap ,platLoc)

i f behavior ==4:

WP= myopicLeastModule.myopicLeast(tmap ,platLoc ,tolerance)

# UAV will stop if all it can see is less than acceptable tolerance

i f tmap[WP]< tolerance : # Completion criteria

print tmap[WP],’<’,tolerance ,’ Tolerance met in all cells.’

search= False # search complete

i f printOn: # report action

print ’Send UAV to’, WP, ’ with ’, "%0.3f" % (tmap[WP])
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cxxiDistanceTraveled=cxxiintegration.cxxi_send_uav_to(orders ,obs ,state ,WP)

# update distance traveled

#distanceTot += distanceLeg(platLoc ,WP)

distanceTot += cxxiDistanceTraveled

glimpses += 1

i f printOn:

print ’dist= ’,distanceTot ,’ glimpse= ’,glimpses

# glimpse at location WP reduces its probability

i f updateBelief == True:

tmap = updateBelief(WP, glimpseEffect , tmap)

else :
# probabilities diffuse between locations during movement since last assessment

i f printOn:

print ’No Bayesian update ’

i f Diffusion:

diffuse(WP,colorBins)

tmap[WP]= (1- glimpseEffect)*tmap[WP]

# normalize the tmap after glimpse

i f Norm:

normProb ()

platLoc=WP # UAV now at goal

i f printOn: # report action

print ’UAV clears ’, WP,’ now ’, "%0.3f" % (tmap[WP])

i f glimpses >= maxGlimpses : # Completion criteria

print "Max glimpses reached."

search= False # search complete

i f distanceTot >= maxDistance: # Completion criteria

print "Max distance reached."

search= False # search complete

i f not search:

print ’Return UAV to base.’

finish_search ()

else :
finish_search ()

#return distanceTot , glimpses

def finish_search ():

print ’Search Complete ’

def new_threat_detected ():

global obs

observedEntities=obs.getObsBySensorName(’BINOC /7X’)

# glimpseEffect is the placeholder for p infinity as calculated by Acquire

# if there are an observed entities then set the glimpseEffect variable

# to the p-infinity value of the first observed entity

# this is probably not correct but serves as a placeholder

i f observedEntities.size() >0:

glimpseEffect=observedEntities [0]. getPinf ()

print ’Threat detected ’

else :
glimpseEffect =0

print ’Threat not detected ’

#

########################################################################################################

# def flyRoute(platLoc , tmap):

# ## --- Initial Conditions to execute search

# search= True # Start the search
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# distanceTot= 0

# glimpses= 0

# if behavior ==1: # always fly to the greatest probability

# print ’global greedy method ’# Find next highest probability

# if behavior ==2: # not ready

# print ’wavefront method not ready , using global greedy ’ # Find next highest

probability

# if behavior ==3: # greedy with very short sight , must move to another node per glimpse

# print ’myopic greedy method ’

# if behavior ==4: # least greedy with very short sight , must move to another node per

glimpse

# print ’myopic trapping method ’

# if behavior ==5: # shifting concentric circling for consistant wide turns

# print ’zamboni method ’ # not ready

# if behavior ==6: # start in one corner , up and down rows across network

# print ’lawnmower method ’ # not ready

# # Identify first destination

# WP= platLoc

# ## --- Logic Loop controlling continued search

# while search: # While search == True , continue to search

# if behavior ==1:

# WP= greedyModule.findMaxWP(tmap) # Find next highest probability

# if behavior ==3:

# WP= myopicGreedyModule.myopicGreedy(tmap ,platLoc)

# if behavior ==4:

# WP= myopicLeastModule.myopicLeast(tmap ,platLoc ,tolerance)

# # UAV will stop if all it can see is less than acceptable tolerance

# if tmap[WP]< tolerance : # Completion criteria

# print tmap[WP],’<’,tolerance ,’ Tolerance met in all cells.’

# search= False # search complete

# if printOn: # report action

# print ’Send UAV to’, WP , ’ with ’, "%0.3f" % (tmap[WP])

# #########################################################################

# # Code added

# cxxiDistanceTraveled=cxxiintegration.cxxi_send_uav_to(orders ,obs ,state ,WP)

# print cxxiDistanceTraveled

# #########################################################################

# # update distance traveled

# #distanceTot += distanceLeg(platLoc ,WP)

# distanceTot += cxxiDistanceTraveled

# glimpses += 1

# if printOn:

# print ’dist= ’,distanceTot ,’ glimpse= ’,glimpses

# # glimpse at location WP reduces its probability

# if updateBelief == True:

# tmap = updateBelief(WP, glimpseEffect , tmap)

# else:

# # probabilities diffuse between locations during movement since last assessment

# if printOn:

# print ’No Bayesian update ’

# if Diffusion:

# diffuse(WP,colorBins)

# tmap[WP]= (1- glimpseEffect)*tmap[WP]

# # normalize the tmap after glimpse

# if Norm:

# normProb ()
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# platLoc= WP # UAV now at goal

# if printOn: # report action

# print ’UAV clears ’, WP ,’ now ’, "%0.3f" % (tmap[WP])

# if glimpses >= maxGlimpses : # Completion criteria

# print "Max glimpses reached ."

# search= False # search complete

# if distanceTot >= maxDistance: # Completion criteria

# print "Max distance reached ."

# search= False # search complete

# print ’Return UAV to base.’

# return distanceTot , glimpses

#--------------------------------------------#

# M A I N B L O C K #

#--------------------------------------------#

i f visual:

canv= buildCanvas () # create tk graphic canvas

# Fill tmap with initial belief of target location

i f initialBelief == 1:

colorBins , pEx= fillUniform(pEx) # Call to fill all cells with uniform probability

i f initialBelief == 2:

colorBins , pEx= fillRandom(pEx) # Informed initial tmap distribution (random gen per node)

with belief one

i f initialBelief == 3:

colorBins , pEx= fillNormalCenter(pEx) # normal distribution centered on network

# normProb ()

i f Norm:

normProb ()

i f printOn:

print ’Initial threat map probabilities:’

reporttmap () # print tmap data to screen

# initialize the flyRoute class with everything necessary

search=True

initialize_search ()

continue_search ()

#distanceTot , glimpses= flyRoute(platLoc , tmap) # execute search algorithm

# if printOn:

# print ’Final threat map probabilities:’

# reporttmap () # print tmap data to screen

# print ’Complete , total distance traveled: ’, "%0.3f" % (distanceTot), ’ glimpses: ’,

glimpses

# if visual:

# root.mainloop ()
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APPENDIX E. cxxiintegration.py Script

from cxxi.model.behavior import OrderUtilities

from cxxi.model.behavior import CompoundOrder

from cxxi.model.physics.geometry import Location

from cxxi.support.types import OrderTriggerType

import orient_sensor

from java.util import Vector

from cxxi.model.behavior.primitiveorders import ObservePO

from cxxi.model.behavior.primitiveorders import StopObservePO

from cxxi.model.behavior.primitiveorders import AddRulePO

def cxxi_send_uav_to(orders ,obs ,state ,WP):

orient_sensor.straight_down(obs)

print ’Calling cxxi_send_uav_to ’

current_location=state.getCurrentLocation ()

terrain_location=translate_grid_to_UTM(WP)

fly_to_location(orders ,terrain_location)

hover(orders)

return terrain_location.distanceTo(current_location)

def translate_grid_to_UTM(WP):

easting_center =385986

northing_center =3764269

print WP[0],WP[1]

easting=easting_center +(WP [0]*1000) -2000

northing=northing_center -((WP [1]*1000) -2000)

return Location.getInstanceFromUTMValues(easting ,northing ,1500)

def fly_to_location(orders ,to_location):

print ’UAS flying to easting ’,to_location

prims = Vector ()

prims.add(OrderUtilities.createMovePrimitive(to_location ,10))

order = CompoundOrder("Move to Location", OrderTriggerType.TIME_ORDER , 0.0, prims)

orders.unitAddOrder(order)

def hover(orders):

prims = Vector ()

o = ObservePO ()

o.setSensor(’BINOC /7X’)

o.setDir (0)

o.setFOR (360)

o.setFixed (0)

so = StopObservePO ()

so.setSensor(’BINOC/7X’)

# primitive to Hover

prims.add(OrderUtilities.createHoverPrimitive ())

# primitive to start observing

prims.add(o)

# primitive to wait

prims.add(OrderUtilities.createWaitPrimitive (300))

# primitive to stop observing

prims.add(so)

# check if any threat were detected

ar=AddRulePO ()

ar.setRuleId("NewThreatDetected")

prims.add(ar)

ar=AddRulePO ()

ar.setRuleId("ContinueSearch")

prims.add(ar)

order = CompoundOrder("Hovering", OrderTriggerType.TIME_ORDER , 0.0, prims)

orders.unitAddOrder(order)
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APPENDIX F. flyRoute.py Script

import greedyModule

# import waveFrontModule

import myopicGreedyModule

import cxxiintegration

def __init__(platLoc ,tmap ,orders ,obs ,state):

platLoc=platLoc

self.tmap=tmap

self.WP=platLoc

def initialize_search(self ,behavior):

self.behavior=behavior

self.search=True

self.distanceTot =0

self.glimpses =0

i f behavior ==1: # always fly to the greatest probability

print ’global greedy method ’# Find next highest probability

i f behavior ==2: # not ready

print ’wavefront method not ready , using global greedy ’ # Find next highest probability

i f behavior ==3: # greedy with very short sight , must move to another node per glimpse

print ’myopic greedy method ’

i f behavior ==4: # least greedy with very short sight , must move to another node per

glimpse

print ’myopic trapping method ’

i f behavior ==5: # shifting concentric circling for consistant wide turns

print ’zamboni method ’ # not ready

i f behavior ==6: # start in one corner , up and down rows across network

print ’lawnmower method ’ # not ready

# Identify first destination

self.WP=self.platLoc

def continue_search(self):

i f self.search: # if search == True , continue to search

i f self.behavior ==1:

WP= greedyModule.findMaxWP(tmap) # Find next highest probability

i f self.behavior ==3:

WP= myopicGreedyModule.myopicGreedy(tmap ,platLoc)

i f self.behavior ==4:

WP= myopicLeastModule.myopicLeast(tmap ,platLoc ,tolerance)

# UAV will stop if all it can see is less than acceptable tolerance

i f self.tmap[self.WP]< tolerance : # Completion criteria

print self.tmap[self.WP],’<’,tolerance ,’ Tolerance met in all cells.’

self.search=False # search complete

i f printOn: # report action

print ’Send UAV to’, WP, ’ with ’, "%0.3f" % (self.tmap[self.WP])

cxxiDistanceTraveled=cxxiintegration.cxxi_send_uav_to(orders ,obs ,state ,WP)

# update distance traveled

#distanceTot += distanceLeg(platLoc ,WP)

distanceTot += cxxiDistanceTraveled

self.glimpses += 1

i f printOn:

print ’dist= ’,distanceTot ,’ glimpse= ’,glimpses

# glimpse at location WP reduces its probability

i f updateBelief == True:

tmap = updateBelief(WP, glimpseEffect , tmap)

else :
# probabilities diffuse between locations during movement since last assessment

i f printOn:
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print ’No Bayesian update ’

i f Diffusion:

diffuse(WP,colorBins)

self.tmap[WP]= (1- glimpseEffect)*self.tmap[self.WP]

# normalize the tmap after glimpse

i f Norm:

normProb ()

self.platLoc=self.WP # UAV now at goal

i f printOn: # report action

print ’UAV clears ’, self.WP,’ now ’, "%0.3f" % (tmap[WP])

i f glimpses >= maxGlimpses : # Completion criteria

print "Max glimpses reached."

self.search= False # search complete

i f distanceTot >= maxDistance: # Completion criteria

print "Max distance reached."

self.search=False # search complete

# def flyRoute(platLoc , tmap):

# ## --- Initial Conditions to execute search

# search= True # Start the search

# distanceTot= 0

# glimpses= 0

# if behavior ==1: # always fly to the greatest probability

# print ’global greedy method ’# Find next highest probability

# if behavior ==2: # not ready

# print ’wavefront method not ready , using global greedy ’ # Find next highest

probability

# if behavior ==3: # greedy with very short sight , must move to another node per glimpse

# print ’myopic greedy method ’

# if behavior ==4: # least greedy with very short sight , must move to another node per

glimpse

# print ’myopic trapping method ’

# if behavior ==5: # shifting concentric circling for consistant wide turns

# print ’zamboni method ’ # not ready

# if behavior ==6: # start in one corner , up and down rows across network

# print ’lawnmower method ’ # not ready

# # Identify first destination

# WP= platLoc

# ## --- Logic Loop controlling continued search

# while search: # While search == True , continue to search

# if behavior ==1:

# WP= greedyModule.findMaxWP(tmap) # Find next highest probability

# if behavior ==3:

# WP= myopicGreedyModule.myopicGreedy(tmap ,platLoc)

# if behavior ==4:

# WP= myopicLeastModule.myopicLeast(tmap ,platLoc ,tolerance)

# # UAV will stop if all it can see is less than acceptable tolerance

# if tmap[WP]< tolerance : # Completion criteria

# print tmap[WP],’<’,tolerance ,’ Tolerance met in all cells.’

# search= False # search complete

# if printOn: # report action

# print ’Send UAV to’, WP , ’ with ’, "%0.3f" % (tmap[WP])

# cxxiDistanceTraveled=cxxiintegration.cxxi_send_uav_to(orders ,obs ,state ,WP)

# # update distance traveled

# #distanceTot += distanceLeg(platLoc ,WP)

# distanceTot += cxxiDistanceTraveled

# glimpses += 1

# if printOn:
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# print ’dist= ’,distanceTot ,’ glimpse= ’,glimpses

# # glimpse at location WP reduces its probability

# if updateBelief == True:

# tmap = updateBelief(WP, glimpseEffect , tmap)

# else:

# # probabilities diffuse between locations during movement since last assessment

# if printOn:

# print ’No Bayesian update ’

# if Diffusion:

# diffuse(WP,colorBins)

# tmap[WP]= (1- glimpseEffect)*tmap[WP]

# # normalize the tmap after glimpse

# if Norm:

# normProb ()

# platLoc= WP # UAV now at goal

# if printOn: # report action

# print ’UAV clears ’, WP ,’ now ’, "%0.3f" % (tmap[WP])

# if glimpses >= maxGlimpses : # Completion criteria

# print "Max glimpses reached ."

# search= False # search complete

# if distanceTot >= maxDistance: # Completion criteria

# print "Max distance reached ."

# search= False # search complete

# print ’Return UAV to base.’

# return distanceTot , glimpses
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APPENDIX G. newThreatDetected.py Script

import Debugger

obsList=obs.getCanSee(’BINOC/7X’)
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APPENDIX H. orient sensor.py Script

def straight_down(obs):

# get handle to Human Eye sensor

sensor=obs.getSensorByName("BINOC /7X")

# set sensor pitch to -85 degrees. Straight down.

print ’Setting sensor pitch to -85 degrees ’

sensor.setViewPitch ( -1.48352986)
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APPENDIX I. SITS Behavior Property Tab Views

Figure I.1: SITS Behavior Property Tab for the behavior KickOff. Python script for main.py
is found in APPENDIX D.

Figure I.2: SITS Behavior Property Tab for the behavior ContinueSearch. Python script
for continue search() is found in APPENDIX D.
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Figure I.3: SITS Behavior Property Tab for the behavior NewThreatDetected. Python
script for new threat detected() is found in APPENDIX D.

Figure I.4: SITS Behavior Property Tab for the behavior Handoff Python script for
handoff search() is found in APPENDIX D.
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APPENDIX J. Existing Scenario Log Reports After Integration

Setting database CXXI_CONFIGURATION_DATABASE

Setting database COMMS_DATABASE

Setting database JCOMBIC_DATABASE

Setting database CXXI_MANEUVER_DATABASE

Using Script: D:\ Forge.Mil/scripts/behaviorsupport/LoadCXXISupport.py

****** Modeling Property flag setting:

FILTER_ON_SIDE = true

FILTER_DEAD_VEHICLES = true

FILTER_ON_FRIENDLY = false

FILTER_NON_ACQUIRABLE_OBJECTS = true

FILTER_NON_VIABLE_TARGETS = true

USE_TIME_LIMITED_SEARCH = true

PLAY_FALSE_TARGETS = false

USE_CUMULATIVE_KILLS_METHODOLOGY = false

TURN_JCOMBIC_ON = false

TURN_JCOMBIC_VEHICLE_DUST_ON = false

TURN_JCOMBIC_VEHICLE_SMOKE_ON = false

TURN_JCOMBIC_TANK_GUN_DUST_ON = false

MODEL_COLLISIONS = false

DETAILED_AIR_MOVE = false

DETAILED_SURFACE_MOVE = true

DETAILED_SURFACE_FORMATION_MOVE = true

MODEL_UNCONSTRAINED_HUMAN_MOVEMENT = true

MODEL_SOUNDS = false

MODEL_SOUND_DIR_ERRORS = false

MUZZLE_FLASH_DETECTION = false

MODEL_FUEL_CONSUMPTION = false

REACT_TO_INCOMING_FIRE = false

MODEL_UNCONSTRAINED_MUNITION_USAGE = false

MODEL_MUNITION_FLYBY = false

MODEL_MUNITION_SUPPRESSION_WEIGHTS = false

USE_AUTOMATIC_LASER_DESIGNATOR_SELECTION = true

ALL_AIRCRAFT_DETECT_RADAR = true

ALLOW_MUNITIONS_HITTING_UNINTENDED_TARGET = false

ALLOW_DAMAGE_EFFECTS_AGAINST_SAME_SIDE = true

INHIBIT_DAS_REPRESENTATION = false

INHIBIT_DAS_SMOKE = false

INHIBIT_GPS_JAMMER_PLAY = false

FORCE_USE_OF_DOORS_FOR_HUMANS = false

PLAY_FULL_USE_OF_DOORS = false

USE_SWE_API = false

DEFAULT_ALL_BUILDINGS_USE_SWE = false

USE_EXPLICIT_CREW = false

MODEL_TADV = false

MODEL_IMPLICIT_URBAN_CLUTTER = false

USE_ATMOSPHERIC_AREAS = false

TURN_OFF_WINDOWS = false

MODEL_PROPORTION_LOS_BLOCKED = false

MODEL_WINDOW_PROPORTION_LOS_BLOCKED = false

MODEL_ENTITIES_PROPORTION_LOS_BLOCKED = false

MODEL_BUILDING_FLOORS = false

ENTITIES_BLOCK_LOS_LOW_FIDELITY = false

ENTITIES_BLOCK_LOS_HIGH_FIDELITY = false

PERFECT_ASSOCIATION = true

STATIC_THREAT = false

USE_KALMAN_FILTER = true

USE_P_DETECT_FOR_IEDS = false

USE_ACQUIRE_TTPM = false

CLEAR_FOV_AFTER_FOR = false

CREW_MOUNTED_ENHANCED_DAMAGE_LOG = false

GENERATE_TRANSIENT_OBJECT_SHAPES = false
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GENERATE_SMOKE_OBJECT_SHAPES = false

GENERATE_DUST_OBJECT_SHAPES = false

GENERATE_SENSOR_FOOTPRINT_OBJECT_SHAPES = false

ALLOW_COMBAT_MISID_CALLS = false

MODEL_TRANSIENT_OBJECT_ACQUISITION = false

MODEL_MUNITIONS_HITTING_INTERVENING_ENTITIES = false

MODEL_DAS_RESPONSE_BY_INTERVENING_ENTITIES = false

USE_DATABASE_N50_V50_VALUES = false

USE_AMSAA_POINT_DETONATING_MUNITION_METHODOLOGY = false

USE_FIRE_WHILE_MOVING_RESTRICTION = true

****** Communications Model:

USE_COMMS_BBP2 = true

USE_COMMS_CES = false

****** Development Flags:

IS_DEVELOPMENT_RUN = true

DETAILED_MOVE_UPDATE = false

INHIBIT_ALL_SEARCH_PROCESSES = false

INHIBIT_ALL_DIRECT_FIRE_ENGAGEMENTS = false

OUTPUT_CONFIGURATION_DIAGNOSTICS = false

SHARE_SCRIPT_MEMORY = true

USE_GRIDS_INSTEAD_OF_TREES = false

****** End flag values

SUCCESSFULLY LOADED

--------------------------------------------

1 BUILDING TREE(S)

0 EXTERNAL WALL TREE(S)

0 VEGETATION TREE(S)

0 URBAN AREA TREE(S)

0 WATER AREA TREE(S)

0 GENERIC AREA TREE(S)

0 VECTOR FEATURE TREE(S)

0 ATMOSPHERIC AREA TREE(S)

--------------------------------------------

**** COMBATXXI native ENV services initialized ****

Climate zone: 4

Terrain: D:\Forge.Mil\examples\terrains/Flat.trnd

BSP Tree Folder: Flat_BSPTrees

*****************************************************

Created Database Connection to jdbc:odbc:Driver ={ Microsoft Access Driver (*.mdb)};DBQ=D:\

Forge.Mil\examples\databases\cxxi_demo_SFF_6_0.mdb

Connection created successfully to cxxi_demo_SFF_6_0.mdb

Created Database Connection to jdbc:odbc:Driver ={ Microsoft Access Driver (*.mdb)};DBQ=D:\

Forge.Mil\examples\databases\commsdata_demo.mdb

Connection created successfully to commsdata_demo.mdb

Created Database Connection to jdbc:hsqldb:file:C:\ Users\kyle.quinnell \.cxxi\temp/

cxxidatabases /260629003621072 _9144@wsmrwk6n5s1p1/database/database

Connection created successfully to cxxi_config.odb

Resetting CxxiPhysicalEntityTypes

Requested Air Move data for UH -60A. Using MH -60 data.

Created Database Connection to jdbc:odbc:Driver ={ Microsoft Access Driver (*.mdb)};DBQ=D:\

Forge.Mil\examples\databases\cxxi_maneuver_cas.mdb

Connection created successfully to cxxi_maneuver_cas.mdb

Error connecting to Planning Database to read HBCOPRanges_Table

HBCOPRanges table not found. Using defaults.

COP filter Radii

PLATOON : 5000.0

COMPANY : 11000.0

BATTALION : 23000.0
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BRIGADE : 38000.0

DEFAULT : 5000.0

Flushing Loggers

CodePath: D:\ Forge.Mil

BuildTime: Thu Mar 21 06:57:59 MDT 2013

Received Message: SUCCESSFULLY LOADED

Received Message: --------------------------------------------

Received Message: 1 BUILDING TREE(S)

Received Message: 0 EXTERNAL WALL TREE(S)

Received Message: 0 VEGETATION TREE(S)

Received Message: 0 URBAN AREA TREE(S)

Received Message: 0 WATER AREA TREE(S)

Received Message: 0 GENERIC AREA TREE(S)

Received Message: 0 VECTOR FEATURE TREE(S)

Received Message: 0 ATMOSPHERIC AREA TREE(S)

Received Message: --------------------------------------------

Received Message:

Received Message: DatagramSocket listening at localhost /127.0.0.1 : 4447

Using Script: D:\ Forge.Mil\examples\scenarios\modelscripts //main.py

Trigger Received: doAllMyFMsHaveBeenInitialized

fillNormalCenter

2.5

0 0 0.00053532090306

l prob range changed to (0.0005353209030595415 , 0.0)

u prob range changed to (0.0005353209030595415 , 0.0005353209030595415)

setColors (0, 0) (0.0005353209030595415 , 0.0005353209030595415)

1 0 0.108249593478

u prob range changed to (0.0005353209030595415 , 0.1082495934779059)

setColors (1, 0) (0.0005353209030595415 , 0.1082495934779059)

2 0 0.798152221254

u prob range changed to (0.0005353209030595415 , 0.7981522212543952)

setColors (2, 0) (0.0005353209030595415 , 0.7981522212543952)

3 0 0.108249593478

setColors (3, 0) (0.0005353209030595415 , 0.7981522212543952)

4 0 0.00053532090306

setColors (4, 0) (0.0005353209030595415 , 0.7981522212543952)

0 1 0.108249593478

setColors (0, 1) (0.0005353209030595415 , 0.7981522212543952)

1 1 0.215963866053

setColors (1, 1) (0.0005353209030595415 , 0.7981522212543952)

2 1 0.905866493829

u prob range changed to (0.0005353209030595415 , 0.9058664938292416)

setColors (2, 1) (0.0005353209030595415 , 0.9058664938292416)

3 1 0.215963866053

setColors (3, 1) (0.0005353209030595415 , 0.9058664938292416)

4 1 0.108249593478

setColors (4, 1) (0.0005353209030595415 , 0.9058664938292416)

0 2 0.798152221254

setColors (0, 2) (0.0005353209030595415 , 0.9058664938292416)

1 2 0.905866493829

setColors (1, 2) (0.0005353209030595415 , 0.9058664938292416)

2 2 1.59576912161

u prob range changed to (0.0005353209030595415 , 1.5957691216057308)

setColors (2, 2) (0.0005353209030595415 , 1.5957691216057308)

3 2 0.905866493829

setColors (3, 2) (0.0005353209030595415 , 1.5957691216057308)

4 2 0.798152221254

setColors (4, 2) (0.0005353209030595415 , 1.5957691216057308)

0 3 0.108249593478

setColors (0, 3) (0.0005353209030595415 , 1.5957691216057308)

1 3 0.215963866053

setColors (1, 3) (0.0005353209030595415 , 1.5957691216057308)

2 3 0.905866493829

setColors (2, 3) (0.0005353209030595415 , 1.5957691216057308)

3 3 0.215963866053

setColors (3, 3) (0.0005353209030595415 , 1.5957691216057308)

4 3 0.108249593478
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setColors (4, 3) (0.0005353209030595415 , 1.5957691216057308)

0 4 0.00053532090306

setColors (0, 4) (0.0005353209030595415 , 1.5957691216057308)

1 4 0.108249593478

setColors (1, 4) (0.0005353209030595415 , 1.5957691216057308)

2 4 0.798152221254

setColors (2, 4) (0.0005353209030595415 , 1.5957691216057308)

3 4 0.108249593478

setColors (3, 4) (0.0005353209030595415 , 1.5957691216057308)

4 4 0.00053532090306

setColors (4, 4) (0.0005353209030595415 , 1.5957691216057308)

Initial threat map probabilities:

(4, 2) 0.798

(1, 4) 0.108

(3, 1) 0.216

(2, 3) 0.906

(0, 3) 0.108

(1, 3) 0.216

(4, 0) 0.001

(3, 0) 0.108

(4, 3) 0.108

(0, 1) 0.108

(4, 4) 0.001

(3, 2) 0.906

(0, 2) 0.798

(3, 4) 0.108

(1, 1) 0.216

(0, 0) 0.001

(1, 2) 0.906

(2, 2) 1.596

(4, 1) 0.108

(2, 0) 0.798

(1, 0) 0.108

(0, 4) 0.001

(2, 4) 0.798

(2, 1) 0.906

(3, 3) 0.216

initialize_search () called

global greedy method

Send UAV to (2, 2) with 1.596

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

2 2

UAS flying to easting (GDC) Lat: 34.012859 Long: -106.234765 Elev: 1500.00

dist= 5006.24959459 glimpse= 1

No Bayesian update

start diffuse

(4, 2) 0.798

(1, 4) 0.108

(3, 1) 0.216

(2, 3) 0.906

(0, 3) 0.108

(1, 3) 0.216

(4, 0) 0.001

(3, 0) 0.108

(4, 3) 0.108

(0, 1) 0.108

(4, 4) 0.001

(3, 2) 0.906

(0, 2) 0.798

(3, 4) 0.108

(1, 1) 0.216

(0, 0) 0.001

(1, 2) 0.906

(2, 2) 1.596

(4, 1) 0.108

(2, 0) 0.798

(1, 0) 0.108
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(0, 4) 0.001

(2, 4) 0.798

(2, 1) 0.906

(3, 3) 0.216

diffuse complete

(4, 2) 0.799

(1, 4) 0.113

(3, 1) 0.221

(2, 3) 0.907

(0, 3) 0.109

(1, 3) 0.221

(4, 0) 0.001

(3, 0) 0.109

(4, 3) 0.108

(0, 1) 0.114

(4, 4) 0.001

(3, 2) 0.907

(0, 2) 0.800

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.002

(1, 2) 0.912

(2, 2) 1.597

(4, 1) 0.113

(2, 0) 0.800

(1, 0) 0.114

(0, 4) 0.001

(2, 4) 0.799

(2, 1) 0.912

(3, 3) 0.216

UAV clears (2, 2) now 0.000

Threat detected

Send UAV to (2, 1) with 0.912

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

2 1

UAS flying to easting (GDC) Lat: 34.021875 Long: -106.234896 Elev: 1500.00

dist= 6006.72548441 glimpse= 2

No Bayesian update

start diffuse

(4, 2) 0.799

(1, 4) 0.113

(3, 1) 0.221

(2, 3) 0.907

(0, 3) 0.109

(1, 3) 0.221

(4, 0) 0.001

(3, 0) 0.109

(4, 3) 0.108

(0, 1) 0.114

(4, 4) 0.001

(3, 2) 0.907

(0, 2) 0.800

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.002

(1, 2) 0.912

(2, 2) 0.000

(4, 1) 0.113

(2, 0) 0.800

(1, 0) 0.114

(0, 4) 0.001

(2, 4) 0.799

(2, 1) 0.912

(3, 3) 0.216

diffuse complete

(4, 2) 0.800

(1, 4) 0.118
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(3, 1) 0.226

(2, 3) 0.907

(0, 3) 0.110

(1, 3) 0.226

(4, 0) 0.002

(3, 0) 0.110

(4, 3) 0.108

(0, 1) 0.120

(4, 4) 0.002

(3, 2) 0.907

(0, 2) 0.801

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.003

(1, 2) 0.917

(2, 2) 0.001

(4, 1) 0.118

(2, 0) 0.801

(1, 0) 0.120

(0, 4) 0.002

(2, 4) 0.800

(2, 1) 0.917

(3, 3) 0.216

UAV clears (2, 1) now 0.000

Threat not detected

Send UAV to (1, 2) with 0.917

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

1 2

UAS flying to easting (GDC) Lat: 34.012749 Long: -106.245593 Elev: 1500.00

dist= 7421.60982581 glimpse= 3

No Bayesian update

start diffuse

(4, 2) 0.800

(1, 4) 0.118

(3, 1) 0.226

(2, 3) 0.907

(0, 3) 0.110

(1, 3) 0.226

(4, 0) 0.002

(3, 0) 0.110

(4, 3) 0.108

(0, 1) 0.120

(4, 4) 0.002

(3, 2) 0.907

(0, 2) 0.801

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.003

(1, 2) 0.917

(2, 2) 0.001

(4, 1) 0.118

(2, 0) 0.801

(1, 0) 0.120

(0, 4) 0.002

(2, 4) 0.800

(2, 1) 0.000

(3, 3) 0.216

diffuse complete

(4, 2) 0.800

(1, 4) 0.123

(3, 1) 0.231

(2, 3) 0.908

(0, 3) 0.110

(1, 3) 0.231

(4, 0) 0.003

(3, 0) 0.110

(4, 3) 0.108
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(0, 1) 0.125

(4, 4) 0.002

(3, 2) 0.908

(0, 2) 0.802

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.005

(1, 2) 0.923

(2, 2) 0.003

(4, 1) 0.123

(2, 0) 0.802

(1, 0) 0.120

(0, 4) 0.003

(2, 4) 0.800

(2, 1) 0.006

(3, 3) 0.216

UAV clears (1, 2) now 0.000

Threat detected

Send UAV to (3, 2) with 0.908

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

3 2

UAS flying to easting (GDC) Lat: 34.012967 Long: -106.223937 Elev: 1500.00

dist= 9422.56089297 glimpse= 4

No Bayesian update

start diffuse

(4, 2) 0.800

(1, 4) 0.123

(3, 1) 0.231

(2, 3) 0.908

(0, 3) 0.110

(1, 3) 0.231

(4, 0) 0.003

(3, 0) 0.110

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.002

(3, 2) 0.908

(0, 2) 0.802

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.005

(1, 2) 0.000

(2, 2) 0.003

(4, 1) 0.123

(2, 0) 0.802

(1, 0) 0.120

(0, 4) 0.003

(2, 4) 0.800

(2, 1) 0.006

(3, 3) 0.216

diffuse complete

(4, 2) 0.801

(1, 4) 0.128

(3, 1) 0.236

(2, 3) 0.909

(0, 3) 0.111

(1, 3) 0.236

(4, 0) 0.003

(3, 0) 0.111

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.003

(3, 2) 0.909

(0, 2) 0.804

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.006
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(1, 2) 0.006

(2, 2) 0.004

(4, 1) 0.128

(2, 0) 0.804

(1, 0) 0.120

(0, 4) 0.004

(2, 4) 0.801

(2, 1) 0.011

(3, 3) 0.216

UAV clears (3, 2) now 0.000

Threat not detected

Send UAV to (2, 3) with 0.909

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

2 3

UAS flying to easting (GDC) Lat: 34.003842 Long: -106.234635 Elev: 1500.00

dist= 10837.4492035 glimpse= 5

No Bayesian update

start diffuse

(4, 2) 0.801

(1, 4) 0.128

(3, 1) 0.236

(2, 3) 0.909

(0, 3) 0.111

(1, 3) 0.236

(4, 0) 0.003

(3, 0) 0.111

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.003

(3, 2) 0.000

(0, 2) 0.804

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.006

(1, 2) 0.006

(2, 2) 0.004

(4, 1) 0.128

(2, 0) 0.804

(1, 0) 0.120

(0, 4) 0.004

(2, 4) 0.801

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.802

(1, 4) 0.133

(3, 1) 0.241

(2, 3) 0.909

(0, 3) 0.112

(1, 3) 0.241

(4, 0) 0.004

(3, 0) 0.112

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.003

(3, 2) 0.001

(0, 2) 0.805

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.008

(1, 2) 0.011

(2, 2) 0.005

(4, 1) 0.133

(2, 0) 0.805

(1, 0) 0.120

(0, 4) 0.004

(2, 4) 0.802
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(2, 1) 0.011

(3, 3) 0.216

UAV clears (2, 3) now 0.000

Threat detected

Send UAV to (2, 0) with 0.805

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

2 0

UAS flying to easting (GDC) Lat: 34.030892 Long: -106.235026 Elev: 1500.00

dist= 13838.8768482 glimpse= 6

No Bayesian update

start diffuse

(4, 2) 0.802

(1, 4) 0.133

(3, 1) 0.241

(2, 3) 0.000

(0, 3) 0.112

(1, 3) 0.241

(4, 0) 0.004

(3, 0) 0.112

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.003

(3, 2) 0.001

(0, 2) 0.805

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.008

(1, 2) 0.011

(2, 2) 0.005

(4, 1) 0.133

(2, 0) 0.805

(1, 0) 0.120

(0, 4) 0.004

(2, 4) 0.802

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.802

(1, 4) 0.138

(3, 1) 0.246

(2, 3) 0.001

(0, 3) 0.113

(1, 3) 0.246

(4, 0) 0.005

(3, 0) 0.113

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.004

(3, 2) 0.001

(0, 2) 0.807

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.009

(1, 2) 0.011

(2, 2) 0.007

(4, 1) 0.138

(2, 0) 0.807

(1, 0) 0.120

(0, 4) 0.005

(2, 4) 0.802

(2, 1) 0.011

(3, 3) 0.216

UAV clears (2, 0) now 0.000

Threat not detected

Send UAV to (0, 2) with 0.807

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

J-9



0 2

UAS flying to easting (GDC) Lat: 34.012639 Long: -106.256420 Elev: 1500.00

dist= 16668.6415096 glimpse= 7

No Bayesian update

start diffuse

(4, 2) 0.802

(1, 4) 0.138

(3, 1) 0.246

(2, 3) 0.001

(0, 3) 0.113

(1, 3) 0.246

(4, 0) 0.005

(3, 0) 0.113

(4, 3) 0.108

(0, 1) 0.125

(4, 4) 0.004

(3, 2) 0.001

(0, 2) 0.807

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.009

(1, 2) 0.011

(2, 2) 0.007

(4, 1) 0.138

(2, 0) 0.000

(1, 0) 0.120

(0, 4) 0.005

(2, 4) 0.802

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.803

(1, 4) 0.143

(3, 1) 0.251

(2, 3) 0.001

(0, 3) 0.114

(1, 3) 0.251

(4, 0) 0.006

(3, 0) 0.114

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.004

(3, 2) 0.002

(0, 2) 0.808

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.010

(1, 2) 0.011

(2, 2) 0.008

(4, 1) 0.143

(2, 0) 0.002

(1, 0) 0.120

(0, 4) 0.006

(2, 4) 0.803

(2, 1) 0.011

(3, 3) 0.216

UAV clears (0, 2) now 0.000

Threat detected

Send UAV to (2, 4) with 0.803

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

2 4

UAS flying to easting (GDC) Lat: 33.994825 Long: -106.234504 Elev: 1500.00

dist= 19498.4061401 glimpse= 8

No Bayesian update

start diffuse

(4, 2) 0.803

(1, 4) 0.143
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(3, 1) 0.251

(2, 3) 0.001

(0, 3) 0.114

(1, 3) 0.251

(4, 0) 0.006

(3, 0) 0.114

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.004

(3, 2) 0.002

(0, 2) 0.000

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.010

(1, 2) 0.011

(2, 2) 0.008

(4, 1) 0.143

(2, 0) 0.002

(1, 0) 0.120

(0, 4) 0.006

(2, 4) 0.803

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.804

(1, 4) 0.148

(3, 1) 0.256

(2, 3) 0.002

(0, 3) 0.115

(1, 3) 0.256

(4, 0) 0.007

(3, 0) 0.115

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.005

(3, 2) 0.003

(0, 2) 0.002

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.012

(1, 2) 0.011

(2, 2) 0.009

(4, 1) 0.148

(2, 0) 0.003

(1, 0) 0.120

(0, 4) 0.007

(2, 4) 0.804

(2, 1) 0.011

(3, 3) 0.216

UAV clears (2, 4) now 0.000

Threat detected

Send UAV to (4, 2) with 0.804

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

4 2

UAS flying to easting (GDC) Lat: 34.013074 Long: -106.213110 Elev: 1500.00

dist= 22328.1866782 glimpse= 9

No Bayesian update

start diffuse

(4, 2) 0.804

(1, 4) 0.148

(3, 1) 0.256

(2, 3) 0.002

(0, 3) 0.115

(1, 3) 0.256

(4, 0) 0.007

(3, 0) 0.115

(4, 3) 0.108
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(0, 1) 0.126

(4, 4) 0.005

(3, 2) 0.003

(0, 2) 0.002

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.012

(1, 2) 0.011

(2, 2) 0.009

(4, 1) 0.148

(2, 0) 0.003

(1, 0) 0.120

(0, 4) 0.007

(2, 4) 0.000

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.804

(1, 4) 0.148

(3, 1) 0.261

(2, 3) 0.003

(0, 3) 0.116

(1, 3) 0.256

(4, 0) 0.008

(3, 0) 0.115

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.005

(3, 2) 0.003

(0, 2) 0.003

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.013

(1, 2) 0.011

(2, 2) 0.011

(4, 1) 0.153

(2, 0) 0.005

(1, 0) 0.120

(0, 4) 0.008

(2, 4) 0.001

(2, 1) 0.011

(3, 3) 0.216

UAV clears (4, 2) now 0.000

Threat not detected

Send UAV to (3, 1) with 0.261

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

3 1

UAS flying to easting (GDC) Lat: 34.021984 Long: -106.224067 Elev: 1500.00

dist= 23743.0789071 glimpse= 10

No Bayesian update

start diffuse

(4, 2) 0.000

(1, 4) 0.148

(3, 1) 0.261

(2, 3) 0.003

(0, 3) 0.116

(1, 3) 0.256

(4, 0) 0.008

(3, 0) 0.115

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.005

(3, 2) 0.003

(0, 2) 0.003

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.013
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(1, 2) 0.011

(2, 2) 0.011

(4, 1) 0.153

(2, 0) 0.005

(1, 0) 0.120

(0, 4) 0.008

(2, 4) 0.001

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.001

(1, 4) 0.148

(3, 1) 0.261

(2, 3) 0.003

(0, 3) 0.117

(1, 3) 0.256

(4, 0) 0.009

(3, 0) 0.116

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.005

(3, 2) 0.004

(0, 2) 0.005

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.015

(1, 2) 0.011

(2, 2) 0.012

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.009

(2, 4) 0.001

(2, 1) 0.011

(3, 3) 0.216

UAV clears (3, 1) now 0.000

Threat detected

Send UAV to (1, 3) with 0.256

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

1 3

UAS flying to easting (GDC) Lat: 34.003733 Long: -106.245461 Elev: 1500.00

dist= 26572.8515416 glimpse= 11

No Bayesian update

start diffuse

(4, 2) 0.001

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.003

(0, 3) 0.117

(1, 3) 0.256

(4, 0) 0.009

(3, 0) 0.116

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.005

(3, 2) 0.004

(0, 2) 0.005

(3, 4) 0.108

(1, 1) 0.226

(0, 0) 0.015

(1, 2) 0.011

(2, 2) 0.012

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.009

(2, 4) 0.001
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(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.001

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.004

(0, 3) 0.118

(1, 3) 0.256

(4, 0) 0.010

(3, 0) 0.117

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.006

(3, 2) 0.005

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.226

(0, 0) 0.016

(1, 2) 0.011

(2, 2) 0.014

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.010

(2, 4) 0.002

(2, 1) 0.011

(3, 3) 0.216

UAV clears (1, 3) now 0.000

Threat not detected

Send UAV to (1, 1) with 0.226

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

1 1

UAS flying to easting (GDC) Lat: 34.021766 Long: -106.245725 Elev: 1500.00

dist= 28573.7976644 glimpse= 12

No Bayesian update

start diffuse

(4, 2) 0.001

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.004

(0, 3) 0.118

(1, 3) 0.000

(4, 0) 0.010

(3, 0) 0.117

(4, 3) 0.108

(0, 1) 0.126

(4, 4) 0.006

(3, 2) 0.005

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.226

(0, 0) 0.016

(1, 2) 0.011

(2, 2) 0.014

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.010

(2, 4) 0.002

(2, 1) 0.011

(3, 3) 0.216

diffuse complete

(4, 2) 0.002

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.005
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(0, 3) 0.118

(1, 3) 0.000

(4, 0) 0.011

(3, 0) 0.118

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.006

(3, 2) 0.005

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.226

(0, 0) 0.017

(1, 2) 0.011

(2, 2) 0.015

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.011

(2, 4) 0.003

(2, 1) 0.012

(3, 3) 0.216

UAV clears (1, 1) now 0.000

Threat detected

Send UAV to (3, 3) with 0.216

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

3 3

UAS flying to easting (GDC) Lat: 34.003950 Long: -106.223808 Elev: 1500.00

dist= 31403.5702675 glimpse= 13

No Bayesian update

start diffuse

(4, 2) 0.002

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.005

(0, 3) 0.118

(1, 3) 0.000

(4, 0) 0.011

(3, 0) 0.118

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.006

(3, 2) 0.005

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.011

(2, 2) 0.015

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.011

(2, 4) 0.003

(2, 1) 0.012

(3, 3) 0.216

diffuse complete

(4, 2) 0.003

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.005

(0, 3) 0.119

(1, 3) 0.000

(4, 0) 0.012

(3, 0) 0.119

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

J-15



(3, 2) 0.006

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.012

(2, 4) 0.003

(2, 1) 0.012

(3, 3) 0.216

UAV clears (3, 3) now 0.000

Max distance reached.

Return UAV to base.

Threat not detected

Parking

Search Complete. Handing off to entity DEFAULT_UH -60 A_77

BSL 7040.3570 DEFAULT_UH -60A_77 >GenericEvent Received for handoff

Trigger Received: doGenericEvent

fillNormalCenter

2.5

0 0 0.00053532090306

l prob range changed to (0.0005353209030595415 , 0.0)

u prob range changed to (0.0005353209030595415 , 0.0005353209030595415)

setColors (0, 0) (0.0005353209030595415 , 0.0005353209030595415)

1 0 0.108249593478

u prob range changed to (0.0005353209030595415 , 0.1082495934779059)

setColors (1, 0) (0.0005353209030595415 , 0.1082495934779059)

2 0 0.798152221254

u prob range changed to (0.0005353209030595415 , 0.7981522212543952)

setColors (2, 0) (0.0005353209030595415 , 0.7981522212543952)

3 0 0.108249593478

setColors (3, 0) (0.0005353209030595415 , 0.7981522212543952)

4 0 0.00053532090306

setColors (4, 0) (0.0005353209030595415 , 0.7981522212543952)

0 1 0.108249593478

setColors (0, 1) (0.0005353209030595415 , 0.7981522212543952)

1 1 0.215963866053

setColors (1, 1) (0.0005353209030595415 , 0.7981522212543952)

2 1 0.905866493829

u prob range changed to (0.0005353209030595415 , 0.9058664938292416)

setColors (2, 1) (0.0005353209030595415 , 0.9058664938292416)

3 1 0.215963866053

setColors (3, 1) (0.0005353209030595415 , 0.9058664938292416)

4 1 0.108249593478

setColors (4, 1) (0.0005353209030595415 , 0.9058664938292416)

0 2 0.798152221254

setColors (0, 2) (0.0005353209030595415 , 0.9058664938292416)

1 2 0.905866493829

setColors (1, 2) (0.0005353209030595415 , 0.9058664938292416)

2 2 1.59576912161

u prob range changed to (0.0005353209030595415 , 1.5957691216057308)

setColors (2, 2) (0.0005353209030595415 , 1.5957691216057308)

3 2 0.905866493829

setColors (3, 2) (0.0005353209030595415 , 1.5957691216057308)

4 2 0.798152221254

setColors (4, 2) (0.0005353209030595415 , 1.5957691216057308)

0 3 0.108249593478

setColors (0, 3) (0.0005353209030595415 , 1.5957691216057308)

1 3 0.215963866053

setColors (1, 3) (0.0005353209030595415 , 1.5957691216057308)

2 3 0.905866493829

setColors (2, 3) (0.0005353209030595415 , 1.5957691216057308)

3 3 0.215963866053

setColors (3, 3) (0.0005353209030595415 , 1.5957691216057308)
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4 3 0.108249593478

setColors (4, 3) (0.0005353209030595415 , 1.5957691216057308)

0 4 0.00053532090306

setColors (0, 4) (0.0005353209030595415 , 1.5957691216057308)

1 4 0.108249593478

setColors (1, 4) (0.0005353209030595415 , 1.5957691216057308)

2 4 0.798152221254

setColors (2, 4) (0.0005353209030595415 , 1.5957691216057308)

3 4 0.108249593478

setColors (3, 4) (0.0005353209030595415 , 1.5957691216057308)

4 4 0.00053532090306

setColors (4, 4) (0.0005353209030595415 , 1.5957691216057308)

Initial threat map probabilities:

(4, 2) 0.798

(1, 4) 0.108

(3, 1) 0.216

(2, 3) 0.906

(0, 3) 0.108

(1, 3) 0.216

(4, 0) 0.001

(3, 0) 0.108

(4, 3) 0.108

(0, 1) 0.108

(4, 4) 0.001

(3, 2) 0.906

(0, 2) 0.798

(3, 4) 0.108

(1, 1) 0.216

(0, 0) 0.001

(1, 2) 0.906

(2, 2) 1.596

(4, 1) 0.108

(2, 0) 0.798

(1, 0) 0.108

(0, 4) 0.001

(2, 4) 0.798

(2, 1) 0.906

(3, 3) 0.216

initialize_search () called

global greedy method

Send UAV to (4, 1) with 0.153

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

4 1

UAS flying to easting (GDC) Lat: 34.022091 Long: -106.213238 Elev: 1500.00

dist= 6379.30871669 glimpse= 1

No Bayesian update

start diffuse

(4, 2) 0.003

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.005

(0, 3) 0.119

(1, 3) 0.000

(4, 0) 0.012

(3, 0) 0.119

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

(3, 2) 0.006

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.153

(2, 0) 0.006
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(1, 0) 0.120

(0, 4) 0.012

(2, 4) 0.003

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.003

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.006

(0, 3) 0.120

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

(3, 2) 0.007

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.153

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.013

(2, 4) 0.004

(2, 1) 0.012

(3, 3) 0.000

UAV clears (4, 1) now 0.000

Threat not detected

Send UAV to (1, 4) with 0.148

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

1 4

UAS flying to easting (GDC) Lat: 33.994716 Long: -106.245330 Elev: 1500.00

dist= 10623.9735438 glimpse= 2

No Bayesian update

start diffuse

(4, 2) 0.003

(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.006

(0, 3) 0.120

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

(3, 2) 0.007

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.013

(2, 4) 0.004

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.004
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(1, 4) 0.148

(3, 1) 0.000

(2, 3) 0.007

(0, 3) 0.121

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

(3, 2) 0.007

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.014

(2, 4) 0.005

(2, 1) 0.012

(3, 3) 0.000

UAV clears (1, 4) now 0.000

Threat detected

Send UAV to (0, 1) with 0.126

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

0 1

UAS flying to easting (GDC) Lat: 34.021656 Long: -106.256553 Elev: 1500.00

dist= 13787.7425217 glimpse= 3

No Bayesian update

start diffuse

(4, 2) 0.004

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.007

(0, 3) 0.121

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

(3, 2) 0.007

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.120

(0, 4) 0.014

(2, 4) 0.005

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.005

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.007

(0, 3) 0.121

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120
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(4, 3) 0.109

(0, 1) 0.126

(4, 4) 0.007

(3, 2) 0.008

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.121

(0, 4) 0.014

(2, 4) 0.005

(2, 1) 0.012

(3, 3) 0.000

UAV clears (0, 1) now 0.000

Threat not detected

Send UAV to (0, 3) with 0.121

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

0 3

UAS flying to easting (GDC) Lat: 34.003623 Long: -106.256288 Elev: 1500.00

dist= 15788.6829445 glimpse= 4

No Bayesian update

start diffuse

(4, 2) 0.005

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.007

(0, 3) 0.121

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.007

(3, 2) 0.008

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.017

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.121

(0, 4) 0.014

(2, 4) 0.005

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.005

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.008

(0, 3) 0.121

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.009

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000
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(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.121

(0, 4) 0.014

(2, 4) 0.006

(2, 1) 0.012

(3, 3) 0.000

UAV clears (0, 3) now 0.000

Threat detected

Send UAV to (1, 0) with 0.121

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

1 0

UAS flying to easting (GDC) Lat: 34.030783 Long: -106.245856 Elev: 1500.00

dist= 18952.4519428 glimpse= 5

No Bayesian update

start diffuse

(4, 2) 0.005

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.008

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.009

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.000

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.121

(0, 4) 0.014

(2, 4) 0.006

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.006

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.009

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.009

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.121

(0, 4) 0.014
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(2, 4) 0.007

(2, 1) 0.012

(3, 3) 0.000

UAV clears (1, 0) now 0.000

Threat not detected

Send UAV to (3, 0) with 0.120

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

3 0

UAS flying to easting (GDC) Lat: 34.031000 Long: -106.224196 Elev: 1500.00

dist= 20953.4030101 glimpse= 6

No Bayesian update

start diffuse

(4, 2) 0.006

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.009

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.009

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.007

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.007

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.009

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.120

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.010

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.007

(2, 1) 0.012

(3, 3) 0.000

UAV clears (3, 0) now 0.000

Threat not detected

Send UAV to (3, 4) with 0.109

Setting sensor pitch to -85 degrees
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Calling cxxi_send_uav_to

3 4

UAS flying to easting (GDC) Lat: 33.994933 Long: -106.223679 Elev: 1500.00

dist= 24955.3177103 glimpse= 7

No Bayesian update

start diffuse

(4, 2) 0.007

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.009

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.000

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.010

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.007

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.007

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.010

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.000

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.011

(0, 2) 0.006

(3, 4) 0.109

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.008

(2, 1) 0.012

(3, 3) 0.000

UAV clears (3, 4) now 0.000

Threat not detected

Send UAV to (4, 3) with 0.109

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

4 3

UAS flying to easting (GDC) Lat: 34.004057 Long: -106.212981 Elev: 1500.00

dist= 26370.2099552 glimpse= 8

No Bayesian update

start diffuse

(4, 2) 0.007
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(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.010

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.000

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.011

(0, 2) 0.006

(3, 4) 0.000

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.008

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.008

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.010

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.000

(4, 3) 0.109

(0, 1) 0.000

(4, 4) 0.009

(3, 2) 0.012

(0, 2) 0.006

(3, 4) 0.000

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.008

(2, 1) 0.012

(3, 3) 0.000

UAV clears (4, 3) now 0.000

Threat not detected

Send UAV to (0, 0) with 0.018

Setting sensor pitch to -85 degrees

Calling cxxi_send_uav_to

0 0

UAS flying to easting (GDC) Lat: 34.030673 Long: -106.256686 Elev: 1500.00

dist= 31372.5880556 glimpse= 9

No Bayesian update

start diffuse

(4, 2) 0.008

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.010

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.000
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(4, 3) 0.000

(0, 1) 0.000

(4, 4) 0.009

(3, 2) 0.012

(0, 2) 0.006

(3, 4) 0.000

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.008

(2, 1) 0.012

(3, 3) 0.000

diffuse complete

(4, 2) 0.008

(1, 4) 0.000

(3, 1) 0.000

(2, 3) 0.010

(0, 3) 0.000

(1, 3) 0.000

(4, 0) 0.013

(3, 0) 0.000

(4, 3) 0.000

(0, 1) 0.000

(4, 4) 0.008

(3, 2) 0.012

(0, 2) 0.006

(3, 4) 0.000

(1, 1) 0.001

(0, 0) 0.018

(1, 2) 0.012

(2, 2) 0.016

(4, 1) 0.000

(2, 0) 0.006

(1, 0) 0.000

(0, 4) 0.014

(2, 4) 0.008

(2, 1) 0.012

(3, 3) 0.000

UAV clears (0, 0) now 0.000

Max distance reached.

Return UAV to base.

Threat not detected

Parking

Search Complete. Handing off to entity DEFAULT_UH -60 A_77
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