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Objectives

The primary objectives of this work are the construction of a rigorous mathematical
framework and the corresponding computational science tools that can be used to
address problems of parameter identification, real-time tracking and estimation for
spatially dependent systems. This includes determining optimized sensor/actuator
locations for complex hybrid spatial systems to enhance tracking, estimation, infor-
mation and effectiveness while limiting energy consumption. Reduced-order modeling
techniques are implemented as an efficient way to compute the functional gains. We
illustrate how a small number of strategically placed sensor/actuator is sufficient to
stabilize the flow while inappropriate placement of these sensors could destabilize
the flow. Additionally we consider information delays present in the sensor/actuator
network. The models are complex multi-scale systems of coupled partial and delay
differential equations. We show that under suitable conditions, the coupled delay
PDE systems are well posed and we use this corresponding abstract formulation to
construct efficient numerical methods for control design.

Overview

Sensor Placement

Feedback control and optimal state estimator problems for PDE systems lead to
operator equations where the feedback and observer gain operators often have integral
representations. These kernel functions are called functional gains and often have
localized support that provides information about the controller and estimator. If
these functional gains exist and can be computed, one can use this information to
place sensors in those regions in space that are most important to the controller and
estimator.

The functional gain operators are computed by solving appropriate approximations to
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the infinite dimensional Riccati equations arising from infinite dimensional estimation
and control problems. Due to the large scale of the approximate problem, special
techniques are required to solve these equations. We propose and demonstrate a
reduced-order modeling technique to compute the functional gains and analyze these
gains to obtain insight into the physical behavior of the feedback control mechanism.

For the discussion consider a flow past a circular cylinder at Re=200 and we use
suction on the cylinder surface to suppress vortex shedding. The incompressible
Navier-Stokes equations are solved using parallel algorithms and snapshots of actu-
ated and unactuated flow data are collected for building a reduced-order model. In
this case, the reduced0-order model is computed using proper orthogonal decomposi-
tion (POD).

The velocity field is written as the sum of the mean flow (v̄) and the velocity fluctu-
ations (v′). The fluctuations are expanded in terms of the POD eigenfunctions (Φi)
computed from the collected snapshots and the control function method:

v(x, t) ≈ v̄(x) +
M∑
i=1

zri (t)Φi(x) +
m∑
i=1

ui(t)Γi(x). (1)

The number of POD modes is denoted by M and m is the total number of control
modes. Each function Γi(x) is a suitable divergence-free control function that sat-
isfy the inhomogeneous boundary condition due to fluidic actuators, and u(t) is the
variable control input.

We project the Navier Stokes equations onto the POD basis functions (or modes) to
develop a reduced-order model. The reduced-order model for m = 1 has the form

żr = Ar
1 + Ar

2z
r + Ar

3u+ Fr
1(zr)zr + Fr

2(zr)u+ Fr
3(u)u+ Bru̇. (2)

The system is then linearized about its mean component to reduce the model to a
standard linear time invariant (LTI) control problem. If the control is a linear function
of the states, then the closed loop system then takes the form[

żr

u̇

]
=

([
Ar

2 Ar
3

0T 0

]
−
[

Br

1

]
K

)
︸ ︷︷ ︸

Ac

[
zr

u

]
. (3)

As the purpose of the control law is to stabilize the system, it is desired to have
the poles of the system in the left-half of the complex plane. In other words, the
eigenvalues of Ac must have negative real parts.

The feedback control gain, K, represents an approximation to the feedback operator
associated with the PDE control system. The Riesz Representation Theorem implies
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that there exists a divergent free vector field h(x) such that

uc(t) = −Kzz
r(t)−Kuu(t) = −

∫
Ω

h(x) ·
M∑
i=1

zri (t)Φi(x)dΩ−Kuu(t). (4)

The efficiency of this approach was verified in the following way: For a specific con-
troller where the eigenvalue is moved to −0, 05 ± 1.16i, 12 POD modes were used
compute the functional gain, see Figure 1 . From this information, we simulate two

Figure 1: Functional gain approximated at four locations; good (square) and bad (circle)

locations.

scenarios. In each of the scenarios we use four locations to approximate the feedback
gain. These choices are motivated by the magnitude of the functional gain in the
wake. Four locations are chosen where the functional gain is high (good choices) and
four where the gain has small magnitude (bad choice). These locations are identified
in Figure 1 with good choice and a bad choice scenarios represented by squares and
circles, respectively. We approximate the feedback control input using quadrature as
follows:

uc(t) =

∫
Ω

h(x) ·
12∑
i=1

zi(t)Φi(x)dΩ +Kuu(t) ≈
4∑
j=1

hj ·
12∑
i=1

zi(t)Φi(xj)dAj +Kuu(t)

where dA = dx · dy and dx = dy = 0.2. The approximation of the feedback gains
provided by the good data set stabilizes the system. Although the response is slow
compared to the full-order feedback control, it is important to note that the gains
were approximated only from four locations rather than using the complete domain.
On the other hand, if the sensors are placed at bad locations, the feedback gain
approximation is poor and fails to stabilize the closed-loop system. Rather, for long-
time integration, it results in instability of the system. Thus, it is important to choose
the correct locations of the sensors to measure or estimate the flow field.

By computing the functional gains and using the spatial information contained in
these gains we could determine where to place sensors in the wake region to ensure
stability and performance. The control is computed efficiently by using good quadra-
ture points for the integral operator.
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Figure 2: Closed-loop simulation of u with
gains approximated at good locations.

Figure 3: Closed-loop simulation of u with
gains approximated at bad locations.

Observe that this analysis also provides valuable information concerning the construc-
tion of state estimators (filters). In particular, if one can not physically place a sensor
in the desired location in the wake, then one would design a filter to estimate the flow
only in that region. Thus, this approach can be used for designing reduced-order
controllers without developing reduced-order models first.

Delayed actuator dynamics

This work investigates the inclusion of actuator dynamics with delays on a control
problem. In many applications such as the control of energy efficient buildings where
actuation is provided by a HVAC system, the inclusion of actuator dynamics results
in a more realistic representation of the system. Including the actuator dynamics
impacts the support of the functional gain kθ(·) which in turn impacts sensor loca-
tion problems. Parabolic partial differential equations with no actuator dynamics are
typically formulated as an abstract control problem. Coupling the actuator dynam-
ics defined by a delay equation with the abstract system at this stage results in a
composite system that can be difficult to analyze. Computational schemes based on
finite element methods often require high order “test functions”.

We develop an abstract state space model that avoids many of these complexities by
working directly with the PDE system. Standard finite element methods can be used
to construct approximations of the composite control system and in many cases these
approximations can be implemented with existing software packages.

Consider the convection diffusion control system

∂

∂t
θ(t, ξ) = µ∇2θ(t, ξ) + κ(ξ) · ∇θ(t, ξ), ξ ∈ Ω ⊂ Rd, (5)

with Dirichlet boundary inputs θ(t, ξ)|∂Ω = g(ξ)vθ(t), where g(·) ∈ L2(∂Ω) is a fixed
function defined on the boundary. In this setting g(·) can have compact support, in
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which case, the input to the PDE (5) is local. Following the development in [2], let
b(·) be the weak solution of the boundary value problem

µ∇2b(ξ) + κ(ξ) · ∇b(ξ) = 0, b(ξ)|∂Ω = g(ξ).

We are concerned in the case where the input vθ(t) is given by the output of a finite
dimensional delay differential equation describing the actuator dynamics. Assume
that vθ(t) = Hw(t)

where
ẇ(t) = A0w(t) + A1w(t− r) + Bau(t). (6)

Here, A0 and A1 are n×n matrices, Ba is an n×m matrix and r > 0 is a fixed time
delay, and u(·) : [0,+∞) → Rm is the command to the actuator. Assuming one can
differentiate vθ(·) it follows that v̇θ(t) = HA0w(t) + HA1w(t − r) + HBau(t). Let
θ̃(t, ξ) = θ (t, ξ)− b(ξ)vθ(t) then the composite system,

∂

∂t
θ̃ (t, ξ) =

[
µ∇2 + κ(ξ) · ∇

]
θ̃ (t, ξ) + f0(x)w(t) + f1(x)w(t− r) + bθ(x)u(t), (7)

ẇ(t) = A0w(t) + A1w(t− r) + Bau(t) (8)

can be written as a distributed parameter delay system on the state space X =
L2(Ω)× Rn

ẋ(t) = A0x(t) +A1x(t− r) + B0u(t). (9)

The following result follows. See [9] for the details on the proof and notation which
are omitted due to lack of space.

Theorem 1 The linear operator A0 generates a C0-semigroup T0(t) on X = L2(Ω)×
Rn. Moreover, if Aθ and A0 are stable and σp(Aθ)∩σp(A0) = ∅, then the composite
semigroup is exponentially stable and the controlled system (9) is stabilizable.

Let z(t) =
[
θ̃(t, ·) w(t) wt(·)

]T
=
[
θ̃(t, ·) Φ(t)

]T
then one can also show, see

[10] for the detail, the composite distributed parameter control system has the form

ż(t) = Acz(t) + Bcu(t) ∈ Z = L2(Ω)× [Rn × L2(−r, 0;Rn)], (10)

with bounded (compact) input operator. The following result follows, see [10] for the
detail.

Theorem 2 The linear operator Ac generates a C0-semigroup Tc(t) on Z = L2(Ω)×
Rn × L2(−r, 0;Rn). Moreover, if Aθ and Ad are stable and σp(Aθ)∩σp(Ad) = ∅,
then the composite semigroup is exponentially stable and the controlled system (10)
is stabilizable.
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Consider the Linear Quadratic Regulator (LQR) problem for the composite system
(10) with cost

Jc =

∫ +∞

0

{〈Qz(t), z(t)〉Z}+

∫ +∞

0

{〈Rau(t),u(t)〉Rm} dt. (11)

The details of this transformation are described in [9] and will not be presented here
in order to save space. Implementing the Riesz representation theorem results in the
feedback controller of the form uopt(t) = −

∫
Ω

kθ(ξ)θ(t, ξ)dξ−kaw(t)−
∫ 0

−1
kd(s)w(t+

s)ds, where ka = k̃a −
∫ 1

0
kθ(ξ)b(ξ)Hdξ. The functions kθi (·) and kdi,j(·) are called the

functional gains and k̃a and kd(ξ) are m×n matrix functions. Consequently, once one
computes kθ(ξ) and k̃a, computing the gain matrix ka requires only a quadrature.

Numerical Example

We consider the 1D control problem for the parabolic PDE

∂

∂t
θ(t, ξ) = µθξξ(t, ξ) + κθξ(t, ξ), ξ ∈ (0, 1), and θ(t, 0) = vθ(t), θ(t, 1) = 0. (12)

Use the following parameters: µ = 1/120, κ = .1, R = 0.1, Ra = 0.1, and the
function b(·) is given by b(x) = (e−kx − e−k)/(1 − e−k). Set Q = D∗ × D where

Dϕ(·) =
∫ 1

0
d(x)ϕ(x)dx and d(x) =

{
5, 0.4 < x < 0.6
0, elsewhere

. The actuator is modeled

by the simple scalar delay equation ẇ(t) = −1.0w(t)+0.95ẇ(t−r)+u(t) and vθ(t) =
Hw(t) = 5w(t). A standard piecewise linear finite element scheme (with upwinding)
is used to approximate the convection-diffusion equation (see [6], [7] and [8]) and
the “AVE” scheme is used to approximate the delay system (see [1] for details).
Subdivide the interval (0, 1) into N equal subintervals and the interval (−r, 0) into
M subintervals. Due to space limitations, we will not provide a rigorous proof of
convergence here. However, the numerical results presented below illustrate this
convergence.

Figure 4 illustrates the convergence of the functional gains kθN,M(·) and kdN,M(·). We
note that the system (10) is stable since maxol = max(real(Ac)) = −0.0255. Also,
the closed loop operator satisfies maxcl = max(real([Ac −KBc])) = −0.1592.

The inclusion of actuators offers a more “realistic” model of the dynamics of the
coupled system and allows the integration of system components. Including the actu-
ator dynamics impacts the support of the functional gain kθ(·) which impacts sensor
location problems (see [3], [4], [5]), and [12].) Similar results were observed for the
delayed actuator case, see [9] and [10] for more detail.
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Figure 4: Plots of (a) kθN,M(·) and (b) kdN,M(·.)

Infinite Dimensional Delay Differential Equations in Control and
Sensitivity Analysis

Here we also consider a class of functional partial differential equations (FPDEs)
which arise naturally in problems of control of systems governed by partial differen-
tial equations where delayed actuator dynamics are included and in the sensitivity
analysis of such systems when one is concerned with sensitivities with respect to de-
lays. Numerous examples motivating these models are presented in [11]. These exam-
ples include Boundary Control of PDE Systems with Actuator Dynamics, Boundary
Control with Delayed Actuator Dynamics, Distributed Control with Neutral Delayed
Actuator Dynamics, Boundary Control with Neutral Delayed Actuator Dynamics,
and Sensitivity Systems. Well-posedness for a class of FPDE systems in product
spaces is established and these formulations are used as a framework to develop ef-
ficient numerical approximations for control and simulation of the PDE problems.
The theoretical results extend existing well-posedness results to problems where the
standard range condition does not apply and we present a conjecture about a more
general theorem.

We consider the control systems defined by a class of infinite dimensional neutral
functional differential equations (NFDEs) of the form

ż(t)− Dż(t− τ) = A0z(t) + A1z(t− r) + Bu(t) ∈ Z = Θ× Rn (13)

where Θ is a Hilbert space and D, A0 and A1 have the specific structure

D=

[
0 D
0 E

]
,A0 =

[
Aθ F0

0 A0

]
, A1 =

[
0 F1

0 A1

]
and B =

[
Bθ

B

]
, (14)

respectively.
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When the operator D is not zero, well-posedness for a generic system of the form (13)
often requires assuming the “range condition”

Range(D) ⊆ Domain(A0) and A0D is bounded. (15)

However, for certain applications to control and sensitivity analysis of PDE systems
with delays, the range condition (15) fails. In particular, boundary control and sen-
sitivity analysis of PDE systems where delayed actuator dynamics are included can
lead to systems of the form (13) where (15) is not satisfied. We formulate the system
(13) defined by (14) as an abstract system on a “reduced” product space and take
advantage of the problem structure to obtain well-posedness without the range con-
dition (15) and use this framework to develop efficient approximations. We assume
the following hypothesis holds.

Hypothesis H

(H1) The linear operator Aθ : D(Aθ) ⊆ Θ→ Θ generates a C0-semigroup
semigroup on Θ.

(H2) The linear operators D : Rn → Θ, Bθ : Rm → Θ and Fi : Rn → Θ,
i = 0, 1, are bounded.

(H3) The finite dimensional operators E : Rn → Rn, Ai : Rn → Rn,
i = 0, 1, and B : Rm → Rn are linear (hence bounded).

The state z(·) ∈ Z = Θ×Rn has the form z(t) =
[
θ(t, ·) w(t)

]T ∈ Z = Θ×Rn and
because of the structure (14) only the finite dimensional state w(·) contains delays.
With this in mind we define the (reduced) product space

XR = Z × L2((−r, 0);Rn) = Θ× Rn × L2((−r, 0);Rn)

and note that XR may be viewed as a subspace of X = Z×L2((−r, 0);Z) by the nat-
ural embedding. Consider the abstract control system on XR = Z×L2((−r, 0);Rn) =
Θ× Rn × L2((−r, 0);Rn) defined by

ẋ(t) = Ax(t) + Bu(t) ∈ XR, (16)

where the domain of A is given by

D(A) =


 θ

η
ϕ(·)

 ∈ D(Aθ)× Rn ×H1([−r, 0];Rn) : ϕ(0)− Eϕ(−r) = η

 , (17)

and for x =
[
θ η ϕ(·)

]T ∈ D(A)

Ax = A

 θ
η
ϕ(·)

 =

 Aθθ + F0ϕ(0) + F1ϕ(−r)
A0ϕ(0) + A1ϕ(−r)

d
ds
ϕ(·)

 . (18)
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The following result applies to the special case where (H4) holds instead of the range
condition on D.

Theorem 3 Assume (H1) - (H3) hold. If either
(HD) the operator D satisfies the the reduced range condition

Range(D) ⊆ Domain(Aθ) and AθD is bounded or

(H4) the bounded linear operators F0 and F1 are given by

F0 = FA0 and F1 = FA1 (19)

then the operator A defined by (17) - (18) generates a C0-semigroup T(t) on XR =
Θ× Rn × L2((−r, 0);Rn).

The detail and proof of this result is presented in [11].

Numrical example

We use the formulation (16) to construct approximating systems for simulation and
control. For example, we apply this approach to the parabolic boundary control prob-
lem with actuator dynamics described by a (retarded) delayed differential equation.
In one dimension this problem comes from the boundary control problem defined by
the parabolic PDE

∂

∂t
T (t, ξ) = µ

∂2

∂ξ2
T (t, ξ) + κ

∂

∂ξ
T (t, ξ), ξ ∈ (0, 1), (20)

with boundary control at the left end and Dirichlet condition at ξ = 1 so that

T (t, 0) = v(t), T (t, 1) = 0. (21)

Assume that the actuator dynamics are given by the finite dimensional retarded delay
differential equation

ẇ(t) = A0w(t) + A1w(t− r) + Bu(t), (22)

where r > 0. Also, for simplicity we assume

v(t) = Hw(t− r). (23)

Consider an LQR problem defined by the boundary control problem (20) - (21) with
cost function

J =

∫ +∞

0

{〈QT (t, ·), T (t, ·)〉L2 + 〈Qaw(t),w(t)〉} dt,
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where Qa = [H]TRH ≥ 0.

For the numerical computations we use the parameters µ = 1/240,
κ = .01, R = .1 and set Q = D∗D where D : L2(0, 1)→ R1 is defined by

Dϕ(·) =

∫ 1

0

d(x)ϕ(x)dx

and d(·) ∈ L2(0, 1) is given by

d(x) =

{
5, 0.4 < x < 0.6
0, elsewhere

.

Also, observe that since k = µ
κ

= 24 > 0, the function b(·) is given by b(x) =
(e−kx − e−k)/(1− e−k). The actuator is modeled by the simple scalar delay equation

ẇ(t) = −1.25w(t) + 1.0ẇ(t− r) + u(t).

The actuator dynamics are assumed to be given by (22) and

vθ(t) = 0.5w(t− 1)

so that H = 0.5. The weight on the input v(·) is set to R = 0.1 and the actuator
control weight is set to Ra = 0.1. A standard piecewise linear finite element scheme
(with upwinding) is used to approximate the convection-diffusion equation.

Again, it is important to note that only w(·) is delayed which implies that the feedback
control law does not require the past history of θ(t, ·) so that

uopt(t) = −
∫
Ω

kθ(ξ)θ(t, ξ)dx− kaw(t)−
∫ 0

−1

kd(s)w(t+ s)ds

and the goal is to compute the functions kθ(·) and kd(·) and a constant gain ka.
A second implication of the fact that only w(·) is delayed is that this allows us
to use a reduced finite volume method (the so called “reduced AVE” scheme) for
approximating the composite delay system.

We subdivided the interval (0, 1) intoN equal subintervals forN = 16, 32, 64, 128, 256,
512, 1024 and the interval (−r, 0) into M equal subintervals for M = 32, 64, 128, 256,
512, 1024, 2048. A standard finite element approximation of the convection diffusion
equation on (0, 1) is then coupled to a piecewise constant approximation of the past
history terms on (−r, 0). Note that we used M = 2N since the finite element scheme
has a convergence rate twice the AVE scheme. We solve the algebraic Riccati equation
using Matlab and compute the functional gains and gain parameters that define the
optimal LQR feedback controller.
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N M ka

16 32 0.9897
32 64 0.9812
64 128 1.0240
128 256 1.0726
256 512 1.0994
512 1024 1.1115
1024 2048 1.1118

Table 1: Values of kaN,M

Figure 5 illustrates the convergence of the functional gains kθN,M(·) and in Figure 6
we see the same for the functional gains kdN,M(·). Note that the functional gains
kθN,M(·) for the convection diffusion equation converge at N = 64 so we only show
plots of kθN,M(·) for N = 16, 32, 64 and M = 32, 64, 128. As shown in Figure 6,
convergence of the delay functional gains is much slower. Finally, Table 1 contains
values of ka as N and M increase.
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0

10

20

30

40

50

60

70

ξ

kθ (⋅)

N = 16,  M  =  32:   Red 
N = 32,  M  =  64:   Blue 
N = 64,  M  = 128:  Black

Figure 5: Plots of kθN,M(·)

The reduced AVE scheme for the delayed terms was selected for two reasons. First,
this scheme meets all the conditions necessary to establish the type of convergence
required for gain convergence. The second reason is that the reduced scheme greatly
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“reduces” the overall size of the approximation scheme. For example, if we had
used the full AVE scheme where N = 1, 024 and M = 2, 048, then the size of the
approximating system would have been N(M+1) = 2, 098, 176. However, the reduced
system has is N +M = 3, 072 so there is a huge reduction in model size. Finally, to
obtain reasonable convergence for this specific example, we needed to use M = 2, 048
approximations for the delay system.

We establish the well-posedness for a class of these systems in product spaces and
use this formulation as a framework to develop efficient numerical approximations
for control and simulation of the PDE control problems.
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A. Burns, E. M. Cliff, C. N. Rautenberg, and L. Zietsman, Proceedings of the
2010 American Control Conference, pages 4127–4132, 2010.

2. Linear Feedback Control of a von Kármán Street by Cylinder Rotation, J.
Borggaard, M. Stoyanov and L. Zietsman, Proceedings of the 2010 American
Control Conference, pages 5674–5681, 2010.

3. On Commutation of Reduction and Control: Linear Feedback Control of a
von Kármán Street, I. Akhtar, J. Borggaard, M. Stoyanov and L. Zietsman,
Proceedings of the 5th AIAA Flow Control Conference, Paper Number 2010-
4832, 2010.

4. Reduced-Order Modeling in Control and Optimization of High Performance
and energy Efficient Building, J. A. Burns, Proceedings of the International
Conference on Power Generation Systems and Renewable Energy Technologies,
Islamabad, Pakistan, Nov 29–Dec 2, 2010, 1–5.

5. High Performance Computing for Energy Efficient Buildings, I. Akhtar, J.
Borggaard, and J. A. Burns, Proceedings of the International Conference on
Frontiers of Information Technology, Islamabad, Pakistan, Dec 21–23, 2010,
1–6.

6. On Control Strategies for Fluid Flows using Model Reduction, I. Akhtar, J.
Borggaard, and J. A. Burns, Proceedings of the International Bhurban Confer-
ence on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, Jan
10-13, 2011, 1–10.

7. Bochner Integrable Solutions to Riccati Partial Differential Equations and Sen-
sor Placement, J. A. Burns, E. M. Cliff , and C. N. Rautenberg, Proceedings
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of the 2011 American Control Conference, San Francisco, CA, June 29-July 01,
2011, 2368–2373.

8. A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction, S.
Chaturantabut and D. C. Sorensen, SIAM J. Numer. Anal., 50(1), pp. 46-63,
2012.

9. On Using LQG Performance Metrics for Sensor Placement, Jeff Borggaard,
J. A. Burns and Lizette Zietsman, Proceedings of the 2011 American Control
Conference, San Francisco, CA, June 29-July 01, 2011, 2381–2386.

10. Bochner Integrable Solutions to Riccati Partial Differential Equations and Sen-
sor Placement, John A. Burns, Eugene. M. Cliff and Carlos N. Rautenberg,
Proceedings of the 2011 American Control Conference, San Francisco, CA, June
29-July 01, 2011, 2368–2373.

11. On Control Strategies for Fluid Flows using Model Reduction, I. Akhtar, J.
Borggaard and J. A. Burns, Proceedings of the International Bhurban Con-
ference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan,
Islamabad, Pakistan, Jan 10-13, 2011, 1–10.

12. An Inverse Method for Bounded Error Parameter Identification, J. A. Burns
and A. Childers, J. Inverse Ill-Posed Problems. 19 (2011), 549–572.

13. An Optimal Control Approach to Sensor / Actuator Placement for Optimal
Control of High Performance Buildings, J. Borggaard, J. A. Burns, E. M. Cliff,
and L. Zietsman, Proceedings of the 2nd International High Performance Build-
ings Conference, Purdue University, 34661-34667, 2012.

14. Control of the Boussinesq Equations and Implications for Sensor Location in
Energy Efficient Buildings, John A. Burns and Weiwei Hu, Proceedings of the
2012 American Control Conference, Montreal, CA, June 27-June 29, 2012, 2232-
2237.

15. On the Inclusion of Actuator Dynamics in Boundary Control of Distributed
Parameter Systems, John A. Burns and Lizette Zietsman, Proceedings 4th IFAC
Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control,
University of Bologna, Bertinoro, Italy, August, 2012, 126-130.

16. An Optimal Control Approach to Sensor / Actuator Placement for Optimal
Control of High Performance Buildings, Jeff Borggaard, John A. Burns, E.
M. Cliff and Lizette Zietsman, in Proceedings of the 2nd International High
Performance Buildings Conference, Purdue University, July, 2012, 34661-34667.
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17. Coupled CFD/Building Envelope Model for the Purdue Living Lab, Kim, D.,
Braun, J., Borggaard, J., Cliff, E. and Gugercin, S., in Proceedings of the 2nd
International High Performance Buildings Conference, Purdue University, July
2012.

18. Control and Sensitivity Reduction for a Viscous Burgers Equation, E. Allen,
J. A. Burns and D. S. Gilliam, in Proceedings of the 51st IEEE Conference on
Decision and Control, Maui, HI, December 2012, 967-972.

19. An example of thermal regulation of a two dimensional non-isothermal incom-
pressible flow, E. Aulisa, J. A. Burns and D. S. Gilliam, in Proceedings of the
51st IEEE Conference on Decision and Control, Maui, HI, December 2012,
1578- 1583.

20. Optimization-Based Estimation of Random Distributed Parameters in Elliptic
Partial Differential Equations, Borggaard, J., and van Wyk, H.-W., in Proceed-
ings of the 51st IEEE Conference on Decision and Control, Paper TuB07.5,
pages 2926–2933, December.

21. Approximating Parabolic Boundary Control Problems with Delayed Actuator
Dynamics,John A. Burns, Terry L. Herdman and Lizette Zietsman, in Proceed-
ings of the 2013 American Control Conference, Paper MoC14.4., June 2013.

22. Using Fréchet Sensitivity Analysis to Interrogate Distributed Parameters in
Random Systems, Borggaard, J., Leite Nunes, V. and van Wyk, H.-W., in
Proceedings of the 2013 American Control Conference, Paper Number MoA14.4,
June 2013.

23. Using Dominant Modes for Optimal Feedback Control of Aerodynamic Forces,
Akhtar, I., Naqvi, M., Borggaard, J. and Burns, J.,Journal of Aerospace Engi-
neering, 2013, (available in early view).

24. Sensitivity and Uncertainty Quantification of Random Distributed Parameter
Systems, Borggaard, J., Leite Nunes, V., and van Wyk, H.-W., Mathematics in
Engineering, Science and Aerospace, Vol. 4, No. 2, pages 117–129, 2013

25. Infinite Dimensional Delay Differential Equations in Control and Sensitivity
Analysis, John A. Burns, Terry L. Herdman and Lizette Zietsman, accepted
Nonlinear Studies/MESA.

26. Numerical Approximations of the Dynamical System Generated by Burgers’
Equation with Neumann Boundary Conditions, Edward J. Allen, John A. Burns
and David S. Gilliam.
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Professional Talks and Presentations

John Burns

1. IEEE American Control Conference, Baltimore, Maryland, June, 2010.

2. Workshop on Computational Science for Building Energy Efficiency, Arlington,
VA, July, 2010.

3. SIAM National Meeting, Pittsburgh, Pennsylvania, July, 2010.

4. AFOSR Conference on Computational Science, Arlington, VA, July, 2010.

5. AFOSR Conference on Control, Arlington, VA, August, 2010.

6. Texas Tech Workshop on Control, Lubbock, Texas, September, 2010.

7. Worcester Polytechnic Institute, Worcester, MA, October, 2010.

8. DOE Fall Creek Falls workshop on Applications of High Performance Comput-
ing to Energy Efficiency, Memphis, TN, October, 2010.

9. ISE Informs Lecture, Virginia Tech, November, 2010.

10. Symposium on Analysis & Control of Infinite-Dimensional Systems, Max Planck
Institute, Magdeburg, Germany, November, 2010.

11. International Research Forum: What Can the Academic Community Learn
from the Global Crisis? Models, Methods and Transfer, Hong Kong Polytechnic
University, December, 2010.

12. Auburn University, Auburn, AL, March, 2011.

13. Workshop on Future Directions in Applied Mathematics, NC State University,
Raleigh, NC, March, 2011.

14. Missouri University of Science and Technology, Rolla, MO, April, 2011.

15. University of Colorado, Boulder, CO, April, 2011.

16. National Summit on Advancing Clean Energy Technologies - Entrepreneurship
and Innovation through High Performance Computing , Washington, DC , May
2011.

17. National Summit on Advancing Clean Energy Technologies - Entrepreneurship
and Innovation through High Performance Computing, Washington, DC , May
2011.

18. SIAM Conference on Dynamical Systems, Snowbird, UT, May, 2011.

19. Workshop on Building Modeling and Control, Philadelphia, PA, June, 2011.

20. American Control Conference, San Francisco, CA, June, 2011.

21. 7th Workshop on Control of Distributed Parameter Systems, Wuppertal, Ger-
many, July, 2011.

22. Third Istanbul Conference on Mathematical Methods and Modeling in Life Sci-
ences and Biomedicine, Sile, Turkey, August, 2011.
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23. University of Waterloo, Waterloo, Canada, April, 2012.

24. University of Illinois, Champaign, IL, October, 2012.

25. Fifth International Conference on High Performance Computing, Hanoi, Viet-
nam, March, 2012.

26. 2012 American Control Conference, Montreal, Canada, June, 2012.

27. The 2nd International High Performance Buildings Conference, Purdue Univer-
sity, July, 2012.

28. AFOSR Conference on Control, Arlington, VA, August, 2012.

29. 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear
Control, Bertinoro, Italy, August 2012.

30. IEEE 43rd Conference on Decision and Control, Maui, HI, December, 2012.

31. SIAM Control and Its Applications, San Diego, CA, July 2013.

Lizette Zietsman

1. DSPDES’10: Emerging Topics in Dynamical Systems and Partial Differential
Equations, Barcelona, Spain, June, 2010.

2. SIAM Annual Meeting, Pittsburgh, PA, July, 2010.

3. AFOSR Dynamics and Control Program Review, Washington, DC, August,
2010.

4. AFIT, Department of Mathematics and Statistics, WPAFB, Ohio, April 2011.

5. ICNPAA 2012 Congress, Vienna Technical University, Vienna, Austria, July,
2012.

6. SIAM Control and Its Applications, San Diego, CA, July 2013.

Honors and Rewards Received

John Burns was awarded the 2010 W.T. and Idalia Reid Prize in Mathematics by the
Society of Industrial and Applied Mathematics, July 2010.

AFRL Point of Contact

Presentation at AFIT, Department of Mathematics and Statistics, WPAFB, Ohio,
April 2011.
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