

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

APPLICATION OF ARCHITECTURAL PATTERNS AND
LIGHTWEIGHT FORMAL METHOD FOR THE

VALIDATION AND VERIFICATION OF SAFETY
CRITICAL SYSTEMS

by

Vasileios Karagiannakis

September 2013
Thesis Advisor: Man-Tak Shing
Co-Advisor: James Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
APPLICATION OF ARCHITECTURAL PATTERNS AND LIGHTWEIGHT
FORMAL METHOD FOR THE VALIDATION AND VERIFICATION OF
SAFETY CRITICAL SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Vasileios Karagiannakis
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis researches the role of software architectural patterns and lightweight formal methods in safety-critical
software development. We present a framework that relates the different activities and products from system
engineering, safety engineering, system and software requirements, and software architecture explicitly, and
demonstrate the proposed framework with a case study involving the architectural design of the software to control
the arming device of a fictitious Surface-to-Air Missile. We describe the safety engineering steps for the identification
of the system hazards and the critical functions that the software has to provide to avoid premature detonation,
resulting in four safety requirements for the software that controls the missile’s Electronic Safe Arm Device (ESAD).
We formalize the software safety requirements as statechart assertions and validate their correctness via JUnit test.
We develop a software architecture for the control software using the Safety Executive pattern, and implement the
design in C++ to support a simple time-step simulation to produce the required log files for the automated verification
of the design.

14. SUBJECT TERMS Safety-critical and Software Intensive Systems, Software
Architecture, Architectural Patterns, Software Safety Requirements, Validation &
Verification, Formal Methods

15. NUMBER OF
PAGES

191
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

APPLICATION OF ARCHITECTURAL PATTERNS AND LIGHTWEIGHT
FORMAL METHOD FOR THE VALIDATION AND VERIFICATION OF

SAFETY CRITICAL SYSTEMS

Vasileios Karagiannakis
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Vasileios Karagiannakis

Approved by: Man-Tak Shing
Thesis Advisor

James Bret Michael
Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis researches the role of software architectural patterns and lightweight formal

methods in safety-critical software development. We present a framework that relates the

different activities and products from system engineering, safety engineering, system and

software requirements, and software architecture explicitly, and demonstrate the

proposed framework with a case study involving the architectural design of the software

to control the arming device of a fictitious Surface-to-Air Missile.

We describe the safety engineering steps for the identification of the system

hazards and the critical functions that the software has to provide to avoid premature

detonation, resulting in four safety requirements for the software that controls the

missile’s Electronic Safe Arm Device (ESAD). We formalize the software safety

requirements as statechart assertions and validate their correctness via JUnit test. We

develop a software architecture for the control software using the Safety Executive

pattern, and implement the design in C++ to support a simple time-step simulation to

produce the required log files for the automated verification of the design.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTIOΝ..1
A. OVERVIEW ...1
B. RESEARCH QUESTIONS ...1
C. METHODOLOGY ..2
D. ORGANIZATION ...3

II. SAFETY-CRITICAL SOFTWARE ..5
A. INTRODUCTION..5
B. EXAMPLES OF MISHAPS..6
C. DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE7

1. Software Behavioral Modeling ...7
2. Software Architecture ...8
3. Software Hazard Analysis ...10
4. Formal Methods ...11

D. THE NATURE OF FAILURE ..13
E. HAZARD ANALYSIS TECNHIQUES AND MODES16

1. Fault Tree Analysis (FTA) ..16
2. Failure Modes and Effects Analysis (FMEA)17
3. Failure Modes, Effects and Criticality Analysis (FMECA)17
4. HAZard and Operability Studies (HAZOP)18
5. Event Tree Analysis (ETA) ...19

F. SAFETY TACTICS AND PATTERNS ...23
1. Architectural-pattern Viewpoint ..24
2. Failure Modeling Viewpoint ...25

G. EXAMPLE OF SAFETY ARCHITECTURAL PATTERN......................27
H. SUMMARY ..29

III. ANALYSIS OF SOFTWARE SAFETY REQUIREMENTS33
A. INTRODUCTION..33
B. SAMPLE SAFETY-CRITICAL SYSTEM – A SURFACE-TO-AIR

MISSILE SMK ...38
1. Context Model ..39
2. Physical Model ...42
3. Operational Overview ...44

C. IMPLEMENTATION OF HAZARD ANALYSIS FOR SMK44
1. Preliminary Hazard List (PHL) ...45
2. Preliminary Hazard Analysis (PHA) ...47
3. System Hazard Analysis and Software System Hazard Analysis ..49
4. Software Safety Requirements..53

IV. SOFTWARE ARCHITECTURE FOR SAFETY-CRITICAL SYSTEMS57
A. INTRODUCTION..57
B. ARCHITECTURE-BASED PATTERNS ..58
C. SAFETY PATTERNS ...59

 vii

D. A SAFETY KERNEL FOR SMK’S WARHEAD.......................................65
1. Use Case 1: Valid Launching ..69
2. Use Case 2: Restrained Firing ..70

E. SIMULATION ...71
1. Supporting Classes ...74
2. Main Function and Simulated Missile’s Components75
3. Test Scenarios for the Simulation ...78

V. FORMAL V&V OF SOFTWARE SAFETY REQUIREMENTS AND
ARCHITECTURE ...83
A. INTRODUCTION..83
B. SOFTWARE SAFETY REQUIREMENTS SPECIFICATION AND

VALIDATION..84
1. SSR 1 ...85
2. SSR 2 ...86
3. SSR 3 ...87
4. SSR 4 ...88

C. ARCHITECTURE VERIFICATION ..91

VI. CONCLUSION AND FUTURE WORK ...97
A. SUMMARY ..97
B. LESSONS LEARNED ...99
C. FUTURE WORK ...100

APPENDIX A ...101

APPENDIX B ...139
A. TABLES FOR THE SIMULATION CASES ANALYSIS139

1. Simulation Cases Analysis for the PowerOn Message..................139
2. Simulation Cases Analysis for the EndPost Message140
3. Simulation Cases Analysis for the MakeLaunch Message140
4. Simulation Cases Analysis for the DoLaunch Message141
5. Simulation Cases Analysis for the ReadAcceleration Message ...141
6. Simulation Cases Analysis for the StartMotion Message142
7. Simulation Cases Analysis for the EndFirstMotionDetection

and EndSafeSeparationDistance Messages142
8. Acceleration Values for the Different Scenarios143
9. Final Table about the number of the Simulation Test Cases143

B. AGGREGATE LOG FILE TABLE WITH CALCULATION
REMARKS ...143
1. Log files and their Timing Diagrams ...145

APPENDIX C ...157
A. SOFTWARE SAFETY REQUIREMENT 1: POST157

1. Test Case 1: Everything is Correct...157
2. Test Case 2: The Self-Test is Failed..157
3. Test Case 3: The Self-Test is Passed but the Timer expires158

B. SOFTWARE SAFETY REQUIREMENT 2: LAUNCH INDICATE159

 viii

1. Test Case 1: Everything is Correct...159
2. Test Case 2: The Timer expires, before the DoLaunch Signal is

received ...159
3. Test Case 3: There is not DoLaunch Signal...................................160

C. SOFTWARE SAFETY REQUIREMENT 3: FIRST MOTION
DETECTION..161
1. Test Case 1: Everything is Correct...161
2. Test Case 2: There is no Acceleration Value over 6 g’s................161
3. Test Case 3: Only one Acceleration Value is over 6 g’s before

the Timer expires ...162
4. Test Case 4: The two Signals EndFirstMotionDetection and

EndSafeSeparation are Received at the Same Time from the
TimeGuard ...163

5. Test Case 5: The Acceleration Contain the Proper values but
there are Time Delays and the Timer expires164

D. SOFTWARE SAFETY REQUIREMENT 4: SAFE SEPARATION165
1. Test Case 1: Everything is Correct...165
2. Test Case 2: The Values are Correct but There Are Time

Delays and the Timer Expires ...165
3. Test Case 3: The Calculated Distance Does Not Reach the

Minimum Value of 20 Meters Due To Acceleration Values166
4. Test Case 4: The Two Signals EndFirstMotionDetection and

EndSafeSeparation are Received at the Same Time from the
TimeGuard ...167

LIST OF REFERENCES ..169

INITIAL DISTRIBUTION LIST ...171

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 1. Fault tree analysis example. From [2] and [3]. ..17
Figure 2. A flowchart of the HAZOP study process. From [2] and [3].19
Figure 3. Event tree analysis for the coolant pressure. From [2].20
Figure 4. The hierarchy of safety tactics. From [6]. ..24
Figure 5. Failure modeling in architecture design process. From [7]27
Figure 6. C2 style with the TMR pattern. From [6]. ...28
Figure 7. SMK configuration onboard. ...41
Figure 8. SMK’s Block Diagram with sections and main parts. After [13].42
Figure 9. Fault tree analysis for premature warhead detonation.51
Figure 10. Homogeneous Redundancy Pattern. From [17]. ..60
Figure 11. Diverse Redundancy Pattern. From [17]. ..61
Figure 12. Monitor Actuator Pattern. From [17]. ..62
Figure 13. Watchdog Pattern. From [17]. ...62
Figure 14. Safety Kernel Pattern. From [18]. ..63
Figure 15. Safety executive pattern for the SMK’s warhead. After [18].67
Figure 16. Sequence diagram for arming the ESAD. ..70
Figure 17. Sequence diagram for ESAD to remain in safe state.71
Figure 18. Class diagram. ..73
Figure 19. Statechart diagram for the TimeGuard class. ...77
Figure 20. V&V procedure for SMK ESAD. From [20]...84
Figure 21. Statechart assertion for software safety requirement 1.86
Figure 22. Statechart assertion for software safety requirement 2.87
Figure 23. Statechart assertion for software safety requirement 3.87
Figure 24. Statechart assertion for software safety requirement 4.88
Figure 25. JUnit validation test cases for software safety requirement 2.90
Figure 26. Log file and timing diagram for no_errors test case in simulation.92
Figure 27. Namespace mapping between the simulation events and statechart

assertion transitions. ...93
Figure 28. Verification test using the StateRover tool. ...94
Figure 29. Log file and its relative time diagram for the no_FMD simulation case.95
Figure 30. Namespace mapping for the second scenario. ...95
Figure 31. Test results for the second scenario. ..96
Figure 32. Formal V&V process for a safety-critical system..97

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1. Severity categores. From [5]. ...35
Table 2. Probability Levels. From [5]. ...35
Table 3. Risk Assessment Matrix. From [5]. ...36
Table 4. Software control categories. From [5]. ..37
Table 5. Software Risk Assessment Matrix. From [15]. ..38
Table 6. Preliminary hazard list for SMK. After [12]. ...46
Table 7. SMK Premature Warhead Detonation - Initial Analysis. After [15].48
Table 8. Causal factors and conditions for the premature detonation.53
Table 9. Safety policy and safety measures. ..66

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

LIST OF ACRONYMS AND ABBREVIATIONS

AT Autonomous

BIT Built- In Test

C2 Components and Connectors

CW Continuous Wave

CS Control Section

ESAD Electronic Safe Arm Device

ETA Event Tree Analysis

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects and Criticality Analysis

FTA Fault Tree Analysis

FMD First Motion Detection

FTD Fuze Triggering Device

GS Guidance Section

HAZOP Hazard and Operability

HTFF Hazards to Friendly Forces

HTLS Hazards to Launcher and Ship

IDE Integrated Development Environment

NSI No Safety Impact

O&SHA Operating and Support Hazard Analysis

O/M.H Operating/Maintenance Hazards

POST Power-On Self-Test

PHA Preliminary Hazard Analysis

PHL Preliminary Hazard List

POE Projected Operational Environment

PS Propulsion Section

SSD Safe Separation Distance

SAT Semi-Autonomous

SMK Shing Michael Karagiannakis

 xv

SHA Software Hazard Analysis

SSHA Software System Hazard Analysis

SSR Software Safety Requirements

SS Steering Section

SHA System Hazard Analysis

TDD Target Detection Device

TR Tracking Radar

TMR Triple Modular Redundancy

UML Unified Modeling Language

V&V Validation and Verification

WS Warhead Section

WCS Weapons Control System

XML Extensible Markup Language

 xvi

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisors Prof. Man-

Tak Shing and Prof. James Bret Michael for the continuous support of my Master study

and research, for their patience, motivation, enthusiasm, and immense knowledge. Both

helped me in all the time of research and writing of this thesis. I could not have imagined

having better advisors and mentors for my master’s study.

I would like to thank my parents, for supporting me throughout my life.

I thank my Lord Jesus Christ to whom I always find spiritual strength.

Last but not the least, my deepest thanks go to my spouse, Olga, who stands by

me both as a wife and as a good friend supporting me selflessly through all the years that

we are together. Thank you for everything you do for me.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTIOΝ

Γηράσκω δ’ αεί πολλά διδασκόμενος – As long as Ι live Ι learn

– Solon (638 BC – 558 BC)

A. OVERVIEW

The focus of this thesis is on the use of formal methods and architectural patterns

for the assurance of software system safety. It is a common practice for requirements to

be initially specified in a natural language. Developers of a system must then translate the

natural language specifications into engineering artifacts, such as architectures, designs,

and detailed implementations. This presents a problem: Natural language statements of

requirements tend to be ambiguous, allowing for multiple interpretations. This is

particularly troublesome in the context of the development of safety-critical systems. In

this thesis we describe and demonstrate the use of an approach, based on the application

of formal verification and validation (V&V) coupled with safety hazard analysis, to

assess safety requirements and their refinement into software artifacts.

The correctness of software safety requirements can only be validated within the

system context and the environment in which the system will operate. It is prudent to

validate the software safety requirements as early in the system life cycle as possible as it

is known that errors caught in later stages of the life cycle are more expensive to fix. In

addition, errors related to system safety can also be costly due to the mishaps that result

from them: death and injury, damage to property, and harm to the environment. Based on

the fact that architecting of a system begins early in the system life cycle, we decided to

explore both the use of software safety architectural patterns to capture safety

requirements and to apply formal V&V to ensure the safety requirements are fulfilled.

B. RESEARCH QUESTIONS

To develop a step-by-step framework for applying software safety architecture

patterns and formal V&V, we began by posing the following questions:

 1

• How can one derive and express precise statements of software safety
requirements from the set of natural language statements of requirements
for the target system?

• In the early stages of the system life cycle, how can one validate the
software safety requirements in the system context and environment in
which the system will operate?

• What role do safety architectural patterns play in aiding the design of the
architecture in meeting the software safety requirements?

• How can one verify the correctness of the architectural design in meeting
the safety requirements?

C. METHODOLOGY

Our goal of answering the preceding list of questions is to develop and

experiment with a methodology for architecting safety-critical software. We created

requirements for a fictitious surface-to-air missile system so that we could demonstrate

our methodology. The purpose of the missile system is to release lethal energy against

enemy forces. However, from a system safety perspective, the missile system must avoid

releasing the lethal energy inadvertently or against friendly forces (a.k.a., friendly fire).

In the case study the missile’s functions are allocated to software rather than hardware.

To further limit the scope of our research we focus solely on the missile system’s control

software. The stakeholders’ expectations for the system are included in the case study.

The first step is to review the requirements and then apply hazard analysis to

identify safety hazards associated with the missile system. (Note that in this thesis we

address safety only and not the operational effectiveness of the missile system.) We chose

to examine in depth the premature detonation of the missile’s warhead. This hazard could

lead to mishaps that are severe. From the stakeholders’ expectations the control software

of the device that arms and detonates the warhead has to decide when it is proper to

perform the arming of the warhead. By understanding the way that the device is going to

perform its functions safely, we develop system safety requirements that the device has to

meet. From these safety requirements, we have to translate the part that concerns the

software and specify the software safety requirements for the case study. Both the safety

requirements and the software safety requirements are written in natural language, and

we use statechart assertions to formalize the software safety requirements.
 2

Next we use software safety architectural patterns to develop an executable

architectural model for use in simulating the behavior of the proposed software in the

system’s deployment environment under different use case scenarios. The recorded log

files from the simulation are used for verification of the architecture.

The final step in this investigation was to use formal methods for validating the

software safety requirements and verifying the software’s architecture. Prior to this step,

we created two related artifacts: the software safety specifications expressed as formal

statechart assertions and the software’s architectural model, which encapsulates its

design. These two artifacts are related because they refer to the same system. Using the

StateRover tool, we can validate the statechart assertions by JUnit tests and then use the

validated statechart assertions and the log files from the simulation runs of the

architectural model to verify that the proposed software architecture meets these

specifications.

D. ORGANIZATION

Chapter II provides the background information necessary for the context and the

overall direction of this thesis. It defines the related terminology and identifies the gaps

that exist when considering the design of the safety-critical software. This chapter also

examines how software engineers address nonfunctional attributes such as safety in

architecting a software-intensive system.

In Chapter III we analyze the principles the design team uses to demonstrate the

concept of the software safety requirements. This chapter introduces the case study,

which is named SMK for the first letter of our last names (ShingMichaelKaragiannakis),

to demonstrate the safety engineering steps from the identification of a system’s hazards

to the critical functions that the software has to provide. We specify the four software

safety requirements for the software which controls the SMK’s Electronic Safe Arm

Device (ESAD) (i.e., for the arming of the missile’s warhead).

Chapter IV details the development of the software safety architectural design.

We introduce a variety of software patterns for application to safety-critical systems. We

document our use of the Safety Executive pattern in architecting the software. We
 3

implemented the design in C++ to support a simple time-step simulation, which produces

the required log files for the verification of the design.

Chapter V covers formal V&V of the requirements and our software architecture.

For validation purposes, we specify the four software safety requirements using

statecharts assertions. For verification purposes, we exercise those assertions using the

StateRover tool. We execute the architecture code in C++, creating twenty-one log files.

These log files are the inputs test cases for the StateRover tool and run against the four

statechart assertions to see if C++ code violates any of the four statechart assertions in

any of the twenty-one scenarios.

Chapter VI provides a summary of the results of this research, a list of lessons

learned and recommendations for conducting future work.

In the Appendix A we include the source code for the simple time-step

simulation. Appendix B contains a brief analysis for the twenty-one use cases we use for

the simulation phase, with the produced log files and their related time diagrams. For the

validation part of the statechart assertions, the test cases are implemented as JUnit tests

and their code is presented in the Appendix C.

 4

II. SAFETY-CRITICAL SOFTWARE

A. INTRODUCTION

Petroski argues that failures of systems are inevitable but that studying such

failures advances our understanding of engineering design in [1]. Although the examples

of system failures are couched in terms of structural and civil engineering, his argument

and insights apply to the accumulation of settled knowledge within other engineering

disciplines including software engineering.

The focus of this thesis is on the architecture and design of safety-critical systems

whose behavior is controlled by software interacting with hardware and humans. We

define the term safety-critical system to be a system that controls one or more forms of

energy that if not properly controlled could cause some combination of loss of life,

injury, property damage, or harm to the environment.

Although simplicity of design is a recognized best practice in engineering,

software-intensive systems, which today one can argue includes everything in the Internet

of Things, tend to have complex architectures and designs. That complexity tends to

become embedded in the implementation of software-intensive systems during the

refinement process. This is a particularly problematic situation for safety-critical systems,

given that complexity inhibits our ability to adequately analyze using static and dynamic

means the system safety and properties of these systems. In the remainder of this chapter

we provide some examples of the operation of safety-critical software-intensive systems

that resulted in mishaps and then discuss the emergence of the use of software patterns as

a mechanism to reduce the complexity of safety-critical software-intensive systems.

 5

B. EXAMPLES OF MISHAPS

There have been many incidents where under specific circumstances the systems

failed to behave safely. The following are examples of some mishaps that were related to

safety and software:

• The software error of a MIM-104 Patriot. The error caused its system
clock to drift by one third of a second, resulting in failure to locate and
intercept an incoming missile. The tragic result was 28 dead soldiers, as it
is described in [10].

• A Chinook crash on Mull of Kintrye in June 1994. A Royal Air Force
Chinook helicopter crashed into the Mull of Kintrye, killing 29 people.
After extensive investigation the final report claimed that a bug in the
software was responsible for the control of the engine’s computer and
caused an unexpected behavior of the engine and resulted in the accident,
as it is described in [10].

• An F-22 Raptor crash. In April 1992 the first F-22 Raptor crashed while
landing at Edwards Air Force Base, California. The cause of the crash was
found to be a flight control software error that failed to prevent a pilot-
induced oscillation, as it is described in [10].

The above mishaps and many more similar ones have created the necessity to re-

evaluate the way in which we build systems and engineers implement safety-critical and

safety-related functions in software. From the investigation of the related accidents and

mishaps, it is reasonable to conclude that the designs were not created in such a way as to

ensure the safety of these systems. Furthermore, the designs had many loopholes that

could lead to unplanned situations with a chaotic and undesired behavior of the systems.

There is a need to develop proper mechanisms and techniques to capture and address

safety concerns and to consider how the software architecture can improve the safety of

systems.

 6

C. DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

1. Software Behavioral Modeling

From the lessons learned, there is a need for the designers to evaluate the work in

progress at every stage of the development process instead of only assessing the quality

of the end product, because the cost for fixing an error increases exponentially as the

product reaches its deployment phase as explained in [6]. Thus, in each stage of the

software’s life cycle, the development team attempts to meet the user’s expectations and

answers the following fundamental questions: What do we have to build? How are we

going to build it? Does the proposed product meet the user’s expectations? For the above

questions, the need to identify the path to follow to achieve these goals is crucial. Thus,

there must be a clear distinction between the main parts of the system and the way that

they related to each other. This study focuses on the safety attribute of software due to the

fact that in many cases this attribute is responsible for undesired incidents. In safety-

critical systems the occurrence of failures could be catastrophic when specific

circumstances are met. For example, if the software of a ‘smart bomb’ detonated the

fusion mechanism close to friendly forces then we would have safety-critical issues. But,

in other circumstances, in which the explosion takes place in an area where no friendly

forces are close, then the incident could be mission-critical. It does not violate safety

issues. It is important to recognize and capture the customer’s expectations to identify the

proper environment in which to operate.

Historical data showed us that hardware failures are random, as opposed to

software failures which are are systematic [2]. The main reason for the difference

between hardware and software failures is that the software by itself does not fail.

Software is a representation of human thinking about the design of a machine or how this

machine should behave. Software is not a physical device; thus, it does not follow

physical laws. However, the design of hardware affects software behavior and vice versa.

State machines are often needed to model the expected behavior of reactive

systems for today’s complex systems. Unfortunately, it is not easy to create state machine

models to capture the system’s behavior correctly. State machines can be deterministic or

 7

non-deterministic. A deterministic state machine is a theoretical machine in which no

randomness is involved in the transition between states of the system. A non-

deterministic state machine is a theoretical machine in which ambiguity is present in the

transition between the states of the system. In a deterministic machine, the next possible

state is uniquely determined; in contrast, there is a set of possible next states for a non-

deterministic state machine. Non-deterministic state machines are applied in cases in

which there is ambiguity about the behavior of the system. Deterministic state machines

are used in cases in which the uncertainty is removed.

The model of choice typically depends on the size and complexity of the system,

the extent of use and experience with the machine and the risks associated with the

software’s systematic faults. From a review of the open literature, there appear to be

many software projects in which the developers had an inability to predict faults, and as a

result, there is an inability to quantify the associated risks for the software. In particular,

the amount of the complexity in relation to the severity of the faults creates a mixture that

can lead to ambiguous safety-critical applications. This does not mean that the design

team has to detect all the potential errors, but it does mean that it is extremely important

to be able to assess the effects of software with respect to the system safety. For these

reasons the designers adopt the terms determinism and non-determinism to define the

failure behavior of the system. Thus, the only tool that the development team could use is

their degree of knowledge about the failure behavior of a component in order to choose

between the use of determinism and non-determinism.

2. Software Architecture

To address the design decisions related to quality attribute requirements (e.g.,

requirements that deal with efficiency, usability, reliability, safety and security), which

have crosscutting effects on the eventual system, the developer community has begun to

focus its attention on software architecture as a means to achieve the many quality

attributes of the final system. The software architecture’s theoretical background and the

rationale for the design of the projects come from experience, which in turn is abstracted

and codified into architectural styles and patterns. Architectural styles refer to the way

 8

that we imagine how we are going to build the system using our experience in previous

problems. An example of an architectural style is the layered style.

“The essence of a layered style is that an architecture is separated into
ordered layers, wherein a program within one layer may obtain services
from a layer below it” [4].

Architectural patterns are more specific in comparison with styles and define the

components, the connectors and the relationships between them, to solve recurring

problems, as defined by Taylor et al. in [4]. An example of the architectural patterns is

the Sense-Compute-Actuator pattern that is used in structuring embedded control

applications.

“The basic idea is: A computer is embedded in some application; sensors
from various devices are connected to the computer and may be sampled
to determine their value. Also attached to the computer are hardware
actuators” [4].

The systems community uses the styles in such a way as to decide how they are

going to deal with a problem in a high-level abstraction, and the developers could use

past experience, codified as patterns in new problems that are similar. However, there is

not a significant set of methods available for the designers to address safety in software

architecture. For these reasons, Wu and Kelly proposed in [6] the concept of safety tactics

that are based on the description for other quality attributes like availability,

modifiability, security, performance, usability and testability by the Software Engineering

Institute. Architectural tactics provide a means to identify and codify the underlying

primitives of patterns in order to solve the problem of the intractable number of existing

patterns (refer to Chapter II, Section F for more details). Obviously, there are relatively

fewer tactics to be handled, and there are many ways in which tactics can be combined

into patterns.

 9

3. Software Hazard Analysis

The set of safety tactics defines the connection between the software architecture

with software safety and what we have to do to minimize the possibility of unplanned

behaviors that they could lead to mishaps. However, effective use of safety tactics

requires proper identification and management of potential hazards. The traditional

validation and verification of the systems, which focuses on the testing of systems as a

whole (i.e., the system’s software architecture consisting of components and connectors),

is not effective in assuring the system’s safety. When we test the whole system as an

entity, we have to define which parts of it are most likely to result in mishaps and try to

simulate all possible cases that our system will face in its deployment phase. This

procedure is time-consuming and requires resources thus increasing the budget. In most

cases, time-pressure combined with cost increases prevents us from performing adequate

fault forecasting for systematic software failures. This situation produces, at some point,

the nature of the software’s failure, which is systematic and is related primarily to design

faults and the resources’ extinction. When we refer to resources we mean both time and

money.

Additionally, as systems become more complex and there is a need to deal with

more complicated tasks, the risk assessment of systems becomes more complex, because

we have to identify and assess all relevant faults rather than using a method to estimate

the occurrence and the total number of failures. To address the issue of the intractability

of failures, software engineers perform Software Hazard Analysis (SHA), which is a

specified branch of Hazard Analysis proposed by Leveson in [3], to concurrently identify

the potential failures, perform requirements analysis and conduct specification tasks. A

requirement for a safety feature has to be met by the safety-related software. These

requirements are the basis for demonstrating the satisfaction of the system-level safety

requirements and meeting the user’s expectations. Feature-based requirements, which can

be safety functions or safety properties, may be identified based upon the requirements

engineering that the developer team used. However, safety-feature requirements may also

be identified to mitigate the risk of hazards occurring in other components of the system.

These requirements can be used to demonstrate the adequacy of the software component

 10

with respect to hazards. They are related to potential failures of the software within the

system that may lead to system hazards.

The combination of safety tactics and the use of SHA yield a specific framework

for producing the mechanisms in our software to implement the safety. That is how in

this thesis we demonstrate the assurance of system safety from the system’s software

architecture. Our primary goal is to build a system that meets the requirements of its

stakeholders and at the same time the software of this system will be able to detect,

identify and properly manage the potential failures in order to avoid them or handle them

and sustain safe behavior of the system.

4. Formal Methods

Relating the issues just discussed in the combination with the increasing products

complexity and the likelihood of much greater subtle errors, which affect the safety

attribute of the systems, there is a need for the designers to use a tool capable of

specifying and verifying such systems. One way of achieving this goal is by using formal

methods, which are mathematically based languages, techniques and tools. Their scope is

to increase our ability to obtain a deep understanding of a system by revealing

inconsistencies, ambiguities and incompleteness that might otherwise go undetected. The

main advantage of the use of a formal language is that the developers can achieve

specification and verification of the target system, as it is described in [2] and [11].

However, they cannot guarantee total correctness. The formal methods can be used in

different phases of the system development process, helping the developers to deal with

ambiguities that are hidden in these phases. For example, as Clarke and Wing state

in [11]:

“It is worth exploring how they can be used in requirements analysis,
refinement, and testing.”

Requirements analysis necessarily deals with customers who often have an

imprecise idea of what they want; formal methods can help customers nail down their

system requirements more precisely.

 11

Refinement is the reverse of verification; it is the process of taking one level of

specification (or implementation) and through a series of ‘correctness-preserving

transformations’ synthesizing a lower-level specification (or implementation). Although

much theoretical work on refinement has been done, the results have not yet transferred

to practice.

Testing is one of the most costly areas in all software projects. Formal methods

can play a role in the validation process, for example, using formal specifications to

generate test suites and using model and proof-checking tools to determine formal

relationships between specifications and test suites and between test suites and code.

In this study, we focus on the safety of the system from the viewpoint of a

software developer, and formal specifications are needed in the phase of requirements

analysis. This is because formal specification is the act of writing things down precisely,

and through this process describe a system and its desired properties, as explained in [2]

and [11]. This process is based on a mathematically defined syntax and semantics. These

kinds of system properties might include functional behavior, timing behavior,

performance characteristics or internal structure. So far, specification has been most

successful for behavioral properties. The process of specifying what exactly the

users/customers want the system to do helps the developers to uncover design flaws,

inconsistencies, ambiguities and incompleteness. Through this process, a useful

communication link is created between the customer and developer, between designer

and builder and between builder and tester. It documents the answers for questions of

what, how, when, why the system does, but at a higher level of description. The final

outcome from this process is formally analyzed, because it is based on mathematics, and

can be checked to ensure that the specified system is internally consistent.

Besides the specification, another use of formal methods by the system designers

is the verification of the system’s architecture, going one-step forward to analyze a

system for desired properties. Every system has architecture, which is a set of design

decisions about the system, and these design decisions can be captured in models, as it is

stated in [4]. The notation of the models can vary, but in the end the developers want to

 12

use their model to express rigorously and formally the functional and non-functional

aspects of the system.

Model checking, which is a technique that relies on building a finite model of a

system and checking that a desired property holds in that model, as described in [11]. The

check is performed as an exhaustive state space search that is guaranteed to terminate

since the model is finite. There are two approaches to achieve the checking. The first is

called temporal model checking, which is a technique in which the specifications are

expressed in a temporal logic and systems are modeled as finite state transition systems.

An efficient search procedure is used to check if a given finite state transition system is a

model for the specification. In the other approach, the model checking is achieved by the

comparison of the specification with the system. They are both modeled as automaton,

and the purpose of the comparison is to determine whether the system’s behavior

conforms to that of the specification, as it is described in [11].

D. THE NATURE OF FAILURE

As mentioned above, the developer community has developed methods to identify

when and how a hazard can occur. In addition they must declare the meaning of failure

and determine precisely what constitutes a failure. In software, where the term failure is

related to the improper way the software behaves, this term is rational and close to an

abstract notion. For these reasons, and in order to be more understandable, we define the

term failure using the same method that Pumfrey et al. in [9] used to classify it. In

general, Pumfrey et al. classifies the failure using the logical sequence of how a failure is

related to an event, how a failure is generated, how a failure behaves and which

properties a failure contains. All these questions are answered in an abstract way, giving

us the flexibility to adopt them in any until-now problem. For this study the following

definitions are used.

“Failure is the non-performance or inability of the system or component to
perform its intended function for a specified time under specified
environmental conditions,” as it is defined by [3].

“A fault is an incorrect step, process, or data definition in a computer
program,” as it is defined by [3].

 13

It can be internal (e.g., fault in code, specification) or external (e.g., wrong input

data, attack). Faults can cause failures but they do not have to. If a fault can only turn into

a failure under conditions that are never met, no failure will be observable. Likewise

external faults need internal faults in order to produce a failure. So they cannot be the

sole cause of a failure. However, the fault is always a prerequisite for a failure.

“An error is a deviation from the required operation of the system or the
subsystem” as it is defined by [2].

When the failure has occurred, this means that an erroneous system state has been

observed. This erroneous system state is the error, while the observation of the error

(wrong output, wrong behavior, system downtime, etc.) is the failure.

Thus, the first question that must be answered is the relation between a failure and

an event. We have the case where an event fails to occur, which is the failure omission,

and we have the case that an event does not occur in a proper sequence, which is the

failure commission. Also, we have the cases that a failure occurs in relation to the time of

an event when an event occurs earlier or later than it is scheduled. And finally, we have

the cases that consider the impact of a failure due to the value of the event when the

received value is incorrect or when we cannot detect its value.

Continuing, we have to pinpoint the causality of a failure. To answer what the

causal factors of a failure are, we have to analyze the factors that are related to it. The

three major factors are the software as an entity, the related hardware and the

environment in which the software is operating. The main reason that the software itself

can create failures is that many issues are not well defined leading to an incorrect design

and implementation, resulting in the software behaving in undesired ways. Also, the way

that we try to implement the software in the real world through the hardware can lead to

failures due to limitations or incorrect design of the hardware. Lastly, the environment

can generate abnormal situations that the software is not able to handle. For example, it

could be attributable to how humans react during the 24-hour day:

“Safety and productivity are low at night. The fact that we are a diurnal
species may explain why many of the many industrial accidents involving
human error have occurred at night” as Leveson states in [3].

 14

These kinds of situations can cause software to react in such a way that a failure

can occur.

Another critical item about the nature of failures is the way that they behave when

they occur. There are cases in which a component receives some inputs (or changes the

original inputs) and reacts improperly, propagating failures throughout the whole system.

For example, Wu and Kelly in [6] described a situation in which a random component

received proper inputs, but due to the wrong mechanism, created wrong outputs, which

are inputs for the next component. The next component received them and, naturally,

created wrong outputs as inputs to a third component. This kind of situation propagates

the first failure.

The second situation is the result of an unscheduled input. Again, taking from the

paper by Wu and Kelly [6], we can face the situation where an event, due to any reason,

arrives late to the proper component and results in an unscheduled sequence of events

that could conflict with the proper values of other events. Thus, we have a correct event

at an improper time that is transformed into failure.

To create the proper mechanisms that prevent or minimize the impact of the

failures, we need to understand two important properties of each failure. The first

property concerns the detectability of the failure. The second property is related to the

severity and the magnitude of the failure. This property defines how tolerable a failure is,

which means how easy it is for us to mitigate the results from the occurrence of a failure.

Although we may not be able prevent the failures from occurring, we want alternative

ways to build safety-critical software that reduces the impact of the failure.

 15

E. HAZARD ANALYSIS TECNHIQUES AND MODES

To design a safe system, the designers must detect and identify the potential

hazards. This mechanism is referred to as hazard analysis and includes a range of

techniques; each of them investigates from a different perspective the system in order to

identify the hidden hazards. From the publicly available literature, we can find many

techniques that can be applied to particular industries and are limited in other domains.

There are cases in which the development of a technique has been generated from a

specific domain, but fortunately their logic can be implemented to other domains. As it is

described in [2] and [3] the most widely used techniques are discussed in the following

sections.

1. Fault Tree Analysis (FTA)

FTA is a deductive reasoning failure analysis (from system failure to its reasons).

It is a graphical technique describing the relationship between hazards and causal factors

leading up to the hazards. The designers expand the fault tree, adding more detail as the

analysis becomes more thorough. The initial tree starts with the hazard and works

backwards to find the causal factors. Continuing in time and as the analysis proceeds, the

tree has more details. The goal for this technique is to gain a more in-depth understanding

of the system as the tree’s high-level nodes have been expanded deeper. The result from

using this technique is a pictorial tree that includes logical operators, such as the AND

and OR from Boolean algebra, to define the relationship between cause and effect. It is

an easy way to picture the potential hazards and how they may occur and which modules

have different effects on the potential occurrence of the hazard. An example of FTA

could be the following: One desktop computer could not start. Thus, the potential faults

could be: Power issue OR Booting issue. For these two issues, the computer’s failure to

start could have many causal factors and their proper combination led to it, as it is

depicted on Figure 1.

 16

Figure 1. Fault tree analysis example. From [2] and [3].

2. Failure Modes and Effects Analysis (FMEA)

FMEA is a graphical technique for analyzing any failure of each component and

relating the effects from the failures to the system. Its scope is to investigate the possible

modes of failure and from them to identify and detect the consequences. Using the above

technique, engineers are able to identify any structural weaknesses in the design and to

rectify these before implementation begins. The benefit of using this technique is to test

the product against the design, reveal the states that have failure behavior and relate them

with the root, which are either the requirements or the interpretation of requirements into

the design. The drawback of this technique is that it demands a lot of research, time and

resources, and for these reasons it is applied at the late stage of the development phase.

3. Failure Modes, Effects and Criticality Analysis (FMECA)

FMECA continues from the outputs of the FMEA and considers the importance of

the failures to the system. To measure the severity of these failures, the technique

 17

considers the severity of each failure and its related probability of occurrence. Using the

FMECA technique the engineers are able to focus on areas that the occurrence of a

failure could lead to catastrophic consequences.

4. HAZard and Operability Studies (HAZOP)

HAZOP is an explanatory technique that relies on the answers to “what-if”

questions to analyze the alternative behavior of each component and relate them to the

system. This technique uses a group of guidewords that are related to the specific domain,

helping the engineers to identify easily their scope. Also, it is very effective and helps the

engineers to think deeply about their proposed systems, but it is time-consuming and

demands an expert level of systems knowledge. In practice, experience is used to guide

the choice of questions in each area, as it is depicted in Figure 2.

 18

Figure 2. A flowchart of the HAZOP study process. From [2] and [3].

5. Event Tree Analysis (ETA)

ETA is an inductive reasoning failure analysis (from basic failure to its

consequences) that manifests itself as a graphical technique (a dynamical expanded tree)

starting with an event, which affects the system, and then continues to analyze the

potential consequences. This technique tries to catch the potential propagation of an event

(failure) and how this triggers a sequence of events ending in the potential results. The
 19

benefit of using this technique is the unveiling of consequences, which are not obvious

under specific situations in complex systems. An example of this technique is depicted in

Figure 3, which includesthe event tree analysis for a failure of coolant pressure, as it is

described in [2].

Figure 3. Event tree analysis for the coolant pressure. From [2].

The engineers are able to use the previously discussed techniques simultaneously

to achieve the best result for the hazard analysis. It is common to use the FMEA in

combination with the FTA because the two methods can be used in a complementary

way. For example, the outcomes from the FMEA can be roots for the FTA as it is

described in [2] and [3]. Also, the HAZOP technique studies the interconnections

between the components of the system, and using the tools of this technique, the

engineers are able to determine the interactions. At its final phase, the engineers are able

to prioritize the hazards, and using their outcomes, create the roots for the FTA.

Having all the above in mind, a fair question to ask is: when does the design team

have to apply the hazard analysis in their work? This question has a critical meaning

because it is clear that the hazard influences the behavior of the system. Especially in this

study, we are interested in the software intensive systems, and the results from the hazard
 20

analysis will affect their architecture and development. It is clear that the software is a

part of a system that controls the hardware and interacts with the users. Hence the design

team has to think holistically about its design. The entire system must be designed to be

safe. The main parts of the system are the software, the hardware, the users, and the

environment. All these parts should be considered equally as well as how they interact to

each other. Functional and operational safety starts at the system level. Safety cannot be

assured if efforts are focused only on software. Hazards at the system level include:

hardware hazards, software hazards, procedural hazards, human factors, environmental

hazards and interface hazards.

The analysis of the potential hazards starts at the requirements phase of the

system with a proposed design concept. This kind of analysis is characterized as

Preliminary Hazard Analysis and begins with the identification of the potential hazards

associated with the proposed system. The system safety analysis continues throughout the

project life cycle. The software safety analysis process needs to be performed next to

review the results of the systems analyses and to assure that changes and findings at the

system level are incorporated into the software as necessary. In addition, the software

safety analyses provide input to the system safety analyses. The software safety analyses

are a special portion of the overall system safety analyses and are not conducted in

isolation.

There are many modes for hazard analysis at the life cycle of the project. In this

study, we are going to follow the categorization from the Mil-Std 882E [5]. This military

standard describes and declares the fundamental principles of safety in general and makes

a special reference to those related to that system safety. The following techniques are

part of a group where other safety-standards are given, but in this text they define in an

abstract way the notion that is hidden behind them. The military standard uses the

following techniques that are characterized as tasks:

• Preliminary Hazard List (PHL)

• Preliminary Hazard Analysis (PHA)

• System Hazard Analysis (SHA) and its branch Software System Hazard
analysis (SSHA)

 21

• Component SHA and Component SSHA

• Operating and Support Hazard Analysis (O&SHA)

a. Preliminary Hazard List (PHL)

PHL is an initial analysis that comes with the concepts of the project,

trying to identify the hazards and the way that each of them must be confronted.

b. Preliminary Hazard Analysis (PHA)

PHA is the next step, where the main purpose is to identify and evaluate

all system hazards. It is the root-step for the system and software hazard analysis giving

the first results to the safety team to continue with the analytic and thorough study of the

components of the system.

c. System Hazard Analysis (SHA) and its Branch Software System
Hazard Analysis (SSHA)

SHA and SSHA move forward trying to relate the identified hazards to the

risk’s assessment, which the developers have to define to proceed in depth their analysis.

d. Component SHA and Component SSHA

Component SHA and Component SSHA study each component on an

individual basis and looks to identify the associated hazards with the design of the

components, and how those hazards will affect the entire system.

e. Operating and Support Hazard Analysis (O&SHA)

O&SHA investigates the relation between the project and the external

users, such as humans and the environment, as concerns the safety of the system.

O&SHA identifies safety requirements necessary to eliminate hazards or mitigate the risk

of hazards. Using them we define the potential hazards of our system. The various system

hazard analyses will attempt to eliminate as many hazards as possible, reduce the

probability of occurrence of those that remain and reduce the potential damage, which

may result from accidents. In some cases, software components may be assigned such

 22

responsibility. If this occurs, software hazard analysis is a form of component hazard

analysis.

F. SAFETY TACTICS AND PATTERNS

Continuing our study, safety critical failures are defined as those that can lead to

hazards and thus act as a causal factor in accidents. For this reason, the failures should be

avoided and in case that we cannot avoid them, we build our system in such a way to

mitigate the risk of the hazards. Beginning our analysis, we are going to define the

relationship between the failures and how they are identified in relation to the software

architecture. In [6] Wu and Kelly categorize the failures by classification, causality,

behavior and property. The above notions create the framework under which we are

going to formalize the safety quality attributes for our system, giving us the ability to

continue and build the protective mechanisms and mitigate any hazards. The distinction

and definition of these elements are based on the logic: What (the abstract notion‒

classification), Why (more detailed notion‒causality), How (the implementation notion‒

behavior) and finally Which (the properties of failures).

Using the above logic, Wu and Kelly in [6] have organized the safety tactics into

three sets: failure avoidance, failure detection and failure containment. Having as a basic

structure the above three sets, it was expanded into a hierarchy of techniques for

constructing safety-related architectural patterns. The proposed hierarchy is depicted in

Figure 4.

 23

Figure 4. The hierarchy of safety tactics. From [6].

Choosing from the three above categories one or more tactics, we can apply them

and provide our system with more safety. The goal of the above approach is to make our

system more reliable, in order to detect the failures and avoid them or to recover from

any failures and prevent the hazards from occurreing. Some of the tactics, like Rollback,

do not eliminate the failures but give the opportunity to retry at another time. Moreover,

we can approach the safety tactics from two different viewpoints.

1. Architectural-pattern Viewpoint

This approach uses patterns as the core safety-tactics in the context of a use-case.

Having as an input the customer’s expectations, we analyze the problem in terms of

components and connectors, and using one of the already defined patterns, we investigate

the situations where a relation leads to a hazard. One example of such a safety

requirement is for our software to be able to identify the hazards and use the proper

mechanisms to prevent them. From the customer’s point of view this issue is concerned

as granted but the detailed requirements about what exactly should be monitored is not

given in all cases, as is mentioned in [7].

This is the challenging part because we have to overcome two entities that are the

motivation for the architects to design their project. The first one is the group of the

safety tactics, and the second is the user/customer’s expectations that are expressed as
 24

functional requirements in natural language. Both entities are too abstract for defining the

source code, which is the final product and must contain the whole rationale from them.

The goal is that both the developers and the stakeholders can have a meaningful view of

the project. However, existing practice fails to systematize solutions to these architectural

issues as it is described in [7]. Focusing on a scenario/use-case instead of the whole

system may result in misleading assumptions as the complexity of the project increases.

In particular, for the assumptions that are related to the safety properties of our system,

we have to be absolutely sure and we have to explicitly identify and document them.

Another issue concerns the selection of appropriate use-case scenarios that will determine

the architecture.

2. Failure Modeling Viewpoint

From all the above, we can understand that the core of the problem is the way that

we describe and define the term safety in any system. Wu and Kelly [7] proposed an

alternative approach for this issue because we are not able to define which tactics must be

performed a priori, and in some cases this could lead to the increase of the set of failures.

They proposed the development of failure modeling, which treats the failures as

‘components’ in order to relate them to the real software components of the system.

Using this approach, the architecture is combined with the safety due to the fact that it

implements the results from the software hazard analysis in the design of the product. To

achieve this Wu and Kelly in [7] proposed the following methodology for building failure

models.

Firstly, we have to overcome any level of imprecision and ambiguity. This can be

solved using formal methods to describe our requirements, but it limits our ability to be

flexible in cases where the customer needs additional requirements.

Secondly, we need components that contain the safety properties of a system, and

through their composition, we can succeed in obtaining the proper structure of our

design.

 25

Thirdly, we have to model our system to check its behavior in its environment

(hardware, users). In this way we can achieve the Verification & Validation of our project

before its deployment.

Continuing the above, we need resources (time, computing power) to capture the

cases in our design assumptions that could lead to faults and re-evaluate the points that

caused them to perform verification of the safety of the proposed software architecture.

The purpose of the approach proposed by Wu and Kelly in [7] is to investigate the

failure behavior of the system using a bottom-up approach relating the components to the

failure behavior. As already mentioned, this approach looks to design the product

according to its components and not to take an existing pattern and implement safety

functions on it. Using the nature of each component, it is modeled according to the way

that it might propagate the failure or the way that it can generate a failure. The whole

effort aims to define the events that are going to happen in such a way that the model uses

them to give us as an outcome of the potential results, success or failure. Furthermore, in

the case of failure we are able to distinguish the causal factors that resulted in failure.

Thus, we have to design our product in such a way that we can answer the following

questions from the very beginning: How can we define failure behavior of a component?

How does a failure model facilitate safety analyses?

According to the literature, one of the most effective techniques about the

architectural design is the combination of iteration and incremental development.

However, the designers struggle to get early feedback during the iterative and

incremental development to address concerns with the behavior of each component,

which would mitigate as much as possible the magnitude of the software’s complexity.

Essentially, using this proposed methodology, they are in place to generate the model,

having also the proper validation mechanisms for it. The purpose of the above task is to

implement the failure behaviors of each component, and at the same time, to make the

procedure more dynamic, using scenarios/use-cases that are related to the failure model

in order to receive feedback. The whole procedure will return the valuable safety analysis

that produces assessment results and feedback to the subsequent design process, as it is

explained graphically in the Figure 5.
 26

Figure 5. Failure modeling in architecture design process. From [7]

In Figure 5, we see that the output of the Architecture node is called Architecture

transformation, and this is one step before the System Model. The first node contains a

set of events and actions that are going to be implemented in the System Model. The

challenging part of the architecture transformation is the distinction between the atomic

and the composite components. The main reason is because the atomic components can

be modeled separately and analyzed independently from the rest of the system. Instead,

the composite must be modeled and analyzed in relation to the rest of the system due to

the behaviors of enclosing components.

G. EXAMPLE OF SAFETY ARCHITECTURAL PATTERN

Wu and Kelly in [6] describe an example of how the designers should design a

software product. In this example they use the complicated C2 (components and

connectors) architectural style. The C2 is a combination of model-view-controller pattern

in combination with the layered and event-based architectures. They used this style due to

the benefits from the multiple methods of the design. In particular, the C2 style is

sufficient for the failure behavior of a system. A component within this architecture has a

limited relationship with others, and their hierarchy is built in a layered manner. The C2

style is characterized as an association of components linked by communication
 27

forwarders known as connectors. This design focuses on the connector’s independence in

order to succeed the interchangeability and reuse of components across architectures.

Components request services from components “above” them via message passing and

are not in possession of knowledge of components “below” them.

Using the C2 style, we are in place to relate the architecture with the failure

modeling because we want to make our modeling incremental and iterative and at the

same time to distinguish between the styles, which ones are safety-related and which are

not. Succeeding this as first step we are going forward with building the failure model

that will give us the potential failure behavior of our system. The C2 style exhibits

functional failure behavior, which is our motivation to present two aspects of failure

behavior. The first concerns the individual components, and the second concerns the

composition of failure behaviors between the components.

An example that explains the above rationale is the mapping of a C2 style with

the triple modular redundancy (TMR) pattern as shown in Figure 6. With this approach

there is a third redundant element to replace the two-way comparison with three-way

“voting.” In the various triple redundancy approaches, a faulty component can be

identified and shut down while the remaining redundant elements can continue to operate

safely.

Figure 6. C2 style with the TMR pattern. From [6].

 28

Relating the architecture above with the quality attribute safety, we distinguish

between the failures events from the normal events in failure modeling. Hence, our

convention rule is that all events must have one component describing normal or failure

conditions. In addition, we have to define which of the already defined failure modes are

in charge of the failure event component, making our analysis simpler because the

complexity of the system could lead us into misunderstandings or misinterpretations.

Having this in mind, Wu and Kelly investigate a possible protective mechanism to protect

a processor. The most common failure behaviors of a processor can be: crash failures

(i.e., permanent omission failures), transient timing failures, transient value failures and

corruption failures (i.e., arbitrary timing and value failures).

They proposed a scenario in which the protective mechanism is a working

watchdog timer, which is another architectural entity, and has the responsibility to detect

omission and late timing failures. Creating the failure model of the architecture, we are

able to simulate the potential results of any unexpected situations, depending on the

implementation. In Figure 6, we see that they designed the system in such a way that the

C2 style of the TMR system composes the four elementary processes P1, P2, P3 and V1.

The three redundant and independent processes P1, P2 and P3 interact with the V1

process through their outputs. Each component P1, P2, P3 is responsible for computing

the results based on the input data received, and propagates any incoming failure from its

input to output ports. The next voter component is responsible for choosing the ‘correct’

result among three redundant input channels, and thus can detect one faulty input channel

and stop its failure propagation. But the voting protection mechanism will be ineffective

if two or more faulty channels agree with each other. The voter itself can generate

omission failures (i.e., fails stop) since it cannot make a decision upon voting.

H. SUMMARY

The development of software-intensive systems is time-consuming and requires

many resources. When the complexity of these systems becomes great and the systems

control significant amounts of energy, then from the developers’ perspective, these

 29

systems must have safety implications, both on their design and on their use. If it is not

possible to avoid or remove the hazards entirely, the risk of a mishap must be minimized.

System safety analysis is the first phase in which to identify the potential hazards

for the system. If the system is software intensive, the requirements that are associated

with it should be specified. The identified hazards and specified system requirements will

be used to guide a safety-critical system’s architectural design. Some examples of

software safety requirements include limits, sequence of events, timing constraints,

voting logic, hazardous hardware failure recognition, failure tolerance, caution and

warning interfaces and hazardous commands.

For software-intensive safety-critical systems, software design must enforce

safety constraints. Reviewers should be able to trace from requirements to lower level

artifacts such as architectures, designs, code, and document and vice versa. In addition to

the specific safety constraints developed for the system being designed, the design should

incorporate basic safety design principles. Safety, like any quality, should be built into

the system design. Operation of the system must not lead to a violation of the constraints

on safe operation. The requirement for software to be safe is not that it never “fails,” but

that it does not cause or contribute to a violation of any of the system constraints on safe

behavior. This observation leads to a group of approaches to handle software in safety-

critical systems.

The first approach requires the use of current design methodologies from the

existing software architectures to implicitly consider safety. Using the current

architectural patterns, which are specific solutions for specific problems, the developers

can reuse them on similar future issues. The literature review shows that the first

approach cannot be implemented at an acceptable level in safety-critical systems.

Furthermore, the existing software architectures do not succeed in implicitly considering

safety. Studying the problems Wu and Kelly described in [6] discovered the primitive

characteristics of the patterns defining them as tactics, which actually are the design

decisions for realizing quality at the architectural design. They are abstract in that they

can refer to the patterns’ building blocks. The analysis of software safety using a model,

 30

the development of safety-related tactics and eventually the method by which the tactics

are implemented at the design phase is one approach to formalize design decisions.

The second approach identifies the constraints on system behavior and then

designs the software to enforce the safe constraints. In this approach Wu and Kelly in [6]

proposed the failure behavior of each component in terms of failure propagation and

generation. The result is a failure modeling and the combination of different possible

failure flows from external failures or components’ internal failures to system-level

failures. Having this as a baseline, they tried to create the architecture from the

functionality and the operation of a software system following an architectural

transformation, failure modeling, scenario generation and safety analysis for feedback. In

architectural transformation they distinguish the components in elementary and

composite, and focus on the components that are related to the failure modeling.

 31

THIS PAGE INTENTIONALLY LEFT BLANK

 32

III. ANALYSIS OF SOFTWARE SAFETY REQUIREMENTS

A. INTRODUCTION

System safety efforts for safety-critical systems often provide for the early

identification of hazards and the elimination or control of those hazards through system

design. Although this process has been proven reliable in providing safe and effective

safety-critical systems, significant deficiencies exist when software that is utilized within

the system is not adequately addressed. With the influx of software in the design, it is

critical to ensure that software safety analysis is integrated into the system safety analysis

process. With the proper analysis effort for all aspects of the system, and the proper

integration of those efforts, a thorough identification and resolution of hazards will occur,

whether those hazards are induced by a failure mode, adverse environment or software.

Thus, we have to begin with the definition of the proposed system, what this

system is and for what purposes is it being built. In doing so, we will be able to continue

with a general type of assessment about the potential hazards for that system. Looking

further and deeper, we can describe the system’s attributes, its functions and features that

are not just fundamental for the design procedure, but are also essential for the safety

part. When the design team has an initial view of what the system is, they will be able to

look deeper and start to determine the potential causal factors that are related with the

system’s features and may cause or contribute to mishaps. In addition, the team should

determine under what conditions the attributes, functions and features will cause a

mishap.

As we discussed in Chapter II, the system safety analysis follows the system

development life-cycle. The system is comprised of hardware, software and the interfaces

between them. In practice, the development of a system begins with the hardware

components to demonstrate the purposes of the system, and the software is created to

operate the hardware [12]. In this phase, the design team with the cooperation of the

stakeholders creates the systems requirements documentation, because the stakeholders

have the general concepts for defining the system requirements. Having these as a

 33

baseline, the design team will be able to define the software role and from this to specify

the software requirements.

Starting from the requirements documentation, the design team understands the

system, its purposes, what interactions should be operated inside the system and with the

external systems, and, finally, what functions the system is able to have. An important

chapter of this documentation is the one that characterizes the risk assessment of the

system. This chapter identifies mishaps from the use of the system, defines the hazards

and explains how a mishap could occur. This may concern the software that has direct or

indirect control of the hardware [12], thus the main effort to mitigate the risk of hazard

causal factors is on that. But there are cases in which, from the early stages of the

development, the design team is not able to eliminate all hazards. For example, a weapon

system, such as a guided missile, is designed to fly on air having a propulsion

mechanism, which carries a warhead that releases energy by explosion. The release of

lethal energy, under certain conditions, may be a hazard for people, products and the

environment. In addition, the missile needs to travel through the air using another device

that produces the proper kinematic energy to overcome gravity. This kind of energy

comes as a result of the conversion of the thermochemical to the kinematic energy. The

use of chemical to produce enough power to overcome gravity comes with potential

hazards like explosion, high heat exposure and pressure release that could affect

negatively the people, the product and the environment.

The severity associated with any mishap for each hazard is based on time, the

potential for death or injury, the environmental impact and the monetary loss. A given

hazard may have the potential to affect one or all of these areas. This study follows the

severity and the probability categorization as they are described in [5] and are depicted in

Tables 1 and 2.

 34

SEVERITY CATEGORIES
Description Severity Category (S) Mishap Result Criteria

Catastrophic 1

Could result in one or more of the following:
death, permanent total disability, irreversible
significant environmental impact, or monetary
loss equal to or exceeding $10M.

Critical 2

Could result in one or more of the following:
permanent partial disability, injuries or
occupational illness that may result in
hospitalization of at least three personnel,
reversible significant environmental impact, or
monetary loss equal to or exceeding $1M but
less than $10M.

Marginal 3

Could result in one or more of the following:
injury or occupational illness that may result in
one or more lost work day(s), reversible
moderate environmental impact, or monetary
loss equal to or exceeding $100K but less than
$1M.

Negligible 4

Could result in one or more of the following:
injury or occupational illness not resulting in a
lost work day, minimal environmental impact, or
monetary loss less than $100K.

Table 1. Severity categores. From [5].

PROBABILITY LEVELS
Description Level (P) Specific Individual Item Fleet or Inventory
Frequent A Likely to occur often in the

life of an item.
Continuously experienced.

Probable B Will occur several times in
the life of an item.

Will occur frequently.

Occasional C Likely to occur sometime in
the life of an item.

Will occur several times.

Remote D Unlikely, but possible to
occur in the life of an item.

Unlikely, but can reasonably
be expected to occur.

Eliminated F Incapable of occurrence.
This level is used when
potential hazards are
identified and later
eliminated.

Incapable of occurrence. This
level is used when potential
hazards are identified and
later eliminated.

Table 2. Probability Levels. From [5].

 35

Using the Tables 1 and 2, the design team is able to determine, qualitatively, the

potential risks and express them as the Hazard Risk Index shown in Table 3.

RISK ASSESSMENT MATRIX

Probability

Severity
Catastrophic (1) Critical (2) Marginal (3) Negligible (4)

Frequent (A) High High Serious Medium
Probable (B) High High Serious Medium
Occasional (C) High Serious Medium Low
Eliminated (F) Eliminated Eliminated Eliminated Eliminated

Table 3. Risk Assessment Matrix. From [5].

The system’s functions that are related to safety are defined as Safety Critical

Functions and are identified during the Preliminary Hazard Analysis. These are functions

within the system which are considered significant to safety, where their significance is

determined by the impact of improperly performing the function. The safety critical

functions are often related to the release of energy, application of power, movement of

mechanical devices and movement of physical objects. To prioritize the software using

probabilities is not practical as it is described in [5] and [12].

Software is generally application-specific and reliability parameters associated

with it cannot be estimated in the same manner as hardware. Therefore, a different

approach, which is based on the relation of the potential risk severity and the degree of

control that software exercises over the hardware shall be used for the assessment of

software’s functions to mitigate the system’s risk. The software control categories are

based on [5] and are depicted in Table 4 as follows:

 36

SOFTWARE CONTROL CATEGORIES
Level Name Description
1 Autonomous (AT) Software functionality that exercises autonomous control

authority over potentially safety- significant hardware systems,
subsystems, or components without the possibility of
predetermined safe detection and intervention by a control entity
to preclude the occurrence of a mishap or hazard. (This
definition includes complex system/software functionality with
multiple subsystems, interacting parallel processors, multiple
interfaces, and safety-critical functions that are time critical.)

2 Semi-Autonomous
(SAT)

Software functionality that exercises control authority over
potentially safety-significant hardware systems, subsystems, or
components, allowing time for predetermined safe detection and
intervention by independent safety mechanisms to mitigate or
control the mishap or hazard. (This definition includes the
control of moderately complex system/software functionality,
no parallel processing, or few interfaces, but other safety
systems/mechanisms can partially mitigate. System and
software fault detection and annunciation notifies the control
entity of the need for required safety actions.)

3 Redundant Fault
Tolerant

Software functionality that issues commands over safety-
significant hardware systems, subsystems, or components
requiring a control entity to complete the command function.
The system detection and functional reaction includes
redundant, independent fault tolerant mechanisms for each
defined hazardous condition. (This definition assumes that there
is adequate fault detection, annunciation, tolerance, and system
recovery to prevent the hazard occurrence if software fails,
malfunctions, or degrades. There are redundant sources of
safety-significant information, and mitigating functionality can
respond within any time-critical period.)

4 Influential Software generates information of a safety-related nature used
to make decisions by the operator, but does not require operator
action to avoid a mishap.

5 No Safety Impact
(NSI)

Software functionality that does not possess command or
control authority over safety- significant hardware systems,
subsystems, or components and does not provide safety-
significant information. Software does not provide safety-
significant or time sensitive data or information that requires
control entity interaction. Software does not transport or resolve
communication of safety-significant or time sensitive data.

Table 4. Software control categories. From [5].

Using the Tables 1 and 4, the design team is able to determine, qualitatively, the

potential risks and express them as the Software Hazard Risk Index like the one shown in

Table 5. It is anticipated that software with a high risk index will require thorough

 37

analysis of system level requirements, software safety design and implementation source

code to ensure adequate control of the causal factors as well as in-depth testing to ensure

that the control measures are implemented correctly. Software with a medium risk index

will require thorough analysis of system level requirements and software safety design as

well as adequate testing to verify correct software response to errors and failure modes.

Software with a moderate risk index will only require analysis of high-level requirements

and verification of the satisfaction of these requirements via testing. No additional safety-

related actions need to be performed for software with a low risk index [15].

RISK ASSESSMENT MATRIX
Level of Control Severity

Catastrophic (1) Critical (2) Marginal (3) Negligible (4)
1 High High Moderate Low
2 High Medium Moderate Low
3 Medium Moderate Low Low
4 Low Low Low Low
5 Low Low Low Low

Table 5. Software Risk Assessment Matrix. From [15].

Having the above as guidelines, we shall present a case study that involves the

architectural design of a safety-critical weapon system, a fictitious Surface-to-Air Missile

that is used to protect warships from attacking missiles and aircrafts. The physical

description of the system is based on the description of a guided missile in [13]. The

purpose of this study is not to build a new weapon but to demonstrate the process of

software safety requirements engineering, safety-critical software architectural design

and the formal validation and verification of the software architecture for safety.

B. SAMPLE SAFETY-CRITICAL SYSTEM – A SURFACE-TO-AIR
MISSILE SMK

For the reader’s convenience, we will first provide a brief description of the SMK,

its purpose, its mission and its system architecture from the Systems Engineering

activities. Then, we will walk the readers through the system/software safety engineering

process to determine the software safety requirements for the system.

 38

1. Context Model

a. Stakeholder Statement of Operational Need

The SMK system intends to improve ship self-defense capability against

smaller, more maneuverable anti-ship missiles capable of approaching at lower altitudes.

This is going to be achieved through higher maneuverability, improved sensors and a

more lethal warhead. The operational needs for the development of the SMK are the

following:

1) The need to increase the battle space because threats can be

engaged at longer ranges due to the increased missile kinematics.

2) The need to be designed for surface launch.

3) The need to be guided by continuous wave (CW) radiation.

4) The need to be a semi-active homing missile. Homing guidance

systems control the flight path by employing a device in the

weapon that reacts to some distinguishing feature of the target.

b. Projected Operational Environment (POE)

The POE is the environment in which the system is expected to operate. It

provides the necessary details to describe the mission areas, environment and types of

locations to determine the operational capabilities under which the system will be

designed. The POE provides information for establishing a context within which tasks

will produce their measurable outcomes. The weather (clouds, storms, wind, rain, fog and

warm/cold fronts) affects the radars, the guidance section of the missile and

communications. Certain environmental conditions tend to create propagation

phenomena of electromagnetic radiation such as ducting.

c. Mission Success Requirements

These requirements identify the individual activities that need to be

accomplished in order to define the success of the mission. The activities identified for

the success of this model will be measured in these categories:

 39

1) Provide self-defense against anti-ship missiles.

2) Provide self-defense against air threats that are able to release air

to surface missiles.

3) Detect and destroy air targets.

d. Operational Concept/Scenario

The survival of a warship from air threats requires rapid response and

proper use of all sensors and use of the available weapons of the ships. It is important that

the operator can quickly and unambiguously decide whether or not to fire weapons at any

incoming target. For the successful treatment of an incoming target, it must be correctly

identified by a sensor and then be trapped and illuminated with CW radiation by the

tracking radar, allowing the shooting of the missile for the inhibition.

The following block diagram in Figure 7 depicts a typical configuration

for the SMK missile onboard:

 40

Figure 7. SMK configuration onboard.

Information on the upcoming threat can be drawn from sensors of the ship.

These sensors can be used for initial detection and indication of the incoming threat and

support weapon control system, which consists of tracking radar (TR) with its control

console and the console control for weapons. The TR is used for the tracking of air

targets that are shown on the display console for the weapons. Through the antenna of the

TR, the necessary CW radiation is produced for guiding the SMK.

These sensors support the Weapons Control System (WCS) by providing

real-time data for the target. The WCS is used to prepare and to provide ignition to the

SMK’s rocket motor for the firing procedure.

 41

The missile should be stored in its canister, which is in a vertical launcher

and via interfaces it is connected with the WCS of the ship. Physically, the canister

provides storing, securing and positioning the missile before launch.

2. Physical Model

The physical context of the missile is a combination of several subsystems that

are necessary for communication with the WCS, the safety launch of the missile and the

successful intercept of an incoming threat. The main components/subsystems of a guided

missile, like the proposed SMK, are based on the description of a weapon in [13] and are

depicted in Figure 8, and their roles are described briefly.

Figure 8. SMK’s Block Diagram with sections and main parts. After [13].

a. Guidance Section (GS)

Due to the stakeholders’ need for a semi-active missile, the Guidance

Section (GS) should include a seeker device, which searches for the target and guides the

missile towards the target in its terminal phase. At the semi-active homing, the target is

illuminated by the tracking radar. The missile is equipped with a radar receiver (no

transmitter) and by means of the reflected radar energy from the target, it formulates its

own correction signals as in the active method. The major GS components consist of: the

Radome, the Seeker Antenna and the Target Detection Device (TDD).

The guidance section communicates/processes prelaunch and post-launch

data via the serial data bus, discrete signal paths, and analog signal paths, and performs

the target acquisition and tracking functions. The TDD provides the missile with the

target line of sight rate data, the homing error signals, midcourse data and other terminal

missile guidance information to the missile’s processor.

 42

b. Warhead Section (WS)

The SMK missile includes a warhead. The warhead consists of a stainless

steel case filled with explosive. The case contains discrete fragments bonded with its

outer diameter in order to achieve the best result against missiles. The warhead case also

incorporates the joints for mechanical connection to the Control and Guidance Sections.

c. Control Section (CS)

The Control Section (CS) bears this name because it has been developed

to provide the transition electrical and mechanical interface connecting the other parts of

the missile body through the commands provided by the onboard computer. The

operating system of the computer receives the data from the other parts of the missile,

makes the calculations and provides with messages the sections to act. The missile

capability depends upon the components incorporated into this section. The CS carries

out the major processing functions of the SMK, which include the tuning and launch

sequencing, the missile’s pointing commands computation necessary for the launch

(superstructure avoidance-pitchover), the maneuverability control, the target acquisition

and interception, and the launch simulation capabilities when operating in a Test/Training

mode.

d. Propulsion Section (PS)

The rocket motor launches and accelerates the missile to the required

velocity. The required power to propel a weapon to its target is obtained through the

controlled release of stored energy. Every weapon requires some type of propulsion to

deliver its warhead to the intended target.

A rocket motor is basically a device for converting a portion of the

thermochemical energy developed in its combustion chamber into kinetic energy

associated with a high-speed gaseous exhaust jet. The fuels and oxidizers are used to

power the motor engine. The motor rocket consists of two basic parts: the combustion

chamber, wherein the transformation of energy from chemical to thermal occurs, and the

exhaust nozzle, wherein thermochemical energy is converted into the kinetic energy

 43

necessary to produce an exhaust jet of propulsive potential. The chemical reaction

between fuel and oxidizer in the combustion chamber of the jet engine produces high-

pressure, high-temperature gases. These gases, when channeled through the exhaust

nozzle, are converted into kinetic energy creating force acting in a direction opposite to

the flow of the exhaust gases from the nozzle.

e. Steering Section (SS)

The primary function of the Steering Section (SS) is to provide pitch, roll

and yaw controls during all phases of the missile flight.

3. Operational Overview

The SMK will have three modes of operation: remote, local, and test & training.

In remote mode, the SMK will be fully operational and capable of launching. This is the

normal mode of operation. In local mode, the SMK will be isolated from the WCS and

the launcher. This mode supports maintenance and fault isolation using off-line BIT

testing. In Test & Training mode, all functions between WCS and the SMK are the same

as those in remote mode operations except that the CS operational program will be

reconfigured to simulate a normal firing sequence.

The SMK will be designed and used to intercept and destroy the incoming threat.

This requires that both fuzing and warhead detonation occur in such a way as to inflict

mission critical damage to the intended targets. In order to perform this function,

guidance and control systems are implemented to obtain the required terminal and

intercept phase accuracy.

C. IMPLEMENTATION OF HAZARD ANALYSIS FOR SMK

As mentioned previously, this study is based on the lessons-learned and the

system safety engineering in Chapter II, Section E to analyze the software of the missile

control software.

 44

1. Preliminary Hazard List (PHL)

The PHL is the first step to identify and list the potential hazards and mishaps that

the proposed system might face. The proposed system is a weapon, which can release

destructive energy into space in order to fulfill its purposes. SMK is a guided weapon that

contains chemical substances which are able to produce fire and explosion. Table 6,

which is based on Appendix F of [12], lists some generic hazards in three types:

Operating/Maintenance Hazards (O/MH), Hazards to Launcher and Ship (HTLS),

Hazards to Friendly Forces (HTFF).

Preliminary Hazard List
ID Hazard Hazard Effects Comments
Guidance Section (GS)
GS-1 External Shock Staff injury or death at the

handling of the missile
O/MH

GS-2 Internal Shock Property damage O/MH
GS-3 Static Discharge Property damage O/MH
GS-4 Ionizing Radiation Staff injury or death at the

handling of the missile
O/MH

GS-5 Missile mistakes
friendly aircraft
instead of incoming
missile

Injury, death and
properties damage of
friendly forces

HTFF

GS-6 Missile detects false
echo of the missile
due to ‘mirror’
effect instead of
incoming missile
and do not provide
self-defense

Injury, death and
properties damage of
friendly forces

HTFF

Warhead Section (WS)
WS-1 Premature

Detonation
Property damage and/ or
Staff injury or death at the
handling of the missile

HTLS

Control Section (CS)
CS-1 External Shock Staff injury or death at the

handling of the missile
O/MH

CS-2 Internal Shock Property damage O/MH
CS-3 Static Discharge Property damage O/MH

 45

Propulsion section (PS)
PS-1 Premature Launch Property damage and/ or

Staff injury or death at the
handling of the missile

HTLS and
O/MH

PS-2 Chemical Change Property and/or
environmental damage

HTLS

PS-3 Fuel and Oxidizer in
Presence of Pressure
and Ignition Source

Property and/or
environmental damage
and/or Staff injury or
death at the handling of
the missile

HTLS and
O/MH

PS-4 High Heat Source Property and/or
environmental damage
and/or Staff injury or
death at the handling of
the missile

HTLS and
O/MH

PS-5 Contamination Property and/or
environmental damage
and/or Staff injury or
death at the handling of
the missile

HTLS and
O/MH

PS-6 High pressure Property and/or
environmental damage
and/or Staff injury or
death at the handling of
the missile death at the
handling of the missile

HTLS and
O/MH

PS-7 Oxidation Property and/or
environmental damage

HTLS

PS-8 Hang-fire (excessive
delay between
ignition and thrust)

Property and/or
environmental damage

HTLS

PS-9 Hang-up (missile
remains on launcher
but thrusts)

Property and/or
environmental damage

HTLS

Steering Section (SS)
SS-1 Hitting the launcher

due to incorrect
trajectory

Property damage HTLS

SS-2 Hitting the
superstructure of the
ship due to incorrect
trajectory

Property damage HTLS

Table 6. Preliminary hazard list for SMK. After [12].

 46

2. Preliminary Hazard Analysis (PHA)

The PHA is the first source of system safety requirements that includes the

hazards, their related causal factors, the level of risk and their mitigating measures. From

this analysis, the design team is able to define the software system safety requirements

and how the software design could control or mitigate these hazards. The purpose of the

PHA is not to determine whether the hazard might occur or not, but to assume that the

hazard can occur and what the consequences are. In this study we are going to examine

the hazards from the list in Table 6, analyze their causal factors and link them to software

functions to yield the software safety requirements.

Due to the fact that the proposed system is complex, this study will focus on one

hazard with the highest priority, the premature detonation of the warhead, in order to

demonstrate the software safety engineering procedure, and how to relate the safety to the

software architecture and the formal validation and verification of software safety

requirements and software architecture. Premature detonation is a hazard that under

specific conditions could lead to mishap. When the detonation of the explosives happens

in the proximity of personnel, it could lead to injury or death. In addition, when the

detonation happens inside the Launcher or near the launching warship, this could lead to

product damage that is serious. Due to the severity of the mishap, it is important to

investigate this hazard thoroughly and mitigate the related risks. Table 7 presents an

initial analysis about this hazard and the potential mishaps, based on the criteria from

Tables 1, 2 and 3.

 47

SMK Initial Analysis
Mishap Hazard S P Hazard Risk

Index
Causal Factor Remarks

Operating and
Maintenance
Personnel:
injury, death

Premature
Warhead’s
Detonation

1 C High Personnel in
proximity to
launcher during
maintenance
use

Caused by
incorrect firing
command from
the component
that create the
detonation

1 C High High Heat
Source

Caused by
incorrect
protection
mechanism to
prevent fire and
explosion

1 C High Moisture
Oxidation

Caused by
incorrect
protection
mechanism to
prevent
chemical
change

1 C High Static
Electricity

Caused by
incorrect
protection
mechanism to
prevent the
presence of
static electricity

Warship’s
Launcher
Destruction:

Premature
Warhead’s
Detonation

1 C High Inadvertent
Warhead’s
function

Caused by
incorrect firing
command from
the component
that create the
detonation

Warship’s
Superstructure
Destruction:

Premature
Warhead’s
Detonation

1 C High Inadvertent
Warhead’s
function

Caused by
incorrect firing
command from
the component
that create the
detonation

Table 7. SMK Premature Warhead Detonation - Initial Analysis. After [15].

 48

3. System Hazard Analysis and Software System Hazard Analysis

For the above analysis, the design team decides to add mechanisms to mitigate the

risk of a premature detonation, based on the design criteria from [14]. The risk’s

mitigation is achieved in two ways. The first is the installation of the proper hardware

(safety devices), and the second concerns the software that is installed in the control

section’s computer and operates the functions of the missile. Safety will be ensured by

the sequence of commands leading to the actual detonation command, so that detonation

does not occur during any phase of missile flight except as a result of a proper firing

signal.

To eliminate the impact of the high heat source and the intrusion of moisture and

other contaminants, the housing of the warhead should include forward and aft enclosures

providing an environmental seal. The enclosures should provide these functions under all

environmental conditions specified. In addition, because the components inherently use

electrical and electronic parts, the static electrical charges are causal factors to detonate

the explosives. Thus, the warhead has to contain provisions to discharge to ground any

buildup of static electrical charges.

The major physical components of the warhead section are the Warhead

Assembly, which contains the explosives and the fragments under environmental shield,

the Electronic Safe and Arm Device (ESAD), which uses an initiation system compatible

with the explosives of the warhead assembly, and the fuze triggering device (FTD) that

starts the detonation of the warhead when it is armed by the ESAD. Each component

performs functions to achieve the purpose of the warhead, which is the release of

destructive energy.

The warhead assembly performs the storage, the environmental protection of the

explosives and the production of a cloud of blast overpressure and high velocity

fragments. The FTD performs the initial signal for the explosion, either when the TDD

detects the missile’s proximity to the target and generates a fire pulse to the ESAD

(proximity) or when it generates a fire pulse upon target impact.

 49

Finally, the ESAD is a device that has two states unarmed/safe and armed and the

switch. Its initial state is unarmed, and it switches to the armed state only when it receives

the commands from the CS’s computer related to the arming of the warhead. In the cases

that it does not receive any message or receives an abort Safe message from the computer

then it remains in unarmed state (implementation of safety logic). The other major

hardware parts that the ESAD incorporates to execute its mission are:

1) the accelerometer, whose function is to measure the acceleration values of
the missile. The CS’ computer receives these values from the
accelerometer and calculates the travelling distance at the missile’s long
axis by the double integration of the acceleration.

2) the CS’s computer processor has implemented by its software the safety
logic about the arming of the missile’s warhead and is responsible for the
following functions:

a) Control the execution of the Power-On Self-Test (POST). The
POST ensures that all ESAD inputs and safety signals are in the
correct states prior to the launch command for the SMK missile.

b) Verify that the Launch Indicate Signal occurs.

c) Verify that the missile’s movement has been achieved Perform the
integration and double integration of the incoming acceleration
signals.

d) Verify the respective acceleration profiles during the SMK post-
launch target trajectory.

e) Enable the arming circuits

f) Process the command fire signal issued by the TDD of the
Guidance Section or by the contact fuze.

3) the explosive train which contains the detonator, the lead and the booster.
Its function is the detonation initiating by the secondary explosives (e.g.,
primer, detonator) and terminating in the main charge (high explosive,
pyrotechnic compound).

Figure 9 presents the fault tree analysis for premature warhead detonation when

the missile is in one of the two phases. In the left main branch, the missile is in the

launcher at storage, and in the right the missile is preparing to launch. While the missile

is in storage position inside the launcher, there are potential causal factors like the

fire/high heat source that under specific conditions could lead to a mishap, which could

result in the destruction of the launcher and death or severe injuries when personnel are in

 50

the proximity of the detonation. Another mishap could occurr by the detonation of the

warhead during the early stage of launch, which could result in the destruction of

launcher, the ship’s superstructure, and death and severe injuries when personnel are in

the proximity of the detonation.

Figure 9. Fault tree analysis for premature warhead detonation.

 51

Missile in storage
in the Launcher

Fire in the
Launcher

Premature
Warhead's

From the fault tree analysis, the design team is able to identify the causal factors

and then propose a plan to mitigate the risk of the above causal factors. Hence, the design

team is able to document the safety requirements for the warhead in order to prevent the

premature detonation as follows:

1) The warhead of the missile has to be in a safe-unarmed condition until the
missile has intentionally been launched and has traveled a distance from
the launching ship.

2) It should remain safe during launch shock and flight vibration.

3) It should only be armed after proper conditions of acceleration and time
reached. These values determine the distance that the missile has to reach
from its stored position until the elevation of the superstructure. This
distance is characterized as clearance zone or safe separation distance
from the warship.

4) Any component failure or abnormal environmental input must cause the
ESAD to enter the “Fail-Safe State,” dudding the missile.

Safety guidelines from [14] require that any Safe and Arm device sense two

independent environments to satisfy arming requirements. One of these environments

must occur only after launch; the other may be an “irreversible intent to launch.”

Table 8 provides a summary of the above conditions and safety measures for

preventing premature donation of the warhead.

 52

Causal factor Condition Safety measure Remarks
Power On self-
Test failure

It does not pass the
self-test

Disable the
ESAD to arm
the warhead

The self-test was
successfully executed
but it exceeded the
time limit

Disable the
ESAD to arm
the warhead

ESAD fault
arming

The missile does not
receive the launch
command from the
WCS in specific time

Disable the
ESAD to arm
the warhead

Either corrupted launch
command or no launch
command performed

The missile receives
the launch command
but its rocket motor
does not perform
proper acceleration to
move from its position
in specific time

Disable the
ESAD to arm
the warhead

Proper acceleration is
defined by two
consecutive acceleration
readings equal to 6 g’s or
above.

The rocket motor does
not perform proper
acceleration to reach
the safe distance

Disable the
ESAD to arm
the warhead

The double integration of
the acceleration values is
under the twenty meters
vertical distance required
to clear from the warship’s
superstructure

Table 8. Causal factors and conditions for the premature detonation.

4. Software Safety Requirements

The design philosophy for safety-critical systems places safety above all other

considerations. Any component failure or abnormal environmental input must cause the

ESAD to “Fail Safe,” dudding the missile. In addition, the detonation of the warhead

could only be invoked after the successful completion of the arming process and from the

result of booster operation following a proper firing signal from the ESAD.

The basic function of the ESAD is the maintenance of the missile’s warhead in a

safe/unarmed condition until the missile has intentionally been launched and has traveled

a specific distance from the launching ship. At the proper time, the ESAD arms the

warhead so that upon receipt of an electric firing pulse, the firing train will initiate the

warhead section.

 53

The arming process of the ESAD begins with application of power to activate the

whole missile after the CS’s computer receives a command from the Weapon Control

System via the connection with the launcher. The CS’S computer monitors all the

missile’s functions, and for the arming process, it performs checks of the environmental

input lines and safety switch to verify that everything operates correctly (Power On Self-

Test, POST). Failure of any of these checks will cause the ESAD to enter fail-safe,

duding the missile.

The first arming environmental condition is the electrical signal Launch Indicate.

Since the operator cannot intervene to abort the launch after this signal is generated, it

meets the criterion for an irreversible intent to launch. The second arming environment

uses accelerometer-derived data to define the movement of the missile and when the

missile reaches the safe separation distance from the warship. These calculations are

based on the double integration of the accelerometer in time. There is an additional check

on the minimum arming distance calculation: if this distance is achieved before the

independent flight timer times out, it is indicative of a fast accelerometer clock. In this

event, arming is postponed until the independent flight timer times out and the delayed

arm point is achieved.

Due to the fact that the SMK missile has three operational modes (remote, local

and test&training), there are additional measures to increase the safety level. In the

remote mode, personnel must activate the missile prior the launch in order to execute the

BIT. To avoid confusion between this event and the launching procedure, prior the

missile’s activation personnel will select the option “BIT” from the WCS console to

enable a different process for the missile. After the execution of the BIT the missile

remains in an idle state waiting to be launched or to be turned-off. For this reason the

WCS stops providing signals to the missile in order to avoid mishaps. When personnel

receive the order to launch the missile, they activate it again selecting the option

“LAUNCH” from the WCS console and push the FIRE button. The missile changes its

state from idle to ready-for-launch and it follows the launching procedure. During this

critical period the CS computer receives the signal’s activation, launching and the data

for the target (course, speed, altitude) and the data for the launching ship (course, speed,

 54

altitude) from the WCS to create its reference system. In the case that any of the safety

requirements is not met, the CS’s computer commands the ESAD to abort and remain in

the unarmed/safe state, thus duding the missile. In the other two operational modes, the

missile does not receive the Launch Indicate signal because the switch that determines

the mode on the WCS console does not allow this signal to be received by the missile. In

the special case that the personnel is on training and they exercised on the launching

procedure, the software of the WCS creates a simulated environment but no signal is

transited to the missile.

The software in the CS’s computer monitors the conditions and the signals from

the WCS and the accelerometer, as indicated in Table 8, to decide on ESAD’s status

(SAFE or ARM). The control software must detect, identify any related erroneous states

and prevent them from occurring, according to the following software safety

requirements.

a. Software Safety Requirement 1 POST (Power-On Self-Test)

The CS’s computer receives an activation signal from the WCS to power

on the missile. It executes the POST, which must be completed within two seconds after

the receipt of the activation signal and should be POST_OK in order to continue the

arming procedure. If POST is overtime (>2 sec) or invalid, then it transits to the Fail-Safe

state.

b. Software Safety Requirement 2 Launch Indicate

The Launch Indicate Signal represents the irreversible commitment to

launch the SMK that is transmitted from the WCS. It is the significant signal to

commence an actual launch of the missile. In the case of Built-In test, the command

Launch does not exist in the test procedure (safety requirement). For the other cases, the

order of a launch is committed. The launching signal must be received within four

seconds after the powerOn.

 55

c. Software Safety Requirement 3 First Motion Detection (FMD)

The First Motion function determines if the first two launch acceleration

criteria have been satisfied. When the missile starts to move, the accelerometer sends

acceleration values to the CS computer for missile displacement calculation. The

detection of first motion is defined as two consecutive accelerometer readings of over 6

g’s occurring within four seconds after the missile starts to move.

d. Software Safety Requirement 4 Safe Separation Distance (SSD)

The Safe Separation Distance function verifies that the acceleration of the

missile is increasing during launching and the SMK reaches the minimum travelling

distance (referred to as Safe Separation Distance) under any conditions (e.g.,

performance’s fluctuations) in the specific time. If Safe Separation Distance is not

satisfied, then the ESAD has to remain in safe mode. SMK should have reached the

minimum distance of 20 meters within 6 sec after the missile starts to move. The

minimum distance is based on the double integration of the acceleration received from

the accelerometer.

 56

IV. SOFTWARE ARCHITECTURE FOR SAFETY-CRITICAL
SYSTEMS

A. INTRODUCTION

Having defined the software requirements of the system in meeting the

stakeholders’ expectations and software safety requirements to mitigate the risk of unsafe

system behavior, the next step is to design the product. If we want to define the term

‘design,’ we will find many different definitions from the published literature, but all of

them have the essence of a primitive version of our product. This version begins with the

engineers’ effort to present the elements and the structure that will comprise the proposed

system.

The design of today’s complex systems is time consuming, and it demands

resources. The origin of systems design is the result of human experience in civil

engineering over the centuries. The early step of this branch of engineering took the

needs of humanity into account from the environmental conditions and, using the

experience in relation to the sciences like mathematics and physics, resulted in the

generation of the architecture. The term ‘architecture’ comes from the ancient Greek

‘αρχι’ (pronounced “archi”) and ‘τεκτων’ (pronounced “tekton”), which basically mean

essential and builder, respectively.

In the case software, its architecture provides the baseline for both the design and

the development. The design and the architecture are closely related. We can infer that a

software design is an instance of specific software architecture. As Taylor et al. pointed

out in [4] that all software will have architecture, whether we plan it or not. However, it

may not be well documented; it may be ad-hoc.

The dilemma that any designer can face is: “Do we need the architecture

paradigm to build our system? Or can we follow our instinct or past experience to build

the system without an explicitly defined architecture?” To answer these questions, we can

follow a naïve path with the no-architecture option in our design. We already have the

requirements from the stakeholders and we have augmented the requirements to address

 57

the safety concerns resulting from our hazard analysis. Now, we are faced with the

challenges of making many major design trade-off decisions to come up with a design

that satisfies both the functional and non-functional requirements. These design decisions

encompass the system structure, the functional behavior, the interaction, the

nonfunctional properties (like security, safety, availability, etc.) and its implementation.

We need models to reason and compare different design alternatives for achieving the

desired system behaviors and properties. We also need ways to document the rationale

and assumption for our choices to enable appropriate and effective changes in the design

as the system evolves to incorporate additional behaviors and properties in the future. The

above needs can be addressed by incorporating conscious, deliberate architectural

activities in our design process, whose outcome will be a system/software architecture

that captures

“a set of principal design decision made about a system; it is a
characterization of the essence and essentials of the application” [4].

In software, as in systems, the engineers try to minimize the cost of the whole

program by reusing ideas and techniques from previous and similar projects. One way of

effective reuse of design techniques is design patterns. As Maier and Rechtin discussed in

[16]:

“Design Patterns give abstract solutions to commonly recurring design
problems, have been widely used in the software and hardware domain.
As non-functional requirements are an important aspect in the design of
safety-critical embedded systems, this work focuses on the integration of
non-functional implications in an existing design pattern concept.”

Design patterns are efficient solutions that worked in previous similar problems

giving sufficient results. They all have an abstract representation, which can be

customized and applied to different applications during the design phase.

B. ARCHITECTURE-BASED PATTERNS

Software architectural patterns could be generally efficient for many similar

systems, but they can also be refined and specialized for each system. The designers have

a pool of patterns that are applied to different areas like communications, security, etc. As

 58

in hardware design, the decision about which patterns are going to be followed depends

on the stakeholders’ requirements and system constraints. Using the architectural

patterns, the design team has a powerful tool to improve their productivity because they

can reuse solutions that were best practices for similar problems. This reduces the

development time and can improve the quality of the solutions.

The advocates of architectural patterns claim that the patterns could minimize the

complexity of the product. This is particularly true for systems that are comprised of

integrated objects, their processes and the frequency of interactions between them.

Another merit is the improvement of the product’s qualities by the incorporating practices

that enable the designers to deliver the best output.

These two merits are very beneficial when the project is similar to another that

has already been delivered, and the engineers have clear idea about the problems to be

solved. However, the design team will face the danger of choosing the wrong patterns

when they are working on problems that do not have preceding examples. The

interpretation of the requirements and the transformation to specification is a non-trivial

procedure. If design decisions were made without correct understanding and

interpretation of the requirements, it is highly likely to yield faults and errors in the

design. In particular, the intent and meaning of non-functional requirements should be

considered thoroughly during the development. One of the most difficult parts of this

process is the correct formulation of timing and safety requirements for safety critical

systems, which is hard to do without the extensive prototyping as Shing and Drusinsky

describe in [23]. It is important that the design team matches the design patterns against

these stakeholder requirements, and at the same time, addresses the safety concerns from

the outputs from the preliminary hazard analysis. It is also important that the design team

validates and verifies the architecture design as early as possible, and as often as possible,

in the development process.

C. SAFETY PATTERNS

The two mechanisms, which improve the safety, are the redundancy and the

separation of safety and non-safety channels. When we use the term channel in this

 59

particular field, we mean the medium, which is independent from its physical

implementation that is used as a path for information to receive any kind of data and to

produce some output under specific safety policy control [17]. What and how channels

are used are principal design decisions made by the designers to realize the desired

behavior and properties of the system. In many cases, an additional separation between

the control and the safety-correlated entities could provide another approach for the

design team to achieve the safety in the design.

There are two major approaches in achieving redundancy: to duplicate similar

entities or to develop with different ways the same mechanisms. For these reasons the

redundancy is either Homogeneous or Diverse. In the first case, the pattern is called a

Homogeneous Redundancy Pattern, in which multiple replications of the same entity,

either hardware or software, are used to run simultaneously, providing outputs that are

compared at the end, as is shown in Figure 10. Using this pattern, we could spend

resources to implement one channel and then replicate it. However, this kind of

redundancy cannot detect and prevent errors in the design.

Figure 10. Homogeneous Redundancy Pattern. From [17].

The next option is the Diverse Redundancy Pattern that implements the same

channels with different mechanisms using primary and secondary channels. The channels

should be equal but different. There are two methods: the first one looks like the

 60

Homogeneous pattern but each channel is implemented with different components, and

they are not identical. This improves the protection against design errors because there is

a different design rationale behind each channel. Correctness is determined by comparing

the output produced by different algorithms using the same inputs, as is shown in

Figure 11.

Figure 11. Diverse Redundancy Pattern. From [17].

The second method uses light-weight redundancy for the channels, having the

secondary channel responsible for monitoring the actions of the primary channel and

enforcing a set of policy rules for the whole system. A special case of the Light-Weight

Diverse Redundancy Pattern is the Monitor-Actuator Pattern shown in Figure 12. The

actuator channel receives the stimuli from the system’s environment and performs the

calculations to generate the actions. Simultaneously, the monitor channel ensures that the

actuator’s actions are proper, based on the system’s specifications under the current

environmental conditions. The monitor channel will detect the failures from the actuator

channel and execute proper mechanisms to handle faults. As we can understand from the

structure of these patterns, the Diverse Redundancy Pattern is preferred for safety-critical

systems, because it is more reliable than the Homogeneous Redundancy Pattern in

detecting errors in that it deals with a system’s safety using multiple implementations to

detect errors that could lead to failures of the system.
 61

Figure 12. Monitor Actuator Pattern. From [17].

Another pattern that is commonly used on real-time embedded systems is the

Watchdog Pattern, so named because it handles the timing constraints, as shown in

Figure 13. The pattern uses an additional subsystem, the Watchdog, to track the timing of

the events and to take corrective measures when there are illegal latencies or premature

responses to the events. These corrective actions could only reset the system, shut it

down, alarm the operators or initiate an error-recovery mechanism.

Figure 13. Watchdog Pattern. From [17].

 62

Another pattern similar to the Watchdog is the Safety Executive or Safety Kernel

Pattern shown in Figure 14. The concept of this pattern is based on the design rationale of

the kernels that are used in the operating systems. The primary scope of the safety kernel

is to ensure that the system cannot enter an unsafe state. Thus, it is characterized as a

centralized coordinator that tracks and monitors all safety issues.

Figure 14. Safety Kernel Pattern. From [18].

This pattern uses a slightly different rationale from the Watchdog. In this case, the

Actuation Channel is the path in which the information passes from the sensors or from

the users to the actuators that are responsible for the execution of the commands,

 63

providing the functionality for the system. The Fail-Safe processing channel is dedicated

to executing and controlling the failures. In the case of the Watchdog pattern the role of

the supervisor is played by the watchdog component, but in the Safety Executive pattern

this role is dedicated to the Safety Executive component. The Safety Executive

component is independent from the application programs providing the ability for the

designers to focus on the safety policies and their safety measures based on the hazard

analysis, as Douglass states in [17].

Input data from the Input Data Source, which can be external sensors or the user,

are fed into to the processing units in the Actuation Channel and the Fail-Safe Processing

Channel. Besides the three abstract processing units (Input Processing, Data Processing

and Output Processing), the Actuation Channel contains a fourth computation unit, the

Integrity Check. This component communicates directly with the Watchdog to check the

correctness the three processing units of the actuation channel.

The most important component of this pattern is the Safety Executive. It

comprises of the Safety Coordinator, the Safety Measures and the Safety Policies. The

Safety Executive communicates with both the Actuation and the Fail-Safe Processing

Channel. The Safety Policies consist of a set of rules, which emerge from the safety

specifications. The Safety Measures contain a set of actions that are taken to prevent any

identified failure from occurring. And finally, the Safety Coordinator is used to control

and coordinate the safety processing policies with the measures. It also executes the

control algorithms that are specified by the safety policies. The Safety Executive

component does not provide the fidelity of the control or action, but it keeps track of

whether the events and actions violate these policies. When this happens, it acts as a

reference monitor, examining the actuator commands prior to their execution and

determines which safety measures have to be executed.

In addition to the Safety Executive Component, there is the Watchdog

component, which communicates with the Actuation Channel and with the Safety

Executive. The watchdog receives stimuli messages from the components of the actuation

channel in a predefined timeframe. If a message violates its predefined timing constraint

or is invalid, as concerns its integrity, the watchdog considers this situation as a fault in
 64

the actuation channel and it alerts the Safety Executive. Then the Safety Executive

determines, through the Safety Coordinator, the corrective action by sending command

signals to both the Actuation Channel and the Fail-Safe Processing Channel.

As Douglass proposed in his book [17], the channels that are responsible for

controlling and monitoring the data flow (Actuation channel, Fail-Processing Channel)

have to be physically separated and have their own memories and processors. This

separation improves the ability of the whole structure to prevent any channels’ failure to

affect the others. The strength of this pattern is the way that the set of the Safety Policies

can be implemented. Not only are they the system’s safety specifications, but they can be

modified, removed or added with their related measures without changing anything from

the rest of the application programs.

For the purposes of this thesis, we chose the Safety Executive Pattern to

demonstrate a proposed pattern-based solution for the case study of the SMK missile.

D. A SAFETY KERNEL FOR SMK’S WARHEAD

The ESAD is the safety and arming device for the SMK, which is assembled into

the SMK’s warhead section. It maintains the safety of the SMK’s warhead throughout the

entire stored position to target interception sequence prior to intentional arming. The

arming sequence is completed when the ESAD control software, which runs on the CS’s

computer, has received the necessary enabling signals from the WCS and all safety

policies are met. If any event that violates any of the safety policies, the ESAD control

software disarms the warhead (safety measure). The safety policies are shown in Table 9.

 65

No Description of kernel-enforced policy Safety Measure
1 Power On Self-Test (POST) has to be

occurred within 2 seconds after the receipt of
the power On signal and must be valid.

If POST fails or does not occur
within a 2 seconds time window
after the power on of the missile,
the ESAD will abort in the SAFE
mode.

2 The Launch Indicate Signal represents the
irreversible commitment to launch the SMK.
(A Launch Indicate Signal failure prevents
the ESAD from ever initiating its arming
sequence)

If the Launch Indicate Signal does
not occur within a 4 seconds time
window after the activation of the
missile (receipt of the powerOn
signal), the ESAD will abort in the
SAFE mode.

3 The First Motion Detection has been
satisfied within the 4 second window from
the moment that the missile starts to move.
Due to the movement of the missile, its
accelerometer starts to provide values to the
CS’s computer for calculations. (two
consecutive acceleration readings above 6
g’s within the time period)

If these criteria are not satisfied
within the 4 second window, then
the ESAD will abort in the SAFE
mode. (A First Motion Detection
failure prevents the ESAD from
ever initiating its arming
sequence).

4 The Safe Separation Distance processes the
double integral of the missile acceleration
within 6 seconds after the activation of the
accelerometer to determine that the vertical
distance above the warship’s superstructure
has been achieved. (The time period of 6
seconds is the maximum time that the
missile expected to fly over the ship)

If the Safe Separation Distance is
not equal or more than 20 meters
within 6 seconds after the
activation of the accelerometer,
then the ESAD will not arm

Table 9. Safety policy and safety measures.

The components of the safety kernel for the ESAD control software are depicted

in a package diagram, Figure 15, which implements the rationale of the Safety Kernel

Pattern in this case study.

 66

Figure 15. Safety executive pattern for the SMK’s warhead. After [18].

From the above diagram the role of its component and its scope are analyzed as

follows:

1) WCS: It is the Weapon Control System (hardware) that sends the
powerOn and makeLaunch signals to the missile in order to initiate the
launch or in a special case to make the simulation/maintenance of the
missile. In the second case there must not be the makeLaunch signal in the
simulation process.

2) Accelerometer: It is the second hardware that communicates through the
Actuation Channel with the ESAD control software. It sends the
acceleration readings due to the ignition of the rocket motor or in the
simulation procedure it sends values in a specific time line to create an
environment that simulates the real behavior of a launching system.

 67

3) ESAD: It is the third hardware component that receives the command to
remain unarmed or to arm from Fail-Safe Processing or Actuation
channels, respectively.

4) postSMK: It is a software component that receives the activation signal
from the WCS and makes the initial checks prior the launch of the SMK.
It is a part of the Integrity Check component since it performs a data
integrity computation and it sends its output, the endPost signal, to the
Arming Control component and to the TimeGuard, respectively, as part of
the required launch event sequence, when the result of the self-test is
passed. In the case that the result of the self-test is failed then the
postSMK sends the invalidPost signal to the TimeGuard component to
activate the SafeGuard.

5) launchSMK: It is a software component that senses the Launch Indicate
signal, an irreversible launch environment, from the WCS. It is part of the
Integrity Check component since it performs a data integrity computation
and it sends its output, the doLaunch signal, to the Arming Control
component and to the TimeGuard, respectively, as part of the required
launch event sequence.

6) accelSMK: It is a software component that receives the acceleration
readings from the accelerometer and computes the distance travelled by
the missile after the ignition of its rocket motor due to the launch
command from the WCS. This component determines two conditions, the
first is the proper sequence of the acceleration values and the second is the
double integration of the acceleration readings. For its first condition, the
missile’s rocket should perform under specific conditions acceleration
values that are increasing and overcome the value of 6 g’s twice
consecutively in order to verify that is capable to move and the holding
latch is clear from its body. For the second condition, accelSMK verifies
that the missile transits to the space producing acceleration readings and,
through the double integration of a specific timeline, the result is equal to
or more than the minimum travel distance to clear the superstructure of the
warship. It is part of the Integrity Check component since it performs a
data integrity computation and it sends its outputs, the
endFirstMotionDection and endSafeSeparation, to the Arming Control
component and to the TimeGuard, respectively, as part of the required
launch event sequence.

7) ArmingControl: It is the software component responsible for changing the
state of the ESAD from unarmed to arm under specific conditions. For this
reason, it receives the results from the POST, the launch signal and the
values of acceleration and travel distance in order to send the arm
command to the ESAD.

8) SafeGuard: It is the software component that acts as the safety executive
component containing the rules and measures when the safety

 68

requirements are violated. In our example the only safety measure is to
keep the ESAD unarmed when one or more safety requirements is
violated.

9) TimeGuard: It is the Watchdog that counts the time sequence in order to
determine that the timing of the event sequence is proper based on the
safety requirements (POST, Launch, First Motion Detection, and Safe
Separation from the warship).

10) Exception Handling: It is the software component in the Fail-Safe
processing Channel that sends the notArm command to the ESAD to
disable the warhead in the cases that a failure has occurred in the
Actuation channel and at least one safety policy has been violated.

In the following sequence diagrams, Figures 16 and 17, we demonstrate two

potential scenarios of events that the proposed architecture should handle. The first does

not contain any failure, but in the second scenario, the first motion detection does not

pass the criteria (potential restrained firing) and the ESAD receives the notArm command

to abort SAFE.

1. Use Case 1: Valid Launching

The missile is activated by the WCS via the powerOn electrical signal, and the

WCS sends the command for launching (makeLaunch). Due to these signals, the

powerOn() and makeLaunch() events are received by the component postSMK and the

component launchSMK, respectively, to make the initial checks and to create the

irreversible environment for launch. Upon receiving the powerOn signal from the WCS,

the postSMK makes the initial checks prior the launch. When the process completes, the

postSMK sends the result to timeGuard and armingControl via the endPost() method of

the components. Simultaneously the launchSMK received the Launch Indicate signal via

the makeLaunch() method, making the proper verifications and through the doLaunch()

method sends the result to the armingControl component and to the timeGuard

component in order to have the proper event sequencing and timing checks. The

accelerometer yields a sequence of acceleration values and sends them to the accelSMK

component to derive the missile’s state of motion from the acceleration readings for the

First Motion Detection and the Safe Separation Detection checks that they must realized

under specific values and timeframe. Simultaneously the timeGuard receives the

 69

messages in specific time and checks the receiving time against the timing constraints of

the safety requirements. Because no safety requirements were violated, the

armingControl received all the results from the above sequence and ordered the ESAD to

be armed, as shown in Figure 16.

Figure 16. Sequence diagram for arming the ESAD.

2. Use Case 2: Restrained Firing

WCS activates the missile via the powerOn signal and then sends the command

for launching (makeLaunch) moments later. The first steps are the same as in Use Case 1,

but an accelerometer failure yields invalid values of acceleration. Thus, the accelSMK

component cannot provide the valid values under the specific time constraints for the
 70

First Motion Detection. This condition violated the third safety policy concerning the

acceleration values in relation with the time. The TimeGuard detects this timing violation

and sends the abort signal to the SafeGuard. This causes the SafeGuard to send the

notARM signal to the ESAD and an abort signal to the Actuation Channel, as shown in

Figure 17.

Figure 17. Sequence diagram for ESAD to remain in safe state.

E. SIMULATION

As discussed in Chapter I, one of the objectives of this thesis is to verify the

correctness for the architectural design in meeting the safety requirements. To do that, we

need to create an executable model for the proposed architecture. We developed a simple

 71

time-step simulation for the missile arming control using the C++ programming

language. The simulation is built in Windows 7 Enterprise edition (64-bit) using the

Microsoft Visual Studio 2010, an integrated development environment (IDE) from

Microsoft. The complete code is provided in Appendix A. We exercised the simulation

with 21 test scenarios, which are shown in Appendix B.

The design of the simulation, as shown in Figure 19, can be divided in two parts.

The first part deals with an abstract data structure, a queue that manages the exchange of

messages between the objects. The second deals with the way that we implement the

different objects to communicate with each other. We use the singleton design pattern

[19] to create the missile’s components because we want to create a single common

object for each of the missile’s components. In addition, we create two singleton utility

classes. The first one is the IdGenerator, and the second is the RandGen. The IdGenerator

creates unique identification number (ID) for all the messages in the simulation and

RandGen generates random numbers that are used to vary the time increments.

 72

Figure 18. Class diagram.

 73

1. Supporting Classes

For the first part, we re-used the code, with permission, created by NPS student

Nahum Camacho Zamora for his class CS3021 Data Structures and Intermediate

Programming, with modification to suit our needs. This part includes the header files

Message.h and MessageQueue.h with their implementations (Message.cpp and

MessageQueue.cpp).

a. Message

The class, Message, is responsible for creating message objects in the

proper format in specific time. Each message object has four private attributes: a unique

id, a timestamp, a payload and a data. The id contains an integer with value generated

uniquely from the IdGenerator. The timestamp remembers the message’s creation time as

a long integer, whose value is equivalent to a corresponding value of the C++ time_t

class. The payload contains a string taken from the set {“powerOn,” “endPost,”

“invalidPost,” “doLaunch,” “startMotion,” “endFirstMotionDetection,”

“endSafeSeparation,” “abort,” “arm,” “notARM,” “readAcceleration”}. The data field is

only valid if the message’s payload equals “accel,” in which case the data field contains a

float equal to the acceleration reading in “g.” When the Accelerometer sends values to

the Actuation Channel, it uses the method readAcceleration(float) that has as an argument

on these values in float type.

Due to the fact that each message is unique and carries information that

has to be handled easily and efficiently, we add a message’s id using the IdGenerator

class to create this unique id. Having this tool, we can manage them in the message

queue. Each time that a message is created it has a unique id that characterizes it and can

use it from the queue.

b. MessageQueue

The MessageQueue is a C++ template class that has methods to add and

remove messages from the queue based on the earliest-timestamp-first policy. Messages

with equal timestamp values are removed in the first-in-first-out manner. The

 74

MessageQueue realizes its least-timestamp-first behavior using the MaxHeap template

class, which implements a linked list data structure.

2. Main Function and Simulated Missile’s Components

The second part of the design consists of the following classes, the:

ActuationChannel, ArmingControl, TimeGuard, SafeGuard, Esad and Logger. The first

five classes correspond to the components of the proposed architecture and the last

component, Logger, is a utility component for log file generation.

a. Main Function/Simulation Environment

The simulation environment is our main class, in which we initialize our

timer and create the instances of the singleton objects. It then increments the timer and

creates messages instances (with payloads “powerOn,” “makeLaunch” and

“readAcceleration”) according to the different test scenarios shown in Appendix B. It

sends all the messages to the ActuationChannel object and also sends the “powerOn”

message to the TimeGuard object.

b. Actuation Channel

We encapsulate the components in the Actuation Channel into two

software classes, the ActuationChannel and the ArmingControl. The singleton

ActuationChannel class simulates the functions of postSMK, the launchSMK and the

accelSMK components, receiving message from the environment and sending messages

to the ArmingControl class and the TimeGuard class. The singleton ActuationChannel

object receives the messages “powerOn,” “makeLaunch” and “readAcceleration” via the

receive() method, which puts the message into its local message queue. In addition, it

receives time updates via the setTime(t) method, which sets into local clock to time t and

then checks to see whether the queue is empty or the queue contains messages with

timestamp less than or equal to t. It will remove the messages with timestamp less or

equal to t in an earliest-timestamp-first manner, and call the corresponding event handlers

to handle the events.

 75

The handler for the “powerOn” event will send a message with a random

future timestamp and the payloads “endPost” or “invalidPost” to demonstrate the two

possible results from the power-On self-test simulating the completion of the power-on

self-test procedure. The message “endPost” represents the situation when the self-test is

passed, and it is sent to the ArmingControl and to the TimeGuard, respectively. The

message “invalidPost” represents the situation when the self-test is failed, and it is sent to

the TimeGuard to activate the SafeGuard to keep the ESAD in the unarmed state. The

handler for the message “makeLaunch” event will send a message with a random future

timestamp and a payload, “doLaunch” to the ArmingControl and TimeGuard, simulating

the completion of the generation of the Launch Indicate signal, which will be used by the

ArmingControl object and the TimeGuard objects to mark the time and the progress of

the arming sequence processing.

When ActuationChannel processes the readAcceleration message for the

first time, it will remember its data value and timestamp in its private attributes, starts

two timers (a 4-second timer for the endFirstMotionDetection and a 6-second timer for

endSafeSeparation) and sends a “startMotion” message to the TimeGuard. For

subsequent readAcceleration messages, it will check to see if there are two consecutive

acceleration values above 6 g’s, compute the estimated distance travel so far and check to

see if it exceeds 20 meters. If it determines that there are two consecutive acceleration

values above 6 g’s before the 4-second timer expires, it will send the

“endFirstMotionDetection” message to the ArmingControl and to the TimeGuard. If it

determines that the missile has travelled a distance of at least 20 meters before the 6-

second timer expires, it will send the message “endSafeSeparation” to the ArmingControl

and to the TimeGuard.

c. Arming Control

The Arming Control class is responsible for sending the arm command to

the ESAD when it receives all the required messages (“endPost,” “doLaunch,”

“endFirstMotionDetection,” “endSafeSeparation”) in a timely manner.

 76

d. TimeGuard

The TimeGuard class is responsible for keeping track of the timing

constraints of the safety requirements. It will notify the SafeGuard object when it detects

any timing error or when it detects the event with payload “invalidPost.” It implements

the state machine shown in Figure 19, which sets different deadlines to enforce the timing

constraints defined by the safety requirements when it enters each state. Like the

ActuationChannel class, the singleton TimeGuard object receives the messages via the

receive() method, which puts the message into its local message queue. In addition, it

receives time updates via the setTime(t) method, which sets the local clock to time t, then

it will process the messages with timestamp less than or equal to t in it message queue.

For the messages relevant to its current state, it will first check to see if the message

arrives before its deadline. If yes, it will perform the necessary state transition as defined

in Figure 19. If the message arrives after its deadline, the TimeGuard object will send an

“abort” message to the SafeGuard.

Figure 19. Statechart diagram for the TimeGuard class.

e. SafeGuard

The SafeGuard class is responsible for handling the exception when it

receives the “abort” message from the TimeGuard. When this happens, the SafeGuard

object will send the “notArm” message to the Esad class, and sends the “abort” message

to the ArmingControl object to terminate the arming procedure.
 77

f. Esad

The Esad class is responsible for setting the warhead state to armed and

unarmed, based on the message received from ArmingControl or Safeguard.

g. Logger

The last class, Logger, keeps track of all the messages (their payloads and

their times) received by the TimeGuard object and the readAcceleration messages

received by the ActuationChannel object and writes them to a log file. The log file

contains a trace of the event of interests and will be used for formal V&V of our

architecture. The logger writes the event traces into two formats:

<string><space><@><space><receiving_time_to_TimeGuard>

<float><space><g><space><@><space><receiving_time_to_TimeGuard>.

The format is used to log all messages without the data value and the

second one is used to log the readAcceleration event.

3. Test Scenarios for the Simulation

For the simulation, we need to discuss which use cases we need to simulate in the

software. The set of use cases can vary depending on the designer’s viewpoint about the

faults that can occur during the life cycle of the missile. To manage the whole effort

properly and efficiently, we started from the beginning of the arming sequence and

followed the software’s design to locate the events that could cause a fault to occur and

eventually lead to a hazard. We wrote down all the use cases using tabular representation

and binary logic in Appendix B (Tables 1 to 7), which show briefly which cases are of

interest for this simulation. The tabular representation is used for our efficient

management of the use cases. We use the binary logic, True/False or 1/0 respectively, to

present whether the value of an event and its relative occurrence time meet the safety

requirements (1 when they meet the requirements and 0 when they do not). In addition,

we developed some associative use cases (Table 8), which are possible accelerometer

values that calculate the First Motion Detection and the Safe Separation producing

different environmental conditions that the software could face. At the end, the whole
 78

effort resulted in 21 use cases that are independent of each other. Due to the way that we

partitioned the event space, we have significantly reduced the number of potential test

scenarios from approximately 1400 to 21.

Beginning from the first message that the missile should receive, we have the set

of use cases about the powerOn message both to the Actuation Channel and to the

TimeGuard components shown in Appendix B, Table 1. The combination of these two

messages with their timing gives rise to 16 cases, but only two of them can be simulated

because the other 14 do not apply to our design. The two use cases contain the sending of

both messages on the Actuation Channel and TimeGuard, and the difference between

them is whether the two messages are received at the same time by the components or

there is a time delay for the message received by the TimeGuard. For the other 14 cases,

the first eight cases do not include the message powerOn to the Actuation Channel which

is not realistic for our case study. The final four cases contain a time delay to the

Actuation Channel that also does not meet our design’s rationale; the TimeGuard is the

Watchdog component and has to start after the Actuation Channel in order to be

meaningful. Hence, there are only two valid test cases in Appendix B, Table 1.

For the case of the endPost message, we have four use cases shown in Appendix

B, Table 2, based on the validity of power on self-test results and whether the event

arrived at the TimeGuard at the proper time. Moreover, we can combine the two cases

with invalid self-test results. Thus, we have total three use cases to simulate. For the case

of the launch command, which creates the irreversible condition for the missile, we have

four use cases shown in Appendix B, Table 3, based on whether the makeLaunch

message is generated and whether the event arrived at the TimeGuard at the proper time.

We can eliminate the case that there is no makeLaunch, and there is a time delay for it to

arrive at the TimeGuard, this case can never happen. Thus, we have a total of three use

cases to simulate. Furthermore, there is the internal message “startMotion” that the

launchSMK subcomponent sends to the TimeGuard to indicate the first detection of

missile motion. Following similar logic as for the makeLaunch use cases, we keep two of

the four use cases that can happen, as shown in Appendix B, Table 4.

 79

For the acceleration values and how they are implemented in the simulation, we

create three groups with different rationales. The first group is based on whether the

readAcceleration message is processed properly and whether in proper time order, as

shown in Appendix B, Table 5. The second group concerns the case whether the internal

startMotion message is sent properly and whether there is a time delay to reach the

TimeGuard, as shown in Appendix B, Table 6. And finally, the third group, as shown in

Appendix B, Tables 7 and 8, deals with the acceleration values and their receiving times

at the TimeGuard. For the third group, there are many different combinations with timing

issues and with the acceleration values not meeting the minimum limits from the safety

requirements. For the third safety requirement, there is the obligation that two

consecutive values have to be equal to or more than 6 g’s and for the fourth safety

requirement the calculation of the travel distance has to be equal to or more than 20

meters, and this is the result from the double integration of the acceleration in time.

From the first group, which concerns with the proper receiving of the

readAcceleration messages and their timing and not their contained values, we have four

use cases. We only keep the case with no time delay because the other cases are

unrealistic. For the second group, which concerns with the internal message

“startMotion,” we exclude the case in which there is a time delay but no “startMotion”

signal, because it is not realistic. We include the use case in which all the acceleration

values equal to zero and the two other use cases with non-zero acceleration values and

with/without time delay to the receive the “startMotion” message at the TimeGuard.

Thus, the total number of use cases is three for the “startMotion” message.

At the end, there are the most complicated scenarios because we have to deal with

a variety of use cases. To consider all the possible cases, we write down two tables. Table

7, which concerns the use cases with/without the firstMotionDection message and their

timing, as well as with/without the endSafeSeparation message and their timings and

Table 8, which concerns the use cases with the combination of acceleration values and

their calculated results. For this reason we simplify our rationale down in three subsets.

The first subset answers the cases of the First Motion Detection criterion. For this

criterion there are four cases, fulfilling it or not in relation to its receiving time from the

 80

TimeGuard. The second subset answers the SafeSeparation cases following the same

rationale. And the third subset answers the combination of the above two subsets and

creates 16 use cases. Some of them, as is shown in both Tables 7 and 8 in Appendix B,

can be combined minimizing the total number of the use cases to 12. We exclude the

cases in which there are time delays but without messages, either for the one or for the

two messages, endFirstMotionDetection and endSafeSeparation.

Consequently, we have the special case that all criteria, values and time, are

fulfilled and the 20 use cases in which at least one of the criteria is not met and resulted

in a fault. Thus, the total number of the simulation use cases is equal to 21, and for this

reason we create 21 log files to verify and validate our proposed design in Chapter V.

 81

THIS PAGE INTENTIONALLY LEFT BLANK

 82

V. FORMAL V&V OF SOFTWARE SAFETY REQUIREMENTS
AND ARCHITECTURE

A. INTRODUCTION

In Chapter III, we demonstrated the steps for analyzing our system according to

the safety standards, and the result was the documentation of the safety requirements.

Then we combined them with the hardware, and at the end we decided which hardware

functions our software should check. From the results of our system hazard analysis and

software system hazard analysis, we concluded that the software for controlling the

ESAD arming device, which is a causal factor to premature detonation, has a high

software hazard risk index, and hence will require thorough analysis of system-level

requirements, software safety design and implementation source code to ensure adequate

control of the causal factors as well as in-depth testing to ensure that the control measures

are implemented correctly. Our requirements analysis has resulted in four software safety

requirements to monitor the proper sequencing of the events from the sensors and the

control software to detect and prevent any error that may cause unsafe arming of the

warhead. In Chapter IV, we presented an architectural design of the control software

using the safety-kernel safety pattern and created an executable model for design. We

performed a detailed analysis of the different failure scenarios and came up with 21 test

cases. We tested the executable architectural model in a simulation environment and

produced 21 log files that capture the behavior of the software under the different

situations that could lead to a premature arming of the warhead.

Because the control software is safety-critical we must thoroughly verify and

validate the proposed design. In this chapter, we present a light-weight formal method for

the validation and verification of the software safety requirements and the target

software. The process is demonstrated in Figure 20 and is described thoroughly in [20].

We explain how this process is implemented in our case study.

 83

Figure 20. V&V procedure for SMK ESAD. From [20].

First, we have to translate the natural language software safety requirements into a

precise specification without losing the original meaning of the requirements and

expectations of the stakeholders. We accomplished this through the application of a

formal method to create a mathematical model of the requirements that can be processed

by a machine. Since we use state machines in our design, we choose to describe the

software safety requirements as statechart assertions. The statechart assertions are

extension of statecharts, which are Unified Modeling Language (UML) based diagrams

to specify the behavior of reactive systems [22]. We create the statechart assertions with

the StateRover tool from TimeRover, Inc. [21], which is an Eclipse integrated

development environment plugin. In addition, we use the Eclipse Juno version 4.1 for the

creation of the Java code and JUnit test cases.

B. SOFTWARE SAFETY REQUIREMENTS SPECIFICATION AND
VALIDATION

As we described in Chapter III, the process of hazard identification makes clear

the potential erroneous situations in which an error in the control software can result in a

mishap. To ensure that the resultant software safety requirements adequately address the

hazards posed in operating the target system, we need to validate the requirements against

the potential erroneous situations identified through hazard analysis. In other words we

want to make sure that the software safety requirements correctly specify what the
 84

software must do and what it must not do. Using the StateRover tool, we are able to

encode the natural language requirements into a set of executable statechart assertions,

shown in Figures 21 to 24, whose behaviors can be demonstrated to the stakeholders via

JUnit testing. The statechart assertions are written from an external observer’s point of

view. The external observer needs to observe the events: powerOn from the WCS,

readAcceleration from the Accelerometer, endPost, invalidPost, doLaunch,

endFirstMotionDetection and endSafeSeparation from the ActuationChannel, and arm

from the ArmingControl. We created four statechart assertions, one for each of the

software safety requirements listed in Chapter III, Section D. The initial state in each

statechart assertion is the OFF state. When the proper event (powerOn or startMotion) is

observed, the statechart assertions will transit to the next states as indicated in the

diagrams. Because our requirements have to assure the safety of the arming sequence, we

are only interested in making sure that the control software enters the SAFE_MODE state

when an error is detected. Once it enters the SAFE_MODE state, the control software

must never issue an arm event. Hence, if an arm event (from the armingControl) is

observed while the control software is in the SAFE_MODE state, the statechart assertion

will transit to an ERROR state, declaring that it has observed an error in the control

software that violates the corresponding software safety requirements and may eventually

lead the system to hazard. For each statechart assertion, we implement a local timer in

seconds that is responsible to keep the time constraints of each Software Safety

Requirement (SSR).

1. SSR 1

The CS computer receives an activation signal from the WCS to power on the

missile. It executes the POST, which must be completed within two seconds after the

receipt of the activation signal and should be POST_OK in order to continue the arming

procedure. If POST is overtime (>2 sec) or invalid, then it transits to the Fail-Safe state.

As the statechart assertion code always updates the timer and checks for timeout before

processing any incoming events, we define a local timer called the twoSecTimer (shown

in in the yellow box in the Figure 21). Because the StateRover tool prioritizes the timer

ahead of any event, this leads to the situation that the timer expires prior to the processing
 85

of the receiving event. For this reason we expand the time limit by one second. Doing this

we capture the correct use cases when any event is received at precisely the time that the

timer expires. We set the value of the twoSecTimer to 3 seconds so that it will handle the

situation when the self-test result is valid and the endPost message is observed 2.0

seconds after the powerOn event is observed. The twoSecTimer processes this event so

that the statechart assertion will transit from the POWER_ON state to the POST_OK

state instead of the SAFE_MODE state, which would have occurred had we set the value

of the timer to 2 seconds instead

Figure 21. Statechart assertion for software safety requirement 1.

2. SSR 2

The Launch Indicate Signal represents the irreversible commitment to launch the

SMK. The launching signal must be received within 4 seconds after powerOn.

 86

Figure 22. Statechart assertion for software safety requirement 2.

3. SSR 3

The ESAD can be armed only when the missile has received the launching signal

and starts to move away from the ship. In order to determine that the missile is on the

move, two consecutive accelerometer readings over 6 g must be detected within the 4-

second window from the time that the accelerometer sends accelerometer values.

Figure 23. Statechart assertion for software safety requirement 3.

 87

4. SSR 4

The ESAD can be armed only when the missile has reached the minimum vertical

distance above the warship. If the travel distance is less than 20 meters within the

6second window after the activation of the accelerometer, then the ESAD has to remain

in safe mode.

Figure 24. Statechart assertion for software safety requirement 4.

Continuing our validation process we create test cases that check whether or not

our statechart assertions are able to correctly detect the various erroneous situations. For

this reason we develop different test scenarios to challenge the requirements to determine

whether they detect the errors as intended. This step is critical for the safety requirements

analyst because it not only acts as a checker for the correct encoding of the natural

language requirements but also clarifies whether the analyst correctly understands the

original intent underlying the requirements.

For our case study this step was accomplished using the StateRover tool. The tool

generates one Java class for each statechart assertion and allows the analyst to test the

generated code using the JUnit tool. Figure 25 shows the timing diagrams and the Java

code snippet for the three JUnit test cases for the statechart assertion shown in Figure 21.

The first test case, which is the first one in Figure 25, represents the happy scenario in

which everything is within the time limits and the result from the self-test is passed. The

 88

second test case represents the scenario that the self-test fails, thus any arm() event

should result in the ERROR state (indicated by the Java statement

assureFalse(assertion.isSuccess());). The third test case represents the scenario that the

self-test is passed but it exceeds the 2-second time constraint. Hence, the timer expires

and any arm() event should result in the ERROR state. (Readers can refer to Appendix C

for the other JUnit test cases.).

 89

Figure 25. JUnit validation test cases for software safety requirement 2.

Following this procedure, the design team formalizes the system’s requirements

and uses the JUnit tool to exercise these requirements with different scenarios. This leads

to modifications to the written requirements, taking the requirements to a more sufficient
 90

level. In our case study the same people act as the designers and testers but in larger

projects this could be done by two independent teams, one responsible for the design and

the formalization of the requirements and the second to validate them like an IV&V team.

This procedure ascertains the formality for our safety requirements’ hidden rationale.

The statechart assertions, once validated, can help in the automated testing of the

target software via the offline, logfile-based runtime verification process shown in the

right half of Figure 20.

C. ARCHITECTURE VERIFICATION

Having implemented our architectural design in C++, our next step is to verify its

correctness using logfile-based runtime verification. By doing this we are able to satisfy

the last of the thesis’s main objectives, which is to verify that the architectural design

correctly corresponds to the safety requirements.

We use the 21 test scenarios described in Chapter IV to generate 21 log files. We

followed the arming sequence from its beginning to its end, and we injected faults that

could lead to failures and finally to hazards according to the hazard analysis so that we

could test our model as closely as possible to the environment in which the system will be

used. The 21 log files captured the events the control software received from the

environment and the responses the control software generated under the scenarios. We

implemented only one fault that happens each time and not a combination of them.

The next step is the formatting the log files so that the StateRover can use them to

generate JUnit test code to exercise the statecharts assertions. The conversion of the log

files is based on a Python program that converts the .txt file to a XML file, a code that

Bonine in [21] developed for a similar purpose. Using the StateRover XML log file

import tool, we are able to generate a Java JUnit test case for each XML log file from our

simulation run. Since the names of the events in the log files and those in the statechart

assertions may not always be identical, StateRover provides the StateRover Namespace

Mapper tool for users to create a Java namespace mapper object that links the events

from the log files and the associative transitions from the statechart assertions, and the

 91

whole procedure is described explicitly in [20]. Having completed these steps, we are

ready to conduct the runtime verification to verify our architecture.

Let us illustrate the process just described with the two scenarios shown in

Figures 26 and 29. In the first scenario, the missile is activated normally and there is no

error in the whole procedure. Running this scenario, the simulation outputs a log file,

which is called logfile_no_errors, shown on the right side of Figure 26. For better

understanding by the reader, we illustrate the events in the log file with the timing

diagram shown on the left side of Figure 26.

Figure 26. Log file and timing diagram for no_errors test case in simulation.

Each arrow from the timing diagram represents either an external event that

stimulates our software from its environment or an internal event generated by the

software in response to the external event. The external events in the timing diagram are

in bold font and the internal events are in italic font. We use this convention in all the

timing diagrams in Appendix B to help the reader understand the different test scenarios.

We input the log file to the StateRover tool, and we link the events from the log

file and the transition names of the statechart assertions using the StateRover Namespace

Mapper tool shown in Figure 27. For each log file, we should carefully map the events

with the transitions to capture the rationale of each test case. Then, the Namespace

Mapper initiates each event with the related transition and during the execution it decides

 92

whether or not the log file from the simulation violates a requirement and which. In

Figures 27 through 28, we demonstrate the verification procedure of the two sequence

diagrams from Chapter IV, Section D, using the Namespace Mapper and the statechart

Animation option from the StateRover.

Figure 27. Namespace mapping between the simulation events and statechart assertion

transitions.

After the namespace mapping, we execute the scenario and the StateRover

displays the output screen (shown in Figure 28) showing that our design model works

correctly as expected, meeting all four safety requirements since there is no message

under the field statechart assertion failure. If the design model had violated one or more

of the safety requirements, then the StateRover would indicate which requirements were

violated.

 93

Figure 28. Verification test using the StateRover tool.

Following the same process, we ran the second scenario shown in Chapter IV and

generated the log file called logfile_no_FMD_noSSD. This scenario describes a possible

situation in which the missile’s accelerometer does not produce proper values and SSR 3

and 4 are not fulfilled. The use case captures many different failures that have the same

output. One of them is the failure of the accelerometer as hardware, in which it provides

erroneous values. Another could be a restrained firing. This severe situation happens

when the holding latch that holds the missile’s body from its container does not release

the missile during its launching procedure. The above causal factors could lead to a

premature arming of the warhead and a possible detonation. Trying to prevent this from

happening, our software that controls the ESAD should prevent the warhead’s arming. In

order to detect these situations the software has to have the proper design to deal with

these events. For this reason we create an environment in which there are improper

values from the accelerometer. The created log file is depicted in Figure 29 with its

corresponding timing diagram. From the results of this simulation we observe that the

model detects the fault and prevents a failure from occurring.

 94

Figure 29. Log file and its relative time diagram for the no_FMD simulation case.

We repeat the procedure as we did for the logfile_no_errors and namespace

mapping, with the test results shown in Figures 30 and 31.

Figure 30. Namespace mapping for the second scenario.

 95

Figure 31. Test results for the second scenario.

The result from this verification test not only verifies that the warhead was not

armed as we can see from the log file but that the software successfully detects the fault

and prevents a failure from occurring. Hence, using the above procedure we can create as

many test cases as we want to evaluate our design. The result from this process assists the

design team to understand in depth what is built and provide them with feedback.

Subsequently, they are able to describe clearly their viewpoint on the project and explain

to the stakeholders the reasoning behind the design.

 96

VI. CONCLUSION AND FUTURE WORK

A. SUMMARY

This study matches the different aspects of different domains such as systems

engineering, hazard analysis, software requirements, and software architecture tasks in

the development of the safety-critical systems. It implements the rules of safety

engineering in the user’s requirements, designs the product using all the above and finally

verifies and validates the case study’s software design. From the beginning of this study,

we adopt the method that Kelly and Wu proposed in [7] to implement the system’s

nonfunctional attributes in the design process. We are interested in the safety of software

intensive systems.

Figure 32. Formal V&V process for a safety-critical system.

In this study, we do not introduce a new domain rather we introduce a new

framework that relates the different activities and products from systems engineering,

safety engineering, system and software requirements, and software architecture

explicitly (Figure 32). Until now the teams from safety engineering and systems

engineering have created the conditions to build a system that can handle potential

 97

hazards. The artifact from this cooperation is the documentation of the system’s safety

requirements in natural language. This documentation redefines the systems engineering

needs using the safety measures from safety engineering. The need for clear and

understandable documentation is fulfilled by formalizing the safety requirements as

statechart assertions. The innovations in our study are the inclusion of formal V&V of the

software safety requirements and the software architecture to improve the existing

process. We formalize the natural language software safety requirements as statechart

assertions and validate the software safety specifications using the JUnit testing tool

against the various potential erroneous situations that have already been identified by the

domains of the hazard and safety engineering and the systems engineering. Results of the

validation JUnit tests are presented to both the systems engineering team and the safety

engineering team for examination and feedback. Continuing from the formalization of

safety requirements, we build an executable architecture using the software safety

architectural patterns to realize the software safety requirements. We then exercise the

executable architecture to test its safety behavior under various scenarios and capture the

interactions between the software and its environment in terms of log files, which will be

converted automatically as verification JUnit tests (with the help of the StateRover tool)

to verify the correctness of the software architecture using logfile-based runtime

verification. Any violation detected by the verification JUnit tests will be examined by

the software development team to see if it is caused by errors in the architectural design

or its C++ implementation or in the encoding of the statechart assertions or due to

incorrect or inadequate safety measures, as described by the natural language safety

requirements. Errors in the architectural design or its C++ implementation will result in

software architecture and coding revisions. Errors in statechart assertion encoding will

require assertion statechart development and validation reworks, and errors in incorrect

and inadequate safety measures will trigger another round of systems engineering and

safety engineering activities resulting in potential changes to the system architecture and

system and software safety requirements.

For the purpose of the thesis, we introduce a fictitious system which is both

safety-critical and software intensive. The case study involves the architectural design of

 98

a safety-critical weapon system, a fictitious Surface-to-Air Missile that is used to protect

warships from attacking missiles and aircrafts. We focus on the need for software to

control the arming device of a missile. We describe the safety engineering steps from the

identification of system’s hazards to the critical functions that the software has to provide

to avoid premature detonation, resulting in four software safety requirements for the

software which controls the missile’s Electronic Safe Arm Device (ESAD) for the arming

of its warhead. We formalize the software safety requirements as statechart assertions and

validate their correctness via JUnit test. We develop software architecture for the control

software using the Safety Executive pattern and implement the design in C++ to support

a simple time-step simulation to produce the required log files for the verification of the

design. While this thesis focuses on software safety, the methodology for formal V&V of

software architecture proposed in this thesis is not restricted to the safety attribute alone.

It can be adopted to facilitate the formal V&V of other nonfunctional attributes of

systems as well.

B. LESSONS LEARNED

The focus of the research reported here is software system safety. Software

system safety characterizes the system’s behavior that can lead to mishaps. To understand

how these mishaps can occur we first need to identify the potential hazards and the

associated contributing factors. Errors can be introduced and be difficult to detect into the

safety-critical and safety-related functions implemented in software, such as when the

safety controls themselves introduce added complexity into the software’s design. Thus,

there is a need to provide safety and software engineers with means for performing

assurance which can deal with varying levels of software-design complexity.

Safety and software engineers work with safety requirements initially specified in

a natural language. One of the key challenges is to correctly interpret and detect problems

with those requirements early in the system life cycle. Otherwise, misinterpretations of

the requirements and errors in the requirements will propagate into the software

architecture, design and detailed implementation. Statechart assertions can be used for

this purpose, but the engineer needs to declare explicitly what the statechart assertion is

 99

going to be from the observer’s point of view, instead of capturing the complete state

behavior of the software design in the assertions. Moreover, while the statechart

assertions are capable of revealing weakness of the known requirements, the assertions

cannot capture missing requirements. The safety and software engineers must work with

the stakeholders to determine whether the results of conducting validation tests of the

statechart assertions and verification tests of the software architecture indicate there has

been a misinterpretation or omission of the stakeholders’ expectations regarding system

safety.

C. FUTURE WORK

We recommend that there be follow-on studies conducted with the aim of

evaluating the effectiveness of the proposed methodology and the safety-kernel

architecture in handling changes and additions in requirements and safety policies. There

is also a need to determine to what extent our approach needs to be tailored to address

other non-functional aspects of systems, such as security, survivability, and reliability.

The time-step simulation code reflects a minimalist approach. The design can be

refactored into a better inheritance hierarchy to eliminate some of the redundant code.

Another challenging problem remaining to be tackled is to develop a way to ensure that

the used code does not contain unnecessary and unwanted lines of code.

A potential application of the proposed framework is to facilitate code reuse in

safety critical systems. Safe code reuse requires extensive testing of the reusable code in

its new environment, which includes the new system’s context (the system’s operating

environment) and the hardware and software components the reusable code will interact

with. We recommend a follow-on study on the effectiveness of the proposed framework

to automate the verification of code reuse in safety-critical systems.

 100

APPENDIX A

This section includes C++ source and header files for the behavioral

implementation of software that simulates the arming procedure for the ESAD.

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: simDriver.cpp
//==
#include <iostream>
#include <string>
#include <stdlib.h>
#include <ctime>

#include “Message.h”
#include “MessageQueue.h”
#include “IdGenerator.h”
//#include “RandGen.h”

#include “ActuationChannel.h”
#include “ArmingControl.h”
#include “TimeGuard.h”
#include “SafeGuard.h”
#include “Esad.h”
#include “Logger.h”

using namespace std;

// Global Variables
IdGenerator* _idgen;
ActuationChannel* _actChnl;
ArmingControl* _armCtrl;
TimeGuard* _tmGrd;
SafeGuard* _sfGrd;
Esad* _esad;
Logger* _lgr;

/* secondary function that uses the instances of the 5 components to have the same time */
void dispatch(long t)
{
 _actChnl->setTime(t);
 _armCtrl->setTime(t);
 _tmGrd->setTime(t);
 _sfGrd->setTime(t);
 _esad->setTime(t);
}
 101

int main() {

/* create the instance from the ActuationChannel, ArmingControl, TimeGuard, SafeGuard, Esad
and the Logger in order to create the events and write them down to the logfile*/

 _idgen = IdGenerator::getIdGenerator();
 _actChnl = ActuationChannel::getActuationChannel();
 _armCtrl = ArmingControl::getArmingControl();
 _tmGrd = TimeGuard::getTimeGuard();
 _sfGrd = SafeGuard::getSafeGuard();
 _esad = Esad::getEsad();
 _lgr = Logger::getLogger();

 _sfGrd->setArmingControlReference(_armCtrl);

 // the name of the log file describes the simulation test case
 _lgr->openLogFile(“logfile.txt”);

 // create the same baseline time for all the instances.
 time_t startTime;
 time(&startTime);
 long myTime = (long) startTime;
 dispatch(myTime);
 myTime++;
 cout << endl;

 // message 1 from the environment to the ActuationChannel
 Message* mes1 = new Message(_idgen->getId(),myTime,”powerOn”);
 _actChnl->receive(*mes1);

 // test case: time delay between the two powerOn signals
 /*dispatch(myTime);
 myTime++;
 */
 // Message 2 from the environment to the TimeGuard
 Message* mes2 = new Message(_idgen->getId(),myTime,”powerOn”);
 _tmGrd->receive(*mes2);

 // update the time three times
 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;

 // test case: time delay for the makeLaunch
 /*dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;

 102

 */
 // message 3 from the environment to the ActuationChannel
 Message* mes3 = new Message(_idgen->getId(),myTime,”makeLaunch”);
 _actChnl->receive(*mes3);

 // update the time two times
 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;
 // test case: time delay to the acceleration readings
 // and also to the startMotion message
 /*dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;*/
 // Accelerometer sends data to the ActuationChannel

 /*
 // test case: no startMotion signal due to no acceleration values
 Message* mes4 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.0);
 _actChnl ->receive(*mes4);
 Message* mes5 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.0);
 _actChnl ->receive(*mes5);
 Message* mes6 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.0);
 _actChnl ->receive(*mes6);
 Message* mes7 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.0);
 _actChnl ->receive(*mes7);
 Message* mes8 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.0);
 _actChnl ->receive(*mes8);
 Message* mes9 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.0);
 _actChnl ->receive(*mes9);
 */

 // message 4 from the environment to the ActuationChannel accel#1
 // cases 1,3,9,11 from the Appendix B description
 Message* mes4 = new Message(_idgen->getId(),myTime,”readAcceleration,”0.5);
 _actChnl ->receive(*mes4);

 dispatch(myTime);
 myTime++;

 // message 5 from the environment to the ActuationChannel accel#2
 // case 1 , 9
 Message* mes5 = new Message(_idgen->getId(),myTime,”readAcceleration,”1.5);
 // case 3, 11 from the Appendix B description
 //Message* mes5 = new Message(_idgen->getId(),myTime,”readAcceleration,”3.5);
 _actChnl ->receive(*mes5);

 103

 dispatch(myTime);
 myTime++;
 // test case: proper values for FMD with timedelay
 /*dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;*/

 // message 6 from the environment to the ActuationChannel accel#3
 // case 1 from the Appendix B description
 //Message* mes6 = new Message(_idgen->getId(),myTime,”readAcceleration,”1.5);
 // case 3 from the Appendix B description
 //Message* mes6 = new Message(_idgen->getId(),myTime,”readAcceleration,”4.5);
 // case 9 , 11 from the Appendix B description
 Message* mes6 = new Message(_idgen->getId(),myTime,”readAcceleration,”6.0);
 _actChnl ->receive(*mes6);

 dispatch(myTime);
 myTime++;
 // test case: proper values for FMD, SSD with timedelay during FMD
 /*dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;*/

 // message 7 from the environment to the ActuationChannel accel#4
 // case 1 from the Appendix B description
 //Message* mes7 = new Message(_idgen->getId(),myTime,”readAcceleration,”2.0);
 // case 3 from the Appendix B description
 //Message* mes7 = new Message(_idgen->getId(),myTime,”readAcceleration,”5.5);
 // case 9 , 11 from the Appendix B description
 Message* mes7 = new Message(_idgen->getId(),myTime,”readAcceleration,”6.0);
 _actChnl ->receive(*mes7);

 dispatch(myTime);
 myTime++;

 // message 8 from the environment to the ActuationChannel accel#5
 // case 1 from the Appendix B description
 //Message* mes8 = new Message(_idgen->getId(),myTime,”readAcceleration,”2.5);
 // case 3 from the Appendix B description
 //Message* mes8 = new Message(_idgen->getId(),myTime,”readAcceleration,”5.5);
 // case 9 from the Appendix B description
 //Message* mes8 = new Message(_idgen->getId(),myTime,”readAcceleration,”1.5);
 // case 11 from the Appendix B description
 Message* mes8 = new Message(_idgen->getId(),myTime,”readAcceleration,”7.5);
 _actChnl ->receive(*mes8);

 dispatch(myTime);

 104

 myTime++;

 // test case: proper values for FMD and SSD with timedelay after FMD to SSD
 /*dispatch(myTime);
 myTime++;
 */
 // message 9 from the environment to the ActuationChannel accel#6
 // case 1 from the Appendix B description
 //Message* mes9 = new Message(_idgen->getId(),myTime,”readAcceleration,”3.0);
 // case 3 from the Appendix B description
 //Message* mes9 = new Message(_idgen->getId(),myTime,”readAcceleration,”6.0);
 // case 9 from the Appendix B description
 //Message* mes9 = new Message(_idgen->getId(),myTime,”readAcceleration,”1.5);
 // case 11 from the Appendix B description
 Message* mes9 = new Message(_idgen->getId(),myTime,”readAcceleration,”8.0);
 _actChnl ->receive(*mes9);

 dispatch(myTime);
 myTime++;
 dispatch(myTime);
 myTime++;

 _lgr->closeLogFile();

 //system(“PAUSE”);
 return 0;
} // main()

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: ActuationChannel.h
//==

#ifndef ACTUATIONCHANNEL_H_
#define ACTUATIONCHANNEL_H_

#include <string>
#include <iostream>
#include “MessageQueue.h”
#include “IdGenerator.h”
#include “RandGen.h”
#include “ArmingControl.h”
#include “TimeGuard.h”
#include “Logger.h”

using namespace std;

class ActuationChannel {
public:

 105

 static ActuationChannel* getActuationChannel();

 virtual ~ActuationChannel();

 void receive(Message);
 void setTime(long);

 void powerOn();
 void makeLaunch();
 void readAcceleration(float);

private:
ActuationChannel();
 static bool ActuationChannelFlag;
 static ActuationChannel* _actChnl;

 MessageQueue<50> mesQue;
 long _timestamp;

 //RandGen* _rdgen;
 IdGenerator* _idg;
 TimeGuard* _tmGrd;
 ArmingControl* _armCtrl;
 Logger* _lgr;

 float _accel;
 long _oldTimestamp; /* needed to compute distance travel between 2 consecutives
acceleration readings.*/
 double _distanceTravel;
 bool _endFMD; /* boolean variable in order to send the endFirstMotionDetection only
one time to the TimeGuard*/
 bool _endSSD; /* boolean variable in order to send the endSafeSeparation only one time
to the TimeGuard*/
};

#endif /* ACTUATIONCHANNEL_H_ */

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: ActuationChannel.cpp
//==

#include <iostream>
#include <time.h>
#include <stdlib.h>
#include <windows.h>
#include “ActuationChannel.h”

 106

using namespace std;

bool ActuationChannel::ActuationChannelFlag = false;
ActuationChannel* ActuationChannel::_actChnl = NULL;

// Constructor
ActuationChannel::ActuationChannel()
{
 //_rdgen = RandGen::getInstance();
 _idg = IdGenerator::getIdGenerator();
 _tmGrd = TimeGuard::getTimeGuard();
 _armCtrl = ArmingControl::getArmingControl();
 _lgr = Logger::getLogger();
 _accel = 0.0; // values are in g’s

 _distanceTravel = 0.0; // values are in meters
 _endFMD = false;
 _endSSD = false;
} // ActuationChannel()

// Destructor
ActuationChannel::~ActuationChannel()
{
 ActuationChannelFlag = false;
}// ~ActuationChannel()

void ActuationChannel::receive(Message m)
{
 if (m.getPayload() == “readAcceleration”)
 _lgr->logAcceleration(m.getData(), m.getTimestamp());
 mesQue.insert(m);
}// void receive(Message m)

void ActuationChannel::setTime(long t)
{
 _oldTimestamp = _timestamp;
 _timestamp = t;
 bool done;
 done= false;
 while (!done)
 {
 if (mesQue.size() == 0)
 done = true;
 else
 {
 Message temp = mesQue.remove();
 if (temp.getTimestamp() <= _timestamp)
 {
 if (temp.getPayload() == “powerOn”)
 powerOn();
 else if (temp.getPayload() == “makeLaunch”)
 makeLaunch();

 107

 else if (temp.getPayload() == “readAcceleration”)
 readAcceleration(temp.getData());
 else
 cout << “Unrecognized payload: “ << temp << endl;
 }else
 {
 mesQue.insert(temp);
 done = true;
 }
 }
 }
} // void ActuationChannel::setTime(long t)

void ActuationChannel::powerOn()
{
// make the power-on self test and sends the endPost message after 2 seconds to ArmingControl
 Message* temp = new Message(_idg->getId(), _timestamp + 2 , “endPost”);
// test case: violates endPostDeadline
 //Message* temp = new Message(_idg->getId(), _timestamp + 3 , “endPost”);
// test case: creates invalid endPost
 //Message* temp = new Message(_idg->getId(), _timestamp + 2 , “invalidPost”);
 //_tmGrd->receive(*temp);
 _armCtrl->receive(*temp);
} // void ActuationChannel::powerOn()

void ActuationChannel::makeLaunch()
{
/* receives the makeLaunch signal and transfers it to doLaunch signal after 1 second and sends it
to the ArmingControl*/
 Message* temp = new Message(_idg->getId(), _timestamp + 1, “doLaunch”);
// test case: violates endDoLaunchDeadline
 // Message* temp = new Message(_idg->getId(), _timestamp + 4, “doLaunch”);
 _armCtrl->receive(*temp);
}//void ActuationChannel::makeLaunch()

void ActuationChannel::readAcceleration(float d)
{
 if (_accel == 0.0)
 //if (_accel > 0.0)
 {
 Message* temp = new Message(_idg->getId(), _timestamp, “startMotion”);
// test case: time delay the startMotion
 // Message* temp = new Message(_idg->getId(), _timestamp + 2, “startMotion”);
 _tmGrd->receive(*temp);
 }

 //when two consecutive values are over 6 g’s send a message to ArmingControl
 if (_accel >= 6.0 && d >= 6.0 && !_endFMD)
 {
 //create a message endFirstMotionDetection to ArmingControl
 Message* temp = new Message(_idg->getId(), _timestamp,
“endFirstMotionDetection”);

 108

 // test case: violates endFirstMotionDetectionDeadline
//Message* temp = new Message(_idg->getId(), _timestamp + 2, “endFirstMotionDetection”);
 _armCtrl->receive(*temp);
 _endFMD = true;
 }
 // update distance travel equals to interval times average acceleration square
 _distanceTravel += ((_timestamp - _oldTimestamp)*(_timestamp -
_oldTimestamp))*(d+_accel)/2.0;
 // 20 meters is the height of the superstructure above the highest point of the warship

 if (_distanceTravel > 20 && !_endSSD) // distance travel clears superstructure
 {
 //create a message endFirstMotionDetection to ArmingControl
 Message* temp = new Message(_idg->getId(), _timestamp,
“endSafeSeparation”);
// test case: violates endSafeSeparationDeadline
 //Message* temp = new Message(_idg->getId(), _timestamp + 5 ,
“endSafeSeparation”);
 _armCtrl->receive(*temp);
 _endSSD = true;
 }
 _accel = d; // update the acceleration readings
} // void ActuationChannel::readAcceleration(float d)

ActuationChannel* ActuationChannel::getActuationChannel()
{
 // creates the instance of a ActuationChannel
 if(!ActuationChannelFlag)
 {
 _actChnl = new ActuationChannel();
 ActuationChannelFlag = true;
 return _actChnl;
 }else
 {
 return _actChnl;
 }
}// ActuationChannel* ActuationChannel::getActuationChannel()

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: ArmingControl.h
//==

#ifndef ARMINGCONTROL_H_
#define ARMINGCONTROL_H_

#include <string>
#include <iostream>
#include “MessageQueue.h”

 109

#include “RandGen.h”
#include “IdGenerator.h”
#include “TimeGuard.h”
#include “Esad.h”

using namespace std;

class ArmingControl {
public:

 static ArmingControl* getArmingControl();
 virtual ~ArmingControl();

 void endPost();
 void doLaunch();
 void receive(Message);
 void setTime(long);
 void endFirstMotionDetection();
 void endSafeSeparation();
 void terminate();
 void armEsad();

private:
 ArmingControl();
 static bool ArmingControlFlag;
 static ArmingControl* _armCtrl;

 MessageQueue<50> mesQue;

 IdGenerator* _idg;
 //RandGen* _rdgen;
 TimeGuard* _tmGrd;
 Esad* _esad;

 long _timestamp;
 int _state; /* the different values the variable _state could be: 0. off; 1. endPost; 2.
doLaunch; 3. endFirstMotionDetection; 4. endSafeSeparation; 5. Terminate*/
};

#endif /* ARMINGCONTROL_H_ */

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: ArmingControl.cpp
//==

#include <iostream>
#include <time.h>
#include <stdlib.h>

 110

#include <windows.h>
#include “ArmingControl.h”

using namespace std;

bool ArmingControl::ArmingControlFlag = false;
ArmingControl* ArmingControl::_armCtrl = NULL;

// Constructor
ArmingControl::ArmingControl()
{
 _idg = IdGenerator::getIdGenerator();
 _tmGrd = TimeGuard::getTimeGuard();
 _esad = Esad::getEsad();

 _state = 0;
}// ArmingControl()

// Desturctor
ArmingControl::~ArmingControl()
{
 ArmingControlFlag = false;
} // ~ArmingControl()

void ArmingControl::receive(Message m)
{
 mesQue.insert(m);
}// void ArmingControl::receive(Message m)

void ArmingControl::setTime(long t)
{
 _timestamp = t;
 bool done;
 done= false;
 while (!done)
 {
 if (mesQue.size() == 0)
 done = true;
 else
 {
 Message temp = mesQue.remove();
 if (temp.getTimestamp() <= _timestamp)
 {
 if (temp.getPayload() == “endPost”)
 endPost();
 else if (temp.getPayload() == “doLaunch”)
 doLaunch();
 else if (temp.getPayload() == “endFirstMotionDetection”)
 endFirstMotionDetection();
 else if (temp.getPayload() == “endSafeSeparation”)
 endSafeSeparation();
 else if (temp.getPayload() == “abort”)

 111

 terminate();
 else
 cout << “Unrecognized payload: “ << temp << endl;
 }else
 {
 mesQue.insert(temp);
 done = true;
 }
 }
 }
} // void ArmingControl::setTime(long t)

void ArmingControl::endPost()
{
 if (_state == 0)
 {
 _state = 1; // endPost
 Message* temp = new Message(_idg->getId(), _timestamp, “endPost”);
 _tmGrd->receive(*temp);// send message endPost to TimeGuard
 }
} // void ArmingControl::endPost()

void ArmingControl::doLaunch()
{
 if (_state == 1)
 {
 _state = 2; // doLaunch
 Message* temp = new Message(_idg->getId(), _timestamp, “doLaunch”);
 _tmGrd->receive(*temp); // send message to doLaunch to TimeGuard
 }
}// void ArmingControl::doLaunch()

void ArmingControl::endFirstMotionDetection()
{
 if (_state == 2)
 {
 _state = 3; // endFirstMotionDetection
 Message* temp = new Message(_idg->getId(), _timestamp,
“endFirstMotionDetection”);
 _tmGrd->receive(*temp);/*send message to endFirstMotionDetection to
TimeGuard*/
 }
}// void ArmingControl::endFirstMotionDetection()

void ArmingControl::endSafeSeparation()
{
 if (_state == 3)
 {
 _state = 4; // endSafeSeparation
 Message* temp = new Message(_idg->getId(), _timestamp,
“endSafeSeparation”);
 _tmGrd->receive(*temp);// send message endSafeSeparation to TimeGuard

 112

 Message* temp1 = new Message(_idg->getId(), _timestamp, “ARM”);
 _esad->receive(*temp1);// send message endSafeSeparation to TimeGuard
 }
} // void ArmingControl::endSafeSeparation()

void ArmingControl::terminate()
{
 _state = 5 ; // terminate
} // void ArmingControl::terminate()

ArmingControl* ArmingControl::getArmingControl()
{
// creates the instance of a ArmingControl
 if(!ArmingControlFlag)
 {
 _armCtrl = new ArmingControl();
 ArmingControlFlag = true;
 return _armCtrl;
 }else
 {
 return _armCtrl;
 }
}// ArmingControl* ArmingControl::getArmingControl()

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: Esad.cpp
//==

#ifndef ESAD_H_
#define ESAD_H_

#include <string>
#include <iostream>
#include “MessageQueue.h”
#include “RandGen.h”
#include “IdGenerator.h”
#include “Logger.h”

using namespace std;

class Esad {
public:

 static Esad* getEsad();
 ~Esad();

 void receive(Message);
 void setTime(long);

 113

 void notARM();
 void arm();

private:
 Esad();
 static bool EsadFlag;
 static Esad* _esad;

 MessageQueue<50> mesQue;

 //RandGen* _rdgen;
 IdGenerator* _idg;
 Logger* _lgr;

 long _timestamp;
 int _state; // the different values the variable _state could be: 0. umarmed; 1. arm;
};

#endif /* ESAD_H_ */

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: Esad.cpp
//==

#include “Esad.h”
using namespace std;

bool Esad::EsadFlag = false;
Esad* Esad::_esad = NULL; // initialiazation for the pointer

// Constructor
Esad::Esad()
{
 _idg = IdGenerator::getIdGenerator();
 _lgr = Logger::getLogger();
 _state = 0;
} // Esad()

//Destructor
Esad::~Esad()
{
 EsadFlag = false;
}// ~Esad()

void Esad::receive(Message m)
{
 _lgr->logEvent(m.getPayload(),m.getTimestamp());

 114

 mesQue.insert(m);
}// void Esad::receive(Message m)

void Esad::setTime(long t)
{
 _timestamp = t;
 bool done;
 done = false;
 while (!done)
 {
 if (mesQue.size() == 0)
 done = true;
 else
 {
 Message temp = mesQue.remove();
 if (temp.getTimestamp() <= _timestamp)
 {
 if (temp.getPayload() == “notARM”)
 notARM();
 else if (temp.getPayload() == “ARM”)
 arm();
 else
 cout << “Unrecognized event” << endl;
 }
 else
 {
 mesQue.insert(temp);
 done = true;
 }
 }
 }
}// void Esad::setTime(long t)

void Esad::notARM()
{
 _state = 0;
} // void SafeGuard::notARM()

void Esad::arm()
{
 _state = 1;
} // void SafeGuard::arm()

Esad* Esad::getEsad()
{
 // creates the instance of a SafeGuard
 if(!EsadFlag)
 {
 _esad = new Esad();
 EsadFlag = true;
 return _esad;
 }else

 115

 {
 return _esad;
 }
} // Esad* Esad::getEsad()

//==
// Author: Man-Tak Shing
// Naval Postgraduate School
// Computer Science Department
// Date: 08 Aug 2013
// File Name: IdGenerator.h
//==

#ifndef IDGENERATOR_H_
#define IDGENERATOR_H_

#include <string>
#include <iostream>
using namespace std;

class IdGenerator {
public:

 static IdGenerator* getIdGenerator();
 ~IdGenerator();

 int getId(); // Gets Id

private:
 IdGenerator();
 static bool IdGeneratorFlag;
 static IdGenerator* _idg;

 int _id; //
};
#endif /* IDGENERATOR_H_ */

//==
// Author: Man-Tak Shing
// Naval Postgraduate School
// Computer Science Department
// Date: 08 Aug 2013
// File Name: IdGenerator.cpp
//==

#include “IdGenerator.h”
using namespace std;

bool IdGenerator::IdGeneratorFlag = false;
IdGenerator* IdGenerator::_idg = NULL; // initialiazation for the pointer

// Constructor

 116

IdGenerator::IdGenerator()
{
 _id = 0;
} // IdGenerator()

// Destructor
IdGenerator::~IdGenerator()
{
 IdGeneratorFlag = false;
} // ~IdGenerator()

int IdGenerator::getId()
{
 _id++;
 return _id;
} // getId()

IdGenerator* IdGenerator::getIdGenerator()
{
 if(!IdGeneratorFlag)
 {
 _idg = new IdGenerator();
 IdGeneratorFlag = true;
 return _idg;
 }else
 {
 return _idg;
 }
}// IdGenerator* getIdGenerator()

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 13 Aug 2013
// File Name: Logger.h
//==

#ifndef LOGGER_H_
#define LOGGER_H_

#include <string>
#include <iostream>
#include <fstream>
#include “IdGenerator.h”

using namespace std;

class Logger {
public:

 static Logger* getLogger();

 117

 ~Logger();

 void logEvent(string,long);
 void logAcceleration(float,long);
 void openLogFile(char*);
 void closeLogFile();

private:
 Logger();
 static bool LoggerFlag;
 static Logger* _lgr;

 IdGenerator* _idg;
 ofstream _logfile;
};
#endif /* LOGGER_H_ */

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 13 Aug 2013
// File Name: Logger.cpp
//==

#include “Logger.h”
using namespace std;

bool Logger::LoggerFlag = false;
Logger* Logger::_lgr = NULL; // initialization for the pointer

// Constructor
Logger::Logger()
{
} // Logger()

// Destructor
Logger::~Logger()
{
 LoggerFlag = false;
} // ~Logger()

void Logger::logEvent(string s,long t)
{
 _logfile << s << “ “ << “ @ “ << t << endl;
} // int Logger::logEvent(string,long)

void Logger::logAcceleration(float d,long t)
{
 _logfile << d << “ “ << “g “ << “ @ “ << t << endl;

}// void Logger::logAcceleration(string,long)

 118

void Logger::openLogFile(char* f)
{
 _logfile.open(f);
}// void Logger::openLogFile(string)

void Logger::closeLogFile()
{
 _logfile.close();
}// void Logger::closeLogFile()

Logger* Logger::getLogger()
{
 if(!LoggerFlag)
 {
 _lgr = new Logger();
 LoggerFlag = true;
 return _lgr;
 }else
 {
 return _lgr;
 }
}// Logger* getLogger()

//==
// Author: Man-Tak Shing modified by Nahum Camacho Zamora
// Naval Postgraduate School
// Computer Science Department
// Date: 09 Feb 2013
// File Name: MaxHeap.h
//==

#ifndef MAXHEAP_H_
#define MAXHEAP_H_

#include <string>
#include <iostream>
using namespace std;

// prototypes
template<class T, int maxSize>
class MaxHeap;

template<class T, int maxSize>
ostream& operator<<(ostream& out, MaxHeap<T, maxSize> h);

// class template
template<class T, int maxSize>
class MaxHeap {
public:
 MaxHeap();
 MaxHeap(T inArray[], int size);

 119

 // create a MaxHeap from inArray[0..size-1]
 virtual ~MaxHeap();

 // accessor functions
 T removeMax(); // removes the largest element from MaxHeap and returns it to the
caller

 // mutator functions
 void insert(T elt); // inserts the element elt into the heap

 int size(); // return the number of elements in the heap

 friend ostream& operator<<<T, maxSize>(ostream& out, MaxHeap<T, maxSize> h);

private:
 static const int _MaxSize = maxSize;
 T _heapArray[_MaxSize];
 int _heapSize;

 void restore(int pos);
 void swap(T& x, T& y);

};

// constructors

// For an empty object
template<class T, int maxSize>
MaxHeap<T, maxSize>::MaxHeap() {
 _heapSize = 0;
} // MaxHeap()

// For a non empty object
template<class T, int maxSize>
MaxHeap<T, maxSize>::MaxHeap(T inArray[], int size) {
 if (size > _MaxSize) {
 throw “heap overflow”;
 } // if

 // set _heapSize to size
 _heapSize = size;

 // Copy the elements of the passed array in _heapArray
 for (int i = 0; i < size; i++)
 _heapArray[i] = inArray[i];

 // build the heap
 for (int i = (_heapSize - 2) / 2; i >= 0; i--) {
 restore(i); // Call function restore
 } // for
} // MaxHeap(T, int)

 120

// destructors
template<class T, int maxSize>
MaxHeap<T, maxSize>::~MaxHeap() {
 _heapSize = 0;
} // destructor

// utility functions

template<class T, int maxSize>
int MaxHeap<T, maxSize>::size() {
 return _heapSize;
} // size()

template<class T, int maxSize>
void MaxHeap<T, maxSize>::swap(T& x, T& y) {
 T temp = x; // Had temporary to swap
 x = y;
 y = temp;
} // swap(T&, T&)

template<class T, int maxSize>
void MaxHeap<T, maxSize>::restore(int pos) {

 bool done = false; // State to validate conditions
 int current = pos; // Initial position
 int largerChild; // Largest child

 // Analyze at a given node the condition between father and children

 while (!done) {
 if (2 * current + 1 >= _heapSize) // current is a leaf node
 done = true;
 else {
 // find larger child
 largerChild = 2 * current + 1;
 if (2 * current + 2 < _heapSize
 && _heapArray[2 * current + 2]
 > _heapArray[2 * current + 1])
 // right child is larger
 largerChild = 2 * current + 2;

 // compare larger child against parent
 if (_heapArray[current] >= _heapArray[largerChild])
 done = true;
 else {
 // swap elements at current and largerChild
 // set current to largerChild
 swap(_heapArray[current], _heapArray[largerChild]);
 current = largerChild;
 } // else
 } // else
 } // while

 121

} // restore (int)

template<class T, int maxSize>
void MaxHeap<T, maxSize>::insert(T elt) {
 if (_heapSize == maxSize) {
 throw “heap overflow”;
 } // if
 int current; // Index
 _heapSize++; // Increase heap size in one space
 _heapArray[_heapSize - 1] = elt; // Assign new element to new slot
 current = _heapSize - 1; // Current index is last slot
 bool done = false; // Initialize condition

// Compare element inserted with respective father in each node till reach root node
 while (!done) {
 if (current != 0 && _heapArray[current] > _heapArray[(current - 1) / 2]) {
 // swap elements at current and (current-1)/2
 // set current to (current-1)/2
 swap(_heapArray[current], _heapArray[(current - 1) / 2]);
 current = (current - 1) / 2;
 } // if
 else
 done = true;
 } // while
} // insert(int)

template<class T, int maxSize>
T MaxHeap<T, maxSize>::removeMax() {
 if (_heapSize == 0) {
 throw “heap underflow”;
 } // if

 T temp;

 temp = _heapArray[0]; // Number to return
 _heapArray[0] = _heapArray[_heapSize - 1]; // Number from last to first position
 _heapSize--; // Decrease heap size
 restore(0); // Call restore function
 return temp; // Return maximum value
} // removeMax()

// non-member functions

template<class T, int maxSize>
ostream& operator<<(ostream& out, MaxHeap<T, maxSize> h) {
 if (h._heapSize > 0) {
 out << h._heapArray[0];
 } // if
 for (int i = 1; i < h._heapSize; i++) {
 out << ,” “ << h._heapArray[i];
 } // for

 122

 return out;
} // operator<<(ostream& out, MaxHeap<T, maxSize> h)

#endif /* MAXHEAP_H_ */

//==
// Author: Man-Tak Shing modified by Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 04 Aug 2013
// File Name: Message.h
//==

#ifndef MESSAGE_H_
#define MESSAGE_H_

#include <string>
#include <iostream>

using namespace std;

class Message {
public:
 Message();
 Message(int, long , string);
 Message(int id, long pr, string pd, float d);
 virtual ~Message();

 int getId(); // Gets Id
 long getTimestamp(); // Gets Timestamp
 string getPayload(); // Gets Payload
 float getData(); // Gets Data

 void setId(int x); // Set Id
 void setTimestamp(long x); // Set Timestamp
 void setPayload(string s); // Set Payload
 void setData(float d); // Set Data

 friend ostream& operator<< (ostream& out, Message m);

private:
 int _id;
 long _timestamp;
 string _payload;
 float _data;
};

// non member functions
bool operator < (Message, Message);
bool operator <= (Message, Message);
bool operator > (Message, Message);
bool operator >= (Message, Message);

 123

bool operator == (Message, Message);

ostream& operator<< (ostream& out, Message m);

#endif /* MESSAGE_H_ */

//==
// Author: Man-Tak Shing modified by Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 04 Aug 2013
// File Name: Message.cpp
//==
#include <iostream>
#include <time.h>
#include <windows.h>
#include “Message.h”
using namespace std;

// Constructor
Message::Message() {
 _id = 0;
 _timestamp = 0;
 _payload = “Nothing”;
 _data = 0.0;
} // Message()

// Constructor
Message::Message(int id, long pr, string pd) {
 _id = id;
 _timestamp = pr;
 _payload = pd;
 _data = 0.0;
} // Message(int, long, string)

Message::Message(int id, long pr, string pd, float d) {
 _id = id;
 _timestamp = pr;
 _payload = pd;
 _data = d;
} // Message(int, long, string, float)

// Destructor
Message::~Message() {

} // ~Message()

int Message::getId() {
 return _id;
} // getId()

 124

long Message::getTimestamp() {
 return _timestamp;
} // getTimestamp()

string Message::getPayload() {
 return _payload;
} // getPayload()

float Message::getData() {
 return _data;
} // getData()

void Message::setId(int x) {
 _id = x;
} // setId(int)

void Message::setTimestamp(long x) {
 _timestamp = x;
} // setTimestamp(long)

void Message::setPayload(string s) {
 _payload = s;
} // setPayload(string)

void Message::setData(float d) {
 _data = d;
} // setData(float)

// non member functions

// friendly implementation
ostream& operator<<(ostream& out, Message m) {
 out << “[Id = “ << m._id << ,” “;
 out << “Timestamp = “ << m._timestamp << ,” “;
 out << “Payload = “ << m._payload << “]”;
 return out;
} // ostream& operator<<(ostream&, Message)

// non friendly implementation
bool operator <(Message a, Message b) {

 // Get the private data with the public methods
 int id1 = a.getId();
 int id2 = b.getId();
 long pr1 = a.getTimestamp();
 long pr2 = b.getTimestamp();

 return ((pr1 > pr2) || ((pr1 == pr2) && (id1 > id2))); // a timestamp is bigger than the
second timestamp
} // bool operator <(Message, Message)

bool operator <=(Message a, Message b) {

 125

 // Get the private data with the public methods
 int id1 = a.getId();
 int id2 = b.getId();
 long pr1 = a.getTimestamp();
 long pr2 = b.getTimestamp();

 return ((pr1 >= pr2) && (id1 >= id2));
} // bool operator <=(Message, Message)

bool operator >(Message a, Message b) {

 // Get the private data with the public methods
 int id1 = a.getId();
 int id2 = b.getId();
 long pr1 = a.getTimestamp();
 long pr2 = b.getTimestamp();

 return ((pr1 < pr2) || ((pr1 == pr2) && (id1 < id2)));
} // bool operator >(Message, Message)

bool operator >=(Message a, Message b) {

 // Get the private data with the public methods
 int id1 = a.getId();
 int id2 = b.getId();
 long pr1 = a.getTimestamp();
 long pr2 = b.getTimestamp();

 return ((pr1 <= pr2) && (id1 <= id2));
} // bool operator >=(Message, Message)

bool operator ==(Message a, Message b) {

 // Get the private data with the public methods
 int id1 = a.getId();
 int id2 = b.getId();
 long pr1 = a.getTimestamp();
 long pr2 = b.getTimestamp();

 return ((pr1 == pr2) && (id1 == id2));
} // bool operator ==(Message, Message)

//==
// Author: Man-Tak Shing modified by Nahum Camacho Zamora
// Naval Postgraduate School
// Computer Science Department
// Date: 16 Feb 2013
// File Name: MessageQueue.h
//==

#ifndef MESSAGEQUEUE_H_

 126

#define MESSAGEQUEUE_H_

#include “Message.h”
#include “MaxHeap.h”
#include <iostream>
using namespace std;

// prototypes
template<int maxSize>
class MessageQueue;

template<int maxSize>
ostream& operator<< (ostream& out, MessageQueue<maxSize> q);

// class template
template <int maxSize>
class MessageQueue {
public:
 MessageQueue();
 virtual ~MessageQueue();

 void insert(Message); // add message to queue
 Message remove(); // remove the message with highest priority
 int size(); // return number of jobs in queue

 friend ostream& operator<< <maxSize> (ostream& out, MessageQueue<maxSize> q);

private:
 MaxHeap<Message, maxSize> _queue;
};

// Constructor
template <int maxSize>
MessageQueue<maxSize>::MessageQueue(){

} // MessageQueue()

// Destructor
template <int maxSize>
MessageQueue<maxSize>::~MessageQueue(){

} // ~MessageQueue()

template<int maxSize>
void MessageQueue<maxSize>::insert(Message a){
 _queue.insert(a);
} // insert(Message)

template<int maxSize>
Message MessageQueue<maxSize>::remove(){
 return _queue.removeMax();

 127

} // Message MessageQueue<maxSize>::remove()

template<int maxSize>
int MessageQueue<maxSize>::size(){
 return _queue.size();
} // int MessageQueue<maxSize>::size()

template<int maxSize>
ostream& operator<< (ostream& out, MessageQueue<maxSize> q) {
 return out << q._queue;
} // ostream& operator<< (ostream&, MessageQueue<maxSize>)

#endif /* MESSAGEQUEUE_H_ */

//==
// Author: Man-Tak Shing
// Naval Postgraduate School
// Computer Science Department
// Date: 08 Aug 2013
// File Name: RandGen.h
//==

#pragma once
#ifndef RANDGEN_H_
#define RANDGEN_H_

class RandGen {
private:
 static bool instanceFlag;
 static RandGen *randGenerator;
 RandGen();

public:
 static RandGen* getInstance();

 int next();

 ~RandGen();
};

#endif /* RANDGEN_H_ */

//==
// Author: Man-Tak Shing
// Naval Postgraduate School
// Computer Science Department
// Date: 08 Aug 2013
// File Name: RandGen.cpp
//==

#include “RandGen.h”
#include <stdlib.h>

 128

#include <time.h>
#include <iostream>
using namespace std;

bool RandGen::instanceFlag = false;
RandGen* RandGen::randGenerator = NULL;

//Constructor
RandGen::RandGen() {
 //private constructor
 srand(time(NULL));
}// RandGen::RandGen()

// Destructor
RandGen::~RandGen() {
 instanceFlag = false;
}// RandGen::~RandGen()

int RandGen::next()
{
 return rand();
}// int RandGen::next()

RandGen* RandGen::getInstance() {
 if (!instanceFlag) {
 randGenerator = new RandGen();
 instanceFlag = true;
 return randGenerator;
 } else {
 return randGenerator;
 }
}// RandGen* RandGen::getInstance()

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: SafeGuard.h
//==

#ifndef SAFEGUARD_H_
#define SAFEGUARD_H_

#include <string>
#include <iostream>
#include “MessageQueue.h”
#include “RandGen.h”
#include “IdGenerator.h”
#include “Esad.h”

using namespace std;

 129

class ArmingControl; // to prevent circular dependencies, we declare explicitly the class
ArmingControl
class SafeGuard {
public:

 static SafeGuard* getSafeGuard();
 ~SafeGuard();

 void receive(Message);
 void setTime(long);

 void setArmingControlReference(ArmingControl*); // to prevent circular dependencies

 void notARM();

private:
 SafeGuard();
 static bool SafeGuardFlag;
 static SafeGuard* _sfGrd;

 MessageQueue<50> mesQue;

 IdGenerator* _idg;
 ArmingControl* _armCtrl;
 Esad* _esad;

 long _timestamp;
};

#endif /* SAFEGUARD_H_ */

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 11 Aug 2013
// File Name: SafeGuard.cpp
//==

#include “SafeGuard.h”
#include “ArmingControl.h”
using namespace std;

bool SafeGuard::SafeGuardFlag = false;
SafeGuard* SafeGuard::_sfGrd = NULL; // initialization for the pointer

// Constructor
SafeGuard::SafeGuard()
{
 _idg = IdGenerator::getIdGenerator();
 _esad = Esad::getEsad();
} // SafeGuard()

 130

//Destructor
SafeGuard::~SafeGuard()
{
 SafeGuardFlag = false;
}// ~SafeGuard()

void SafeGuard::setArmingControlReference(ArmingControl* x)
{
 _armCtrl = x;
}//void SafeGuard::setArmingControlReference(ArmingControl* x)

void SafeGuard::receive(Message m)
{
 mesQue.insert(m);
}// void SafeGuard::receive(Message m)

void SafeGuard::setTime(long t)
{
 _timestamp = t;
 bool done;
 done = false;
 while (!done)
 {
 if (mesQue.size() == 0)
 done = true;
 else
 {
 Message temp = mesQue.remove();
 if (temp.getTimestamp() <= _timestamp)
 {
 if (temp.getPayload() == “abort”)
 notARM();
 else
 cout << “Unrecognized payload: “ << temp << endl;
 }else
 {
 mesQue.insert(temp);
 done = true;
 }
 }
 }
}// void SafeGuard::setTime(long)

void SafeGuard::notARM()
{
 // send message notARM to Esad
 Message* temp = new Message(_idg->getId(), _timestamp, “notARM”);
 _esad->receive(*temp);
 Message* temp1 = new Message(_idg->getId(), _timestamp, “abort”);
 _armCtrl->receive(*temp1);

 131

} // void SafeGuard::notARM()

SafeGuard* SafeGuard::getSafeGuard()
{
 // creates the instance of a SafeGuard
 if(!SafeGuardFlag)
 {
 _sfGrd = new SafeGuard();
 SafeGuardFlag = true;
 return _sfGrd;
 }else
 {
 return _sfGrd;
 }
} // SafeGuard* SafeGuard::getSafeGuard()

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 08 Aug 2013
// File Name: TimeGuard.h
//==

#ifndef TIMEGUARD_H_
#define TIMEGUARD_H_

#include <string>
#include <iostream>
#include “MessageQueue.h”
#include “RandGen.h”
#include “IdGenerator.h”
#include “SafeGuard.h”
#include “Logger.h”

using namespace std;

class TimeGuard {
public:

 static TimeGuard* getTimeGuard();
 ~TimeGuard();

 void receive(Message);
 void setTime(long);
 void callSafeGuard();

 bool timecheck();

 void powerOn();
 void endPost();
 void doLaunch();

 132

 void startMotion();
 void endFirstMotionDetection();
 void endSafeSeparation();

private:
 TimeGuard();
 static bool TimeGuardFlag;
 static TimeGuard* _tmGrd;

 MessageQueue<50> mesQue;
 IdGenerator* _idg;
 SafeGuard* _sfGrd;
 Logger* _lgr;

 long _timestamp;
 int _state; /* the different values the variable _state could be: 0. off; 1. powerOn; 2.
endPost; 3. doLaunch; 4. startMotion; 5. endFirstMotionDetection; 6. Terminate*/

 long _endPostDeadline;
 long _endDoLaunchDeadline;
 long _accelDeadline;
 long _endFirstMotionDeadline;
 long _endSafeSeparationDeadline;
};

#endif /* TIMEGUARD_H_ */

//==
// Author: Vasileios Karagiannakis
// Naval Postgraduate School
// Computer Science Department
// Date: 08 Aug 2013
// File Name: TimeGuard.cpp
//==
#include “TimeGuard.h”
using namespace std;

bool TimeGuard::TimeGuardFlag = false;
TimeGuard* TimeGuard::_tmGrd = NULL; // initialization for the pointer

// Constructor
TimeGuard::TimeGuard()
{
 _idg = IdGenerator::getIdGenerator();
 _sfGrd = SafeGuard::getSafeGuard();
 _lgr = Logger::getLogger();

 _state = 0;
} // TimeGuard()

//Destructor
TimeGuard::~TimeGuard()

 133

{
 TimeGuardFlag = false;
}// ~TimeGuard()

void TimeGuard::receive(Message m)
{
 string payload = m.getPayload();
 if (payload == “powerOn” || payload == “endPost” || payload == “invalidPost” ||
payload == “doLaunch” || payload == “startMotion” || payload == “endFirstMotionDetection” ||
payload == “endSafeSeparation”)
 _lgr->logEvent(payload, m.getTimestamp());
 mesQue.insert(m);
 }// void TimeGuard::receive(Message m)

bool TimeGuard::timecheck()
{
 if (_state == 0)
 return true;
 else if(_state == 1 && _timestamp <= _endPostDeadline)
 return true;
 else if (_state == 2 && _timestamp <= _endDoLaunchDeadline)
 return true;
 else if (_state == 3)
 return true;
 else if (_state == 4 && _timestamp <= _endFirstMotionDeadline)
 return true;
 else if (_state == 5 && _timestamp <= _endSafeSeparationDeadline)
 return true;
 else if (_state == 6)
 return true;
 else
 return false;
}// bool TimeGuard::timecheck()

void TimeGuard::setTime(long t)
{
 _timestamp = t;
 bool done;
 done = false;

 if (!timecheck())
 {
 //send message to SafeGuard
 callSafeGuard();
 _state = 6;
 }
 else
 {
 while (!done)
 {
 if (mesQue.size() == 0)
 done = true;

 134

 else
 {
 Message temp = mesQue.remove();
// if the time of the message is less than the time of the TimeGuard’s then it changes its states
 if (temp.getTimestamp() <= _timestamp)
 {
 if (temp.getPayload() == “powerOn”)
 powerOn();
 else if (temp.getPayload() ==
“endPost”)
 endPost();
else if (temp.getPayload() == “invalidPost”)
 callSafeGuard();
 else if (temp.getPayload() ==
“doLaunch”)
 doLaunch();
 else if (temp.getPayload() ==
“startMotion”)
 startMotion();
 else if (temp.getPayload() ==
“endFirstMotionDetection”)
 endFirstMotionDetection();
 else if (temp.getPayload() ==
“endSafeSeparation”)
 endSafeSeparation();
 }else
 {
 mesQue.insert(temp);
 done = true;
 }
 }
 }
 }
} // void TimeGuard::setTime(long t)

void TimeGuard::powerOn()
{
 if (_state == 0)
 {
 _state = 1; // powerOn
 _endPostDeadline = _timestamp + 2 ; //receives message powerOn from
ActuationChannel
 }
}// void TimeGuard::powerOn()

void TimeGuard::endPost()
{
 if (_state == 1)
 {
 _state = 2; // endPost
 // receives message endPost from ArmingControl
 _endDoLaunchDeadline = _timestamp + 2 ;

 135

 }
} // void TimeGuard::endPost()

void TimeGuard::doLaunch()
{
 if (_state == 2)
 {
 _state = 3; // doLaunch
 }
} // void TimeGuard::doLaunch()

void TimeGuard::startMotion()
{
 if (_state == 3)
 {
 _state = 4; // start Motion
 _endFirstMotionDeadline = _timestamp + 4 ;
 _endSafeSeparationDeadline = _timestamp + 6 ;
 }
} // void TimeGuard::startMotion()

void TimeGuard::endFirstMotionDetection()
{
 if (_state == 4)
 {
 _state = 5; // endFirstMotionDetection
 }
} // void TimeGuard::endFirstMotionDetection()

void TimeGuard::endSafeSeparation()
{
 if (_state == 5)
 {
 _state = 6; // enter Terminate State
 }
} // void TimeGuard::endSafeSeparation()

void TimeGuard::callSafeGuard()
{
 Message* temp = new Message(_idg->getId(), _timestamp , “abort”);
 _sfGrd->receive(*temp);
}// void TimeGuard::callSafeGuard()

TimeGuard* TimeGuard::getTimeGuard()
{
 // creates the instance of a TimeGuard
 if(!TimeGuardFlag)
 {
 _tmGrd = new TimeGuard();
 TimeGuardFlag = true;
 return _tmGrd;
 }else

 136

 {
 return _tmGrd;
 }
} // TimeGuard* TimeGuard::getTimeGuard()

 137

THIS PAGE INTENTIONALLY LEFT BLANK

 138

APPENDIX B

We create different test cases that will be implemented as possible environments

for the design of the software which controls the arming of the warhead.

A. TABLES FOR THE SIMULATION CASES ANALYSIS

1. Simulation Cases Analysis for the PowerOn Message

0 in signal means no signal
1 in signal means signal
0 in time means no delay
1 in time means delay over time constrain
Cases powerOn

actChnl
time
powerOn
actChnl

powerOn
tmGrd

time
powerOn
tmGrd

Comments

1 0 0 0 0 No signals / No Simulation
2 0 0 0 1 No signals / No Simulation
3 0 0 1 0 Not realistic for the

TimeGuard / No Simulation
4 0 0 1 1 Not realistic for the

TimeGuard / No Simulation
5 0 1 0 0 No signals / No Simulation
6 0 1 0 1 No signals / No Simulation
7 0 1 1 0 Not realistic for the

Actuation Channel / No
Simulation

8 0 1 1 1 Not realistic for the
Actuation Channel / No
Simulation

9 1 0 0 0 Not realistic for the whole
test without the initialization
of TimeGuard No
Simulation

10 1 0 0 1 Not realistic for the whole
test without the initialization
of TimeGuard No
Simulation

11 1 0 1 0 Ok, case with no errors
12 1 0 1 1 Ok, with timeGuard delay
13 1 1 0 0 Not applicable to powerOn

for the Actuation Channel /
No Simulation

 139

14 1 1 0 1 Not applicable to powerOn
for the Actuation Channel No
Simulation

15 1 1 1 0 Not applicable to powerOn
for the Actuation Channel /
No Simulation

16 1 1 1 1 Not applicable to powerOn
for the Actuation Channel /
No Simulation

Table 1

2. Simulation Cases Analysis for the EndPost Message

0 in signal means POST_Invalid
1 in signal means POST_Valid
0 in time means no delay
1 in time means delay over time constrain
Cases endPost time endPost comments
1 0 0 Invalid endPost, no delay / Ok

2 0 1 Invalid endPost, with time delay / No
Simulation / It can be combined with case 1

3 1 0 Ok, case with no errors
4 1 1 Valid endPost, with timeGuard delay / Ok

Table 2

3. Simulation Cases Analysis for the MakeLaunch Message

0 in signal means no makeLaunch
1 in signal means makeLaunch
0 in time means no delay
1 in time means delay over time constrain
Cases makeLaunch time makeLaunch comments
1 0 0 No makeLaunch , no delay / Ok
2 0 1 Not realistic for the Actuation Channel

/No Simulation
3 1 0 Ok, case with no errors
4 1 1 makeLaunch , with time delay / Ok

Table 3

 140

4. Simulation Cases Analysis for the DoLaunch Message

0 in signal means no doLaunch
1 in signal means doLaunch
0 in time means no delay
1 in time means delay over time constrain
Cases doLaunch time doLaunch comments
1 0 0 Not realistic for the TimeGuard / No

Simulation
2 0 1 Not realistic for the TimeGuard / No

Simulation
3 1 0 Ok, case with no errors
4 1 1 doLaunch , with time delay / Ok

Table 4

5. Simulation Cases Analysis for the ReadAcceleration Message

0 in signal means no readAcceleration (float accel)
1 in signal means readAcceleration (float accel)
0 in time means no delay
1 in time means delay between the acceleration readings over 1 second
Cases readAcceleration

(float accel)
time readAcceleration
(float accel)

comments

1 0 0 No readAcceleration , no delay /
Ok (accelerometer failure to
provide readings)

2 0 1 Not realistic for the Actuation
Channel / No Simulation

3 1 0 Ok, case with no errors
4 1 1 readAcceleration, with time delay

is the same as some cases from
Table 7, in which the messages are
delayed. Thus, both cases are
combined./ No Simulation

Table 5

 141

6. Simulation Cases Analysis for the StartMotion Message

0 in signal means no startMotion
1 in signal means startMotion
0 in time means no delay
1 in time means delay over time constrain
Cases startMotion time startMotion comments
1 0 0 Ok, (accel = 0.0)
2 0 1 Not realistic for the TimeGuard /No

Simulation
3 1 0 Ok, case with no errors
4 1 1 startMotion, with time delay / Ok

Table 6

7. Simulation Cases Analysis for the EndFirstMotionDetection and
EndSafeSeparationDistance Messages

0 in signal means invalid values(not 2 consecutive 6 g’ && not travel distance over 20 m)
1 in signal means valid values
0 in time means no delay
1 in time means delay over time constrain from actuation Channel to Time guard
Cases endFMD time

endFMD
endSSD time

endSSD
comments

1 0 0 0 0 Ok, (no proper
accelerations)-

2 0 0 0 1 Not realistic / No Simulation
3 0 0 1 0 Ok, invalid FMD values but

valid for SSD
4 0 0 1 1 Ok, same accel values as

case 3
5 0 1 0 0 (similar to case 2)/ No

Simulation
6 0 1 0 1 Ok, same values as case 1
7 0 1 1 0 Ok, same accel values as

case 3
8 0 1 1 1 Ok, same accel values as

case 3
9 1 0 0 0 Ok -
10 1 0 0 1 Not realistic / No Simulation
11 1 0 1 0 Ok , case with no errors
12 1 0 1 1 Ok, same values as case 11
13 1 1 0 0 Ok, same accel values as

case 9
14 1 1 0 1 No Simulation/ Can be

 142

combined as case 9
15 1 1 1 0 Ok, same accel values as

case11
16 1 1 1 1 Ok

Table 7

8. Acceleration Values for the Different Scenarios

case A1 A2 A3 A4 A5 A6
1 0.5 1.5 1.5 2.0 2.5 3.0
3 0.5 3.5 4.5 5.5 5.5 6.0
9 0.5 1.5 6.0 6.0 1.5 1.5
11 0.5 3.5 6.0 6.0 7.5 8.0

Table 8

9. Final Table about the number of the Simulation Test Cases

Case studies Active simulation cases
(with combination more
than one failures)

Thesis simulation cases
(At least one to be fault)

powerOn 2 1case OK + 1 case wrong
endPost 3 1case OK + 2 cases wrong
makeLaunch 3 1case OK + 2 cases wrong
doLaunch 2 1case OK +1 case wrong
startMotion 3 1case OK +2 cases wrong
readAcceleration 2(1+1) mutual exclusive with

the endFMD_endSSD
1case OK +1 cases wrong

endFMD_endSSD 12 1case OK +11 cases wrong
Total cases 1404 21

Table 9

B. AGGREGATE LOG FILE TABLE WITH CALCULATION REMARKS

Use
Case

Name of log file Remarks

1. logfile _no_errors Everything operates as supposed to
do

2. logfile _powerOn_tmGrd_timedelay Time delay to TimeGuard to receive
the powerOn message in main()

3. logfile _valid_endPost_timedelay Time delay to Actuation Channel to
send the endPost message to
TimeGuard

 143

4. logfile _ invalid_endPost Change the message that the
ActuationChannel sends to the
ArmingControl

5. logfile _ no_makeLaunch No makeLaunch in main()
6. logfile _ makeLaunch_timedelay Time delay in main() to send the

makeLaunch in ActuationChannel
7. logfile _ doLaunch_timedelay Time delay to Actuation Channel to

send the doLaunch message to
TimeGuard

8. logfile _no_readAcceleration No readAcceleration in main()
9. logfile _ no_startMotion All readAcceleration equal to 0.0 in

main()
10. logfile _ startMotion_timedelay Time delay to Actuation Channel to

send the startMotion message to
TimeGuard

11. logfile _noFMD_noSSD readAcceleration in main() like case
1

12. logfile _noFMD_SSD readAcceleration in main() like case
3

13. logfile _noFMD_SSD_timedelay readAcceleration in main() like case
3 and time delay to actuation
channel to send the message to
TimeGuard

14. logfile _
noFMD_timedelay_noSSD_timedelay

readAcceleration in main() like case
1 and time delay to actuation
channel to send the messages to
TimeGuard

15. logfile _ noFMD_timedelay_SSD readAcceleration in main() like case
3 and time delay to actuation
channel to send the message to
TimeGuard

16. logfile _
noFMD_timedelay_SSD_timedelay

readAcceleration in main() like case
3 and time delay to actuation
channel to send the message to
TimeGuard

17. logfile _FMD_noSSD readAcceleration in main() like case
9

18. logfile _FMD_SSD_timedelay readAcceleration in main() like case
11 and time delay to actuation
channel to send the message to
TimeGuard

19. logfile _ FMD_timedelay_noSSD readAcceleration in main() like case
9 and time delay to actuation
channel to send the message to
TimeGuard

 144

20. logfile _ FMD_timedelay_SSD readAcceleration in main() like case
11 and time delay to actuation
channel to send the message to
TimeGuard

21. logfile _
FMD_timedelay_SSD_timedelay

readAcceleration in main() like case
11 and time delay to actuation
channel to send the messages to
TimeGuard

1. Log files and their Timing Diagrams

• logfile _no_errors

Figure 1

• logfile _powerOn_tmGrd_timedelay

Figure 2

 145

• logfile _valid_endPost_timedelay

Figure 3

• logfile _ invalidPost

Figure 4

 146

• logfile _ no_makeLaunch

Figure 5

• logfile _ makeLaunch_timedelay

Figure 6

 147

• logfile _ doLaunch_timedelay

Figure 7

• logfile _no_readAcceleration

Figure 8

 148

• logfile _ no_startMotion

Figure 9

• logfile _ startMotion_timedelay

Figure 10

 149

• logfile _noFMD_noSSD

Figure 11

• logfile _noFMD_SSD

Figure 12

 150

• logfile _noFMD_SSD_timedelay

Figure 13

• logfile _ noFMD_timedelay_noSSD_timedelay

Figure 14

 151

• logfile _ noFMD_timedelay_SSD

Figure 15

• logfile _ noFMD_timedelay_SSD_timedelay

Figure 16

 152

• logfile _FMD_noSSD

Figure 17

• logfile _FMD_SSD_timedelay

Figure 18

 153

• logfile _ FMD_timedelay_noSSD

Figure 19

• logfile _ FMD_timedelay_SSD

Figure 20

 154

• logfile _ FMD_timedelay_SSD_timedelay

Figure 21

 155

THIS PAGE INTENTIONALLY LEFT BLANK

 156

APPENDIX C

JUnit test cases for the Statecharts assertions’ Validation

A. SOFTWARE SAFETY REQUIREMENT 1: POST

1. Test Case 1: Everything is Correct

package r1_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r1_test1 {
 private r1.R1 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r1.R1();

 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.power_On();
 assertion.incrTime(1);
 assertion.post_Valid();
 assertion.incrTime(2);
 assertTrue(assertion.isSuccess());
 }
}

2. Test Case 2: The Self-Test is Failed

package r1_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r1_test2 {
 private r1.R1 assertion;

 @Before
 157

 public void setUp() throws Exception {
 assertion = new r1.R1();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;}

 @Test
 public void test() {
 assertion.power_On();
 assertion.incrTime(1);
 assertion.postInvalid();
 assertion.incrTime(1);
 assertTrue(assertion.isSuccess());
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

3. Test Case 3: The Self-Test is Passed but the Timer expires

package r1_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r1_test3 {
 private r1.R1 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r1.R1();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;}

 @Test
 public void test() {
 assertion.power_On();
 assertion.incrTime(4);
 assertion.post_Valid();
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());

}
}

 158

B. SOFTWARE SAFETY REQUIREMENT 2: LAUNCH INDICATE

1. Test Case 1: Everything is Correct

package r2_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r2_test1 {

 private r2.R2 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r2.R2();

 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.powerOn();
 assertion.incrTime(3);
 assertion.doLaunch();
 assertTrue(assertion.isSuccess());
 }
}

2. Test Case 2: The Timer expires, before the DoLaunch Signal is
received

package r2_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r2_test2 {

 private r2.R2 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r2.R2();

 159

 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.powerOn();
 assertion.incrTime(5);
 assertion.doLaunch();
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

3. Test Case 3: There is not DoLaunch Signal

package r2_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r2_test3 {

 private r2.R2 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r2.R2();

 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.powerOn();
 assertion.incrTime(5);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

 160

C. SOFTWARE SAFETY REQUIREMENT 3: FIRST MOTION DETECTION

1. Test Case 1: Everything is Correct

package r3_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r3_test1 {
 private r3.R3 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r3.R3();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)3.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.5);
 assertTrue(assertion.isSuccess());
 }
}

2. Test Case 2: There is no Acceleration Value over 6 g’s

package r3_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r3_test2 {
 private r3.R3 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r3.R3();
 161

 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)2.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)3.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)4.5);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

3. Test Case 3: Only one Acceleration Value is over 6 g’s before the
Timer expires

package r3_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r3_test3 {
 private r3.R3 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r3.R3();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)1.5);
 assertion.incrTime(1);

 162

 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)3.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)4.5);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

4. Test Case 4: The two Signals EndFirstMotionDetection and
EndSafeSeparation are Received at the Same Time from the
TimeGuard

The acceleration contain the proper values to fulfill the SSR but there are

time delays and (violates the time requirement for the SSR3 because the

endFirstMotionDetection has to be within 4 sec after the startMotion event)
package r3_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r3_test4 {
 private r3.R3 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r3.R3();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)1.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);

 163

 assertion.readAcceleration((float)7.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)8.0);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

5. Test Case 5: The Acceleration Contain the Proper values but there
are Time Delays and the Timer expires

package r3_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r3_test5 {
 private r3.R3 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r3.R3();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(2);
 assertion.readAcceleration((float)1.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(2);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

 164

D. SOFTWARE SAFETY REQUIREMENT 4: SAFE SEPARATION

1. Test Case 1: Everything is Correct

package r4_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r4_test1 {
 private r4.R4 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r4.R4();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)1.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)7.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)8.5);
 assertion.incrTime(1);
 assertTrue(assertion.isSuccess());
 }
}

2. Test Case 2: The Values are Correct but There Are Time Delays and
the Timer Expires

package r4_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

 165

public class r4_test2 {
 private r4.R4 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r4.R4();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(3);
 assertion.readAcceleration((float)1.5);
 assertion.incrTime(2);
 assertion.readAcceleration((float)2.5);
 assertion.incrTime(2);
 assertion.readAcceleration((float)3.5);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

3. Test Case 3: The Calculated Distance Does Not Reach the Minimum
Value of 20 Meters Due To Acceleration Values

package r4_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r4_test3 {
 private r4.R4 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r4.R4();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 166

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)1.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

4. Test Case 4: The Two Signals EndFirstMotionDetection and
EndSafeSeparation are Received at the Same Time from the
TimeGuard

package r4_validation;
import static org.junit.Assert.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class r4_test4 {
 private r4.R4 assertion;

 @Before
 public void setUp() throws Exception {
 assertion = new r4.R4();
 }

 @After
 public void tearDown() throws Exception {
 assertion = null;
 }

 @Test
 public void test() {
 assertion.startMotion();
 assertion.incrTime(1);
 assertion.readAcceleration((float)0.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)1.0);
 167

 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)6.0);
 assertion.incrTime(1);
 assertion.readAcceleration((float)7.5);
 assertion.incrTime(1);
 assertion.readAcceleration((float)8.0);
 assertion.incrTime(1);
 assertion.arm();
 assertFalse(assertion.isSuccess());
 }
}

 168

LIST OF REFERENCES

[1] H. Petroski, To Engineer is Human: The Role of Failure in Successful Design,
New York: Vintage Books, 1992.

[2] N. Storey, Safety Critical Computer Systems, Boston: Addison-Wesley Longman
Publishing Co., 1996.

[3] N.G. Leveson, Safeware, System Safety and Computers, Boston: Addison-Wesley
Longman Publishing Co., 1995.

[4] R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture, Foundations,
Theory and Practice, Hoboken, NJ: John Wiley & Sons, 2009.

[5] Military Standard 882E Standard Practice For System Safety, MIL-STD- 882E,
2012.

[6] W. Wu and T. Kelly, “Safety tactics for software architecture design,” in
Proc.28th Annu. Int. Computer Software Conf., 2004, pp.368‒375.

[7] W. Wu and T. Kelly, “Failure modeling in software architecture design for
safety,” in Proc. Workshop on Architecting Dependable Systems, 2005, New
York, NY, pp. 1–7.

[8] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, D.S. Rosenblum, A.L. Wolf, “An architecture-based
approach to self-adaptive software,” IEEE Intell. Syst., vol.14, 1999, pp. 54–62.

[9] J. Pumfrey, P. Fenelon, J.A. McDermid, M. Nicholson, “Towards integrated
safety analysis and design,” ACM Computing Reviews, vol. 2, no. 1, 1994, pp. 21–
32.

[10] “List of Software Bugs.” [Online]. Available:
http://en.wikipedia.org/wiki/List_of_software_bugs

[11] M. Clarke and J. M. Wing, “Formal methods: State of the art and future
directions,” ACM Computing Surveys, vol. 28, no. 4, 1996.

[12] National Aeronautics and Space Administration, NASA Software Safety
Guidebook, NASA-GB-8719.13, 2004.

[13] Weapons and Systems Engineering Department, Fundamentals of Naval Weapons
Systems, United States Naval Academy, url: http://www.fas.org/man/dod-
101/navy/docs/fun/index.html.

 169

[14] Department of Defense, Design Criteria Standard 1316E, Safety Criteria for Fuse
Design, MIL-STD-1316E, 1998.

[15] Prof. Michael’s slides from the course SW4582: Weapon Systems Software
Safety, Module 2, Part 3, Slide 10, Jan 2010.

[16] M. W. Maier and E. Rechtin, The Art of Systems Architecting 3rd ed., Danvers,
MA: CRC Press Taylor & Francis Group, 2009.

[17] B.P. Douglass, Doing Hard Time: Developing Real-time Systems with UML,
Objects, Framework and Pattern. New York: Addison-Wesley Longman
Publishing, 1999.

[18] A. Armoush, F. Salewski and S. Kowalewski, “Design pattern representation for
safety-critical embedded systems,” Journal of Software Engineering and
Applications, vol. 2, no. 1, 2009, pp. 1–12.

[19] E.J. Braude, Software Design from Programming to Architecture, Hoboken, NJ:
John Wiley & Sons, 2004.

[20] C. Bonine, M. Shing, T.W. Otani, “Computer-aided process and tools for mobile
software acquisition,” NPS, Monterey, CA, Tech. Rep. NPS-SE-13-C10P07R05–
075, 2013.

[21] C. Bonine, “Specification, validation and verification of mobile application
behavior,” M.S. thesis, Dept. Comp. Science, NPS, Monterey, CA, 2013.

[22] D. Harel, “Statecharts: A visual approach to complex systems,” Science of
Computer Programming, vol. 8, no. 3, 1987, pp. 231–274.

[23] M. Shing and D. Drusinsky, “Architectural design, behavior modeling and run-
yime verification of network embedded systems,” in Proc. of the 12th Conference
on Reliable Systems on Unreliable Networked Platforms, Monterey, 2005, pp.
281–303.

 170

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

 171

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTIOΝ
	A. Overview
	B. Research Questions
	C. Methodology
	D. Organization

	II. SAFETY-CRITICAL SOFTWARE
	A. INTRODUCTION
	B. EXAMPLES OF MISHAPS
	C. DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE
	1. Software Behavioral Modeling
	2. Software Architecture
	3. Software Hazard Analysis
	4. Formal Methods

	D. THE NATURE OF FAILURE
	E. HAZARD ANALYSIS TECNHIQUES AND MODES
	1. Fault Tree Analysis (FTA)
	2. Failure Modes and Effects Analysis (FMEA)
	3. Failure Modes, Effects and Criticality Analysis (FMECA)
	4. HAZard and Operability Studies (HAZOP)
	5. Event Tree Analysis (ETA)
	a. Preliminary Hazard List (PHL)
	b. Preliminary Hazard Analysis (PHA)
	c. System Hazard Analysis (SHA) and its Branch Software System Hazard Analysis (SSHA)
	d. Component SHA and Component SSHA
	e. Operating and Support Hazard Analysis (O&SHA)

	F. SAFETY TACTICS AND PATTERNS
	1. Architectural-pattern Viewpoint
	2. Failure Modeling Viewpoint

	G. EXAMPLE OF SAFETY ARCHITECTURAL PATTERN
	H. SUMMARY

	III. ANALYSIS OF SOFTWARE SAFETY REQUIREMENTS
	A. Introduction
	B. Sample Safety-Critical System – A Surface-to-Air Missile SMK
	1. Context Model
	a. Stakeholder Statement of Operational Need
	b. Projected Operational Environment (POE)
	c. Mission Success Requirements
	d. Operational Concept/Scenario

	2. Physical Model
	a. Guidance Section (GS)
	b. Warhead Section (WS)
	c. Control Section (CS)
	d. Propulsion Section (PS)
	e. Steering Section (SS)

	3. Operational Overview

	C. Implementation of Hazard Analysis for SMK
	1. Preliminary Hazard List (PHL)
	2. Preliminary Hazard Analysis (PHA)
	3. System Hazard Analysis and Software System Hazard Analysis
	4. Software Safety Requirements
	a. Software Safety Requirement 1 POST (Power-On Self-Test)
	b. Software Safety Requirement 2 Launch Indicate
	c. Software Safety Requirement 3 First Motion Detection (FMD)
	d. Software Safety Requirement 4 Safe Separation Distance (SSD)

	IV. SOFTWARE ARCHITECTURE FOR SAFETY-CRITICAL SYSTEMS
	A. Introduction
	B. Architecture-Based Patterns
	C. Safety Patterns
	D. A Safety Kernel for SMK’s Warhead
	1. Use Case 1: Valid Launching
	2. Use Case 2: Restrained Firing

	E. Simulation
	1. Supporting Classes
	a. Message
	b. MessageQueue

	2. Main Function and Simulated Missile’s Components
	a. Main Function/Simulation Environment
	b. Actuation Channel
	c. Arming Control
	d. TimeGuard
	e. SafeGuard
	f. Esad
	g. Logger

	3. Test Scenarios for the Simulation

	V. FORMAL V&V OF SOFTWARE SAFETY REQUIREMENTS AND ARCHITECTURE
	A. Introduction
	B. Software Safety Requirements Specification and Validation
	1. SSR 1
	2. SSR 2
	3. SSR 3
	4. SSR 4

	C. Architecture Verification

	VI. Conclusion AND Future Work
	A. Summary
	B. Lessons Learned
	C. Future Work

	Appendix A
	Appendix B
	A. Tables for the Simulation Cases Analysis
	1. Simulation Cases Analysis for the PowerOn Message
	2. Simulation Cases Analysis for the EndPost Message
	3. Simulation Cases Analysis for the MakeLaunch Message
	4. Simulation Cases Analysis for the DoLaunch Message
	5. Simulation Cases Analysis for the ReadAcceleration Message
	6. Simulation Cases Analysis for the StartMotion Message
	7. Simulation Cases Analysis for the EndFirstMotionDetection and EndSafeSeparationDistance Messages
	8. Acceleration Values for the Different Scenarios
	9. Final Table about the number of the Simulation Test Cases

	B. Aggregate Log File Table with calculation remarks
	1. Log files and their Timing Diagrams

	Appendix C
	A. Software Safety Requirement 1: POST
	1. Test Case 1: Everything is Correct
	2. Test Case 2: The Self-Test is Failed
	3. Test Case 3: The Self-Test is Passed but the Timer expires

	B. Software Safety requirement 2: Launch Indicate
	1. Test Case 1: Everything is Correct
	2. Test Case 2: The Timer expires, before the DoLaunch Signal is received
	3. Test Case 3: There is not DoLaunch Signal

	C. Software Safety requirement 3: First Motion Detection
	1. Test Case 1: Everything is Correct
	2. Test Case 2: There is no Acceleration Value over 6 g’s
	3. Test Case 3: Only one Acceleration Value is over 6 g’s before the Timer expires
	4. Test Case 4: The two Signals EndFirstMotionDetection and EndSafeSeparation are Received at the Same Time from the TimeGuard
	5. Test Case 5: The Acceleration Contain the Proper values but there are Time Delays and the Timer expires

	D. Software Safety requirement 4: Safe Separation
	1. Test Case 1: Everything is Correct
	2. Test Case 2: The Values are Correct but There Are Time Delays and the Timer Expires
	3. Test Case 3: The Calculated Distance Does Not Reach the Minimum Value of 20 Meters Due To Acceleration Values
	4. Test Case 4: The Two Signals EndFirstMotionDetection and EndSafeSeparation are Received at the Same Time from the TimeGuard

	List of References
	Initial Distribution List

