

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2012 2. REPORT TYPE

3. DATES COVERED
 00-03-2012 to 00-04-2012

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 25,
Number 2. March/April 2012

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave Bldg 1238,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—March/April 2012

SECURING A MOBILE WORLD CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Advisor Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Tracy Stauder
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF);
and the U.S. Department of Homeland Defense (DHS). USN
co-sponsor: Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National Cyber Security
Division in the National Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

iPhone Malware Paradigm
The sphere of malware attacks is expanding to engulf the compact world of
smartphones.
by Aditya K. Sood and Richard J. Enbody

A Practical Approach to Securing and Managing Smart Devices
A 10-step plan to manage what is proving to be the weakest link in most organi-
zations’ security programs—smart devices like iPads, iPhones and Android phones.
by Sajay Rai, Philip Chukwuma and Richard Cozart

Mobile Applications Security:
Safeguarding Data in a Mobile Device World
With the proliferation of mobile devices in today’s information-rich environment,
the security of data at rest on the device and in transit will determine the ultimate
usability of mobile devices in the defense environment.
by Sean C. Mitchem, Sandra G. Dykes, Ph.D., Stephen W. Cook,
and John G. Whipple

Engaging the Community:
Strategies for Software Assurance Curricula Outreach
Engaging a knowledgeable team of educators to develop curricula, courses, and
other materials for the discipline of software assurance will achieve more secure
and better functioning software systems, regardless of their origins, application
domain, or operational environments.
by Carol A. Sledge, Ph.D

The PC Evolution and Diaspora
A study of the evolution and diaspora of the PC using Innovation Diffusion Tech-
nology as a framework to categorized it from multiple perspectives.
by James A. Sena, Ph.D.

New ISO/IEC Technical Report Describes Vulnerabilities
in Programming Languages
A recent joint technical report from two major international standards bodies
identifies classes of vulnerabilities in programming languages.
by James W. Moore, John Benito, and Larry Wagoner

Supply Chain Risk Management:
Understanding Vulnerabilities in Code You Buy, Build, or Integrate
Managing software risk in the supply chain is in large part about discovering and
understanding the vulnerabilities that might exist in code that you might buy as
standalone applications or integrate into other systems or products.
by Paul R. Croll

9
4

12

18

22
27

31

Securing a Mobile World

Departments

Cover Design by
Kent Bingham

	 3	 From the Sponsor

	38	 Upcoming Events

	39	 BackTalk

CrossTalk—March/April 2012 3

 FROM THE SPONSOR

CrossTalk
would like to
thank DHS for
sponsoring
this issue.

Security
While On
the Move

The increasing convenience and ubiquity of mobile
computing and smart personal communication devices
presents an irresistible target for malicious actors. The rush to
provide applications means few are tested to detect, analyze,
and remediate weaknesses. Public Wi-Fi networks can also
provide a vulnerable entry point to our mobile device informa-
tion systems. As a result, hackers are able to quickly exploit
software on smartphones.

The challenge of securing the mobile world is complex and
therefore requires multi-disciplinary solutions. The security
models currently provided by major mobile providers are not
sufficient to meet the information protection needs of civil-
ian and defense agencies. Application developers, network
administrators, and incident responders need to collaborate to
address mobile computing risk. To be effective, this collabora-
tion requires rapid sharing of standardized threat and vulner-
ability information so public and private stakeholders can act
quickly to mitigate risks to their operations and activities.

Fortunately, much of what we already know and do in
cybersecurity applies to the mobile world and the challenge
of securing it. Consistency in the identification and interpreta-
tion of software weaknesses, attack patterns, and malware
data is essential for quick and efficient information sharing.
DHS sponsors programs that help standardize such data,
thus allowing companies and organizations to collect, store,
and define it in compatible formats. By promoting common
data taxonomies and methodologies for storing, indexing, and

interpreting malware samples, DHS is driving towards seam-
less diagnosis and remediation of exploitable software across
the various mobile platforms. These are necessary conditions
for near real-time situational awareness of vulnerabilities and
malware. However, collaboration should not end with remedia-
tion of malware. DHS envisions an environment that grants
public and private sector owners and operators of information
technology systems access to an entire range of security au-
tomation tools and capabilities, including software assurance
education materials and security-content authoring services.

The public and private sectors occupy equally important—
and equally informed—roles within their particular area of
cybersecurity expertise. Rapid, bidirectional information shar-
ing ensures that both sectors are able to bridge the critical
information gap between what they know and do not know.
Cutting through these knowledge gaps ultimately facilitates
the real-time situational awareness necessary to defend cy-
berspace. Together, we can develop a trustworthy, sustainable,
and flexible information-sharing environment that effectively
secures our Nation’s cyberspace—including the ever-growing
mobile domain.

Roberta “Bobbie” Stempfley
Deputy Assistant Secretary
Office of Cybersecurity and Communications
Department of Homeland Security

SECURING A MOBILE WORLD

4 CrossTalk—March/April 2012

Abstract. The sphere of malware attacks is expanding to engulf
the compact world of smartphones. This paper sheds light on
exploitation tactics used by malware writers in designing iPhone
applications that exploit the integrity of the victim’s phone. Our
interest is in the harder problem of malware on iPhones that are
not jailbroken.

Introduction
Malware has begun infecting the mobile world. Several studies

[1, 2] have been conducted showing how mobile malware is ex-
ploiting the online world. Android malware infections are explod-
ing as compared to iPhone. The primary reason is that Android is
an open source platform where as iPhone’s iOS is closed.
Our target is to discuss the potential possibilities of malware
occurrence in iPhone devices. In spite of the iPhone’s strong
security platform, malware is making inroads. However, success-
ful iPhone exploitation depends on several factors. As we know,
Apple has implemented several security barricades in order to
secure the iPhone environment aided by tight control of their app
market. Apple considers iPhones marginalized by the jailbreaking
process as unsecure since all the inherent protection mecha-
nisms have been circumvented by the attacker.

Is it possible to write a malicious application that may not
exploit security vulnerability, but can still perform some spyware
activity? The answer is yes. This is possible in certain scenarios
where a malicious application can be designed to bypass
Apple’s application review process to execute illegitimate opera-
tions on an user’s iPhone. In this paper, we discuss practical
scenarios and effective techniques that can be used to host
malicious applications on non-jailbroken Apple iPhones.

Understanding Apple’s iPhone Applied
Security Model

Apple enforces strict security features in order to protect the
integrity of iOS. Its security model has the following features:

• With the advent of iOS 4, Apple introduced a new data pro-
tection procedure in which stored data is secured using hard-
ware encryption. The device stores the user passcode key on an
internal chip using 256-bit encryption. The Unique ID (UID) of
the devices is used as a key to encrypt a file on iPhone.

• The iOS environment is divided into two main partitions. Similar
to UNIX, the root partition manages the kernel and base OS. The
user partition contains third-party applications and data. All applica-
tions run in a user mode with a standard set of access rights and
built-in restrictions. The iOS system-level binaries are related to
OS X and Darwin. In order to preserve the integrity of applications,
Apple implements a code signing process [8]. The code signature
consists of three parts. First, the signature consists of a UID that
is present in the info.plist files under CFBundleIdentifier structure.
Second, it requires a seal that is built from hashes and checksums
of various files and other components of the application bundle.
Third, it requires a digital signature. All the signatures are stored
in the MACH-O header format. Code signing code verification is
implemented in a kernel level using the execv () command.

• Third-party applications running on iOS are sandboxed [9].
This concept is implemented to force privilege separation among
different components in iOS. It means that third-party applica-
tions are not able to run code at kernel level—a secure practice to
avoid exploitation of privileges. The application sandbox is imple-
mented using three techniques. First, entitlements which decide
the functionality of the application. Second, containers that provide
an application directory for supplying read/write operations. Third,
powerbox which provides a secure way to open and handle dialog
boxes. Together these three methods collaboratively form the appli-
cation sandbox. Of greatest interest to malware writers, third-party
applications are not allowed to interact with kernel-level extensions.

iPhone
Malware
Paradigm
Aditya K. Sood, Michigan State University
Richard J. Enbody, Ph.D., Michigan State University

CrossTalk—March/April 2012 5

SECURING A MOBILE WORLD

Anatomy of Jailbreaking
For completeness, let us take a brief look at jailbreaking.

This attack exploits vulnerabilities in browser, plugin, and iOS
components to take control of a victim’s iOS device. As a result,
jailbreaking [3, 4] culminates in a complete compromise of the
iOS device. It primarily uses security vulnerabilities that provide
root control of the device. Once the vulnerability is exploited, the
attacker is able to run his native code and turn the victim’s iOS
device into a weapon. Jailbreaking also deploys code signing
bypass mechanisms [5] in order to install open source packages
such as Cydia [6]. It is also possible to spread malware after
jailbreaking. In 2009, a default SSH password vulnerability was
exploited on jailbroken iPhones to propagate the iKee [7] worm
and its variants.

iPhone Malware—Exploitation Model
A malware infection in an iPhone can be categorized into

three distinct classes:
• The first class of malware results from exploitation of

security vulnerabilities to get root-level access. Jailbreaking falls
into this category. Once rooted, attackers can start services on
the iPhone to turn into a malicious entity for spreading malware.
In this case, the attacker has to target a specific set of victims.
It is difficult because it becomes an action by choice whether
the user wants to jailbreak his or her iPhone or not. As a result,
attackers force the user to visit a malicious domain using social
media tricks to download the malicious code. In a real-time
environment, it is hard to spread this class of malware on a large
scale as there is a trust layer that Apple provides its users by
having applications hosted on Apple’s online store. The malware
exploits the root privileges as the kernel is already compromised
after the exploitation of the security vulnerability. iPhone rootkits
[10] are also classified into this class. For example, the Dutch
iPhone ransomware [11] belongs to this category of malware.

• The second class of malware exploits the default security
model of Apple. This is basically exploited by spyware applica-
tions that look legitimate and bypass Apple’s App Store verifica-
tion process. Once in the App Store, infection is easier as the
malicious application can be easily disseminated to a number
of iOS users. The malicious application might not be able to
compromise the kernel as it runs in the sandbox, but it can
definitely steal users’ sensitive information, history, address book
contacts, and so on. This class of malware is a classic example
of iPhone spyware that exploits the trust boundary between the
user and App Store. For example, SpyPhone [12, 13] falls into
this category of malware.

• The third type of malware is a hybrid of both classes of
malware discussed above. Hybrid malware is triggered through
a generic application that is hosted on the App Store. When
a user downloads it, at first it looks legitimate but behind the
scenes it starts sending texts to the phone numbers listed in the
contacts directory of the victim’s iPhone. The text itself carries
a link to a malicious website that serves a jailbreaking code.
Drive-by download attacks are used extensively for spreading
this class of malware. For example, iSAM [14] is a hybrid class
of iPhone malware.

The lifecycle of mobile malware is presented in Figure 1.

Inside the Apple Kill Switch—
Remotely Deactivating Applications

iOS has the built-in protection of a kill switch [15, 16] that en-
ables Apple to kill a malicious application that does not comply
with its policies. Applications installed on the iPhone regularly
correspond back to the App Store to provide updates about the
state of the device. Apple uses blacklisting with a list of applica-
tions that are malicious and should be turned off remotely. It is
kept in the “unauthorzeapps” file on an Apple server. We per-
formed a quick check on a required URL in order to see which
applications are blacklisted. Figure 2 shows that currently there
are no applications marked as unauthorized.

Mobile User

Attacker or
Malicious
Developer

Application
Store or Public

Repository

Attacker uploads malicious
application in the Application Store
by suing stealth coding techniques

Mobile user downloads the
application which is linked to

malicious domain serving exploit

Malicious
Domain

Malicious application initiates a
connection back to the malicious

domain

Malicious domain sends exploit for
Jailbreaking and spying operations

Attacker controls the infected
mobile and administers it remotely

Attacker manages the malicious
domain and update exploits

1

2

3

4

5
6

Figure 1: Lifecycle of Mobile Malware

Figure 2: Blacklisted—Unauthorized Apps Check

This functionality is distinct from removing the applications from
the App Store because this procedure is designed to deactivate
rogue applications remotely. It seems like Apple usually removes
the application directly from the App Store. However, the remote
deactivation process exists as a proactive defense.

6 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

App Store Application Review—Dependencies and Reality
There are not many details available about Apple’s app review

procedures. However, based on a developer’s view some details
can be deduced. Some of the procedures implemented by the
App Store are as follows:

• The App Store strictly requires a developer to be enrolled
in the Apple’s iPhone Developer program [19]. In order to get
the approval, the developer has to submit a binary and not the
source code, which in turn means that detailed source code
analysis is not a part of the verification process. The App Store
usually checks for user interface inconsistencies, private API
calls and malware. However, malware scrutiny depends on the
malware exploitation model mentioned earlier. It is hard to infer
details of the Apple application review process, but dynamic and
static analysis (pattern matching) are thought to be a part of
the process. Given what we know about the review process, it is
possible that stealthy programming techniques may be able to
circumvent the detection modules.

• The Apple iPhone Licensing Agreement [20] requires a
developer not to perform reverse engineering tactics on the
applications hosted on the App Store and software developer kit
components. Based on this fact, it seems reasonable to assume
that Apple itself is following this practice and is not performing
reverse engineering on submitted applications. In practice, it is
not feasible to reverse engineer the thousands of applications
submitted on a weekly basis.

• Most mobile malware aims to steal a user’s data at the appli-
cation layer. In spite of Apple’s restrictive policies, default access
to user data is available to any application running on an iPhone.
The sandboxed environment prevents applications from interact-

ing with each other but a malicious application can subvert the
trust boundary of another application. In addition, the sandbox
facilitates the process of preventing the background activities
that are possible in jailbroken iPhones. Listing 1 shows the dif-
ferent set of sandbox profiles [22] available.

• Malicious applications have been hosted in the App Store in
the past. For example, Aurora Feint [17] was considered mali-
cious because the application uploaded users’ contacts to the
developer’s server which is a straightforward breach of privacy.
Another example is Pinch Media [18] that followed the same
practices of breaching privacy.

Obfuscation—Bypassing Blacklisting
Obfuscation can be useful for legitimate developers as well

as for malware writers. Obfuscation is used to prevent the
exposure of API functionality. For example, best practices sug-
gest avoiding the embedding of hard-coded credentials in the
application. However, developers sometimes hide keys in the
code using obfuscation or store credentials on a webserver and
rewrite queries after verification. That is, developers implement
obfuscation modules for security purposes. Such code needs to
pass security testing. Apple requires the application to be robust
in nature. As long as the iPhone application is stable and does
not crash, the App Store easily accepts an application having
obfuscated modules.

While obfuscation is used by legitimate developers to prevent
information leakage, a malware writer can use obfuscation to
bypass the App Store verification process.

Most of the static analysis tools use blacklisting in which a cer-
tain set of strings are blacklisted. When the scanner runs the appli-
cation code it matches blacklist patterns using regular expressions.
Knowing this, it is possible to bypass the static analysis tool using
obfuscation. Let us consider an example; In iPhone applications,
strings are declared as NSString [21] which are immutable and
represented as an array of Unicode characters. Listing 2 shows a
prototype of implementing obfuscation using NSString object.

It is possible to obfuscate the strings in an iPhone applica-
tion and then deobfuscate them at run time. There are many
algorithms to perform this functionality. However, the XOR
operation is an effective way of obfuscating strings. Generally,
the following steps can result in implementation of obfuscated
code in iPhone applications:

• The first step is to create a data object from the required string.
• The second step involves the declaration of pointers to the

data and encryption key to be obfuscated.
• The third step involves the implementation of counter that

runs through every character in a string and embeds a key using
the XOR operation.

Code Hiding in Objective-C and Symbols Stripping
Apple is very strict in its review policy about using private

API functions that are not documented because these hidden
methods can be used by malware. Generally, applications using
private API functions are rejected by the App Store. Objective-C
does not provide support for private methods, but it is still pos-
sible to write methods that hide malicious code. Below are the
two most widely implemented steps:

• Objective-C has a dynamic resolution feature in which a
method is bound during compile time. The attacker can define a

kSBXProfileNoNetwork	
 (=	
 "nonet")	
 	

kSBXProfileNoInternet	
 (=	
 "nointernet")	
 	

kSBXProfilePureComputation	
 (=	
 "pure-­‐computation")	
 	

kSBXProfileNoWriteExceptTemporary	
 (=	
 "write-­‐tmp-­‐only")	
 	

kSBXProfileNoWrite	
 (=	
 "nowrite")	
 	

	

Listing 1: Sandbox profiles

	

(NSString	
 *)obfuscate_code:(NSString	
 *)string	
 withKey:(NSString	
 *)	

key	
 {	

	
 	
 //	
 Create	
 data	
 object	
 from	
 the	
 string	

NSData	
 *data	
 =	
 [string	
 dataUsingEncoding:NSUTF8StringEncoding];	

char	
 *code_ptr	
 =	
 (char	
 *)	
 [raw_data	
 bytes];	

	

//	
 Mapping	
 the	
 pointer	
 to	
 key	
 data	

char	
 *k_data	
 =	
 (char	
 *)	
 [[key	
 dataUsingEncoding:NSUTF8StringEncoding]	
 bytes];	

char	
 *key_ptr	
 =	
 k_data;	

int	
 key_index	
 =	
 0;	

	

//	
 For	
 each	
 character	
 in	
 data,	
 xor	
 with	
 current	
 value	
 in	
 key	

for	
 (int	
 x	
 =	
 0;	
 x	
 <	
 [raw_data	
 length];	
 x++)	
 {	

	
 	

//	
 Apply	
 XOR	
 operation	
 on	
 every	
 character	

	
 *code_ptr	
 =	
 *code_ptr++	
 ^	
 *key_ptr++;	
 	

	
 if	
 (++key_index	
 ==	
 [key_length])	
 key_index	
 =	
 0,	
 key_ptr	
 =	
 k_data;	
 }	

	
 	
 return	
 [[[NSString	
 alloc]	
 initWithData:data	
 encoding:NSUTF8StringEncoding]	
 autorelease];}	

	

Listing 2: Obfuscation using NSString Object

CrossTalk—March/April 2012 7

SECURING A MOBILE WORLD

secret function whose signature matches Objective-C imple-
mentation. The secret function is declared in the class method.
When that method gets called for the first time, the malicious
code is bound to the class privately. This type of procedure is
used to circumvent code detection using a tool such as Class-
Dump. Listing 3 shows a code prototype that uses dynamic
method resolution.

However, a skilled analyst may be able to figure out the
presence of stealth code. For example, running Otool on a
particular method results in the list of selectors that are used by
the respective method. However, it is possible to obfuscate the
method by generating selectors at run time using “NSSelector-
FromString()” functions.

• In Objective-C, it is also possible to create functions that
work similarly to instance methods. It means functions can
access instance variables easily. These types of functions
should be defined in the class implementation. It is not a normal
way of doing things, but the desired method never appears in
the Objective-C run time which hampers verification. Listing
4 shows the declaration of malicious function hide_me with
instance variables. The function hide_me does not have its own
selector rather it uses the selector of stealth instance (public)
method defined in the class.

The two methods discussed provide a way to design code
which can hide from tools that examine code so they can be
accepted by the App Store.

Additionally, stripping is a technique used in UNIX platforms
to remove unnecessary information from a binary and object
files to improve performance. A malicious developer can use
stripping to remove information prior to submission of an ap-
plication binary to the App Store. Doing so removes clues that
might indicate the malicious nature of the code.

Exploiting the Remote Server End Points
Generally, all iPhone applications communicate back with a

webserver (HTTP End Point) in order to exchange data between
the application and the server on a regular basis. It is possible
for malware to exploit the HTTP end point mechanism. At the
time of verification, Apple performs a behavioral analysis of the
application and scrutinizes the communication pattern. At the
time of submission, the attacker can make the HTTP end point
legitimate and once approved by Apple, the same HTTP end
point can be used to serve the exploit code which is download-
ed into the victim’s phone when the application interacts with a
remote server. For example: consider the following scenario:

•	 Attacker writes an application that interacts with a
remote server on the URL <http://www.mal-app-test.com/error.
asp >. The error.asp webpage validates the resource and if that
resource is not present then it raises an error.

•	 During the verification process, Apple finds it legiti-
mate and the application is treated as good enough to host on
the App Store.

•	 Once the application is hosted, it is possible to ma-
nipulate the “error.asp” webpage to deliver exploit code that is
downloaded into the device and performs malicious functions.

This is a legitimate scenario that can be exploited to trigger
malware infections in an iPhone.

	

	

//	
 Setting	
 a	
 Class	
 Interface	
 as	
 	
 Secret	

@interface	
 Secret	
 ()	

//	
 secret	
 function	
 is	
 defined	
 in	
 the	
 class	
 method	

void	
 hide_me(id	
 self,	
 SEL	
 _command);	

@end	

	

//	
 Implementing	
 Class	

@implementation	
 Secret	

@synthesize	
 handle;	

	

//	
 Selecting	
 hide_me	
 secret	
 function	
 and	
 binding	
 into	
 the	
 class	
 method	

+	
 (BOOL)resolveInstanceMethod:	
 (SEL)aSel	
 {	

	
 	
 	
 	
 if	
 (aSel	
 ==	
 @selector(hide_me))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 class_addMethod(self,	
 aSel,	
 (IMP)hide_me,	
 "v@:");	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 YES;	

	
 	
 	
 	
 }	

	
 	
 	
 	
 return	
 [super	
 resolveInstanceMethod:	
 aSel];	

}	

	

//	
 This	
 is	
 an	
 Instance	
 Method	
 holding	
 a	
 reference	
 to	
 hide_me	

-­‐	
 (void)stealth	
 {[self	
 hide_me];}	

	
 	
 	
 	
 void	
 hide_me(id	
 self,	
 SEL	
 _command)	
 {	

	
 	
 	
 	
 HIDE(@"Inside	
 hide_me:	
 %d",	
 (LMethod	
 *)self)-­‐>handle);	

}	

@end	

	
 	

//Class	
 Dump	
 Output	

@interface	
 Secret	
 :	
 NSObject	
 {	
 int	
 handle;	
 }	

	

//	
 Tool	
 does	
 not	
 provide	
 information	
 about	
 hide_me	
 after	
 static	
 discovery	
 of	
 Class	
 Method	

+	
 (BOOL)resolveInstanceMethod:(SEL)arg1;	

@property(nonatomic)	
 int	
 handle;	
 //	
 @synthesize	
 handle;	

	

//	
 Class	
 Dump	
 only	
 lists	
 the	
 Instance	
 Method	

-­‐	
 (void)stealth;	

@end

	

Listing 3: Code hiding using dynamic resolution

	

	

(void)stealth	
 {	
 hide_me(self,	
 _cmd);}	

	

	

Listing 4: Code hiding function variables as instance methods

Cautionary Steps
Users play a critical role in the success of malware. There are

a number of steps that a user can follow to reduce risk. These
proactive steps are applicable to every smartphone whether
Android or iPhone and are discussed as follows:

• Mobile users should not install any unauthorized application
from third-party resources. The installed applications must be
verified and authorized from legitimate vendors.

• The users should think twice prior to clicking any URL from non-
legitimate resources. For example: users should be careful while chat-
ting on social media applications such as Facebook and Twitter. Push
notification messages should be scrutinized critically prior to executing
any action based on the information in a message. E-mail attachments
should not be opened directly until the user is sure about legitimacy.

• It is always advised to install anti-virus software on your
mobile device which scans the device for potential suspicious
activities and notifying users about changes in the system.

• Usage of strong passwords and avoidance of default secu-
rity policies is always preferred.

* Users should carefully analyze the behavior of their mobile
phones against any types of anomalous activities such battery drain-
age, high Internet data usage, and slower execution of applications.

8 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Aditya K. Sood is a senior security
researcher and Ph.D. candidate at Michi-
gan State University. He has worked in the
security domain for Armorize, COSEINC and
KPMG. He is also a founder of SecNiche Se-
curity Labs, an independent security research
arena for cutting edge computer security
research. At SecNiche, he also acts as an in-
dependent researcher and security practitio-
ner for providing services including software
security and malware analysis. He has been
an active speaker at industry conferences
and already spoken at RSA, Virus Bulletin,
HackInTheBox, ToorCon, HackerHalted,
Source, TRISC, AAVAR, EuSecwest, XCON,
Troopers, OWASP AppSec USA, FOSS,
CERT-IN, etc. He has written content for
HITB Ezine, Hakin9, ISSA, ISACA, CrossTalk,
Usenix Login, and Elsevier Journals such as
NESE and CFS. He is also a co-author for
Debugged magazine.

E-mail: adi.zerok@gmail.com
E-mail: soodadit@cse.msu.edu
Phone: 517-755-9911

Richard J. Enbody, Ph.D., is associate
professor in the Department of Computer
Science and Engineering at Michigan State
University where he joined the faculty in 1987.
He has served as acting and associate chair
of the department and as director of the com-
puter engineering undergraduate program. His
research interests include computer security;
computer architecture; web-based distance
education; and parallel processing, especially
the application of parallel processing to com-
putational science problems. Enbody has two
patents pending on hardware buffer-overflow
protection that will prevent most computer
worms and viruses.

Email: enbody@cse.msu.edu
Phone: 517-353-3389

ABOUT THE AUTHORS

1.	 Malware Goes Mobile, http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
2.	 Mobile Malware Madness and How to Cap the Mad Hatters, https://media.blackhat.com/bh-us-11/Daswani/
	 BH_US_11_Daswani_Mobile_Malware_Slides.pdf
3.	 IPhone Jailbreak: The Ultimate Guide, http://www.appleiphonereview.com/iphone-jailbreak/iphone-jailbreak/
4.	 IPhone Hacks Jailbreak, http://www.iphonehacks.com/jailbreak_iphone
5.	 Bypassing iPhone Code Signatures, http://www.saurik.com/id/8
6.	 How to Use Cydia: A Walkthrough, http://appadvice.com/appnn/2008/07/how-to-use-cydia-a-walkthrough
7.	 An Analysis of the iKee.B (Duh) iPhone Botnet, http://mtc.sri.com/iPhone/
8.	 Code Signing, http://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigning
	 Guide/ Introduction/ Introduction.html
9.	 Application Sandbox, http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Code
	 SigningGuide/ApplicationSandboxing/ApplicationSandboxing.html#//apple_ref/doc/uid/TP40005929-CH6-SW2
10.	iPhone Rootkits, http://www.ekoparty.org/archive/2010/ekoparty_2010-Monti-iphone_rootkit.pdf
11.	Hacker Holds Dutch iPhones for Petty Ransom, http://www.wired.com/gadgetlab/2009/11/iphone-hacker/
12.	SpyPhone iPhone App Can Harvest Personal Data, http://threatpost.com/en_us/blogs/spyphone-iphone-
	 app-can-harvest-personal-data-120409
13.	IPhone Privacy, http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf
14.	iSAM: An iPhone Stealth Airborne Malware, http://www.icsd.aegean.gr/publication_files/
	 conference/462488002.pdf
15.	Apple iPhone ‘kill switch’ discovered, http://www.telegraph.co.uk/technology/3358115/Apple-iPhone-kill-
	 switch-discovered.html
16.	Apple’s Jobs confirms iPhone ‘kill switch’, http://www.telegraph.co.uk/technology/3358134/Apples-Jobs-
	 confirms-iPhone-kill-switch.html
17.	 Aurora Feint iPhone App Delisted For Lousy Security Practices, http://gizmodo.com/5028459/aurora-feint-
	 iphone-app-delisted-for-lousy-security-practices
18.	iPhone App Store Secrets - Pinch Media, http://www.slideshare.net/pinchmedia/iphone-appstore-secrets-
	 pinch-media
19.	Apple Developer Program, http://developer.apple.com/programs/start/standard/
20.	iPhone Developer License Agreement, https://www.eff.org/files/20100127_iphone_dev_agr.pdf
21.	NSString Class Reference, http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/
	 Foundation/Classes/NSString_Class/Reference/NSString.html
22.	Sandbox, http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man3/
	 sandbox_init.3.html

REFERENCESConclusion
In this paper, we have discussed the state of iPhone malware.

There is no doubt that Apple has designed a robust verifica-
tion policy but it is still possible to create stealthy malware that
can bypass Apple’s verification process. However, doing so
requires devising a malicious application in an intelligent way
using stealthy techniques such as code obfuscation, stripping,
and code hiding. We believe that malware poses an increasingly
serious challenge to the security of our devices and we need to
be proactive in our defenses to ensure the security of our data
and privacy.

CrossTalk—March/April 2012 9

SECURING A MOBILE WORLD

Introduction
Most organizations in the past deployed BlackBerry devices

for corporate use to access e-mail and provide messaging for
their employees. These organizations knew that the security on
BlackBerries complied with their security policies. A few years
ago, a genius named Steve Jobs changed all that. He an-
nounced devices like iPads and iPhones. And of course, Google
was not going to be left behind. They made their Android OS
available to phone manufacturers for free.

With the advent of these smart devices like iPads, iPhones,
and Android phones, organizations are now searching for a
secure solution for these devices similar to the one they have
for their BlackBerry devices. Several vendors have developed
Mobile Device Management (MDM) solutions to assist organiza-
tions in managing their smart devices.

Typically, IT organizations are chartered to manage these
devices. Before they select an MDM solution, they must engage
the key departments within the organization to understand the
planned usage of these smart devices and gather requirements.
Most IT organizations are surprised when they hear the market-
ing department say how they are planning to use the smart
devices, or better yet hear how the CEO or the CFO is planning
to utilize a newly acquired iPad.

We suggest a 10-step approach for organizations to plan,
implement and manage an MDM program.

Step 1: During the acceptable use policy development,
several questions should be asked and answered by key depart-
ments within the organization. These questions help identify the
requirements and provide input into the next step of defining the
IT architecture. It helps to identify the right solutions, after ask-
ing the right questions such as:

Sajay Rai, Securely Yours LLC
Philip Chukwuma, Securely Yours LLC
Richard Cozart, Securely Yours LLC

•	 Will all devices be deployed by the organization or will users
	 be allowed to bring their own device?
•	 Is there a need to separate personal vs. corporate data
	 on devices?
•	 Is personal use allowed or only corporate use? (Can users play
	 Angry Birds?)
•	 Will employees agree to abide with corporate security policies
	 (e.g. remote wipe, or recording of their phone calls).
•	 Will confidential data be allowed on smart devices and how it
	 will be monitored and controlled?
•	 What type of smart devices will be allowed? Apple only?
	 Android only?
•	 How are you going to manage backing up devices?
•	 Do devices need to connect to a corporate network?
•	 Which apps would you like to deploy? Corporate apps?
	 Do you need your own marketplace?

Step 2: Once the answers to these questions have been
obtained, a draft IT architecture should be designed to support
the deployment of an MDM solution. For example: an answer to
the question “corporate device vs. personal device” may imply
whether an organization can wipe out the entire device if it is
lost, or if they need a secure “container” within the device to
house the corporate data.

The IT architecture may also address issues like:
•	 Cloud-based solution vs. internally deployed
•	 Hosted vs. self-supported
•	 Scalability and performance issues based on number of devices
•	 How current IT architecture will support the mobile architecture

Step 3: Once the requirements have been defined and the
supporting IT architecture has been designed, security policies
to support the mobile strategy should be developed. The secu-
rity policy may address some or all of these issues:
•	 Password policy control
•	 Encryption requirements
•	 Port control (Wi-Fi, Bluetooth, camera)
•	 Remote lock/unlock/wipe
•	 Asset tracking
•	 Device configuration (VPN, e-mail, Wi-Fi)
•	 Delivery and control of applications to the device
•	 Blacklisting/whitelisting
•	 Audit and monitoring

Step 4: Now you can use the requirements identified during
the planning phase to select the right MDM solution. The imple-
mentation of the IT architecture is completed and the Proof-of-
Concept (POC) or pilot program implementation is completed.
Typically a select few devices are managed under the POC or
pilot program. Typically the following steps are executed:
•	 E-mails are identified for the selected device owners
•	 A self-registry link is sent to the users
•	 Users enter the registry information and obtain credentials
•	 Security policies are pushed down to the device
•	 Device is ready for use

A Practical
Approach to
Securing and
Managing Smart
Devices
Abstract. We have always said that the strength of an organization’s security pro-
gram is only as strong as its weakest link. Today in most organizations, this weakest
link is the use of smart devices like iPads, iPhones, and Android phones. This article
provides a practical approach to managing and securing these smart devices.

10 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Step 5: Enable the e-mail, contact and calendar features
according to the mobile architecture and policies defined during
the planning phase. Typically, organizations combine the features
available within the ActiveSync/Lotus Notes features with the
features in the selected MDM solution. This step brings the
same functions that are available on BlackBerries to other smart
devices. At a minimum, organizations should enable the e-mail,
contact, and calendar features.

Step 6: Within this step, organizations roll out custom mobile
applications to the smart devices. There are several decisions
you probably made during the planning phase. You probably
answered these questions during the planning phase:
•	 Are you going to have your own marketplace, from where
	 your employees can download applications?
•	 Are you going to develop applications for Apple, Android,
	 or both?
•	 Are most of the applications going to be browser-based
	 applications, or will they be native custom mobile applications?
•	 Will employees download these applications from the Apple 	
	 App Store and/or Android Market?
•	 Are you going to develop these applications in-house or will a
	 third party develop these applications for you?

During this step, you will need two major processes:
•	 Verify that the source code is written based on the guidelines
	 provided by the Open Web Application Security Project. This
	 requires appropriate source code analysis tools and the ability
	 to perform penetration testing of the application.
•	 Incorporate your corporate systems development lifecycle
	 process in the development of mobile applications.

Step 7: During this step, the smart devices begin to act like a
laptop and can remotely connect to the corporate network and
access corporate resources like servers, LAN shared drives and
other corporate data. The focus during this step is to ensure that
the same rugged security features are deployed that are used
for your remote laptop connections. You should look into your
remote access policy to ensure that it supports the connection
of smart devices to the corporate network.

VPN configuration, encryption parameters, and virtualization
concepts may come into play as you deploy the right solution for
this step.

Step 8: During this step, appropriate measures are taken to
ensure that the implemented solution complies with regulatory
requirements. If the smart device is going to contain financial
data, personal health data, personally identifiable information,
or credit card information (and most likely you will if you will
store e-mails on your smart device), this data must be secured.
In addition, the installed mobile solution must have the ability to
produce appropriate reports to satisfy the audit requirements of
these regulations.

Step 9: This step is to provide adequate support to monitor
and report on the managed devices. Examples of type of
reports include:
•	 Number of devices supported and inventory of the devices
•	 The current location of each device
•	 Number of remote wipes performed in a month/quarter/year
•	 Number of stolen/lost devices

Step 10: This step provides the necessary support to inter-
nal/external auditors when they perform their audits. More and
more auditors are targeting smart devices as they are beginning
to agree that the smart devices are becoming the “weakest link”
of their security program.

Other considerations: Some of the other considerations
related to smart devices may include:
•	 Evaluate your current e-Discovery process to see if smart
devices need to be included in this process.
•	 Litigation Hold: during the litigation process, it may become
important to include smart devices during litigation hold.
•	 Export control laws: if your organization deals with certain
technologies which have export control requirements, you may
want to track smart devices to ensure that the device is not in
the countries where export control laws may be violated.

In summary, an MDM software solution plays a key role in
helping organizations manage and secure smart devices, but
preliminary planning is the key to success when deploying your
smart device strategy.

CrossTalk—March/April 2012 11

SECURING A MOBILE WORLD

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Benefits include paid vacation, health care plans, matching retirement fund,

tuition assistance and time off for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 586-5325
Visit us at:

http://www.309SMXG.hill.af.mil

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

Sajay Rai is the President and CEO of Securely Yours
LLC. Securely Yours LLC provides cost-effective innovative
solutions in the area of information security, privacy, disaster
recovery, business continuity and IT audit. Prior to found-
ing Securely Yours LLC, Sajay was a Partner with Ernst &
Young’s Security and Risk Advisory practice for 10 years.
Prior to Ernst & Young, he was with IBM for 13 years where,
among other responsibilities, was instrumental in starting
their information security practice, and led the business
continuity consulting practice.

E-mail: sajayrai@securelyyoursllc.com
Phone: 866-531-8620

Philip Chukwuma is the CTO of Securely Your LLC. Prior
to joining Securely Yours, Philip was a member the Security
and Risk Advisory practice at Ernst & Young for 8 years.
Prior to joining Ernst & Young, Philip was a member of the
Security and Technology services at KPMG, where he deliv-
ered security and technology solutions to clients.

E-mail: philipchukwuma@securelyyoursllc.com
Phone: 214-683-8588

ABOUT THE AUTHORS
Richard Cozart is a senior security consul-
tant with Securely Yours LLC. He special-
izes in developing and evaluating secure
solutions for mobile and web technologies.
Prior to joining Securely Yours, Richard was
a software engineer for Accenture and co-
founder of the web solutions firm,
A-Z computers.

E-mail: richardcozart@securelyyoursllc.com
Phone: 313-460-1885

12 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Sean C. Mitchem, Southwest Research Institute
Sandra G. Dykes, Ph.D., Southwest Research Institute
Stephen W. Cook, Southwest Research Institute
John G. Whipple, Southwest Research Institute

Safeguarding Data in
a Mobile Device World

Abstract. With the proliferation of mobile devices in today’s information-rich
environment, the security of data at rest on the device and in transit will determine
the ultimate usability of mobile devices in the defense environment. Relying on
the security models provided by the major OS providers such as Apple’s iOS or
Google’s Android is not enough to meet the information protection needs of the
defense environment. Researchers at Southwest Research Institute® (SwRI®)
are investigating the security models available for application development on the
iOS and Android platforms, the threats involved, methodologies for application-level
data protection, the intersection between data security and user experience, and
best practices for ensuring data security within mobile applications.

Introduction
Today’s smartphones and tablets are more than communica-

tion devices. They are hip-mounted personal computers, with
more memory and processing power than your laptop of just
a few years ago. They are an integrated part of our lives…
personal and professional. The information they provide is so
vital that the Army is piloting their use as standard field issue
to every soldier, complete with combat-focused applications [1].
However, smartphones and tablets raise new security issues.
They are more likely to be lost or stolen, exposing sensitive
data. Malware risks are increased because they connect to the
Internet directly rather than from behind corporate firewalls and
intrusion-protection systems.

Security of mobile devices focuses on controlling access
through the use of device locks and hardware data encryption.
While this may be sufficient for individual users, it is insufficient
for defense needs. Many documented examples exist of hack-
ing of the device lock, as well as defeats of the hardware-level
encryption. Once the device is unlocked, there is generally
unfettered access to all apps and their associated data. Military
applications require additional application-level access controls
to provide data security. Unfortunately, there are gaps in the
application-level security model of the two predominant mobile
operating systems: iOS from Apple and Google Android. Our
ongoing research1 looks to address these gaps by developing
innovative approaches for fine-grained data protection and ac-
cess control, taking into account mobile device usage patterns,
device characteristics, and usability.

Threat Vectors
Many threat vectors for infecting personal computers arise

from social-engineering attacks that bypass anti-virus defenses.
Similar techniques are used in the smartphone and tablet world
by deceiving users into installing malicious apps. Examples
include apps that gather personal information, track location,
and charge accounts by sending text messages to premium-rate
numbers. Using a mobile device to access corporate email or
other resources extends the threat to the organization, including
the theft of sensitive data [2]. With the acknowledged role of
mobile devices and social networks in the revolutions in Egypt,
Libya, and Syria, malware and viruses targeted at intelligence
gathering and device-usage denial will increase significantly in
the future [3].

While viruses and malware targeting mobile devices would
share many of the same goals as on the PC, the enhanced
capabilities of these devices present expanded attack surfaces
through sensors such as GPS, accelerometer, camera, micro-
phone, and gyroscope. Recently, Kaspersky Lab discovered a
new threat involving the photo-scanning of Quick Response
(QR) codes [4]. QR codes are 2-D matrix barcodes increasingly
used in advertising and merchandising to direct mobile-phone
users to a website for further information on the tagged item. In
this case, users downloaded what they thought was a legitimate
app, but instead was malware that sent Simple Message System

Mobile
Applications
Security

CrossTalk—March/April 2012 13

SECURING A MOBILE WORLD

(SMS) messages to a premium-rate number that charged for
each message [5]. This app could have easily been reconfigured
to send covert copies of emails and text messages to an intel-
ligence gatherer instead.

In another example, using the unique capabilities of a mobile
device, Georgia Tech researchers were able to use the phone’s
accelerometer to detect PC keyboard vibrations and decipher
complete sentences with up to 80% accuracy. This was done by
placing the phone within three inches of the keyboard of a PC,
allowing the researchers to pick up the keyboard vibrations and
decipher words of up to three to four characters fairly accurately.

The key to understanding the threat vectors of mobile devices
is realizing that the devices have more input sources than the
conventional PC, and have an extended range outside the typi-
cal home or office.

Application Security Models: iOS vs. Android
According to Nielsen, Google’s Android is the most-used

mobile OS, followed by Apple’s iOS [6]. The threat level varies
between the iOS and the Android environments, due to their
app-distribution models. Because iOS apps are distributed
only through the Apple App Store, the Apple review process
substantially reduces the threat of downloading a malicious app.
This protection, however, is lost if a user “jailbreaks” the device
and installs apps from an alternative site or obtains illegal apps
from elsewhere.

The Android environment is more wide open. Android apps,
although primarily distributed through the Google Android Mar-
ket, are legally distributed by other means. There is no review or
testing of apps, although apps require a digital signature by the
developer. Android apps execute in a sandbox on the device and
must ask the user for permission to access critical device re-
sources, such as GPS, SMS, and the phone dialer. Unfortunately,
it is often difficult for a user to determine whether the requested
permission is necessary for that app. Permissions are perma-
nently attached to the app; once the permission is granted, the
user cannot revoke it.

When we look at the security models of iOS vs. Android, they
can best be summed up as “trust us” vs. “trust them.”

Apple iOS
Apple’s “trust us” model controls security from malicious apps

by providing only one outlet for app distribution and by tightly
controlling the iOS Software Development Kit (SDK). Develop-
ers submitting apps for distribution must register with Apple to
obtain certificates to build and deploy apps. All apps must be
signed with the certificate assigned by Apple. Apps must be
built using Xcode, Apple’s own development tool, and apps may
use only the official iOS SDK—no third-party software APIs.
Apple’s development program requires a yearly fee (currently
$99), which must be kept up-to-date. Apple reserves the right to
revoke the developer’s certificate at any time, which will take any
apps developed off the App Store and prevent the developer
from distributing any further apps until restoring the certificate.
All apps submitted to Apple for distribution are reviewed to en-

sure proper use of the SDK, adherence to the Program License
Agreement, and adherence to a long list of app functionality,
subject matter, and content requirements that include ensuring
the app is not malware.

Security within iOS is fairly strong, straight-out-of-the-box, but
the SDK does not provide additional support to make apps more
secure. The device can be controlled through the setting of a
4-digit pin or a password. While this security is not forced upon
the user, organizations that use Mobile Device Management
(MDM) software for their mobile-device fleet can force the use
of pins or passwords, as well as the strength of those access
codes. Alphanumeric passwords offer better protection than
digit-only pins, as a Russian group showed in cracking the iOS
4-pin device lock [7]. Additionally, iOS features an encryption
capability for data stored by applications. By default, all “data
at rest” stored in the user partition is automatically encrypted
through hardware-based encryption. While this would appear to
be sufficient protection for direct attacks against the disk, boot-
ing the device with an alternate OS can provide unencrypted
access to the disk [8]. Applications with data files marked
“protected” will be software-encrypted when stored on-disk. De-
cryption keys are accessible only when the device is unlocked.
The decryption keys are managed by the iOS Keychain, which is
always encrypted and, unlike Keychain in the Mac OS X, is not
user accessible.

An additional security measure is sandboxing applications
and their data stores. Sandboxing provides an app with its own
process space and prevents the app from accessing other
process spaces. Apple sandboxing does not prevent malicious
attacks against an app, but it does limit the damage done by
the hacked app to other parts of the device. iOS apps are not
allowed to start or execute other apps. Additionally, inter-
process communication is allowed only through custom URL
handlers, similar in functionality to the http:// and ftp:// URL
schemes of Internet browsers.

It is easy to see how Apple’s iOS security can be summed up
as “trust us,” given its complete control over app development
for their platform, from the APIs and tools available for app de-
velopment, to the distribution process, to the device itself. SwRI
researchers have found that these mechanisms can be broken
and the app accessed, exposing all the data stored within.
The iOS SDK does not appear to provide support for specific
application-level authentication and authorization [9]. Using an
enterprise mobile-device management system can force the
use of the device lock to registered devices (such as using an
alphanumeric password of sufficient anticracking strength), but
apps cannot force the use of device locking as a requirement
for installation and execution.

Google Android
Google took a different approach with the Android OS.

Whereas Apple controls everything related to the app devel-
opment and distribution process, Google developed Android
as an open source model. Android developers are free to add
to the API, use third-party APIs, and distribute apps through

14 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Figure 1 Using covert channels to subvert the Android sandbox-permission model

any means they see fit. While all Android apps must be signed
with a certificate, developers can create their own certificates
without using a certified certificate authority. Android provides
the capability for greater application security than iOS, but the
security model is definitely “trust them,” as in, “do you trust the
developer of the app is providing you a legitimate app that will
provide its stated service in the manner described by the app
developer and not try to steal information from you or try to
damage your mobile device?” Still, Android is not without some
basic security measures.

Android security is based on the Linux kernel model, which
silos applications into process sandboxes that can reach out of
the sandbox via user-granted permissions. All apps are assigned
a Unique User ID (UID) when they are installed. However, un-
like Linux, this UID is truly unique to each app rather than to
each user on a Linux system. Any data the app stores on the
device is tagged with this UID, and an app can access only its
UID-tagged data unless granted extra-sandbox permissions to
other data sources. Unlike iOS, Android applications can share
resources and data through the declaration of permissions.

Android grants permissions to resources on a per-application
basis during the installation of the application. The user is given
a one-time option to install/not install the application after
reviewing the resources requested by the application, thereby
granting all the permissions or not installing the application at
all. Applications requiring dangerous combinations should not be
installed. For example, it may be legitimate for an application de-
signed to provide current weather conditions to request access
to GPS and networking so the user does not have to continu-
ously input a location; but if the application also requests access
to telephony (i.e., dialing phone numbers), a red flag should be
raised. Unfortunately, the stock Android OS does not currently
support selectively granting permissions at install time; however,
third-party add-ons have begun implementing this feature [10].

Permissions cannot change once the app is installed. This does
help somewhat. Once installed, an app cannot grant itself
additional permissions.

A savvy user aware of the dangerous combinations of
resource access can significantly reduce the security threat to
their mobile device. However, one research effort [11] demon-
strated how to subvert Android’s sandboxing-and-permission
model through two colluding Trojan-packaged applications using
a covert channel. The first application requires permission to the
microphone and is enticing to install. The second application re-
quires permission to networking, and its installation is launched
by the first. Access to microphone and networking is a danger-
ous combination if requested by a single application. The Trojan
in the first application pulls out sensitive data, such as credit
card and PIN numbers, using sophisticated tone-and-speech-
recognition algorithms. After extracting the sensitive data, the
first application changes the vibration settings (covert channel)
on the phone, which then triggers notifications to the colluding
second application, as shown in Figure 1.

 Accessing vibration settings does not currently require any
permissions and does not leave any traces. Through its net-
working privileges, the second application then transmits the
sensitive data to the interested party. This approach is attrac-
tive, because high-value information is extracted locally on the
phone, significantly reducing the amount of data needed to be
transmitted to and processed by the malware master. To mediate
this vulnerability, the authors of this research suggest Android
restrict covert communication through event notification.

Since Android is an open API designed to run on a wide
range of hardware, whole-device encryption is not provided by
default unless it is an added feature of the phone maker or car-
rier. With Android 3.0, full-device encryption is now available and
being implemented by some MDM providers.

W A R F I G H T I N G T E C H N O L O G I E S
ENHANCE ADVANCE MODERNIZE

FOR CONFERENCE & TRADE SHOW INFORMATION, VISIT WWW.SSTC-ONLINE.ORG

24th Annual

MARRIOTT DOWNTOWN HOTEL
SALT LAKE CITY, UTAH

Guest Speakers
Roberta (Bobbie) Stempfley (Invited)
Acting Assistant Secretary, Cyber Security & Communications
Department of Homeland Security, National Protection & Programs
Directorate(NPPD)
Mr. Alan Paller
Director of Research
SANS Institute

Other guest speakers are being confirmed. Watch website for further updates.

REGISTER

TODAY!

23-26 APRIL 2012

ACQUISITION
Sustainment Cost Estimation
Cyber Acquisition
Measuring Enterprise Performance
Reuse of Complex Systems
Mapping & Modeling
CMMI, ISO, Baldridge
Life Cycle Cost Estimation

AGILE DEVELOPMENT
Agile Systems Engineering
Agile & Architecture
Extreme Agile
Surveillance Points
Agile Modeling & Simulation
Agile & Product Quality

ARCHITECTURE
Net-Centricity
SOAs in Embedded Systems
Mobile Access to Enterprise Data
Enterprise Architectures

CLOUD COMPUTING
Migration Strategies
Cost Considerations
Mobile options
Security Considerations

CYBER SECURITY
Trustworthy Software
Information Assurance
Cyber Hardening
Web & Mobile Security
Securing Android Technology

LEARN, DISCOVER, CONNECT!
Join your colleagues in beautiful Salt Lake City, Utah, and benefit from these many opportunities.

70+ Technical Presentations | Tutorials
Sponsored Tracks by Department of Homeland Security, IEEE, & INCOSE

Training/Certification Opportunities | Exhibits

http://www.facebook.com/TheSSTC
Follow Us On Facebook

16 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

once in the device settings and stored, even when the device
is powered off. This reduces security to device locking; after a
device is unlocked, the user has immediate access to password-
protected data and apps. With device locking, it is difficult to
guarantee the locking implementation is secure. The Internet
contains numerous methods to circumvent device locks.

Smartphones offer the potential for developing new methods
of authentication using sensors such as the touch screen, GPS,
camera, and accelerometers. Swipe patterns on smartphones
are one example; others include picture passwords, tap patterns,
and arm motions. Before adopting new authentication methods,
there should be a formal analysis of the cryptographic strength
to determine the number of pictures, taps, or motions required.
The critical question is whether new methods can improve us-
ability for the same level of protection as traditional methods.
Consequently, our research includes a study to determine user-
perceived usability as a function of cryptographic strength.

Another novel approach to authentication is to apply appli-
cation-specific constraints. Imagine a field-deployable app for
a small combat unit, which provides and disseminates mission
information across the unit. The information is highly sensitive
and needs protection from loss of the device in the battlefield,
but soldiers in battle cannot afford to repeatedly authenticate.
An application-specific constraint could be realized using
GPS where:

a.	 the application registers as a member of the unit’s
	 device group;

b.	 the application does not operate if it is located more
	 than 1,000 feet from another registered device; and

c.	 the application automatically uninstalls and erases all data
	 if accessed outside the required separation distance.

A soldier could use the application without explicit login while
protecting data if the device was found or captured. Although
hypothetical, this example shows how device sensors can be
used to develop new application-level security controls.

Ongoing SwRI research is focusing on the use of mobile-
device capabilities to investigate new paradigms for application
security and their impact on user experience. Using custom
mobile applications, formal cryptographic analysis, and a varied
user base, this research is shedding light on how applications
and data can be secured on mobile devices with minimal impact
on usability.

Summary
Apple’s iOS model provides greater security out-of-the-box

given Apple’s total control over the device, the app-development
environment, and the app-distribution model. Google’s Android
provides greater potential for application-level security due to
the extensive and open nature of the SDK. Neither OS model
currently provides any significant focus for application-level se-
curity. To truly allow mobile devices to replace PCs and laptops,
further research and development will be necessary to enable
true application security within the mobile-device environment.

Application-level Data Protection
As organizations utilize mobile devices as enhancements or

replacements for computers, many will soon work to develop
custom applications designed for their own needs. These ap-
plications may contain confidential, proprietary information that
will need additional protections than are offered at the device or
hardware level.

The typical method to protect application data is to protect ac-
cess via a login specifically for the application. We do this on our
PCs with applications that need an additional level of protection
over and above the OS-level screen lock; sometimes to protect
specific information, sometimes to log who is currently using the
application, many times for both. The scenarios required for ap-
plication locking on PCs also exist on mobile devices.

For iOS-based devices, it appears the only solutions are
custom security codes for each app or the use of a third-party
solution, which requires jailbreaking the phone. There does not
appear to be any support in the iOS SDK for application-level
authentication and authorization. A search of the web reveals
LockDown Pro and Locktopus, designed to specify application-
level password protection to apps on the iPhone; however, both
require the Cydia client and a jailbroken phone. This is not to say
application-level security cannot be done within iOS.

Android is different. The API includes java.security and javax.
crypto packages, which provide security mechanisms that can
be included into any app. Additionally, since the Android SDK is
open-source, you can develop and roll-your-own application-lev-
el security programmatically. The web shows many apps already
available for locking existing applications on an Android device,
and they do not require rooting the device to enable app locking.

In both Android and iOS, the assumption is “one device, one
user.” It does not take much imagination to conceive scenarios
where tablets and smartphones become like radios in a shop,
lined up, charged, and ready for the next user. A flight-line
maintenance shop might have several tablets available for
maintenance crews, who grab one on the way to turn around an
airplane for another mission. Using apps on the tablet to record
maintenance done, order parts, configure the plane to mission
parameters, etc., it is easy to see where specific application
authentication and authorization would be vitally important, not
only to protect the apps and data should the crew misplace the
tablet somewhere outside the shop, but also to correctly log
who accessed the apps and what they did within them.

Data Security vs. User Experience
Computer security is a balance between usability and protec-

tion, or more specifically between usability and cryptographic
strength. If security controls are too demanding, ample evi-
dence suggests users will circumvent or disable the controls.
For example, most users select insecure passwords easy to
remember instead of strong passwords they are prone to forget.
Smartphones have an added problem in small screens and key-
boards that make typing passwords more difficult and add delay.
Passwords for email and other accounts are therefore entered

CrossTalk—March/April 2012 17

SECURING A MOBILE WORLD

ABOUT THE AUTHORS
Sean Mitchem is a Principal Analyst at SwRI, a
private non-profit applied research and develop-
ment laboratory located in San Antonio, Texas.
Sean is an Air Force veteran with over 20 years
of software development and enterprise archi-
tecture experience in areas such as strategic
command and control, air traffic control, human
resources, and medical systems. His current
research interests include mobile device security,
smart grid security, energy market economics,
and electrochemical energy storage systems.

E-mail: Sean.Mitchem@swri.org

Sandra Dykes, Ph.D. is a Principal Scientist
at SwRI, specializing in protocol design, network
monitoring, statistical modeling, and malware
detection. Her research includes usable security,
infrastructure protection, insider threat, and sta-
tistical anomaly detection. Dr. Dykes received her
B.S. in Chemistry from the University of Texas at
Austin and her Ph.D. in Computer Science from
The University of Texas at San Antonio.

E-mail: Sdykes@swri.org

Stephen Cook is a Senior Research Analyst
at SwRI. His background and expertise are in
software security, smart grid security, parallel and
distributed computing, compilers, and object-ori-
ented and generic programming. He has an M.S.
in Computer Science from Texas A&M University
and a B.S. in Geophysical Engineering from the
Colorado School of Mines.

E-mail: Scook@swri.org

John Whipple is a Research Analyst at SwRI.
John has designed and developed software for
medical, space science, intelligent transportation
and commercial data system applications. He is
currently researching mobile device security as
well as exposing novel uses of smartphone sen-
sors through data mining.

E-mail: Jwhipple@swri.org

Communications and Embedded Systems
Department
Southwest Research Institute
6220 Culebra Road
San Antonio, TX 78228
Phone: 210-522-2698

REFERENCES

NOTES

ADDITIONAL READING

1.	 Horn, Leslie. “Army might give troops smartphones soon.” PCmag.com, 18 July, 2011.
	 <http://www.pcmag.com/article2/0,2817,2388629,00.asp#fbid=g-34uH0qMXP>
2.	 Rothman, Wilson. “Smart phone malware: The six worst offenders.” MSNBC.com, 16
	 Feb., 2011. <http://technolog.msnbc.msn.com/_news/2011/02/16/6063185-smart-
	 phone-malware-the-six-worst-offenders>
3.	 Riberio, John. “Mobile Phone Tapping Allegation Disrupts Indian Parliament.” PCWorld,
	 26 Apr., 2011. <http://pcworld.com/article/194961/mobile_phone_tapping_
	 allegation_disrupts_indian_parliament.html>
4.	 Shanklin, Will. “QR codes are being used to spread malware.” geek.com, 21 Oct.,
	 2011. <http://www.geek.com/articles/mobile/qr-codes-are-being-used-to-spread-
	 malware-20111021/>
5.	 Wasserman, Todd. “New Security Threat: Infected QR Codes.” Mashable Tech, 20 Oct.,
	 2011. <http://mashable.com/2011/10/20/qr-code-security-threat/>
6.	 Nielsen. “In U.S. Smartphone Market, Android is Top Operating System, Apple is Top
	 Manufacturer.” <http://blog.nielsen.com/nielsenwire/?p=28516>
7.	 Byrne, Ciara. “Russians crack Apple’s iOS encryption.” VentureBeat, 25 May 2011.
	 <http://venturebeat.com/2011/05/25/russians-crack-apples-ios-encryption/>
8.	 McClune, Rory. “Apple iOS Devices and Encryption.” Blog Posting, 7Elements, 16 Dec.,
	 2010. <http://blog.7elements.co.uk/2010/12/apple-ios-devices-and-encryption.html>
9.	 Security Overview: Authentication, Identification, and Authorization.
	 <https://developer.apple.com/library/ios/#documentation/Security/Conceptual/
	 Security_Overview/Concepts/Concepts.html#//apple_ref/doc/uid/TP30000976-CH203-
	 TPXREF101>
10.	Whisper Systems. “Device and data protection for Android”,
	 <http://whispersys.com/whispercore.html>
11.	 R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia and X. Wang, “Soundcomber:
	 A Stealthy and Context-Aware Sound Trojan for Smartphones.” In Proceedings of the 18th
	 Annual Network and Distributed System Security Symposium (NDSS), 2011.

1.	 The authors gratefully acknowledge the significant ongoing contribution to the research
	 by Allison Bertrand, SwRI. This work is supported under Southwest Research Institute
	 Internal Research Grant 10-R8244.

1.	 Redman, Phillip; Girard, John; Wallin, Leif-Olof. “Magic Quadrant for Mobile Device
	 Management Software”, Gartner Research Note G00211101, Gartner, Inc., 13 April 2011,
	 <http://www.gartner.com> (available for free through several major MDM vendors)
2.	 Redman, Phillip; Basso, Monica. “Critical Capabilities for Mobile Device Management”,
	 Gartner Research Note G00213877, Gartner, Inc., 29 July, 2011,
	 <http://www.gartner.com/technology/>
3.	 Chen, Brian X. Always On – how the iPhone unlocked the anything-anytime-anywhere
	 future – and locked us in. Cambridge, MA: Da Capo Press, 2011.

18 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Background
Our lives and our world depend on software. Highly complex,

interdependent software systems are critical to virtually every
aspect and domain of society today. However ubiquitous soft-
ware has become, security advances have not been commen-
surate with the vital role software now plays. As a consequence,
our exposure to risk is ever increasing.

The complexity of software and software-intensive sys-
tems has inherent risk: it obscures the essential intent of the
software, masks potentially harmful uses, precludes exhaustive
testing, and also introduces additional problems with respect to
the operation and maintenance of the software. The interdepen-
dence of these systems means attackers can focus on the most
vulnerable component to damage the larger system(s), while
today’s interconnectivity makes the proliferation of malware
easy, but the identification of its source difficult [1]. Threats are
large and diverse, from unsophisticated opportunists to techni-
cally savvy entities backed by organized crime [2], nation states,
and similar organizations with malicious intent.

Software Assurance Curriculum Project
Understanding the importance of the software assurance

discipline for protecting national infrastructures and systems, the
DHS National Cyber Security Division has recognized the grow-
ing need for skilled practitioners in this area. At the direction
of DHS, researchers in SEI1 at Carnegie Mellon University de-
veloped the Software Assurance Curriculum Project (SwACP).
The SwACP development team is composed of knowledgeable
educators from a number of institutions of higher education,2
who collectively have substantial background in software as-
surance research, software engineering research and practice,

and software engineering education [3], and who participate in
related professional society curricula development.

What is software assurance? The definition used by the
SwACP team is, “Software assurance (SwA) is the application
of technologies and processes to achieve a required level of
confidence that software systems and services function in the
intended manner, are free from accidental or intentional vulner-
abilities, provide security capabilities appropriate to the threat
environment, and recover from intrusions and failures [4].” 3 This
is a slight extension of the Committee on National Security
Systems’ definition [5] used by our DHS sponsor.

Many colleges and universities have degree programs in
areas such as software engineering and information security,
but programs and tracks in software assurance are lacking. The
work of the SwACP addresses this gap.

The focus of the SwACP is to:
•	 Identify a core body of knowledge that educational

	 institutions can use to develop Master of Software
	 Assurance (MSwA) degree programs

•	 Mentor universities in developing standalone MSwA degree
	 programs and tracks within existing software engineering
	 and computer science master’s degree programs

•	 Promote an undergraduate curriculum specialization for
	 software assurance

•	 Address community college needs
	
To date the SwACP team has produced four volumes4:
•	 Master of Software Assurance Reference Curriculum5 [4]
•	 Undergraduate Course Outlines6 [6]
•	 Master of Software Assurance Course Syllabi [7]
•	 Community College Education7 [8]
	
In addition to these reports, the team also developed papers

[1, 3, 9,10, 11], presentations [12,13], and workshops [14]. 8

Both the Association for Computing Machinery (ACM) and
the IEEE Computer Society (IEEE-CS) have recognized the
MSwA Reference Curriculum as appropriate for a master’s
program in software assurance. This formal recognition signifies
to the educational community that the MSwA Reference Cur-
riculum is suitable for creating graduate programs or tracks in
software assurance.9

Outreach
Defining transition strategies for future implementation of the

software assurance curricula is one of the goals of the SwACP.
Many SwACP team members had been previously involved in
curriculum work and understood the need to have a compre-
hensive plan for promoting the transition and adoption of the
various curricula. In the academic world, transition is a lengthy
process, with a number of potential barriers to adoption. While
introducing one new elective course may be relatively easy, in-
troducing a new track takes significant effort, and adding a new
degree program is a real challenge. Many barriers exist: insuf-
ficient interested students in the surrounding geographic area,

Dr. Carol A. Sledge, Software Engineering Institute

Strategies for Software
Assurance Curricula Outreach

Abstract. How to better achieve secure and correctly functioning software
systems, regardless of their origins, application domain, or operational environ-
ments? Engaging a knowledgeable team of educators to develop curricula,
courses, and other materials for the discipline of software assurance is but the
start. If we build it, will they come? In this paper, I explore strategies this team
of educators used to encourage the community of computing educators to
adopt software assurance curricula.

Engaging the
Community

CrossTalk—March/April 2012 19

SECURING A MOBILE WORLD

lack of qualified faculty, lack of administrative support, funding,
etc. For the SwACP to succeed, a comprehensive outreach and
promotional plan was needed.

For the first volume produced, the MSwA Reference Cur-
riculum, planned promotional activities targeting educators
included [3]:

•	 Publicity—SwACP team members disseminated announce-
ments, press releases, and flyers regarding the team’s work
via email, websites, educational publications, and professional
societies; they also distributed promotional materials to col-
leagues when they attended conferences.

•	 Software assurance education discussion group—We
established a LinkedIn discussion group in which faculty inter-
ested in implementing all or portions of the curriculum could
interact with the team and other colleagues who are using 	
the curriculum.

•	 Awareness—Team members conducted and videotaped10
an awareness-raising faculty workshop at the Conference on
Software Engineering Education and Training (CSEET) 2010
[14]. This workshop was among the various presentations
given at faculty and curriculum development venues. Addition-
ally an overview podcast was produced, including a discussion
of what students and employers can expect.11

•	 Mentoring—The SwACP team is mentoring universities 	
and faculty members who wish to offer a course, track, or 	
MSwA degree program. This support includes review of imple-
mentation plans and course outlines and advice on references
and other materials.

•	 Publication—SwACP team members have written papers
and given talks on the curriculum.

•	 Professional society recognition—As mentioned previously, both
ACM and IEEE-CS officially recognize the MSwA curriculum.

	
For transition and promotion of the MSwA Reference Curricu-

lum, early adoption is important. The Stevens Institute of Technol-
ogy, home of one of the SwACP team members, was the first
school to adopt elements of the curriculum: it has developed two
tracks in software assurance within its Master of Science in Soft-
ware Engineering program. One track is for students who antici-
pate a career in secure software development, while the other is
for students interested in acquisition and management of trusted
software systems. For those students who already have an ad-
vanced degree or who are not ready to commit to a full graduate
program, graduate certificates are available [3].12 Consideration
and plans for adoption of courses and tracks are underway at the
universities of the team members, as well as other schools.

Outreach: Leverage and Trust
For the MSwA curriculum transition and promotion goal, all

planned activities were successfully completed and continue
to be pursued. Long term, a key point of leverage is the con-
tinued participation by SwACP team members in reviewing
and updating professional society curriculum guidelines. For
example, SwACP team member Mark Ardis is the chair of the

Software Engineering 2004 Review Task Force, a joint effort
of the ACM and the IEEE-CS. This task force has collected
comments from the software engineering community about
the need to update Software Engineering 2004, the recom-
mended guidelines for undergraduate software engineering
education. Ardis noted that several reviewers had com-
mented on the need for more material on software security
and assurance. SwACP team member Elizabeth Hawthorne
is chair of the ACM Committee for Computing Education
in Community Colleges and is also a member of the ACM
delegation to the Steering Committee of the joint ACM and
IEEE-CS Computing Curriculum: Computer Science 2013,13
an effort in its planning stages focused on international cur-
ricular guidelines for undergraduate programs in computing.
She reported that one new knowledge area under consider-
ation is dedicated to “computer security” (called Information
Assurance and Security).14 Through these relationships, the
SwACP team can stay updated and engaged with current
curricula development efforts and seek ways to leverage the
curricula the team developed in graduate, undergraduate, and
community college programs.

In the short term, the need for quick educational community
feedback on draft SwACP documents and for broader aware-
ness and involvement suggested a focused leveraging of trusted,
personal relationships, in addition to the promotion and transition
mechanisms already cited. Specifically, I was tasked with extend-
ing the SwACP team’s ongoing efforts to faculty and entities
whom I knew to be involved in course, resource, and curriculum
development for software engineering, information systems, infor-
mation assurance, computer science, information security, etc. at
the master’s, undergraduate, and community college levels. By no
means was this complete coverage, but the trusted relationships
increased the likelihood that faculty would engage (and redistrib-
ute the information). Utilizing relationships with other colleagues,
appropriate faculty at, for example, the U.S. Service Academies,
were specifically targeted via a trusted intermediary.

Targeted faculty included15:
•	 Past participants in the National Science Foundation (NSF)-

funded Information Assurance Capacity Building Program at
Carnegie Mellon University

•	 Principal investigators of the 15 NSF-funded Advanced
Technological Education (ATE) Centers and through the NSF
ATE program manager to other NSF program managers

•	 Those at 17 NSA/DHS Centers of Academic Excellence in
IA Education (CAE/IA) and CAE-Research (CAE-R)
programs16

•	 California State University Discipline Council (department
heads of computer science, information science/information
systems, and software engineering at the 23 schools that make
up the council)

•	 Participants in the educational outreach and curriculum
development activities and members of the NSF Science and
Technology Center Team for Research in Ubiquitous Secure
Technologies17

20 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

•	 Members of the Association of Computer/Information Sci-
ences and Engineering Departments at Minority Institutions18

•	 Members of various faculty email lists, including personal
lists of faculty in related disciplines interested in course and cur-
riculum development, and those working on articulation agree-
ments with community colleges

•	 U.S. service academies and postgraduate schools19

	
Over the years, faculty from these entities formed collab-

orative relationships to create, adapt, adopt, and share new
materials as appropriate for their departments and prospective
students, as well as for others. Given their interest in related
disciplines, these communities of interest were prime targets for
our outreach effort.

In addition to faculty and academic institutions, it was important
to leverage related government and practitioner efforts. Collabo-
rating with organizations in the DoD and NIST, the DHS National
Cyber Security Division Software Assurance (SwA) Program co-
sponsors the Software Assurance Community. In this community,
members of government, industry, and academia come together
to discuss, develop, and implement software security practices,
methodologies, and technologies in forums and working groups. 20
Because of SwACP team member participation in this community,
the15th semi-annual SwA Forum in September 2011 examined the
implications of trends and emerging factors in training and educa-
tion for software assurance workers. The NIST National Initiative
for Cybersecurity Education (NICE) has a goal to “bolster formal
cybersecurity education programs encompassing kindergarten
through 12th grade, higher education and vocational programs.” 21 At
the December 2011 DHS Working Group meeting, co-chaired by
the SwACP team lead, Nancy Mead, the alignment with NICE was
discussed.

Outreach Outcomes
From the beginning, the SwACP recognized the importance

of transition strategies for the implementation of the software
assurance curricula, including the ongoing promotion of the cur-
riculum work and outreach to the various communities of interest
to encourage them to participate. Given the time constraints, the
various educational levels addressed, and potential constituencies
involved, multiple people and entities employed multiple outreach
mechanisms, coordinating where possible with related efforts.

Challenges to our outreach effort include the usual potential
barriers to adoption of courses, tracks, and curricula, including the
time and resources needed, especially in light of sometimes-severe
funding cuts in departments. Another challenge was the alignment
and timing regarding revision cycles of both departmental and the
related professional curriculum development efforts.

Outreach mechanisms that are proving effective include:
•	 The Build Security In website, sponsored by DHS, and the

SEI MSwA website
•	 Ongoing SwACP team member participation (previously and

currently) with professional curricula development activities
•	 Papers and presentations at appropriate educator confer-

ences and workshops
•	 Leveraging trusted relationships with educators in related

disciplines to increase the likelihood of engagement and dis-
semination (to other interested faculty) of information related to
SwA curricula and content.

One example of successfully leveraging trusted relationships
with educators is the Department of Computer Science at the
U.S. Air Force Academy. They recently undertook a curriculum
review that defined multiple cross-curricular initiatives to support
program outcomes, including “secure programming” (security
and software assurance) [15]. Among the resources used was
the Undergraduate Course Outlines [6]. They are also consider-
ing the development of some undergraduate course exercises
and projects that focus on secure coding and software assur-
ance, to be incorporated into existing undergraduate courses
as a means to integrate these topics as “natural and normal
practices inherent to software development.”22

Faculty and educators have contacted the SwACP team lead
for information about how to build a BS or MS program with an
SwA concentration.23 One department at the University of Hous-
ton has adopted significant portions of the software assurance
curriculum in their program by incorporating elements in several
courses, where appropriate, with the majority in focus courses
(two each in the undergraduate and graduate programs). 24

Other outreach mechanisms are early in their respective cycles
or require more of a critical mass to be effective. For example,
the Software Assurance Education discussion group on LinkedIn
provides a forum for faculty to share problems and experiences
in teaching software assurance courses. As more educators
incorporate software assurance topics, modules, and courses into
their departmental programs, we hope they will utilize this forum.
Ongoing participation in the related government and practitioner
efforts will help with the alignment and leveraging of these activi-
ties, with the common goal to increase awareness, participation,
and adoption of appropriate software assurance practices.

Summary
The SwACP team feels that software assurance education at

all levels is essential to ensure that software and software-inten-
sive systems are developed with assurance in mind [11]. While
software assurance supports and complements the educational
objectives of a software engineering program, it also supports
and complements the educational objectives of related disciplines
such as computer science and information systems. Engaging
knowledgeable educators experienced in related curriculum
development to produce software assurance curricula and related
materials is but one part of this DHS-funded effort. Multiple
mechanisms must be continually utilized to reach the various
educator communities to increase awareness, encourage partici-
pation, and ultimately adopt software assurance topics, courses,
tracks, and curricula. Certain outreach strategies have proved to
be successful in the relatively short time the SwACP has been in
existence. Leveraging professional curricula development entities,
as well as alignment with related government efforts, while longer
term, should provide the foundation for sustainment.

Disclaimer:
Copyright © 2012 Carnegie Mellon University

CrossTalk—March/April 2012 21

SECURING A MOBILE WORLD

1.	 The Software Engineering Institute is a federally funded research and development center
	 sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.
2.	 In addition to educators in the SEI, collaborators include educators from Embry-Riddle
	 Aeronautical University, Monmouth University, Stevens Institute of Technology, University of
	 Detroit Mercy, Union County College, and University of Arkansas, Little Rock.
3.	 Note that computing capabilities may be acquired through services as well as new development.
	 Recovery is an important capability for organizational continuity and survival.
4.	 These volumes, plus related information and faculty resources, can be found at <www.cert.org/
	 mswa/> and the DHS Build Security In (BSI) website <https://buildsecurityin.us-cert.gov/bsi/>.
5.	 The Reference Curriculum addresses topics such as assurance across life cycles, risk manage
	 ment, assurance assessment, assurance management, system security assurance, assured
	 software analytics, and system operational assurance. This can be implemented as a standalone
	 program, or as a track within an existing master’s program, such as a Master of Software
	 Engineering program.
6.	 This set of outlines includes seven course descriptions that could be included in a software
	 assurance specialization track of a traditional computer science degree program. To provide an
	 emphasis on software assurance topics in the first year of a curriculum, descriptions of
	 alternative forms of Computer Science I and II are included.
7.	 The ACM Committee for Computing Education in Community Colleges (<www.acmccecc.
	 org>), led by Elizabeth Hawthorne, partnered with the SwACP to produce this volume that
	 includes discussion of existing curricula related to software security that are suitable for
	 community colleges. The target audiences are students planning to transfer to a four-year
	 program and students with prior undergraduate technical degrees who wish to become more
	 specialized in software assurance. The report includes course outlines and identification of resources.
8.	 These are just a few of the papers and presentations. Reference [1] provides the best overview
	 of the SwACP, while reference [11] provides a much briefer synopsis, including those artifacts,
	 foundational materials, and recent curriculum guidelines referenced in the development of the
	 SwACP curricula.
9.	 The ACM and its partner, the IEEE-CS, have developed several computing curricula and are
	 community leaders in curricula development.
10.	 The CSEET 2010 three hour workshop is available at <https://www.vte.cert.org/vteweb/
	 RequestAccess/ClassPreview.aspx?Classid=120>
11.	 Podcast is available at <http://www.cert.org/podcast/show/20101026mead.html>
12.	The environment that allowed SIT to quickly create its software assurance program, as well as
	 potential adaptations of the MSwA curriculum for information systems curricula are also
	 described in [3].
13.	<www.cs2013.org>
14.	A recent addition to the SwACP, Remzi Seker, University of Arkansas, Little Rock, is a member of
	 the IEEE-CS delegation.
15.	 In addition to those targeted by other team members and means, this outreach effort included
	 faculty and educational institutions granting master’s, bachelor’s, and associates’ degrees in 21
	 states and the District of Columbia.
16.	 <http://www.nsa.gov/ia/academic_outreach/nat_cae/index.shtml>
17.	 <http://www.truststc.org/>
18.	 <http://www.admiusa.org/>
19.	 U.S. Air Force Academy, U.S. Military Academy, U.S. Naval Academy, Air Force Institute of
	 Technology, Naval Postgraduate School, U.S. Naval War College, and U.S. Coast Guard Academy
20.	 Information about SwA Community activities including forums and working groups can be found
	 at <https://buildsecurityin.us-cert.gov/swa/forums.html>; see especially the Workforce
	 Education and Training Working Group.	
21.	<http://csrc.nist.gov/nice/aboutUs.htm> 	
22.	Communication to Carol Sledge by Dr. Steve Hadfield, Associate Professor and Curriculum Chair,
	 Department of Computer Science, U.S. Air Force Academy
23.	These include Hampton University, TRUST, Gunter Air Force Base, Southeast Missouri State
	 University, Cleveland State University, and University of Detroit Mercy.
24.	Communication to Nancy Mead by Wm. Arthur Conklin of the Department of Information and
	 Logistics Technology

ABOUT THE AUTHOR NOTES
Carol A. Sledge, Ph.D., is a senior technical staff mem-
ber at SEI. She is also a Carnegie Mellon adjunct faculty
member. Her research interests include software assur-
ance and SoS interoperability. Previously at CERT, Sledge
led development of a reference curriculum in survivability
and information assurance. She is a senior member of the
IEEE, ACM, and AIAA. Sledge received her master’s and
doctorate in computer science, and her bachelor’s degree
in mathematics from University of Pittsburgh.

4500 Fifth Avenue
Pittsburgh, PA 15213-2612
Phone: 412-268-7708
E-mail: cas@sei.cmu.edu

REFERENCES
1.	 Mead, Nancy R., Julia H. Allen, Thomas B. Hilburn, Andrew J. Kornecki, Rick Linger, and James McDonald. “Development
	 of a Master of Software Assurance Reference Curriculum.” International Journal of Secure Software Engineering 1.4
	 (2010): 18-34. Print.
2.	 Anderson, R. J. Security Engineering: A Guide to Building Dependable Distributed Systems. 2nd ed. New York: John Wiley,
	 2008. Print.
3.	 Ardis, Mark, and Nancy Mead. “The Development of a Graduate Curriculum for Software Assurance.” AMCIS 2011
	 Proceedings - All Submissions. 17th Americas Conference on Information Systems (AMCIS), Detroit. Web. 28 Oct. 2011.
	 <http://aisel.aisnet.org/amcis2011_submissions/34/>.
4.	 Mead, Nancy R., Julia H. Allen, Mark Ardis, Thomas B. Hilburn, Andrew J. Kornecki, Rick Linger, and James McDonald.
	 Software Assurance Curriculum Project Volume I: Master of Software Assurance Reference Curriculum. Rep. no. CMU/
	 SEI-2010-TR-005. Pittsburgh: Software Engineering Institute, Carnegie Mellon University, 2010. Web.
	 <http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm>.
5.	 United States. Instruction No. 4009, National Information Assurance Glossary. By Committee on National Security Systems.
	 Revised June 2009. Print.
6.	 Mead, Nancy R., Thomas B. Hilburn, and Richard C. Linger. Software Assurance Curriculum Project Volume II:
	 Undergraduate Course Outlines. Rep. no. CMU/SEI-2010-TR-019. Pittsburgh: Software Engineering Institute, Carnegie
	 Mellon University, 2010. Web. <http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm>
7.	 Mead, Nancy R., Julia H. Allen, Mark Ardis, Thomas B. Hilburn, Andrew J. Kornecki, and Rick Linger. Software Assurance
	 Curriculum Project Volume III: Master of Software Assurance Course Syllabi. Rep. no. CMU/SEI-2011-TR-013. Pittsburgh:
	 Software Engineering Institute, Carnegie Mellon University, 2011. Web.
	 <http://www.sei.cmu.edu/library/abstracts/reports/11tr013.cfm>.
8.	 Mead, Nancy R., Elizabeth K. Hawthorne, and Mark Ardis. Software Assurance Curriculum Project Volume IV: Community
	 College Education. Rep. no. CMU/SEI-2011-TR-17. Pittsburgh: Software Engineering Institute, Carnegie
	 Mellon University, 2011. Web. <http://www.sei.cmu.edu/library/abstracts/reports/11tr017.cfm>.
9.	 Ardis, Mark, and Peter Henderson. “Software Engineering Education (SEEd): Educating Our Students to Build Security In.”
	 ACM SIGSOFT Software Engineering Notes 35.6 (2010). Print.
10.	 Mead, Nancy R., Linda M. Laird, and Dan Shoemaker. “Getting Secure Software Assurance Knowledge into Conventional
	 Practice: Three Educational Initiatives.” COMPSAC. Proc. of 2011 IEEE 35th Annual Computer Software and Applications
	 Conference. 193-98. Print.
11.	 Mead, Nancy R. and Dan Shoemaker. “Two Initiatives for Disseminating Software Assurance Knowledge.” CrossTalk
	 (September-October 2010): 25-29. Web. <http://www.sstc.hill.af.mil>.
12.	Mead, Nancy and Joe Jarzombek. “Educating the Next Generation of Software Engineering Professionals (Keynote).”
	 Colloquium for Information Systems Security Education, June 2011, Fairborn, OH.
13.	Sledge, Carol A. “Master of Software Assurance Curriculum: A Briefing for Faculty.” 2010 Workshop on Curriculum
	 Development in Security and Information Assurance (CDSIA). May 21, 2010, San Jose, CA.
14.	Mead, Nancy; Jeff Ingalsbe, and Mark Ardis. “Faculty Development Workshop: How to Get Started in Software Assurance
	 Education.” Conference on Software Engineering Education and Training, March 2010, Pittsburgh, PA.
15.	 Hadfield, S., D. Schweitzer, D. Gibson, B. Fagin, M. Carlisle, J. Boleng, and D. Bibighaus. “Defining, Integrating, and
	 Assessing a Purposeful Progression of Cross-Curricular Initiatives into a Computer Science Program.” Proc. of the 41st
	 ASEE/IEEE Frontiers in Education Conference, October 2011. Print.

22 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Introduction
In August of 2011 Hewlett Packard, the world’s largest

seller of PCs, confirmed it was looking to sell off its personal
computing business—possibly getting out of the hardware
game altogether and dropping its tablet and smartphone op-
erations as well. This event along with IBM’s decision in 2004
to sell its PC business line to Lenovo, a China-based firm, is a
harbinger that the low-margin PC business may not be worth
pursuing. Concurrently the rise of alternatives to traditional
PCs, the tablet(s), continues unabated—with forecasts through
2011 at 60 million tablets and in 2012 to be 90 million units
[1]. There still will be over 100 million PCs sold worldwide for
several years because people need them for certain tasks [2].
Many of the habits we associate with personal computers can
be carried out with touchscreen and an Internet connection—
done anywhere, and quickly. The iPhone has demonstrated
what could be done with a relatively small device that could
single task very well. With Android and Apple netbooks being
circulated, this idea of a small, relatively inexpensive device
connected to back-end services is the leading edge of a
paradigm-shifting platform—along with the application layer in
the private cloud [3].

According to Brodkin [4], “since the personal computer
debuted in 1971, a Darwin-esque evolution process has lifted
the PC from modest beginnings to its prevailing role as an
indispensable part of life in the 21st century” … “evolving from
clunky commercial flops to slick, high-powered machines that
play a vital role in our daily lives, both for work and play.” Per-
sonal computers have been the technology engine drivers from
Intel to Microsoft to Dell to HP to Google to Facebook. But the
rise of mobile computing is upending the technology business
and is simultaneously redefining what is a personal computer
and how we use it [1, 5].

This paper is a sector case study that seeks to examine
the development, evolution, and diaspora of the personal
computer. The remainder of this paper proceeds as follows.
First, we present an overview of the IDT model and discuss
innovation characteristics. Then we categorize the personal
computer from multiple perspectives using this as a frame-
work. Finally, we comment on the direction, durability, and
mutations (the diaspora) of the personal computer using
Ansoff’s model of diversification.

Overview of Diffusion of Innovation
Diffusion of innovation theory [6] describes the process

through which new ideas, practices, or technologies are spread
into a social system. According to Murray [7], diffusion of in-
novation theory holds that innovation diffusion is a general
process, not bound by the type of innovation studied, by who
the adopters are, or by place or culture, such that the process
through which an innovation becomes diffused has universal
applications to all fields that develop innovations. Diffusion is
defined as the process in which an innovation is communicated
through certain channels over time among the members of a
social system. Innovation is an idea, practice, or object that is
perceived as new by an individual or other unit of adoption. In
addition, innovation also does not necessarily mean better or
that the new idea is more beneficial to an individual. Whereas in-
novation can refer to something abstract, like an idea, it can also
be concrete, like a new piece of technology. This article focuses
specifically on the personal computer as a particular type of
innovation of interest.

Rogers [6, 8] suggested that there were/are four main 	
elements in the diffusion process:
•	 The innovation
•	 The communication channels through which the innovation
	 is diffused
•	 Time
•	 The social system

The end results [9] of diffusion are adoption, implementation,
and institutionalization. Diffusion researchers across many aca-
demic disciplines have identified a consistent process through
which innovations are diffused into social systems. There is gen-
erally a period of slow growth, followed by more rapid expansion,
followed ultimately by a plateau or another slow growth period.
Different characteristics of the innovation, communication chan-
nels, and social system are likely to have varying influences at
different times throughout the diffusion process [10].

Individuals vary in their willingness to accept new ideas and
change [11]. Rogers [6] classified adopters into the following
five categories on the basis of their rates of adoption:
•	 Innovators, who are among the first 2.5% in the population to
	 adopt the innovation and demonstrate an adventurous,
	 cosmopolite nature.
•	 Early adopters, who fall into the next 13.5% of adopters and
	 who are integrated closely into the social network and are
	 often opinion leaders.
•	 The early majority, who are the next 34% of adopters and are
	 described as deliberate followers.
•	 The late majority, the next 34% who are often skeptical of the
	 innovation at first but eventually succumb to peer pressure.
•	 Laggards, who are the final 16% and who tend to be more
	 traditional and isolated compared with earlier adopters.
	 Individuals who are among the last to adopt an innovation
	 often exhibit the longest decision-making processes prior
	 to deciding.

Abstract. This paper examines the development, evolution, and diaspora of
the personal computer. An overview of the Innovation Diffusion Technology
(IDT) model is presented. Using this as a framework, the personal computer is
categorized from multiple perspectives. The direction, durability, and mutations
(the diaspora) of the personal computer are presented using Ansoff’s model
of diversification.

James A. Sena, Ph.D., California Polytechnic State University

The PC Evolution
and Diaspora

CrossTalk—March/April 2012 23

SECURING A MOBILE WORLD

Marketing of the PC
The PC did not magically appear in its current wide-screen,

multi-core, viewing form overnight. It took many years to evolve
from the IBM PC of 1981 to the high-powered tech gadgets.
The original idea of the PC was sound: using off the shelf parts
combined with a relatively open, but curated set of standards to
avoid reinventing from one version of the PC to the next. There
are a number of milestones passed along the way, from the
introduction of the IBM PC in August 1981, and moving on to
the appearance of the first PC clones in 1982, leading to the
“post-PC” tablets of 2010-2011. Microsoft, AMD, and Intel have
outplayed and outlasted their rivals. Plus, many of the hundreds
of “PC clone makers” have either been left by the wayside, or
have been absorbed into larger conglomerates. Apple has been
friend, rival, and self-appointed nemesis during this period, and
without that competition, it is unlikely that we would see the
technology move in the directions it has. There are an abun-
dance of time-lines and papers addressing the evolution and
eras of the PC. We have constructed a time-line fitted to the
IDT curve—products, and way stations in the journey through PC
technology are depicted. Our intention was not to be exhaustive
but to cite major events as well as game-changing/legitimizing
turning points. The time-line is shown in Figure 1.

The first key event in the PC era was the introduction of the IBM
PC. IBM dominated the computer industry during the pre-computer
era (machine-accounting); championed the many generations of
mainframes (e.g. the 360 – 370); operating systems and most
other software applications; extended and expanded the minicom-
puter industry (System 32, 34, 36, 38…) and then entered into
the PC arena on a major scale—setting a standard for operating
systems and controlling the overall market in its initial stages. These
were the “early adopters”—primarily computer professionals that
transitioned from the mainframe to the minicomputer. Many users
experienced the computer as a stand-alone, special-purpose desk-
top (e.g the graphics machines created by HP).

Figure 1. Drivers of Growth for the PC

The PC at this point was a computer without a clear pur-
pose—the accompanying event was the spreadsheet—Visi-
Calc—followed closely by Lotus 123. Abruptly businesses and
the general computer population had a tool that legitimized the
PC. Simultaneously word processors and database managers
were introduced and followed by graphic/presentation software.
The speed, storage capacity and communication channels still
were lacking. General business users and professionals began
to use the PC for individual and departmental applications and
analysis —they formed the nucleus of the “early adopters.” At this
juncture in time problems arose in many businesses and govern-
ment agencies – the IT administration did not want to relinquish
control to the end users.

As hardware enhancements and network connections were
introduced the capabilities of the PC made possible the use of
the graphical user interface—obsoleting the use of the PC as
a terminal to the mainframe. This marked the rise of Microsoft
not only as a provider of operating systems but also the visual
aspects of Windows 3 and the business acumen of Microsoft
Office—the suite of products for the business at the individual
and department level. As hardware technology enabled more
elaborate software and system use the PC became a standard
within most businesses—the “early majority” embraced the PC
as their primary desktop tool for basic tasks along all levels of
business activity.

Closely following these enhancements was the introduction of
the World Wide Web [WWW] browser as an overlay over the Inter-
net. Prior to this introduction the Internet existed for an extended
period but did not have wide-spread use except at the busi-
ness level for file transfers and email-type commerce. Netscape
was the killer app that started the paradigm shift—followed by
Microsoft’s Internet Explorer. In effect, the PC became the vehicle
for every man to communicate – no longer just a business-level
system. This marked the peak of the PC era and the diffusion of
PC use to the general public—“the majority”. Not only was the PC
the inherent tool in the office but also the home and school.

24 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

The culminating event was the rise of the networks—the local
area networks in businesses and later in homes—but also the wide
area networks for businesses and ultimately the utilization of the
complex already in place, the Internet. The operating system and
router/switch defined by Cisco became the vehicle for communica-
tion worldwide. That combined with the browser enabled access
for business and the general public (“the late majority”). Of note
the browser became the basic user interface for many businesses
and government agencies—the U.S. Navy mandated that Internet
Explorer be the standard interface for most contractor software
development. Following this accessibility the introduction of the
search engine (Yahoo and then Google) made the web a perva-
sive tool. And lastly the social networks (MySpace and Facebook)
involved an extensive array of the population as participants.

At the beginning of the 1990s the stability of the personal
computer structure and industry changed. IBM dominance of
the PC industry and its role as standard-bearer started to erode
in the late 1980s. By the early 1990s the market structure was
one in which a number of firms possessed the capability to supply
interoperable components. Throughout the 1990s and beyond,
thousands of manufacturers built PCs around hardware and soft-
ware components mainly supplied by Microsoft and Intel. There
are two distinct types of supplier to the PC industry. The first
type supplies components such as disk drives, RAM, peripherals
etc. Products in this category are available from a wide variety of
sources at highly competitive prices. The other type of supplier
provides products—most notably CPUs and operating systems—
available from just a few sources .i.e. Microsoft and Intel.

Most firms outsourced the production of components manufac-
turing contractors carrying out simple manufacturing operations at
high-volume plants in low-cost locations. Eventually, these contrac-
tors took on more complex tasks, such as design and testing. By
the beginning of this century, large contract manufacturers began
to build entire PCs for brand-name companies, designing and as-
sembling basic computers in Asia and shipping them to geographic
hubs for production to be completed. These full-line distributors
dominated the industry with the broadest customer and product
base. Many PC manufacturers aimed to streamline their operations
by moving from a build-to-stock to a build-to-order model. Reduced
inventory led to reduced costs.

The four main types of PC buyer have remained the same since
the early 1990s. Namely: business, home, government, and educa-
tion. However, the distribution channels have changed. Business
buyers now buy direct from vendors or distributors as opposed to full-
service dealers. Consumer markets are serviced by web-based retail-
ers that can service all types of demand often at steep discounts.

In a survey conducted by eWeek, one in five U.S. adults surveyed
said they planned to own a tablet by 2014. The survey included ap-
plication use on tablets, including the iPad and machines/tablets based
on Google’s Android platform. Some 78% of respondents said they
planned to use their tablets to surf the Web. Three-quarters of people
said they would use their machines for e-mail. Other uses include
electronic reading of books and newspapers, (53%), social networking
(50%), consuming TV and other apps (43%). Tablet use is attractive
for enterprises as well, with 37% of respondents planning to use their
machines for business concerns. The use of the term “laggard” is prob-
ably not appropriately used in this presentation of the PC diffusion—an-
other interpretation would be the deployment of the basic technology
and ideas rooted in the PC as it evolved from a desktop to a laptop and
currently the variety of devices that make use of and expand on the PC
platform—the tablets, the smartphones and even the virtual PC.

Diversification—the Diaspora
Diversification is the name given to the growth strategy

where a business markets new products in new markets. For
a business to adopt a diversification strategy it must have a
clear idea about what it expects to gain from the strategy and
a clear assessment of the risks. Diversification in new markets
concerns the inclusion of activities other than those directly
relating to the product or associated services. There are four
underlying reasons why companies diversify [12]:
•	 When their objectives can no longer be met within the
	 product-market scope defined by expansion—even if
	 attractive expansion opportunities are still available and past
	 objectives are being met, a firm may diversify because the
	 retained cash exceeds the total expansion needs. (The
	 pressure may be on the firm to invest money more profitably.)
•	 When diversification opportunities promise greater
	 profitability than expansion opportunities. This may occur
	 under several conditions.

New Related Technology Unrelated Technology
Markets/Mission

Same
Type

Barnes & Noble -- Amazon
 -- Sale of books for eReaders

Apple iPad & iPod -- and Android
 -- sale/use of Books, pdfs, music, video as Aps
 -- Aps for Business (~ office tools)
 -- Aps for Games, Personal Use
 -- Aps for alternative Media (Newspapers,etc)

Google - Samsung - HP Slate --- Intel Ultrabook
 -- Enter tablet market
Barnes & Noble --- Amazon Kindle and Tablet
 --- Software for PCs & other devices
Google - Amazon - HP Cloud Computing
 -- offer services to existing customers
Microsoft Cloud Computing
 -- Office 365
 -- Windows 8

Firm its
own customer

Amazon is able to use its web-based ordering and
electronic distribution system without incurring additional
costs

Microsoft, Google use products internally as
development tools for new/revised products

Google's
 - Commitment to digitize most books in the
 public domain provides a ready audience for
 ereading devices and other medium
 - Use of network infrastructure created for
 search engine as competitive alternative for
 -- Online office products
 -- Social networks (Google +)

Publishers can partner with Amazon and Barnes & Noble
distribution and other supply chain capabilities

New Products

Horizontal Diversification

Vertical Integration

Table 1. Horizontal and Vertical Integration

CrossTalk—March/April 2012 25

SECURING A MOBILE WORLD

•	 When the firm’s research and development organization
	 produces outstanding diversification by-products.
•	 When synergy is not an important consideration and therefore
	 the synergy advantages of expansion over diversification are
	 not important.

Firms may continue to explore diversification when the avail-
able information is not reliable enough to permit a conclusive
comparison between expansion and diversification.

Ansoff has identified different forms of diversification—these are
set out in Tables 1 and 2. Table 1 depicts Horizontal Diversifica-
tion—consisting of moves within the economic environment of the
diversifying firms and is complementary to their existing activities,
marketing synergy is strong as they continue to sell through estab-
lished marketing channels. This has been the lexis for the changes in
the supply line, customer relations and expectation management in
the PC’s competitive environment; and Vertical Integration—referring
to the development of activities which involve the preceding or suc-
ceeding stages in their production processes and is often more sen-
sitive to instabilities and offers less assurance of flexibility—increases
the dependence on a particular segment of economic demand—here
most of the main competitors are able to channel some of their related
products and distribution channels to provide a competitive edge.

These two diversification strategies offer limited potential for
objectives; they make a limited contribution to flexibility and stabil-
ity and will contribute to the other objectives only if the present
economic environment of the firm is healthy and growing. This
inflection point is just as dramatic as when the PC came on the

scene and cut the cord between the mainframes and minis and
made the personal computing local. Another way to think of this
is that we are moving into a phase in which people want a PC on
their desktop and in their pocket [13].

Table 2 depicts Concentric Diversification—having a degree of
common thread with those firms that possess marketing and/
or technology capabilities. A concentric strategy is generally
flexible and usually more profitable and less risky because of
synergy. For the PC industry sector the major players can bring
to bear resources established from their other product lines to
enhance their competitive position.

PCs are being replaced at the center of computing not by
another type of device—but by new ideas about the role that com-
puting can play in progress. According to Burt [14], “it is becoming
clear that innovation flourishes best, not on devices but in the social
spaces between them, where people and ideas meet and interact.
It is there that computing can have the most powerful impact on
economy, society and people’s lives.” Software and technology-
based companies need to understand where computing is headed
and to embrace “that which is technologically inevitable”—a future
of varied devices connected to the cloud. The days of the PC-
centric environment, which helped fuel Microsoft’s success, are
declining as the use of mobile devices and cloud computing rises,
implied Ozzie, a Microsoft’s chief software architect [14].

At the unveiling of the iPad 2 in March, 2011, then Apple
CEO Steve Jobs affirmed that the post-PC world would be
dominated by such devices as smartphones and tablets. Some

New Markets/Mission Similar Types New Types
Marketing & Technology

Related
Amazon eReader has capabilites for reading not
offered by any other device

Apple -- iPad
 - Apple's B2B volume purchasing agreement

Gaming Industry-- companies will be pressed harder
and harder to come up with new ideas, which could
make for an uphill battle (Caron, 2009)

A number of new technologies for tablets are being
applied and used for business applications
 - PC manufacturers are designing Hybrid
 Tablet PCs able to perform heavy duty work

Cloud Services --high cost of power and space is going
to force the IT world to look at cloud services, with a shift
to computing as a cloud resource (Infoworld,2008)

Consumers can now use smaller gadgets to do many of
the same things they once did with PCs, such as surfing
the Internet, storing photos and sending e-mail.
(Robertson, 2011)

Mobile Workers and related products
 - Telecommuting -- the home office
 - Pressure to provide tools and access to
 corporate system

Marketing
Related

Apple -- iPad (Rawson, 2011)
 - Apple's retail stores
 - Use by Children
 - Deployed in Higher Education

internet and technology companies taking a different
approach:
 -- Introducing a wide range of "smart" devices,
 from phones to TVs, become the access
 points to digital information, which resides
 in the "cloud" (Nutall and Waters, 2011)

For aspirant writers the ereader medium now provides a
channel/outlet for private label media publications
(Castro, 2007) (Egol, 2009)

Technology
Related

Apple -- Google
 -- Introduce Operating Systems for devices
 -- Google Android available other systems

PC makers are countering the threat is with iPad-
style tablets running Android

Advances in network medium will reduce delivery time
and cost and provide speed of access

Virtualization
 - Desktop Virtualization (Fogarty, 2010)

New Products

Table 2. Concentric Diversification

26 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

other vendors view tablets as something new in the PC market,
but that, “is not the right approach to this,” Jobs said. “These are
post-PC devices that need to be easier to use than a PC, more
intuitive. The hardware and software need to intertwine more
than they do on a PC.”

Given the diaspora it is well to note that the smartphones
and tablets are hybrids— variations of not just the PC but other
technologies. A smartphone is a mobile phone that combines the
functions of a personal digital assistant and a mobile phone—
also serving as portable media players and cameras with high-
resolution touchscreens, web browsers and mobile broadband
access. A tablet PC is just that—a tablet-sized computer that
has the key features of a full-size personal computer. With the
introduction of the iPad and later the Samsung tablet, these
devices have taken on many of the features of the smartphone
and iPod-like devices.

Two other related directives altering the PC are virtualization
and the cloud. These concepts are somewhat intertwined. Cloud
computing delivers applications via the Internet and the web
browser—the business software and/or user data are stored at
remote location. Virtualization is the creation of a virtual (rather
than actual) version of something, such as a hardware platform,
operating system, a storage device or network resources. It
can be viewed as part of an overall trend in enterprise IT that in
which the IT environment will be able to manage itself based on
perceived activity, and utility computing, in which computer pro-
cessing power is seen as a utility that clients can pay for only as
needed. These innovations extend the PC by enabling any web-
enabled device to serve as a conduit to an organization’s ap-
plications and data. For the consumer we already see this trend
with Google’s Gmail and apps being stored on Google servers—
these are just the tip of the data and application iceberg.

PC sales are decelerating in the U.S. because the same
technological advances that fueled the PC industry’s rise—faster
processors and lower costs—are now benefiting the devices that
are usurping it. Consumers can now use smaller gadgets to do
many of the same things they once did with PCs, such as surf-
ing the Internet, storing photos, and sending e-mail. Apple even
boasts that users can edit home movies on an iPad [15].

In summary, just as with the PC evolution the diaspora is
marked by several significant diversifications. The PC itself has
mutated into many products ranging from laptops to mini and
micro PC-laptops to Tablet-PCs. Accompanying this mutation is
the software that supports this array of devices—much of it can
be found on other hand-held devices such as the BlackBerry
and the smartphones. The promotion and progression of the
array of Apple products ranging from the iPhone to the IPod to
the iPad has created and fostered not only a market niche but
moreover an extension into a worldwide set of devices—engen-
dering other software and hardware companies to follow suit.
The iPad has come to be a multi-use product—serving as an
access point or portal to the web, a gaming device, a communi-
cation medium, and perhaps a substitute for media devices such
as the burgeoning eReader market—going directly against the
Amazon Kindle. The way that firms now do business is changing.
This also has fallout to the consumer that can now use a hand-
held device to access a plethora of data anywhere, anytime, and
anyplace. The PC is in some sense becoming a virtual machine.

ABOUT THE AUTHOR

James A. Sena, Ph.D., is a Professor of
Management and Information Systems in
the Orfalea College of Business at Califor-
nia Polytechnic State University. He cur-
rently teaches Organization Systems and
Technology and Strategy and Policy Teach-
ing specialties include Project Manage-
ment, Business and IT Strategy, Computer
Security, Network Systems, and, Manage-
ment Information Systems. Dr. Sena has
a Ph.D. from the University of Kentucky
in Organization Theory and Computer
Science. His current research interests
include emerging electronic technologies
and analyses of executive data concerning
information technology.

E-mail: jsena@calpoly.edu
Phone: (805) 756-5318

REFERENCES
1.	 Ogg, E. (2011) The end of the PC era. GigaOM Pro Aug. 18, 2011, 2:00pm PT
2.	 Oswald, E (2011) IBM Declares the End of the PC Era, PCWorld Aug 11, 2011
3.	 Enderle, R. (2009) 3rd Rebirth of Computing: The End of PCs and Game Consoles.
	 TechNewsWorld04/06/09
4.	 Brodkin, J. (2009) Evolution of the PC, NetworkWorld, May 27, 2009 11:00 pm
5.	 Volmer, Christopher (2009), Digital Darwinism, Strategy-Business, Spring, 2009.
6.	 Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press
7.	 Murray, C. (2009)Diffusion of Innovation Theory: A Bridge for the Research-Practice
	 Gap in Counseling Journal of Counseling and Development : JCD. Alexandria:
	 Winter 2009. Vol. 87, Iss. 1; pg. 108, 9 pgs
8.	 Rogers, E. M. (2002). Diffusion of preventive innovations. Addictive Behaviors,
	 27, 989-993
9.	 Dusenbury, L., & Hansen, W. B. (2004). Pursuing the course from research
	 to practice. Prevention Science, 5, 55-59
10.	Moore, G. and Benbasat, I. (1991), “Development of an instrument to measure the
	 perceptions of adopting an information technology innovation”, Information Systems
	 Research, Vol. 2 No. 3, pp. 192-222.
11.	Valente, T. W. (1996). Social network thresholds in the diffusion of innovations.
	 Social Networks, 18, 69-89
12.	Ansoff, I. (1987), Corporate Strategy, rev. ed., Penguin, Harmondsworth
13.	Dalrymple, J. (2011) The future of the PC industry
	 http://www.loopinsight.com/2011/07/22/the-future-of-the-pc-industry/
14.	Burt. J. (2011) IBM Exec: The End of the PC Era Is Here
	 http://www.eweek.com/c/a/Desktops-and-Notebooks/ IBM-Exec-The-End-of-the-
	 PC-Era-is-Here-609114/
15.	Robertson , J. (20110Rebooting the PC industry: Tablets force a shift.
	 Associate Press.9:00 PM, Jul. 23, 2011 	

CrossTalk—March/April 2012 27

SECURING A MOBILE WORLD

Introduction
The necessity of mitigating vulnerabilities in software applica-

tions is well understood by organizations today. To identify them
in existing applications, organizations can use vendor alerts
along with public resources such as the Common Vulnerabili-
ties and Exposures [1] and the Open Web Application Secu-
rity Project’s Top 10 Web Application Security Flaws [2] lists.
Programmers can help to avoid including them in new applica-
tions or maintenance of existing applications by consulting the
public Common Weakness Enumeration (CWE™) [3] and CWE/
SANS Top 25 Most Dangerous Software Errors [4] lists. Other
organizations (e.g., CERT [5] and MISRA [6]) have developed
public or private style guides to assist programmers in avoiding
application vulnerabilities.

An application vulnerability is a weakness in a software ap-
plication that permits exploitation by unauthorized persons or
contributes to safety hazards. The frequent patches provided by
our software vendors have alerted most of us to the problem of
vulnerabilities in software designs. Not as well known, however,
is that the programming languages in which software applica-
tions are written, also have vulnerabilities of their own that can
cause applications not to work as intended, behave in unpredict-
able ways, or lead to application vulnerabilities. Simply stated,

deficiencies in the design of programming languages encourage
programmers to code in a manner that creates application vul-
nerabilities. The consequences for organizations can be costly
as well as dangerous.

To address this problem, ISO [7] and IEC [8] issued a Techni-
cal Report entitled ISO/IEC TR 24772:2010, Information
technology—Programming languages—Guidance to avoiding
vulnerabilities in programming languages through language
selection and use [9], in September 2010 that lists 51 common
types of vulnerabilities found in programming languages, along
with suggestions for how to avoid them. The report also lists 20
application vulnerabilities that could be addressed by improved
language library routines.

No one language contains all of the vulnerabilities described
in the report, but most are very common. In addition, 17 of the
vulnerabilities detailed in the report also appear on the 2010
CWE/SANS Top 25 Most Dangerous Software Errors list.

Reduce Risk by Mitigating Programming
Language Vulnerabilities

By understanding the different ways in which their program-
ming languages might be vulnerable, writers of language
standards can eliminate or reduce those vulnerabilities in their
languages and thereby make them more secure. In turn, ap-
plication developers can know how secure a language is before
choosing it. Developers will also be able to ensure that the
potential for vulnerabilities in their applications are minimized
in their software applications, and that they have chosen the
most effective and comprehensive source code evaluation tools.
Project managers can use the guide to make better-informed
selections of programming languages and establish mitigations
for the risks inherent in the chosen language.

This is of special importance to those who develop, maintain,
and regulate:
•	 Safety-critical applications that might cause loss of life,
	 human injury, or damage to the environment.
•	 Security-critical applications that must ensure properties of
	 confidentiality, integrity, and availability.
•	 Mission-critical applications that must avoid loss or damage to
	 property or finance.
•	 Business-critical applications where correct operation is
	 essential to the successful operation of the business.
•	 Scientific, modeling, and simulation applications that require
	 high confidence in the results of possibly complex, expensive,
	 and extended calculation.
Reducing risk in all of these areas will, over time, yield organiza-
tions cost savings due to less work, and ultimately lead to more
secure systems.

Types of Programming Language Vulnerabilities
When a programmer writes a software application, regard-

less of the programming language used—be it Ada, C, COBOL,
Fortran, etc.—the code should execute in a manner that can be
predicted by the developer. If it does not, and an attacker can
then make use of the mistake to access a system or network, it
is considered a vulnerability in the software code.

Abstract. A recent joint technical report from two major international stan-
dards bodies, the International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), identifies classes of vulnerabilities
in programming languages—those features of the languages that encourage
or permit the writing of code that contains application vulnerabilities—and sug-
gests ways to avoid or mitigate them. According to the report, programming
language vulnerabilities should especially be avoided “in the development of
systems where assured behavior is required for security, safety, mission critical
and business critical software. [However], this guidance is applicable to the
software developed, reviewed, or maintained for any application.” This paper
provides a brief summary of the ISO/IEC Technical Report.

James W. Moore, The MITRE Corporation
John Benito, Blue Pilot
Larry Wagoner, National Security Agency

New ISO/IEC
Technical Report
Describes
Vulnerabilities in
Programming
Languages

28 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

With programming languages, vulnerabilities arise in six
main ways:

Incomplete or Evolving Programming
Language Behavior

Programming language standards are continuously evolv-
ing with new releases and features, resulting in issues that
might affect predictability. Such issues include the need for
compatibility with previous releases, and the interaction of that
language’s features, separately and in any combination, under
all foreseeable circumstances.

Choice of compiler can also have an effect. Compilers are
used by programmers to transform their source code to a binary
code (commonly called object code). However, unless the com-
piler comes from a trusted source and was developed according
to agreed standards, it could inadvertently or maliciously insert
bad code into the binary, resulting in a potential vulnerability.
This is especially important to avoid because this type of vulner-
ability would then be inserted into every piece of software that
the compiler processes.

Unspecified behavior must also be avoided. While most
behavior is specified by programming languages, unspecified
behaviors can result when a programming language construct is
specified to have two or more possibilities of behavior. In such a
case, different compilers may generate different behaviors from
the same source code, resulting in a vulnerability. The problem
is exacerbated if the compiler(s) are run on different computers;
if the compilers use different software libraries; or if they run on
different operating systems, different releases of an operating
system, or different configurations of an operating system.

Another issue is implementation-defined behavior. Program-
ming languages sometimes allow compilers to support a variety
of behaviors for a single language feature, or combination of
features, that may enable usage on a wider range of hardware
or enable use of the language in a wider variety of circumstanc-
es. However, there is a requirement that each implementation
document the behavior. Vulnerabilities can occur when the pro-
grammer does not take into account this documented behavior
or ports code from one machine to another without considering
changes in implementation-defined behavior.

Undefined behavior is also a threat. Programming languages
sometimes specify that program behavior is undefined or simply
leave some behavior undefined. Common examples include recovery
from an error in the software, and use of the value of a variable that
has not yet been assigned. In some cases, attackers can use expert
knowledge to stimulate behavior that can lead to a vulnerability.

Human Cognitive Limitations
Programming languages are created with different purposes,

some are for general use and others for specific tasks or needs,
but all are created as tools to be used by software programmers
to manipulate data and produce a desired result. This means
the intended audiences for the languages are different. For
instance, C was created for programmers implementing system
software, while COBOL was created for programmers writing
business applications.

Because everyone is different and each person has their own
levels of understanding and areas of expertise, vulnerabilities
can occur because of the abilities of the person writing the code

as well as by those who maintain it. Programmers may choose
syntaxes that make the most sense to them, even though the
language provides another syntax that would accomplish the
same task, or may have performed the function more efficiently.
Also, as people, programmers have to deal with the stresses of
their personal and professional lives, any of which may have an
impact on the quality of code that person writes, which could in
turn result in a potential vulnerability.

This can be addressed by standardizing and simplifying as
much as possible, and by improving documentation and resourc-
es, including project coding standards and review processes,
that directly deal with these issues.

Lack of Portability and Interoperability
In addition to potential issues resulting from how code is

written and from variations in the compilers or configurations of
the same compiler, other factors can result in potential vulner-
abilities when the application is run, such as if the application
is used with different software libraries, on different operating
systems, or on different hardware.

Developers must be aware of these possibilities and plan for
them, for instance, by using only semantics specifically defined
by the language, and by using software libraries specifically cre-
ated for the language whenever possible.

Inadequate Intrinsic Support in the Language
Although using specified software libraries for an application

can reduce risk, sometimes no libraries are specified by the pro-
gramming language or the libraries used are not validated to the
same standard as the compiler and the applications being devel-
oped, are proprietary and inclined to change in later releases, or
are discontinued and no longer supported by the vendor. Such
instances can lead to potential vulnerabilities.

A programmer can reduce this risk by using stronger types or
controls to perform certain operations, though this may reduce
the performance and flexibility of the application. Therefore, the
developer must strike a balance between the intrinsic support
provided by the language to help avoid vulnerabilities and the
ultimate utility of the application.

Language Features Prone to Erroneous Use
In some programming languages the syntactic constructs

used by the language are simple and straightforward to use,
while others in that same language are extremely complex.
Vulnerabilities can result when language constructs are used
improperly, when complex constructs are misused in acceptable
but unintended ways, or when complex constructs that can be
substituted for by a series of simpler constructs are used with-
out an understanding of the full effects of the constructs.

Such vulnerabilities can be reduced by those creating the
language by identifying such constructs, and providing standard-
ized ways for dealing with them.

The common strand throughout all of the causes listed
above is lack of knowledge. With perfect knowledge, the ex-
ecution of code can be predicted, but this is seldom the case.
Expert attackers can exploit superior knowledge to “trick” the
code into executing function that the code’s developer did not
intend or foresee.

CrossTalk—March/April 2012 29

SECURING A MOBILE WORLD

Example Vulnerabilities
An example of a vulnerability described in the Technical Re-

port would be the following:
When subexpressions with side effects are used within an

expression, the unspecified order of evaluation can result in
a program producing different results on different platforms,
or even at different times on the same platform. For example,
consider

	 a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the
b used as a parameter to g(b) may be a different value than if
g(b) is performed first. Likewise, if g(b) is performed first, f(b)
may be called with a different value of b.

Other examples of unspecified order, or even undefined
behavior, can be manifested, such as

	 a = f(i) + i++;
or

	 a[i++] = b[i++];

Parentheses around expressions can assist in removing
ambiguity about grouping, but the issues regarding side effects
and order of evaluation are not changed by the presence of
parentheses; consider

	 j = i++ * i++;

where even if parentheses are placed around the i++ subex-
pressions, undefined behavior still remains. (This example uses
the syntax of C; the effects can be created in any language
that allows functions with side effects in the places where the
example shows the increment operations.)

In this case, the report suggests that programmers should
decompose the expression into sequential statements so that
the order of evaluation can be controlled.

The unpredictable nature of the calculation means that the
program cannot be tested adequately to any degree of confi-
dence. A knowledgeable attacker can take advantage of this
characteristic to manipulate data values triggering execution
that was not anticipated by the developer.

An example of an application vulnerability included in the
report would be storing a password in vulnerable cleartext be-
cause the programming language did not provide a library func-
tion for encrypting the password. For this problem, the project
should acquire a subroutine library that provides the functionality
missing from the language library.

A Catalog of Language Vulnerability Types
Vulnerabilities included in the report were identified and

selected using two different analyses. A bottom-up analysis
surveyed application security vulnerabilities observed “in the
wild” and identified language characteristics that can serve as
root causes of the application vulnerabilities. A top-down analy-
sis surveyed existing language style and usage guides for the
production of safety-related software.

All language vulnerabilities in the ISO/IEC report are de-
scribed in a language-independent manner allowing readers to
quickly comprehend and utilize the information.

Programming Language Vulnerability Description
Each type of programming language vulnerability is described

in a uniform format to permit easy reference. Information in the
description includes:
•	 An arbitrary three-letter identifier that can be used to identify
	 the vulnerability.
•	 A brief summary of the programming language vulnerability.
•	 Cross-references, such as CWE identifier.
•	 A description of the mechanism of failure, giving the link
	 between the programming language vulnerability and resulting
	 application vulnerabilities.
•	 A list summarizing the characteristics of languages for which
	 this vulnerability is applicable.
•	 A brief description of how application developers can avoid
	 the vulnerability or mitigate its negative effects.
•	 Comments regarding how the maintainers of the language’s
	 specification might make improvements.

Application Vulnerability Description
The report also lists a handful of application vulnerabilities

that might be mitigated if better support were provided in
programming language libraries. These are described similarly
to the language vulnerabilities, except that the comments to
language maintainers are omitted.

An Ongoing Process
The list of vulnerabilities detailed in the ISO/IEC report is not

complete. With new vulnerabilities being discovered regularly,
the process will always be ongoing. The report therefore only
describes those programming language vulnerability types that
were determined to have sufficient probability and significance
to date.

In addition, the following five subject areas were not ad-
dressed in this initial release but will be addressed in future
editions of the report:
•	 Object-oriented language features, though certain simple
	 issues related to inheritance are discussed.
•	 Concurrency.
•	 Numerical analysis, though certain simple items regarding the
	 use of floating point are discussed.
•	 Scripting languages.
•	 Inter-language operability.

The second edition of the Technical Report will also add
annexes describing how the vulnerabilities appear in particular
programming languages. Currently, annexes are planned for
Ada, C, Python, Ruby and SPARK. Future editions will add more
language-specific annexes as well as describing additional
vulnerabilities.

The report is available for purchase from <http://www.iso.
org> and <http://www.ansi.org>. Individual users can obtain the
report for free at <http://standards.iso.org/ittf/PubliclyAvail-
ableStandards/index.html>.

30 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

About ISO/IEC Standards
and Technical Reports

There are three major international standards associations
that bring together national bodies from participating nations,
as well other international governmental and nongovernmental
organizations, to focus on the development of international
standards for business, government, and society—the ISO, IEC,
and International Telecommunication Union [10].

While the primary work of ISO and IEC is to prepare interna-
tional standards, some subjects are not appropriate for stan-
dardization but are suitable for technical reports that provide
guidance and information that have been formed via consensus.

The ISO/IEC report about programming language vulnerabil-
ity types discussed in this article, Technical Report 24772:2010,
was published by a subcommittee working group of the ISO/
IEC Joint Technical Committee for the field of information tech-
nology that is responsible for, “programming languages, their
environments, and system software interfaces.”

ABOUT THE AUTHORS

REFERENCES
1.	 <http://www.cve.mitre.org/>
2.	 <http://www.owasp.org/index.php/OWASP_Top_Ten_Project>
3.	 <http://www.cwe.mitre.org/>
4.	 <http://cwe.mitre.org/top25/index.html>
5.	 <http://www.cert.org/>
6.	 <http://www.misra-c.com/>
7.	 <http://www.iso.org/>
8.	 <http://www.iec.ch/>
9.	 <http://www.iso.org/iso/catalogue_detail.htm?csnumber=41542>
10.	 <http://www.itu.int/>

James W. Moore is a 40-year veteran of software engineer-
ing in IBM and, now, the MITRE Corporation. He is a leader in
software and systems engineering standardization for the IEEE,
serving as its liaison to ISO/IEC JTC1/SC7 and as a member
of the Executive Committee of the IEEE Software and Systems
Engineering Standards Committee. He serves as a member of the
IEEE Computer Society’s Board of Governors. He was an Execu-
tive Editor of the Society’s 2004 “Guide to the Software Engi-
neering Body of Knowledge” and a member of the Editorial Board
of the revision of the “Encyclopedia of Software Engineering.” The
IEEE Computer Society has recognized him as a Charter Member
of their Golden Core, and the IEEE has named him a Fellow
of the IEEE. His work on software engineering standards has
been recognized by the International Committee on Information
Technology Standards (INCITS) with their International Award, by
the Computer Society with the Hans Karlsson Award, and by the
IEEE with the Charles Proteus Steinmetz Award. His latest book
on software engineering standards was published in 2006 by
John Wiley & Son. He holds two US patents and, dating to times
when software was not regarded as patentable, two “defensive
publications”. He graduated from the University of North Carolina
with a B.S. in Mathematics, and Syracuse University with an M.S.
in Systems and Information Science.

E-mail: James.W.Moore@ieee.org
Phone: 301-938-0260

John Benito is an independent consultant providing software
development, project management, and software testing. He
is the current Convener of ISO/IEC JTC 1/SC 22/WG14 the
ISO group responsible for Standard C, the Convener of ISO/
IEC JTC 1/SC 22 WG 23 (was OWG Vulnerabilities), the proj-
ect editor for the Technical Report 24772, and a member of
the INCITS PL22.11 (ANSI C) technical committee. He previ-
ously was a member of INCITS PL22.16 (ANSI C++) and the
ISO Java Study group. He has been in software development,
project management, and testing for over 35 years. Mr. Benito
has been participating in International Standard development
for the past 22 years, and is the recipient of the INCITS Ex-
ceptional International Leadership Award.

E-mail: benito@bluepilot.com
Phone: 831-427-0528

Dr. Larry Wagoner has served in a variety of technical and/
or analytic organizations within the National Security Agency
for over 25 years. Before coming to the Information Assur-
ance Directorate, he worked primarily in the Signals Intel-
ligence Directorate and the Research Directorate. He has a
Ph.D. in computer science from the University of Maryland,
Baltimore County.

E-mail: l.wagone@radium.ncsc.mil

CrossTalk—March/April 2012 31

SECURING A MOBILE WORLD

Section 1. Introduction
Managing software risk in the supply chain is in large part

about discovering and understanding the vulnerabilities that
might exist in code that you might buy as standalone applica-
tions or integrate into other systems or products. It is also
about vulnerabilities you might build into code that you develop
in-house. Static code analysis can be an effective means for
determining the vulnerabilities in your code.

a. Scope of the Problem
Capers Jones [1] described the results of a survey of the

U.S. software industry as of 2008. Based on those data, Tables
1 and 2 address the number and severity of software vulner-
abilities in several classes of application projects. For military
projects, as one approaches systems the size of typical large
combat systems (expressed as function points), the estimated
number of security vulnerabilities rises to above 3000 and the
probability of serious vulnerabilities rises to 45%. The statistics
are much worse for civilian and commercial systems. These
systems have tended to make much more extensive use of
COTS. As we move more and more into COTS and open source
software for our national defense and critical infrastructure sys-
tems, one might expect that the extent of vulnerabilities in these
critical systems might nearly double.

In a study by Reifer and Bryant [2], 100 packages were
selected at random from 50 public open source and COTS li-
braries. These spanned a full range of applications and sites like
SourceForge. The packages were analyzed by college students
using a variety of tools.

Supply Chain
Risk Management

Paul R. Croll, CSC

Abstract. This paper describes the scope of the problem regarding software
vulnerabilities and the current state of the practice in static code analysis for
software assurance. Recommendations are made regarding the use of static
analysis methods and tools during the software life. Static code analysis touch
points during lifecycle reviews and challenges to automated static code analy-
sis are also discussed.

Understanding Vulnerabilities in
Code You Buy, Build, or Integrate

The objectives were to:
•	 Determine if the packages were up-to-date with respect to
	 vendor identified vulnerabilities and patches
•	 Assess if packages were free of known viruses, worms,
	 Trojans and spyware
•	 Assess if the packages had weaknesses in the code and
	 backdoors, using reverse engineering techniques
•	 Assess if the packages had potential dead code, malware,
	 unwanted behaviors, or undesired functionality

Table 1. Estimated Number of Vulnerabilities in Software Applications

Table 2. Probability of Serious Security Vulnerabilities in Software Applications

© 2011 IEEE. Reprinted, with permission, from the Proceedings of the
5th Annual IEEE Systems Conference, April 2011

32 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Figure 1 describes the results of this small study. Over 30%
of open source and Government Off the Shelf (GOTS) packages
analyzed had dead code, an anathema to the software safety
community, and a concern of the software security community
as well. Over 20% of the open source, COTS, and GOTS pack-
ages had suspected malware, and over 30% of the COTS
packages analyzed had behavioral problems.

Reifer and Bryant conclude that the potential for malicious
code in applications software is large as more and more pack-
ages are used in developing a system. They have been devel-
oping a tool for analyzing software executables, often the only
thing available from COTS suppliers. They have a method and
tool that is available now. These focus on analyzing software
executables, often the only thing available from COTS suppliers.

b. What is Static Source Code Analysis?
Static analysis is the process of evaluating a system or

component based on its form, structure, content, or docu-
mentation [3]. From a software assurance perspective, static
analysis addresses weaknesses in program code that might
lead to vulnerabilities. Such analysis may be manual, as in code
inspections, or automated through the use of one or more
tools. A static analysis tool is a program written to analyze other
programs for flaws [4]. Such analyzers typically check source
code. There is also a smaller set of analyzers that check byte
code and binary code as well. While testing requires code that is
relatively complete, static analysis can be performed on modules
or unfinished code. Manual analysis, or code inspection, can be
very time-consuming, and inspection teams must know what
security vulnerabilities look like in order to effectively examine
the code. Static analysis tools are faster and do not require the
tool operator to have the same level of security expertise as a
code inspector [5].

Section 2. Strategies for Effective Source
Code Analysis

a. What Code Do You Analyze?
How do you prioritize a code review effort when you have

thousands of lines of source code, and perhaps object code
to review? From a software assurance perspective, looking at
attack surfaces is not a bad place to start [6]. A system’s at-
tack surface can be thought of as the set of ways in which an
adversary can enter the system and potentially cause damage.
The larger the attack surface, the more insecure the system
[7]. Higher attack surface software requires deeper review than
code in lower attack surface components. Howard [8] proposes
several heuristics as an aid to determining code review priority,
that is, given a large amount of code to review, what kinds of
code do you emphasize for review. They are summarized below:

Legacy code: Howard points out that legacy code may have
more vulnerabilities than newly developed code because secu-
rity issues likely were not as well understood when the legacy
code was created.

Code that runs by default: Howard suggests that attackers
will often attempt to exploit code that runs by default. He also
suggests that code running by default increases an applica-
tion’s attack surface, which is a product of all code accessible
to attackers.

Code that runs in elevated context: Code that runs with el-
evated privileges, e.g. root privileges, for example, should also be
reviewed earlier and deeper because compromise of such code
can allow attackers to execute commands that are intended only
for privileged users such as a site administrator.

Anonymously accessible code: Howard suggests that
code that permits anonymous access should be reviewed in
greater depth than code that only allows access to valid users
and administrators.

Code connected to a globally accessible network interface:
Howard strongly states that code that interfaces with a network,
especially uncontrolled networks like the Internet, presents sub-
stantial risk. Such code increases the potential attack surface for
the system.

Code written in a language whose features facilitate
building in vulnerabilities: Howard suggest that code writ-
ten in languages like C and C++, have features, like direct
memory access, that allow programmers to inadvertently insert
vulnerabilities, like buffer-overflow vulnerabilities. Howard also
points out other language vulnerabilities, such as SQL-injection
vulnerabilities in Java, or C# code. ISO/IEC TR 24772:2010
[9] specifies software programming language vulnerabilities to
be avoided where assured behavior is required. These vulner-
abilities are described in a generic manner that is applicable to a
broad range of programming languages.

Code with a history of vulnerabilities: Code that has had
a number of past security vulnerabilities should be suspect,
unless it can be demonstrated that those vulnerabilities have
been effectively removed.

Figure 1. COTS Study Findings. Source: D. Reifer and E. Bryant, Software
Assurance in COTS and open source Packages, DHS Software Assurance
Forum, October 2008

CrossTalk—March/April 2012 33

SECURING A MOBILE WORLD

Code that handles sensitive data: Code that handles sensi-
tive data should be analyzed to ensure that weaknesses in the
code not compromise such data by disclosing it to untrusted users.

Complex code: Complex code has a higher bug probability,
is more difficult to understand, and may likely have more secu-
rity vulnerabilities.

Code that changes frequently: Howard points out that
frequently changing code often results in new bugs being
introduced. Not all of these bugs will be security vulnerabilities,
but compared with a stable set of code that is updated only
infrequently, code that is less stable will probably have more
vulnerabilities in it.

b. A Three-phase Code Analysis Process
Howard [8] also suggests a notional three-phase code analy-

sis process that optimizes the use of static analysis tools.
1.	Phase 1 – Run all available code-analysis tools
Howard suggests that multiple tools should be used to offset

tool biases and minimize false positives and false negatives. This
makes great sense if your organization can afford it. Strengths
and weaknesses vary from tool to tool [10, 11]. Warnings from
multiple tools may indicate code that needs closer scrutiny
through manual inspection.

Additionally, these tools are most effective when run early in
the lifecycle and run often [12]

Howard also suggests that code should be evaluated early,
and re-evaluated throughout its development cycle.

2.	Phase 2 – Look for common vulnerability patterns
Howard recommends that analysts make sure that code

reviews cover the most common vulnerabilities and weaknesses.
Sources for such common vulnerabilities and weaknesses
include the Common Vulnerabilities and Exposures (CVE) and
Common Weaknesses Enumeration (CWE) databases, main-
tained by the MITRE Corporation and accessible on the web
at: <http://cve.mitre.org/cve/> and <http://cwe.mitre.org/>.
MITRE, in cooperation with the SANS Institute, also maintains
a list of the “Top 25 Most Dangerous Programming Errors [13]”
that can lead to serious vulnerabilities. The top three classes
of errors as of December 2010 were cross-site scripting, SQL
injection, and buffer overflows. Static code analysis tool and
manual techniques should at a minimum, address these Top 25.

3.	Phase 3 – Use manual analysis for risky code
Howard also suggests that analysts should also use manual

analysis (e.g. code inspection) to more thoroughly evaluate any
risky code that has been identified based on the attack surface,
or based on the heuristics described earlier. Manual analysis
allows detailed tracing of code paths and data usage.

Section 3. The Assurance Case
An Assurance Case is a set of structured assurance claims,

supported by evidence and reasoning that demonstrates how
assurance needs have been satisfied [14].
•	It shows compliance with assurance objectives.
•	It provides an argument for the safety and security of the
	 product or service.
•	It is built, collected, and maintained throughout the lifecycle.
•	It is derived from multiple sources.

As shown in Figure 2, the Assurance Case should be used
to document claims about the security of a software product or
system. Those claims must be supported by arguments regard-
ing the security characteristics of the software, and those argu-
ments must be firmly supported by evidence.

The results obtained from static code analysis provide evi-
dence regarding vulnerabilities in code, and should be docu-
mented as part of the Assurance Case.

The Sub-parts of an assurance case include:
•	A high level summary
•	Justification that product or service is acceptably safe,
	 secure, or dependable
•	Rationale for claiming a specified level of safety and security
•	Conformance with relevant standards and regulatory
	 requirements
•	The configuration baseline
•	Identified hazards and threats and residual risk of each hazard
	 and threat
•	Operational and support assumptions

An Assurance Case should be part of every acquisition in
which there is concern for IT security. It should be prepared
by the supplier and describe the assurance-related claims for
the software being delivered, the arguments backing up those
claims, and the hard evidence supporting those arguments.

The details of how static code analysis was used in the devel-
opment process and the results of such static analysis should
be included to support assurance arguments.

Section 4. Static Code Analysis in the Software Lifecycle
Project Managers (PMs) have a responsibility to ensure that

security requirements are addressed throughout the software
lifecycle. This responsibility includes conducting risk assess-
ments; documenting system threats and vulnerabilities, including
test and remediation plans on a continuing basis. Static code
analysis contributes to documenting system weaknesses
and vulnerabilities.

Figure 2. The Assurance Case

34 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Static code analysis should be applied at several points in the
software acquisition and development lifecycle.

The reviews that are associated with software are shown in
Figure 3 [15]. The following discussion addresses the objectives
and expected outcomes of these reviews, describing the touch
points for static code analysis in the software lifecycle review
process [16].

a. System Requirements Review (SRR)
1.	Objectives
The SRR helps the PM understand the scope of the software

assurance landscape (assurance requirements, elements to be
protected, the threat environment) in which context static code
analysis should be applied.

2.	Outcomes
• Establishment of the System Assurance Case
The Assurance Case both sets the context for static code

analysis and provides a repository for analysis results. As
discussed earlier and emphasized here, the Assurance Case
should include:

-Specification of the top-level system assurance claims that
address identified threats.

-Identification of the approach for developing the system as-
surance case.

-Identification of all critical elements to be protected.
-Identification of all relevant system assurance threats and

their potential impact on critical system assets.
-Identification of high-level potential weaknesses in the system.
-Determination and derivation of system assurance require-

ments (as a subset of the system requirements).
• Test and Evaluation Master Plan (TEMP) addressing

system assurance.
The TEMP or establishes the test strategy for testing

throughout the development lifecycle.
-Examine the TEMP to ensure testing processes are suf-

ficient for system assurance. This may include planning for static
code analysis.

• Support and Maintenance Concepts
Support and Maintenance concepts addresses the need to

address assurance concerns beyond development, throughout
the life of the system. Outcomes include:

-Documentation of the support and maintenance concepts
including a description of how assurance will be maintained.

-Description of what static code analysis tools will be used
post deployment and how and when they will be applied.

b. Preliminary Design Review (PDR)
1.	Objectives
The PDR is a multi-disciplined technical review to ensure that

the system under review can proceed into detailed design, and
can meet the stated performance requirements within cost (pro-
gram budget), schedule (program schedule), risk, and specific
assurance requirements and constraints.

2.	Outcomes
• Information security technology evaluation of all critical

COTS/GOTS elements.
As discussed earlier, COTS/GOTS components might present

security risks. As part of the analysis of alternatives process,
candidate components should be vetted with respect to their
security characteristics. The Assurance Case should also be
updated based on the components selected, and any new
weaknesses and vulnerabilities identified.

The outcomes from the evaluation of COTS/GOTS elements
should include:

-Specification of assurance-specific static analysis and
assurance-specific criteria to be examined during code reviews.

-Documentation of the results of static code analyses per-
formed on GOTS/COTS components.

-Documentation regarding which tools were used to perform
static code analysis.

-Documentation of weaknesses and vulnerabilities that
were discovered.

-Documentation of code reviews performed during implementation.
• Configuration management.
The preliminary configuration management plan must support

protection of each configuration item, addressing vulnerabilities
that might creep in during the change process. This includes
requirements, architectures, designs, and code. The outcomes
associated with configuration management include:

-Discussion regarding at which stages of the configuration
management process static code analysis will be applied.

-Discussion of what configuration change events will trigger
code analysis.

-Description of which components will be analyzed.
-Description of how the results of the analyses will be docu-

mented.
The Assurance Case should also be updated with relevant

evidence as a result of the PDR.
3.	Other Considerations
Use of COTS and open source presents a supply chain as-

surance challenge. As part of an analysis of the supplier and its
processes, the following should be determined.

•	 Will the supplier perform static code analysis as part of its
code development and/or code integration processes?

•	 Which components will be analyzed? Which will not?
•	 What tools do they plan to use?
•	 What are the details of their code inspection process for

manual security analysis?
•	 How will they mitigated any discovered vulnerabilities

Figure 3. Reviews in the Software Lifecycle

CrossTalk—March/April 2012 35

SECURING A MOBILE WORLD

or weaknesses?
COTS source code is rarely available to the acquirer for inde-

pendent code review.
PMs should request COTS vendors provide Assurance Cases

for their COTS products detailing both the vendor’s secure cod-
ing practices and the results of internal static code analysis or
third party assessment (e.g. Common Criteria certification).

In cases where such information is unavailable, and there is
still a desire to use the COTS component, the PM should con-
sider analyzing the executables using binary code analysis.

c. Critical Design Review (CDR)
1.	Objectives
The CDR is a multi-disciplined technical review to ensure that

the system under review can proceed into system fabrication,
demonstration, and test, and can meet the stated performance
requirements within cost (program budget), schedule (program
schedule), risk, and specific assurance requirements and con-
straints.

From a software perspective, the CDR focuses on the com-
pleteness of the detailed design and how it supports functional,
performance, and assurance requirements.

2.	Outcomes
With respect to software security and code analysis, the

CDR should document:
• Identification and use of the selected static analysis tools for

source code evaluation.
• Selection of additional development tools and guidelines to

counter weaknesses and vulnerabilities in the system elements
and development environment(s), including:

-Definition and selection of assurance-specific static analyses
and assurance-specific criteria to be examined during peer
reviews performed during implementation.

-Planning for training for assurance-unique static analysis
tools and peer reviews.

The Assurance Case should also be updated with relevant
evidence as a result of the CDR.

d. Test Readiness Review (TRR)
1.	Objectives
The TRR is a multi-disciplined technical review to ensure that

the subsystem or system under review is ready to proceed into
formal test. The TRR also examines lower-level test results, test
plans, test objectives, test methods, and procedures to verify the
traceability of planned tests to program requirements.

2.	Outcomes
•Verification of static code analysis.
Verification regarding static code analysis determines if

assurance-specific static analyses and peer reviews of assur-
ance criteria have been completed. Such verification includes:

-Documentation of evidence that static analysis has been
performed (both source and binary) to identify weaknesses and
vulnerabilities such as cross-site scripting, SQL injection, and
buffer overruns.

-Verification that another party other than the developer (such
as a peer) performed static analysis and peer review.

-Documentation regarding the selection of any additional stat-

ic analysis tools to identify or verify weaknesses and vulnerabili-
ties in the system elements and development environment(s).

-For COTS/GOTS software products with no source code,
identification of industry tools and test cases to be used for the
testing of any binary or machine-executable files.

The Assurance Case should also be updated with relevant
evidence as a result of the TRR.

Even for those with less formal lifecycle review processes,
there will generally be a requirements development phase, one
or more design phases, and implementation and testing phases.
For some organizations there will be operations and mainte-
nance phases as well. The objectives and outcomes of the
lifecycle touch points described above for static code analysis
should provide guidance and help set expectations, no matter
how formal or informal the lifecycle review process.

Section 5. Challenges to Automated Static Code Analysis
There are two challenges to the effective uses of automated

static code analysis.

a. Procurement and Maintenance of Tools
The better static code analysis tools are expensive. However,

the best results are obtained when multiple tools are used to
offset tool biases and minimize false positives and false nega-
tives. Use of multiple tools can quickly become cost prohibitive
for a single project.

In addition, maintenance agreements to ensure a tool is up to
date with respect to the spectrum of threats, weaknesses, and
vulnerabilities add long term costs.

The concept of “buy it once, use it often” provides the most
bang for the buck. Pooled resources analysis labs that sup-
port multiple projects within organizations may make the most
economic sense.

b. Training
Static code analysis is not for sissies, although it may be for

CISSPs® (Certified Information System Security Professionals).
This tongue-in-cheek statement belies the difficulty in using
static code analysis tools to their best advantage.

Chandra, Chess, and Steven [17] point out that when static
code analysis tools are employed by a trained team of code
analysts, false positives are less of a concern; the analysts be-
come skilled with the tools very quickly; and greater overall audit
capacity results.

In addition, in order to determine the validity of static code
analysis results, it is important for PMs to understand the level
of training that code analysts have had with the tools employed
for static code analysis as well as their understanding of code
weaknesses and vulnerabilities. Even a good tool in the hands
of a poorly trained or inexperienced code analyst can produce
misleading results. A tool is just a tool. How it is used and how
its results are interpreted are key to useful and valid results.

Section 6. Useful Links
a. NIST Software Assurance Metrics and Tool Evaluation

(SAMATE) Static Analysis Tool Survey
The NIST SAMATE project provides tables describing cur-

rent static code analysis tools for source, byte, and binary code

36 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

analysis <http://samate.nist.gov/>.
b. DHS Build Security In Web Site
This site contains a wealth of software and information assur-

ance information, including white papers on static code analysis
tools. More information on Build Security In can be found at:

<https://buildsecurityin.us-cert.gov/daisy/bsi/home.html>

c. CWE
This site provides a formal list of software weakness types

created to:
•	 Serve as a common language for describing software security
	 weaknesses in architecture, design, or code.
•	 Serve as a standard measuring stick for software security
	 tools targeting these weaknesses.
•	 Provide a common baseline standard for weakness identification,
	 mitigation, and prevention efforts. <http://cwe.mitre.org/>

d. CWE/SANS Top 25 Most Dangerous Software Errors
The 2010 CWE/SANS Top 25 Most Dangerous Software Errors

is a list of the most widespread and critical programming errors that
can lead to serious software vulnerabilities. They are often easy to
find, and easy to exploit. They are dangerous because they will fre-
quently allow attackers to completely take over the software, steal
data, or prevent the software from working at all.

<http://cwe.mitre.org/top25/archive/2010/2010_cwe_
sans_top25.pdf>

Section 7. Summary
This paper has described the scope of the problem regarding

vulnerabilities in the code we buy, build, or integrate. As more
and more COTS and open source components are integrated
into our systems, the problem becomes ever more exacerbated.

The paper has also discussed strategies for effective static

code analysis as a means to understand an manage supply
chain risk, and has described the expected outcomes regard-
ing such analysis at appropriate touch points in the software
lifecycle. Although the lifecycle reviews described were fairly
formal, the activities associated with those reviews apply to
any software development, integration, or maintenance effort.
In addition, the paper has described the Assurance Case, the
repository for, among other things, the empirical results of
static analysis.

Lastly, the paper touched on challenges to automated static
code analysis, regarding the procurement and maintenance of
tools and the training required for tool users in order to facilitate
accurate results. Such analysis is most effective when multiple
tools are used to offset tool biases, and are employed by ana-
lysts with proper training in both tool use and in security-related
code inspection.

To be sure, there are other means for assessing and managing
supply chain risk with respect to software, but at the bottom line,
it is all about the code and the vulnerabilities it might contain.

The Software Assurance Community Resources and Infor-
mation Clearinghouse contains links to free Pocket Guides on
other aspects of supply chain risk management, including:
•	Software Assurance in Acquisition and Contract Language
•	Software Supply Chain Risk Management and Due Diligence
•	Key Practices for Mitigating the Most Egregious Exploitable
	 Software Weaknesses
•	Software Security Testing
•	Secure Coding
Guides on other aspects of software assurance include:
•	Requirements and Analysis for Secure Software
•	Architecture and Design Considerations for Secure Software
•	Software Assurance in Education, Training & Certification
All of these guides can be found at:

<https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html>

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Resilient Cyber Ecosystem
Sept/Oct 2012 Issue

Submission Deadline: Apr 10, 2012

Virtualization
Nov/Dec 2012 Issue

Submission Deadline: June 10, 2012

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

CrossTalk—March/April 2012 37

SECURING A MOBILE WORLD

ABOUT THE AUTHOR

1.	 Jones, Capers. Overview of the United States Software
	 Industry Results Circa 2008, DHS Software Assurance
	 Forum working paper, June 20, 2008.
2.	 Reifer, D, and Bryant, E. “Software Assurance in COTS and
	 Open Source Packages,” Proceedings of the DHS Software
	 Assurance Forum, October 14-16, 2008.
3.	 ISO/IEC JTC1/SC7. ISO/IEC 24765:2009, Systems and
	 software engineering vocabulary.
4.	 Black, P. Static “Analyzers in Software Engineering,”
	 CrossTalk, The Journal of Defense Software Engineering,
	 pp. 16-17, March-April 2009.
5.	 McGraw, G. “Automated Code Review Tools for Security,”
	 Computer, vol. 41, no. 12, pp. 108-111, Dec. 2008.
6.	 Howard, M. Mitigate Security Risks by Minimizing the Code 	
	 You Expose to Untrusted Users, <http://msdn.microsoft.com/
	 msdnmag/issues/04/11/AttackSurface, November, 2004>.
7.	 Manadhata, P., Tan, K, Maxion, R, and Wing, J. An Approach
	 to Measuring a System’s Attack Surface, CMU-CS-07-146,
	 Carnegie Mellon University, August 2007.
8.	 Howard, M. “A Process for Performing Security Code
	 Reviews,” IEEE Security & Privacy, pp. 74-79, July-August 2006.
9.	 ISO/IEC TR 24772:2010, Guidance to avoiding vulnerabilities in
	 programming languages through language selection and use.
10.	U.S. Department of the Navy, Software Security Assessment
	 Tools Review, March 2009, <https://buildsecurityin.us-cert.
	 gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf>

11.	 Okun, V., Delaitre, A, Black, P. The Second Static Analysis
	 Tool Exposition (SATE) 2009, NIST Special Publication 500-
	 287, National Institute of Standards and Technology, June 2010.
12.	Goertzel, K., Winograd, T., Enhancing the Development Life
	 Cycle to Produce Secure Software, Rome, NY: DACS Data &
	 Analysis Center for Software, 2008.
13.	Cristey, S. 2010 CWE/SANS Top 25 Most Dangerous
	 Software Errors. The MITRE Corporation, 2010, <http://cwe.
	 mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf>
14.	ISO/IEC/IEEE 15026-2:2010, Systems and software
	 engineering — Systems and software assurance —
	 Part 2: Assurance case.
15.	Program Executive Office (PEO) Integrated Warfare
	 Systems (IWS) Technical Review Manual (TRM) (Draft),
	 Department of the Navy, Naval Sea Systems Command,
	 Program Executive Office, Integrated Warfare Systems,
	 December 2008.
16.	National Defense Industrial Association (NDIA) System
	 Assurance Committee. Engineering for System Assurance,
	 Version 1.0, 2008.
17.	 Chandra, P., Chess, B., and Steven, J. “Putting the
	 Tools to Work: How to Succeed with Source Code Analysis,
	 “IEEE Security & Privacy, pp. 80-83, May-June 2006.

REFERENCES

Paul Croll is a Fellow in CSC’s
Defense Group and Chief
Scientist of the Defense &
Maritime Enterprise Technology
Center, where he is responsible
for researching, developing and
deploying systems and software
engineering practices, including
practices for cybersecurity.

 Paul has over 35 years experience in mission-criti-
cal systems and software engineering. His experience
spans the full life cycle and includes requirements
specification, architecture, design, development, verifi-
cation, validation, test and evaluation, and sustainment
for complex systems and systems-of-systems. He has
brought his skills to high profile, cutting edge technol-
ogy programs in areas as diverse as surface warfare,
air traffic control, computerized adaptive testing, and
nuclear power generation.

Paul is also the IEEE Computer Society Vice Presi-
dent for Technical and Conference Activities, and has
been an active Computer Society volunteer for over 25
years, working primarily to engage researchers, educa-
tors, and practitioners in advancing the state of the
practice in software and systems engineering. He was
most recently Chair of the Technical Council on Soft-
ware Engineering and is also the current Chair of the
IEEE Software and Systems Engineering Standards
Committee. Paul is also the past Chair and current
Vice Chair of the ISO/IEC JTC1/SC7 U.S. Technical
Advisory Group (SC7 TAG).

Paul is also active in industry organizations and is
the Chair of the NDIA Software Industry Experts Panel
and the Industry Co-Chair for the National Defense
Industrial Association (NDIA) Software and Systems
Assurance Committees. In addition, Paul is Co-Chair
of the DHS/DoD/NIST Software Assurance Forum
Processes and Practices Working Group advancing
cybersecurity awareness and practice.

E-mail: pcroll@csc.com

© 2011 IEEE. Reprinted, with permission, from
the Proceedings of the 5th Annual IEEE Systems
Conference, April 2011

38 CrossTalk—March/April 2012

UPCOMING EVENTS

Upcoming
Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

INCOSE International Workshop 2012
21-24 January 2012
Jacksonville, FL
<http://www.incose.org/newsevents/events/details.
aspx?id=140>

National Security Technology Expo
6-8 February 2012
San Diego, CA
<http://www.ubm.com>

28th Annual National Test and Evaluation Conference
12-15 March 2012
Hilton Head Island, SC
<http://www.ndia.org/meetings/2910/Pages/default.aspx>

IEEE International Systems Conference
19-23 March 2012
Vancouver, BC
<http://ieeesyscon.org>

SEPG North America 2012
23 March 2012
Albuquerque, NM
<http://www.sei.cmu.edu/sepg/na/2012>

28th Annual National Logistics Conference
26-29 March 2012
Miami, FL
<http://www.ndia.org/meetings/2730/Pages/default.aspx>

Software Assurance Forum - Spring 2012
26-29 March 2012
McLean, VA
<https://buildsecurityin.us-cert.gov/bsi/events.html>

2012 DoDIIS Worldwide Conference
1-4 April 2012
Denver, CO
<http://www.ncsi.com/dodiis12/index.html>

GovSec 2012
2-4 April 2012
Washington, DC
<http://govsecinfo.com/Home.aspx>

Systems and Software Technology Conference
23-26 April 2012
Salt Lake City, UT
<http://sstc-online.org>

SEPG Europe 2012
5-7 June 2012
Madrid, Spain
<http://www.sei.cmu.edu/sepg/europe/2012>

Software Assurance Working Groups - Summer 2012
26-28 June 2012
McLean, VA
<https://buildsecurityin.us-cert.gov/bsi/events.html>

International Symposium 2012
9-12 July 2012
Roma, Italy
<http://www.incose.org/newsevents/events/details.
aspx?id=142>

GFIRST8
19-24 August 2012
Atlanta, GA
<http://www.us-cert.gov/GFIRST>

26th International Biometrics Conference
26-28 August 2012
Kobe, Japan
<http://www.ourglocal.com/event/?eventid=11988>

15th Annual Systems Engineering Conference
22-25 October 2012
San Diego, CA
<http://www.ndia.org/meetings/3870/Pages/default.aspx>

CrossTalk—March/April 2012 39

There is an
“I” in Security

BACKTALK

Oh sure, you have received one. A rather innocuous e-mail that
typically starts out something like:

“URGENT - HELP ME DISTRIBUTE MY $15 MIL-
LION TO CHARITY

IN SUMMARY: I have $15 million USD and I want you
to assist me in distributing the money to charity organiza-
tions. I agree to reward you with 10% of the money for
your assistance, kindness, and participation in this Godly
project. This e-mail might come to you as a surprise and
the temptation to ignore it as unserious could come into
your mind, but please consider it a divine wish and accept
it with a deep sense of humility.”

I mean, after all, you are a savvy Internet user and you just
KNOW that nobody is going to give you 10% of $15 million,
right? I teach Enterprise Security here at Stephen F. Austin State
University. Last month, right before class, I received the following
e-mail (copied verbatim):

“How are you? I do hope that you receive this e-mail in
good health. I am presently in Madrid, Spain to be with my
ill cousin (Chloe). She is suffering from a critical medical
condition and must undergo surgery to save her life. I am
deeply sorry for not writing or calling you before leaving,
the news of her illness arrived to me as an emergency and
that she needs family support to keep her going. I hope
you understand my plight and pardon me.

I want to transfer her back home to have the surgery
implemented there because surgery is very expensive here.
I am wondering if you can be of any assistance to me. I
need about ($2,500) to make the necessary arrangement;
I traveled with little money due to the short time I had to
prepare for this trip and never expected things to be the
way it is right now. I will surely pay you back once I get
back home. I need to get her home ASAP because she is
going through a lot of pain at the moment and the doctor
have advised it necessary that the tumor is operated on
soon to avoid anything from going wrong. I will reimburse
you at my return.

Anticipating your reply at the earliest to my request!
Thank you for all of your assistance.”

For those of you who have not been spammed this way, it
appeared to come from a Facebook friend. Seems my friend’s
Facebook page had been compromised—he had responded to
the following e-mail:

“HELLO, your Facebook account has been suspended
due to suspected compromise. Please reset your account
password with the link below to reactivate your account.”

My friend’s compromised account let the spammer target all of
his friends (using spoofed e-mail) trying to get some money from
them. The fun part for me was sharing this with my class, and,
over the space of a full week, playing this scammer along. First I
offered to send the money direct to his wife (by the way, I knew
he was not married). After a return e-mail explaining that ONLY
a money order to Spain would suffice, I then offered to send the
money as a direct deposit to his bank account. Over the next
week, his cousin Chloe mysteriously progressed from a tumor to
cancer, then to emergency abdominal surgery. I was expecting ei-
ther malaria or the Black Plague next. I sent him on a wild goose
chase towards the end, saying the money order was returned due
to a wrong address. After about five e-mail exchanges, I finally
told the scammer than he/she had provided entertainment and
education for my security class. The spammer, in turn, had the
class to say “good luck” on the final e-mail.

Seriously, how many scams do we get via e-mail and the Inter-
net? I am not really the 1,000,000th visitor to the web site. I have
not won a free iPad for participating in a survey. There is no magic
sweepstakes that you are automatically entered in based on hav-
ing an e-mail account. The IRS is not trying to send me a refund
using an .aol address. FedEx did not send an executable file to
me explaining why they did not complete my delivery. The Better
Business Bureau is not trying to redirect me to a page to explain
a “suspicious complaint” against me.

Yet, every day somebody “clicks before thinking.” We often for-
get that our e-mail address and our Internet connections serve as
a huge “ATTACK ME HERE” target to those with no scruples. No
matter how good your firewall, spam filter, or antivirus software is,
nothing in the world that will protect you from momentary stupidity
on the part of the user. You need to have frequent education and
training on how to keep yourself safe. There are SO many ways
that security can be compromised by literally inviting malware or
viruses onto your computer. Do not think that a quick, “I will take
the online test, and get an 80% without studying,” is enough. You
have to be prepared and educated every time you sit down at a
computer. You have to think. Indeed, you might be the “Weakest
Link”. You do not need an unsecured USB drive to compromise
security. You have to think “E-mail and Internet Security” ALL the
time, no matter where you are …

… he says, as he sits with his MacBook at Starbucks, sipping
on a venti coffee with extra cream, answering e-mails, paying
off a few bills, and sending this column off to the wonderful and
humble staff at CrossTalk …

… using an open, unencrypted, unsecure Internet connection
with at least 10 people nearby on their own computers, potentially
monitoring and copying every keystroke and piece of data going
into and coming out of my computer.

Go figure. It is easier to preach than to actually follow my own
good advice.

But that is another column.

David A. Cook Ph.D.
Stephen F. Austin State University
E-mail: cookda@sfasu.edu

CrossTalk thanks the
above organizations for
providing their support.

~·-~·-euud SeCurit y l n Home

::;.-•--· ~~M~~-

~-- ~?§~~~
1:7.::::::--...... --~

TM $0ftW<or•ll_._.
Glt l'klllu,.P,.,.d --·---.. :=::.::?**-;-<.;

	Front Cover
	Table of Contents
	From the Sponsor
	iPhone Malware Paradigm
	A Practical Approach to Securing and Managing Smart Devices
	Mobile Applications Security: Safeguarding Data in a Mobile Device World
	Engaging the Community: Strategies for Software Assurance Curricula Outreach
	The PC Evolution and Diaspora
	New ISO/IEC Technical Report Describes Vulnerabilities in Programming Languages
	Supply Chain Risk Management
	Upcoming Events
	BackTalk
	Back Cover

