
 

 

 
            
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

STOCHASTIC RADIATIVE TRANSFER MODEL FOR 
CONTAMINATED ROUGH SURFACES: 

A FRAMEWORK FOR DETECTION SYSTEM DESIGN 

ECBC-TR-1212

Avishai Ben-David

RESEARCH AND TECHNOLOGY DIRECTORATE

Charles E. Davidson

SCIENCE AND TECHNOLOGY CORPORATION
Edgewood, MD 21040-2734

November 2013

Approved for public release; distribution is unlimited.
 



 

 

Disclaimer 
 

The findings in this report are not to be construed as an official Department of the Army position 
unless so designated by other authorizing documents. 
 
 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
XX-11-2013 

2. REPORT TYPE

Final 
3. DATES COVERED (From - To)

Jan 2013 - Sep 2013 
4. TITLE AND SUBTITLE 

Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A 
Framework for Detection System Design 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 
Ben-David, Avishai (ECBC); and Davidson, Charles E. (STC) 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Director, ECBC, ATTN: RDCB-DRD-P, APG, MD 21010-5424  
STC, 500 Edgewood Road, Suite 205, Edgewood, MD 21040-2734 
 

8. PERFORMING ORGANIZATION REPORT   
NUMBER 
ECBC-TR-1212 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, 
MD 21010-5424 

10. SPONSOR/MONITOR’S ACRONYM(S)

ECBC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT-LIMIT 200 WORDS 
We developed a framework to evaluate the performance of a detection system for contaminated surfaces. We employed 
the radiative transfer model for contaminated surfaces (Ben-David and Davidson, ECBC-TR-1084, 2013) and 
transformed the physical model into a stochastic probability model with which detection probability and false alarms can 
be estimated for scenarios of interest. Our algorithm employs a data fusion approach known as a distributed binary 
integration system (also known as a double-threshold detector, or m-out-of-n detector) in order to combine the individual 
detection results from multiple scans over several potentially contaminated areas. With our probability model we can 
explore the parameter space (e.g., number of measurements, time to detect, area to monitor, sparsity of the contamination, 
field of view, etc.) and study the tradeoffs between parameters that affect the overall system detection performance. We 
can also use the stochastic model to set sensor requirements for a contamination scenario. We presented plots that 
demonstrate the interaction between parameters and an example for the detection of a potassium chlorate contaminated 
“car” with a CO2 tunable laser system. 
15. SUBJECT TERMS 
Radiative transfer     Contaminated surfaces    Detection  
Rough surface      BRDF      Reflectance  
Fill factor     CFAR      Data fusion 
(Continued on next page.) 
16. SECURITY CLASSIFICATION OF: 

 
17. LIMITATION OF 
     ABSTRACT 

18. NUMBER OF  
      PAGES 

19a. NAME OF RESPONSIBLE PERSON

Renu B. Rastogi 
a. REPORT 

 
U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U UU 42 

19b. TELEPHONE NUMBER (include area 
code) 
(410) 436-7545 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18 



 

ii 

SF 298 Block 15. Subject Terms (Continued) 
 
Distributed binary integration  
Distributed sensor system 
Double-threshold detector  
m-out-of-n detector  
Potassium chlorate  
Probability theory  
System performance 
Probability of detection and false alarm



 

iii 

PREFACE 
 
 

The work described in this report was started in January 2013 and completed in 
September 2013. 

 
The use of either trade or manufacturers’ names in this report does not constitute 

an official endorsement of any commercial products. This report may not be cited for the 
purposes of advertisement.  
 
 The text of this report is published as received and was not edited by the 
Technical Releases Office, U.S. Army Edgewood Chemical Biological Center. 
 
 This report has been approved for public release. 



 

iv 

Blank



 

v 

TABLE OF CONTENTS 
 

1. INTRODUCTION .......................................................................................................................1 
2. OVERVIEW ................................................................................................................................2 
3. PROBABILITY MODEL FOR STOCHASTIC VARIABLES ..................................................6 
3.1 Surface Roughness R0 and Rt .....................................................................................................7 
3.2 Contamination Thickness h ........................................................................................................8 
3.3 Contamination Fill Factor f ........................................................................................................8 
4. STATISTICS OF THE SIGNAL M ............................................................................................9 
5. STATISTICS OF THE DETECTOR SCORES ........................................................................10 
6. COMBINING DETECTOR SCORES AND PROBABILITIES FROM MULTIPLE SCORES 
AND AREAS OF REGARD .........................................................................................................12 
7. SYSTEM REQUIREMENTS ....................................................................................................16  
8. RESULTS ..................................................................................................................................18 
8.1 Exploring the parameter space .................................................................................................19 
8.2 A case study: the detection of a contaminated car ...................................................................22 
9. SUMMARY ...............................................................................................................................26 
10. APPENDIX A. FILL FACTOR PROBABILITY ...................................................................28 
11. REFRENCES ...........................................................................................................................31 

LIST OF FIGURES 
 

FIGURE 1a. System detection probability for one area of regard (J=1) of rough aluminum as a 
function of number of measurements (N), prior probability P(H1), and the pseudo SNR parameter 
 .   Contour surfaces show where Pdetect(system) = constant.  Three contour surfaces are shown at 

Pdetect(system) values of 0.2 (blue), 0.5 (green/yellow), and 0.8 (red) ................................................20 
 
FIGURE 1b.  Pseudo-SNR parameter   as a function of the mean fill factor, E(f), and the mean 

contamination thickness, E(h), where the surface contamination density is hcmgG  234)/( 2  

where h is in microns) ....................................................................................................................20 
 
FIGURE 2a.  An expanded view of Fig. 1a to show the behavior for  <4 .................................21 

 
FIGURE 2b.  An expanded view of Fig. 1b to show details of pseudo SNR parameter   as a 

function of fill factor and contamination thickness. Combinations of E(h) and E(f) resulting in 
 >4 are shown as dark red pixels,  <4 are mapped to other colors as shown .............................21 

 
FIGURE 3.  Same as Fig. 1a but J=3 areas of regard are used for detection in (19) ...................22 
 



 

vi 

FIGURE 4.  Detection probability of local detectors jP ,detect in (19) for simulation 1 (footprint 

contamination Fig. A1) as a function of the 2nd binary threshold j2 . j=1 is AOR for rough 

aluminum, and  j=2 is AOR for painted aluminum surface.  P(H1)=0.4. The system detection 
probability, under the condition that 2221   , is also shown in black.  2,detect jP  reaches a 

maximum of 0.926 at 222  .  Red dot shows the largest 21  such that 1,detect jP  exceeds a 

detection probability of 0.999 (occurs at 321  ).  Black dot shows the location where the system 

detection probability exceeds 0.999 (occurs at 52221  ).  Combining the two regions allows 

larger j2  thresholds to achieve the same detection probability and will result in more robust 

performance ...................................................................................................................................24 
 
FIGURE 5.  Overall system detection probability tem)detect(sysP in (19) for case 1, as a function of 

all possible combinations of 2nd thresholds j2 in (18).  P(H1)=0.4. 21  is 2nd threshold for j=1 

(rough aluminum) and 22 is 2nd threshold for j=2 (painted aluminum). Black line occurring along 

the diagonal (where 2221   ) is the same black line appearing in Fig. 6; red and green lines 

appearing at N22  and N21 , respectively, are the same as in Fig. 4 (at Nj 2  the detector 

will never alarm and thus information from the jth region is discarded).  Maximum of tem)detect(sysP  

occurs at 121  , 222  at a value of 0.9999996 ..........................................................................24 

 
FIGURE 6.  Same as Fig 4 but for contamination footprint (case 2) of Fig. A2.  P(H1)=0.07. 
Individual detection probability jP ,detect  attain a maximum of 0.934 and 0.919 for j=1 and j=2 

respectively at 12 j .  Maximum detection probability for the system is 0.995 at 12 j  .........25 

 
FIGURE 7.  Same as Fig. 5 but for contamination footprint (case 2) of Fig. A2. P(H1)=0.07 ....26 
 
FIGURE A1. Simulation 1 (case 1): (left) value of f for each pixel on the simulated surface. The 
sensor FOV (blue box, 1/10th the linear dimension of the image) moves over the contaminated 
surface.  (right) The fill factor as seen by the FOV for the contaminated surface. The likelihood 
for the sensor FOV to encounter contamination is P(H1)=0.4 .......................................................30 
 
FIGURE A2. Simulation 2 (case 2): same as Fig. A1 except that individual contamination 
events are larger in cross-sectional area; it takes fewer events for the same total area of 
contamination.  The likelihood for the sensor FOV to encounter contamination is P(H1)=0.072 .30 
 



 

1 
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Abstract 
We developed a framework to evaluate the performance of a detection system for contaminated 
surfaces. We employ the radiative transfer model for contaminated surfaces (Ben-David and 
Davidson, ECBC-TR-1084, 2013) and transform the physical model into a stochastic probability 
model with which detection probability and false alarms can be estimated for scenarios of 
interest. Our algorithm employs a data fusion approach known as a distributed binary integration 
system (also known as a double-threshold detector, or m-out-of-n detector) in order to combine 
the individual detection results from multiple scans over several potentially contaminated areas. 
With our probability model we can explore the parameter space (e.g., number of measurements, 
time to detect, area to monitor, sparsity of the contamination, field of view, etc.) and study the 
tradeoffs between parameters that affect the overall system detection performance. We can also 
use the stochastic model to set sensor requirements for a contamination scenario. We presented 
plots that demonstrate the interaction between parameters and an example for the detection of a 
potassium chlorate contaminated “car” with a CO2 tunable laser system. 
 
Subject Terms Radiative transfer, contaminated surfaces, detection, rough surface, BRDF, 
reflectance, fill factor, distributed binary integration, CFAR, data fusion, distributed sensor 
system, double-threshold detector, m-out-of-n detector, potassium chlorate, probability theory, 
system performance, probability of detection and false alarm.  
 
1. Introduction  

 
In a recent publication1 we have developed a radiative transfer model with which we 

addressed long-wave infrared (LWIR) passive and active spectral reflectance measurements of 
potassium chlorate or ammonium nitrate contaminated rough surfaces. The radiative transfer 
model was developed from physics-based principles with the aid of empirical approximation of 
the uncontaminated rough surface reflectance. In this report our objective is to develop a 
framework for the radiative transfer model where the parameters are allowed to be stochastic 
(i.e., fluctuate) and thus the new model will be able to predict the performance of a notional 
system with traditional figures of merit: probabilities of detection and false alarm. In this report 
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we only address an active infrared laser system (pulsed or continuous wave) that probes the 
contaminated surface and measures the reflectance at the specular reflectance angle (e.g., a bi-
static lidar system) or at the backscatter angle. In future reports we will enlarge the framework to 
passive remote sensing where the reflected thermal radiation and for a Raman system that is used 
to interrogate contaminated rough surfaces.  
 
The main steps in developing a framework for stochastic radiative transfer model are: 

I. Identifying the relevant physical parameters to become stochastic random variables (RV). 
II. Choosing probability models for the selected RVs.  

III. Combining the RVs with the physical radiative transfer model into a probability model 
for the measured (predicted) signal. 

IV. Selecting a signal processing method with which spectral signal is transformed to a 
detection score. 

V. Applying data acquisition constraints to the detection scenario: time to detect, surface 
area to cover.  

VI. Determine system-level performance: combining many single (local) measurement 
probabilities of detection and false alarm into a scenario (global) probability of detection 
and false alarm.  

 
2. Overview 
 

We start by giving a brief overview of a practical scenario for which we envision the 
implementation of our stochastic model. A suspected car at a check-point is scanned with a 
LWIR laser beam and reflected signals are measured throughout key areas of the suspected car. 
Within a given time and after many measurements are acquired–where each measurement is a 
vector with p spectral bands–a detection score is broadcasted by the algorithm. The detection 
score is evaluated with respect to a probability of false alarm (the car is falsely declared as 
“contaminated”) and the probability of missed detection (equal to one minus the probability of 
detection) where the car is contaminated but the detection algorithm did not broadcast the proper 
“contamination detected” declaration. The parameters “missed detection” and “false alarm” drive 
the detection algorithm in opposite directions; when the former decreases the later increases.  In 
the scenario of a suspected car we are willing to endure higher false alarm rates in order to 
minimize the chance of a missed detection, because we assume false alarms will only necessitate 
a secondary (e.g., manual) investigation of the car at the check-point location. 

The basic radiative transfer model [Eq. 10, in reference 1] for the reflected signal from a 

contaminated surface, illuminated at incidence angle i  and measured at reflectance angle   is 

given by 
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where, f is the fill factor of the contaminated area (the fraction of illuminated spot that is 

contaminated), h is the contamination thickness (e.g., modeled as a film), ),(0 iR   is rough 

surface reflectance from the car, ),( itR   is the reflectance of the contamination (i.e., target 

material) modeled as a rough surface due to morphology of the contamination, i  and   are the 

incident and reflected angles measured counter-clockwise from the surface’s normal (i.e., for 
specular reflectance geometry i  , and for lidar backscatter geometry i  ),   is the 

spectral absorption coefficient, and ng  is a dispersion correction to  .   In (1), top line, R0, Rt, 

and R are wavelength dependent (wavelength dependence, , is omitted for clarity); f, h, a, b, c, 
are all scalars. Both R0 and Rt are given with empirical coefficients (a, b, c) and the spectral 

Fresnel reflectance coefficients 0  and t  are computed at incidence angle i . In [1] we showed 

very good results of applying the model (2) for specular geometry. In this report we speculate 
that also for lidar backscatter geometry (that can be implemented with a hand-held sensor) the 
model given by (2) provides good results.  

Thus, given atmosphere with transmission )(rangetatm  where range is the folded path 

from the source to the surface and back to the detector an illuminating source with constant 

strength )( isourceL   at a distance from the surface (distance sourcer )  and a detector at a distance 

detectorr  and angle θ from the surface, the measured reflected signal is given by  

),(),(
)(

)()(
2

detector
detector isystemi

source

atm
isource RKR

rr

t
LM  


   (2) 

where 2
detector)()(  rrtLK sourceatmisourcesystem   is a system constant  (for a given geometry) and 

),( iR   is given in Eq. (1). 

To develop a probability model for detectorM  we need to develop (or assume) a statistical 

model for all random variables (RV) in the model equation and then modify the statistics of 

),( iR  with the scaling factor systemK . If needed, one can regard systemK  as a RV (e.g., due to 

fluctuations in atmospheric transmission or laser power) – in this work (for simplicity) systemK  is 

not a RV. The objective is to develop a probability density function (pdf) for the at-aperture 

signal detectorM , and use it in a detection algorithm (e.g., a matched filter detector) to produce 

detection scores that can be evaluated for probability of detection, probability of false alarm, and 
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probability of missed detection. In finding probability model for the RVs in (2) we strive for a 
balance between complexity of the statistical description and ease of use at the expense of 
accuracy. It is counterproductive to describe RVs with complex mathematical functions that we 
cannot use when we need to manipulate RVs in the form of multiplications and additions of RVs 
that lead to the pdf of (2). 

The RVs that we address in this study are the fill factor f, contamination thickness h, 
rough surface reflectance R0, and the reflectance of the contaminated target, Rt. The statistics of 

the fill factor f is affected by the field of view (FOV), the cross-sectional area distribution )(aa  

of the contamination, and the total mass of the contamination per unit area. The spill area-

distribution )(aa  is the footprint distribution of the contamination on the surface. While )(aa  

is related to the intrinsic diameter distribution function )(diameterdiameter  of the contamination 

particles, the two are not the same. The spill-distribution )(aa  describes the interaction between 

single particles due to conglomeration, clumping, how particles fall out (spill) of a sack that 

moved by a car, etc., whereas )(diameterdiameter  is the size distribution of the individual 

particles before they were spread (spilled) on the surface (e.g., a size distribution of a powder 

before it was put in a sack). The contamination footprint cross-sectional area distribution )(aa  

is used to compute the pdf for f, )( fPf . The particle size distribution function 

)(diameterdiameter  may be used to compute the pdf of the target thickness h, )(hPh , when one 

assumes a single layer of particles on the surface for which diameterh  . In this work we regard 
the pdfs for f and h to be independent of each other (for convenience and because we do not 
know the mechanism of spillage that create f and h), however, if one choose to impose 

dependency between f and h, then a bivariate ),(, fhP fh can be used (a bivariate pdf for two 

marginal normals is easily obtained, and for non-normal the concept of copula can be employed). 
In the notation for a general pdf, e.g., )|( zxPy , the subscript denotes the parameter (y) for the 

pdf and in parentheses it is a dummy argument (x). The notation zx |  reads as x conditional to a 

given z value; )(xPy  denotes an unconditional pdf. 

Let’s assume that we are able to derive the pdf )(RPR for the measured reflectance R in 

(1); then with a simple transformation the pdf of (2) is )/()( 1
systemRsustemM KMPKMP  . With 

)(MPM  we can formulate our binary Neyman-Pearson hypothesis testing2 regarding the data M 

under H0 and H1 scenarios, where for the null hypothesis H0 the interpretation is that the data 
does not contain the signal of interest (e.g., a target), and the alternative hypothesis 1H is that the 

data does contain the signal of interest in addition to noise and interferences. Under the two 
hypotheses  
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The fluctuations in M are due to both additive noise (whose source can be—but not limited to—
detector noise), and to multiplicative noise (e.g., due to clutter). In most sensors system noise is 
small, and most of the noise is due to clutter which in our model is represented by the 
uncontaminated rough surface pdf )( 00

RPR . 

Analyzing detection performance requires selecting a signal processing method with 
which to determine the presence of the target signals in the data.  We have chosen the standard 
matched filter algorithm, which is optimal for additive Gaussian noise.  Although our problem is 
not described by a simple additive model (and thus the matched filter is not optimal), the 
matched filter is a standard technique used as a benchmark for comparing algorithms, leads to 
convenient performance analysis, and is therefore a suitable choice.  The matched filter detection 
score is given by 




1

0

1

00

)|cov(

)|cov()]|([





HM

HMHMEM
score

T

T

 (4) 

where )(E  is a mean (expectation), )cov(  is a covariance operation, superscript “T” is a matrix 

transpose operation (when M is a column spectral vector of measurements with p spectral bands 

and TM  is a row vector),   is the target spectral vector that represent the spectral direction of 
the intrinsic contamination (to be discussed in section 5). The simplest, but not necessarily best, 
choice for  is the spectral absorption coefficient in (1). For the detection scores we compute a 

probability of detection detectP and probability of false alarm alarm-falseP . The scores in (4) are 

function of the H0 condition, namely, a function of the local rough surface properties. Thus, it is 
prudent to assume that different parts of the suspected car will have different H0 signals (e.g., 
due to non-uniformity of materials, and geometry of orientation with respect to incidence angle). 

In the general detection case we have AORJ  areas of regard (AOR) in the suspected car, each area 

of regard produces scoresN .  The scores for each AORJ  are characterized by detectP  and alarm-falseP . 

We combine the scoresAOR NJ  local scores and probabilities into one (global) set of probabilities, 

)c(detect arP  and )c(alarm-false arP  with the “binary integration” method3, 4, a method that is used in 

radar detection algorithms. The number of AORs can be set according to distinct areas that affect 

the substrate reflectivity 0| HR :  the number of different materials of the uncontaminated car’s 

surfaces (e.g., rubber, aluminum, painted aluminum, etc.), and/or the orientation of the surfaces 
(e.g., horizontal hood and trunk, vertical doors), and could also depend on a priori information 
regarding the likelihood of different areas of the car to be contaminated. 

The total number of detection scores scoresAOR NJ  is a function of external constraints 

such as total time (T) available for scanning a suspected car, sensor acquisition rate (laser pulse 
repetition frequency, PRF, for an active sensor), and the sensor field of view (solid angle, FOV 

in steradians) whose viewing area is FOVrsource
2 . For convenience, we assume that the laser beam 

divergence matches the field of view, hence, FOVrsource
2 is the illuminated spot-area on the 
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contaminated surface. The internal relationship between the external constraints and a simple 
flowchart is given by 
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 Note that in (5) A is the sum of the viewed areas for each AORJ  areas of regard, 



J

j
jAA

1

, 

scoresN  is the number of measurements for each area of regard that is collected with a sensor with 

a given FOV (sr), and that p spectral bands are collected every 1PRF seconds. The illuminated 

area (by the active source) for a single laser shot on the contaminated surface is FOVrsource
2 . Solid 

angle FOV (sr) is the square of the linear FOV in radians.  In (5) each of the AORs 

contains scoresN , however, one can allow a different number of measurements for each j, jN , and 

that 



J

j
jjscoresAOR NJNJ

1

. The sensor can be a single pixel detector or an array for which the 

acquisition of scoresN  may take less time. For example, for N=100, J=6, and T=30s, the 

HzTNJPRF 20/  , which implies that a vector with p spectral bands must be acquired 

every 5ms – a difficult task not to be underestimated. With the snapshot-advantage architecture5 
(see Fig. 1 in reference 5) this task can be achieved; one can have a detector with x-by-y-by-λ 

data cube where Nyx  , and λ =p, that is acquired simultaneously for each of the J areas of 

regard. In order for an active sensor to take advantage of the snapshot-advantage architecture 
(i.e., an imaging receiver) one would need multiple sources or else ensure that the illuminated 
spot size is large enough to illuminate each pixel in the image simultaneously.  In this report we 
assume that N and J are the external parameters to the global probability model and we gloss 
over the acquisition strategy that was employed to obtain them.  
 
3. Probability model for stochastic variables 
 
We describe the options for the principal RVs and our choice for a statistical model. When 
selecting a statistical model for a RV we consider the range of the RV: e.g., the support range for 
contamination thickness, h, is zero to infinity or zero to hmax; the support range for a fill factor, f, 
is zero to one. There is more than one pdf that can describe the range of values of a given RV. 
The most likely choice for a pdf, in the absence of any prior knowledge, is a pdf whose entropy is 
a maximum. For example, given a RV x that is known to exist only within a limited range 

(support) 21 xxx   and is zero outside the interval ],[ 21 xx the most likely pdf is a uniform pdf, 

i.e., with our maximum ignorance we must accept that all values 21 xxx   are equally likely. If 
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we have prior knowledge about x that the mean 0)( xE , and the support  x0 , then an 

exponential pdf is the most likely pdf for x; If we know the mean )(xE  and variance )(xV  of x, 

then the normal distribution for which  x  is the most likely pdf.  
In this study we assume measurements are collected at p wavelengths, hence, R0, Rt, and 

M are multivariate RVs (i.e., p-by-1 vectors), whereas f and h are univariate RVs (i.e., 1-by-1 
scalars).  
 
3.1 Surface roughness R0 and Rt 

The RV for surface roughness DcbaR 00
1

0
2

000 )exp(     where 

)exp( 0
1

0
2

0 cbaD     is the decay function (see equation 3 in reference 1) contains three 

RVs,  ),,( 000 cba  and is bounded in the support range 10 0  R . If we knew the 

means ),,( 000 cba   and the variances ),,( 2
0

2
0

2
0 cba   of ),,( 000 cba ; we can assume a normal 

distribution, ),( 2N , as the most likely pdf for ),,( 000 cba , and 0R is given by lognormal pdf, 

),( 2LN  as 




































),(~

))(())((

),)(ln(~

2
0

112
0

222
0

0
1

0
2

0

00

DD

T
c

T
b

T
aD

cbaD

DD

LND

LNR








11
 (6) 

where 1  is a p-by-1 vector with all ones. Note, that in (6) we did not enforce the upper bound 

constraint 10 R  (the lower bound is assured to be greater than zero when using lognormal pdf). 

Nevertheless, since we know from lab experiments that ),(~ DDLND   is spectrally smooth 

function due to the spectral dependence imposed by the 2nd order polynomial 0
1

0
2

0 cba    , 

we can choose scalar values for ),,( 000 cba  to obtain a reasonable decay function D, and 

furthermore we can ensure that our choice for ),( DD   will produce a physical rough surface 

reflectance 10 R . The same can be done to produce a pdf for the contamination (viewed as a 

rough surface) tR  using ),,( ttt cba , 
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(7) 

In future work we may generalize (6, 7) and treat the Fresnel reflectance 0  and t  as RVs, 

which would model a change in composition of the car’s surface and the target. 
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3.2 Contamination thickness h 
In our physical model the thickness h of the contamination is an average value across the 
contaminated areas within the field of view. Due to the non-uniformity of contamination we 
expect variations in h, hence fluctuations in the transmission )exp( ht   through the 

contamination. Our first option is a uniform pdf for h. We can assume that in practice h is 

bounded, maxmin hhh  , where maxh  is chosen such that the transmission )exp( ht   is 

practically zero (i.e., within sensor noise). A uniform pdf for max0 hh   has maximum entropy 

and thus is advantageous (maximum entropy implies high likelihood of occurance). However, 
the pdf of transmission (easily obtained with transformation of variables for the pdf of h) will 
have higher occurrence for low transmission than high transmission, a scenario that we do not 
think as being reasonable. On the contrary, we think that most transmission events across the 
contaminated surface will be of high value (i.e., associated with small h). Our second choice is 
an exponential pdf for h. We know that h>0 and thus (for maximum entropy) we are tempted to 
choose an exponential pdf for  h0 , hence larger probability for small contamination (thin 
layer h) than for large amount of contamination.  The problem with exponential pdf for h is its 
high non-zero density for h=0 and thus the exponential choice imposes restriction on the 
interpretation of the H1 scenario (contamination is present), i.e.,  Ph(h=0|H1) = 0 is required by 
definition of H1.  Our third option is a simple linear pdf, hconsthpdf /)(   for h between 

maxmin hhh   such that pdf(hmin) > pdf(hmax) (an additional information to set the slope of the 

pdf is required) and hence the pdf of the transmission will have higher occurrence for small h 
than for large h (the behavior  we desire). Other options for pdfs are the use of complex (but 
flexible) functions such as beta and gamma pdfs that can be constrained (with additional 
information) to give the expected behavior for the pdfs of h and the transmission.  If we have 

information about the size distribution )(diameterdiameter  of the particles, we can use it to form 

a pdf for h. For example, we can assume that the contaminated surface is composed of a single 
layer of particles, and thus, the thickness is proportional to a diameter. Thus, the pdf of h will 
have a similar shape as the particle size distribution. The experimental data6 suggests that a 
monolayer of contamination is reasonable. Our, choice for pdf for h is to use the size distribution 

)(diameterdiameter  or if is not available to use the simple linear hconsthpdf /)(  , for h 

between maxmin hhh  , that is, 
2

minmax

max

)(
2)(

hh

hh
hPh 


 , which has a mode at hmin and zero 

density at hmax. 
 
3.3 Contamination fill factor f 
A pdf for f was not given in the MIT-LL report6; only the footprint cross-sectional area of the 

spill distribution )(aa  was given. Thus, we had to compute the pdf for the fill factor. We 
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compute )( fPf  with two methods:  via simulations and with a theory (see Appendix A for 

details of the simulation method). A brief description of the two methods is as follows.  
(1) a )( fPf is computed with a simulation program where we construct a random surface 

populated with random cross-sectional footprints that are sampled from )(aa  and are 

uniformly distributed on a surface. The footprints are not allowed to intersect (i.e., no 
overlap between footprints). With this complex simulation we compute a fill factor for 
a given field of view by moving the FOV over the simulated random surface (a digital 
image) and computing the area of all the particles in the simulations. Due to pixilation 
of the objects in the digital image (the size of FOV and the spill footprint) the 
computed )( fPf may contain sharp spikes; therefore, we typically smooth the pdf.   

(2) We compute a )( fPf with a theoretical method where the location of the contamination 

sites are located at random locations7 based on random theory of distribution of random 
centers in a hyper volume (for our application we reduced the volume to a surface). The 

spill footprint sizes are sampled from )(aa . The probability of intersection between a 

given footprint (modeled as a circle) and the edge of the FOV (modeled as a rectangle) 
is computed. The theoretical method is based on detailed geometrical calculations for 
intersection of shapes (FOV and footprint); it utilizes approximations that are only valid 
under certain conditions.   

At present, we choose to use the simulation program to produce fill factor probability. In future 
work we intend to improve the accuracy of the theoretically derived pdf.  

The prior probability )( 1HP  for H1 event (i.e., the likelihood that the contamination will 

be present within an FOV) can be easily computed in the simulation by the ratio of number of 
FOVs that are not empty (i.e., FOVs that contain any target material) to the number of FOVs that 
are contained in the AOR. For example, if the FOV is 10 mr, AOR is 1 m2, and the distance to 

the AOR is 10m, then the number of independent FOVs is 100]1010/[1 22 mrm . If in the 

simulation only, say, 5 FOVs contain the target, then 100/5)( 1 HP .  The prior probability 

P(H1) is dependent on the surface density of the contamination, the cross-sectional area 

distribution )(aa , and the size of the FOV. 

 
4. Statistics of the signal M 
 

It is extremely difficult to derive the pdf of detectorM  in (2).  Our approach is to compute the 

moments of detectorM and then to fit an analytical pdf to the computed moments. Our goal is to 

obtain a pdf for the detection scores (4) from which we compute a probability of detection and 
false alarm. Given the physical model (2) )(detector RKM system   we compute its nth moment  

)]([)( nn
system

n REKME    (8) 
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By carefully expanding )(nR  of (2) we obtain a long series of terms that is an nth order 

polynomial with the RVs (f, exp(-h), Rt , and R0) where each term of the series is of the form 
0

0)exp( RRthf nn
t

nn RRhf   where the sum of the exponents nnnnn RRthf  0 . If we assume that 

the RVs are statistically independent, the expectation of 0
0)exp( RRthf nn

t
nn RRhf   is simply given 

by )()())(exp()())exp(( 00
00

RRthfRRthf nn
t

nnnn
t

nn REREhEfERRhfE   where each of the 

expectations can be computed with the proper statistical model chosen for that specific RV. 
 With first and second moments (n=1 and n=2) we can approximate the pdf of M as 

multivariate normal (for p spectral bands) ),(~ MMNM  , or a lognormal ),(~ MMLNM  , 

where the population parameters are 
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 (9) 

The advantage of choosing a lognormal pdf for M is that it enforces the physical constraint that 
the radiance M must be positive. However, normal pdfs are easier to manipulate mathematically 
(e.g., in subtraction operations of RVs) than lognormal pdfs, and with proper choice of the 

population parameters ),( MM  for normal pdf, we can enforce 0M  in the sense that 

probability pdf(M<0) is practically zero (due to the fact that the value of M is “far” from zero). A 
more complicated pdf (but also more accurate) for M can be given with the Johnson distribution 
family8, by a fitting procedure that uses the first four moments of M. Our choice is to use the 
simple normal pdf for M for which the statistics of the detection scores (4) are more easily 
obtained. 
 
5. Statistics of the detector scores 
 
The scores, (4), are scalar quantities that embody a spectrally-weighted measure of how similar 
the measured signal is to the expected target spectrum.  The larger the score, the more similar the 
data resembles the target spectrum.  Given the detection scores it is of interest to estimate the 
probability that a particular score value can be attributed to an H0 scenario or to an H1 scenario. 

Using the normal approximation, the signal M is distributed by 
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 (10) 

where ),,,( 1010   are computed from the first and second moments of the pdfs of the 

variables (f, h, R0, Rt). The target direction   for the matched filter (see (4)) is chosen to be 

01    where we note that 1  is a function of the bare surface reflectivity R0, and therefore 
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 is also a function of R0.  In practice, 1  may not be known a priori, hence, one can use   

instead of  – a choice that will cause a drop of detection performance that can be estimated with 

the magnitude of the cosine angle between the vector 5.0
0
  and the vector )( 01

5.0
0   . We 

note that the drop of performance affects the detection probability in (12) below, which is the 1st 
stage in the binary integration (to be discussed in section 6) but, can be somewhat mitigated at 
the 2nd stage of the binary integration where the sum of scores above a given threshold is 
computed. Equation (4) can be written with (10) as 
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If 0  is known, and thus is not treated as stochastic, the scores are distributed with normal 

statistics as two normal distributions with unequal variances located at zero (for H0) and at one 
(for H1) given by (12) 
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where 0p  and 1p  (top two lines of 12) are the pdfs for the H0 scores and H1 scores;   is the 

distance between the means of the scores under H1 and H0 in units of standard deviation of the 

H0 scores (note that for 01  , SNR of the H1 scores and is a sufficient statistic to 

completely describe detection performance), we refer to  as “pseudo SNR”; the probabilities of 

detection )(detection P  and false alarm )(alse fP  (bottom two lines) for a given threshold   are the 

cumulative density functions (cdfs) of the scores and are given with the error function. The 

parameter   is related to the separation between H0 and H1 score distributions, but if  01     

does not completely describe the separation and it is possible for two scenarios with the same  

exhibit different performance. If 0  is not known a priori (e.g., we are asked to predict the 

scores distributions at a later day for which we do not have 0 ) and thus is a random variable, 

the statistics of the predicted scores are given by confluent hypergeometric statistics9 when 

01  ; when 01   the distributions in reference [9] do not apply and must be modified.  
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6. Combining detector scores and probabilities from multiple scores and areas of regard 
 
In the general scenario we interrogate the event (a suspicious car) in J areas of regard (see 
external constraints in (5)) where for the jth area we have N detections scores with probabilities 
of false alarm and detection under H0 and H1 (given by (11, 12)). Each of the J AOR’s can be 
viewed as a “local detector” that collects N measurements and produces N scores. The challenge 
is to combine all the N scores for the J regions ( NJ  results) into one probability of detection 
(and false alarm) for the event. For simplicity and ease of notation, we assume an equal number 
of measurements NN j   for each of the J areas. We propose to use the radar methodology3 of 

“binary integration”, also known as “double-threshold detector”, and “m-out-of-n detector”. 
While detectors that employ binary integration techniques (commonly used in radar) are not 
optimal in performance, they are easy to implement and are relatively insensitive to a single large 
interference/clutter that might exist in the scene. No matter what is the energy in the measured 
signal, the output from the 1st threshold is a binary “1” or “0”, and thus binary integration 
detectors are robust in performance (less susceptible to false alarms) when the background 
noise/clutter is a non-Gaussian statistics with high tails (reference 3, p293-294) that can produce 
large scores where one large (false) score may dominate all other scores. With a binary 
integration method all scores are transformed to “1” or “0” regardless of their numerical value. In 
our context, the binary integration addresses the problem of deciding if the target is present in the 
jth AOR given N. Then, we address the following question: given the J results what is the 
probability of detection for the global event (contaminated car). 

From a system perspective (the system is a set of J local detectors, each of which 
produces N measurements) the mathematical statement of the problem is as follows. For the 
system as a whole the objective is to minimize a given cost function for the global event and to 
find the parameters (the two thresholds) for each of the J detectors. In order to achieve this 
objective with the “binary integration” (double-threshold detector) method we need to set two 
thresholds for each of the J local detectors (we need to set J2 thresholds for the system) that 

together will satisfy the system objective. Let the 1st threshold for the jth local detector be j1 and 

the 2nd threshold be j2 . We compare the ith measurement (out of N measurements) for a local 

detector j to the threshold j1 and produce a local binary score 1jis  when jjiscore 1 , or 

0jis  otherwise. We obtain N binary scores for the jth detector. Then, we sum the N binary 

scores and compare the sum 


N

i
jis

1

to the 2nd threshold j2 , j

N

i
jij sS 2

1




, to produce an 

integrated  detection score jS that is one when the sum exceeds the threshold value (or zero 

otherwise) indicating that a target was detected by jth local detector. The value of the 2nd 
threshold j2 is the “m” in the name “m-out-of-n detector” that is used synonymously with the 

name “binary integration”.  The sequence of N binary scores (for a given detector j), jis , is a 
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Bernoulli sequence, and the sum of the scores, 



N

i
jij sS

1

is a binomial random variable. All the J 

integrated scores, jS , are fused (with a fusion rule that can take the form of a logical AND or OR 

operators, or a majority rule) to produce the system declaration “target is detected”. A system 
with J local detectors is also known as “distributed detectors”, “distributed binary integration 
system”, and “distributed detection network”. The challenge is to properly set the local detectors’ 
double thresholds. 

The solution for combining J local detectors (each with N scores) as a distributed binary 
integration system (also known as a double-threshold detector, or m-out-of-n detector) is given 
by Han et al.10 where the cost function for the system (i.e. for the entire car) is chosen to 
minimize the system probability of a missed detection, tem)detect(sys)( 1 PP systemmiss  , for a given 

constraint of constant false alarm (CFAR) system-false-alarm probability, )( systemfalseP .  A specific 

fusion rule (logical AND or OR) is chosen to combine all the J scores (each score is produced 
with a binary integration, double threshold method). The method of solution for the minimization 
problem is the Lagrange multiplier method. Let’s assume that for each of the J local detectors we 
have N measurements according to (2), NtoiM 1 and by assuming a statistical model for the 

signals (normal statistics in (10)), one can compute J2  detection and false alarm probabilities 

(from (12)) that apply to jiscore : 



j

dxxpxP j

1

)()( 11d(j)



  and 



j

dxxpxP j

1

)()( 01f(j)



 . With 

these J2  quantitie plus the system false alarm probability, )(systemfalseP , and NJ  scores 

(computed from NtoiM 1  for the J local detectors) the J 1st threshold j1 values and J 2nd  

threshold j2 values are solved for. The solution process involves solving simultaneously J2  

nonlinear equations. A solution is obtained with numerical optimization routines.  
We think of a fusion rule in the form of logical “OR” as the proper choice for detecting a 

contaminated car that is observed in J AORs because it is unlikely that all the AORs are 
contaminated (hence we rule out the use of an “AND” operation) and also a majority fusion rule 
is risky because it is possible that the car will be contaminated only in one AOR. With an “OR” 
fusion rule we declare a detection if at least one (or more) of the J local detectors (operating with 
the two thresholds binary integration method) produces a detection.  Thus, the “OR” fusion rule 
is more likely to produce better system detection performance.  

A full implementation of the Han et al.10 solution for distributed sensors is not easy 
(solving J2  nonlinear equations), and thus, we give an alternative solution that though is not 
as optimal is much more practical to use. Our objective, as in Han et al. (1993) is to set the two 
thresholds j1 , j2  (for each of the J local detectors) such that the global (system) false 

alarm )(systemfalseP  is set to be CFAR mode of operation, and to compute the resulting global 

detection probability )(detect systemP . We limit ourselves to the “OR” fusion rule. For simplicity, we 
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also set all the J thresholds, j2 , such that the false alarm rate for all j are identical. In (13-19) 

we outline or solution process for a given )(systemfalseP . The global false alarm for an OR fusion rule 

is given by  





J

j
jfalsesystemfalse PP

1
,)( )1(1  (13) 

where jfalseP , is the false alarm of the jth  local detector (after applying the second threshold, i.e., at 

the second stage of the “double-threshold detector” method). In (13) jfalseP ,1  is the probability 

of a correct H0 event, and the product 



J

j
jfalseP

1
, )1(  is the joint event of all J detectors to get a 

true (correct) H0 event. False alarm is the complement of the probability of correct H0 event, i.e., 

)correct(1 0H . Each of the false alarm probabilities, jfalseP , , is given by the binomial distribution 

for the binary integration method as   

mN
jf

m
jf

N

m
jfalse PP

mNm

N
P

j








  )1(
)!(!

!
11,

2

  (14) 

where jfP 1  is the false alarm of the jth  detector operating with the 1st threshold (i.e., at the 1st 

stage of the double-threshold procedure). We note that in (14) jfalseP ,  is a function of the 2nd 

threshold j2 .  The objective is to solve (13, 14) for all J 1ststage jfP 1  probabilities. For 

simplicity (and hence lack of optimality in the system performance) we assume in (13) that 

all jfalseP , are equal, hence,  

J
systemfalsejfalse PP /1

)(, )1(1   (15) 

We substitute (15) in (14) and solve (with a numerical solver) for jfP 1 as a function of the 2nd 

threshold j2 .  Due to the large value of N (N can be 100 or more), we may approximate (14) 

with a Poisson distribution which is a good approximation of a binomial law when N is large and  

jfP 1  is small. Because jfalseP , is a function of both jfP 1  and j2 , we need to choose a value for 

j2  in order to solve for jfP 1 .  Currently, we pick the value j2 that maximizes the detection 

probability )( jdP  for each j (this improves the optimality of our procedure, but still does not 

guaranty an optimal overall system probability of detection )(detect systemP , hence our result is 

suboptimal with respect to Han et al.). We use (12) to solve jfP 1  for the 1st threshold j1 :  
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where j,0  and j  are the covariance (see (10)) and the target signature (see (11)), respectively, 

for the jth AOR.  Given j1  we compute the 1st stage local detection probability with (12) as  
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The second stage local detection probability is given in a similar manner as (14) with the 
binomial distribution as a function of the 2nd threshold, j2 , by  
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where )( 1HP  is the prior probability for H1 event (target present within the FOV). When the 

FOV is small compared to the footprints of the contamination (given by the cross-sectional area 

distribution )(aa in section 3.3), )( 1HP is approximately the fraction of the total cross-sectional 

area within the jth area (A/J in (5)). Exact values for )( 1HP  can be obtained via the simulation for 

the fill factor )( fPf  discussed in section 3.3 and Appendix A. In general we seek the largest 

possible threshold that still produces acceptable probability of detection due to the fact that large 
threshold improves the rejection of exceptionally large clutter (unexpected clutter that is not 
predicted by the model). With all J local detection probabilities, the global (system) probability 
of detection for an “OR” fusion rule is given in a similar manner as (13) by 





J

j
jsystem PP

1
,detect)(detect )1(1  (19) 

where jP ,detect1  is the probability of a missed detection and the product 



J

j
jP

1
,detect )1(  is the 

joint event of all J detectors to miss a detection. Detection is the complement of the probability 

of a miss, hence the system detection probability is 



J

j
jP

1
,detect )1(1 . As noted, our solution 

process is practical for implementation but is not optimal. We can attempt to optimize our choice 
for j2  by repeating (14-19) for different values for j2 and chose the value that 

maximizes )(detect systemP .  

At present our optimization process for finding the two thresholds j1  and j2 is as 

follows. Given )(systemfalseP  and J in (15) we solve for the false alarm jfalseP , of the jth local 

detector.  We use jfalseP ,  in (14) and find jfP 1 for a given set-value of j2  in (14), say, 12 j . 

With that jfP 1 we can compute the 1st threshold j1  for the jth local detector in (16), and we also 

compute the 1st stage detection probability jdP 1  in (17). We repeat the computation of jdP 1  for all 

values Ntoj 12  , and choose the specific value j2 that maximizes jdP 1  (this is the best value 
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for the 2nd threshold). For this “best 2nd threshold” we already know the value of jfP 1 , hence we 

know the “best 1st threshold” j1  given by (16). While not 100% optimal with respect 

to )(detect systemP , due to the constraint of same jfalseP ,  for all j in (15), our selection process for the 

two thresholds works well in our simulations. 
 
7. System Requirements 
 
We address the scenario of a contaminated car with fill factor f and contamination thickness h 
(both f and h are stochastic variables that have fluctuations given by pdfs in section 3), subject to 
the geometry of the problem (see (2)) and the external constraints and sensor parameters (see 

(5)). The geometry parameters are: the distance of the laser source to the car, sourcer ; the distance 

from the contaminated car (the target) to the detector, detectorr ;  and the atmospheric transmission, 

atmt , that is a function of range )( detectorsource rr  . Sensor parameters are: total time (T) available 

for scanning a suspected car; sensor acquisition rate, PRF (i.e., measuring p spectral bands 

every 1PRF seconds); sensor field of view, FOV; and the J areas of regard with associated 

viewed area 



J

j
jAA

1

. The average surface density for the contamination G(g/m2) is given by 

the product (multiplication) of the contamination intrinsic material density (2.34 g/cm3 for 
potassium chlorate) and the average thickness of h, E(h). This gives the average surface-density 
of the contamination that is encountered within the FOV under the H1 scenario.  The global 
contamination surface-density within the viewing area Aj is much smaller (the contamination is 
not spread uniformly over the car’s surface) and is given by the product of G(g/m2) and the prior 
probability P(H1). We compute the number of areas of regards J, number of samples N, and the 
measurements NtoiM 1  (see (2)). The numerical value of J is determined either by subjective 

requirement such as “need to sample the car at J specific locations”, e.g., J=5 for: hood, two 

front doors and trunk area; or by the constraint )/( 2 FOVrNAJ source , where N is the number of 

measurements (e.g., number of pixels in a 2D imaging sensor) and FOV is the instantaneous field 
of view of a pixel. With the solution (section 6) subject to the system’s requirements of a given 
value of CFAR, we obtain the two thresholds, and we use the 1st threshold j1 as follows. The 

numerical value of the two thresholds includes the effect of clutter via the uncertainty that is 
captured in the statistics of R0. In most detection scenarios clutter noise is much larger than the 
sensor noise (noise-equivalent spectral radiance, NESR), we expect that state of the art sensors 
(NESR ~10-8 W/cm2/sr/cm-1) is sufficient. A system design involves a tradeoff between many 
parameters (data acquisition parameters and scenario parameters). Our stochastic model for 
contaminated surfaces can help in studying these tradeoffs. For example, given a requirement of 
CFAR operation we can use our model to compute detection thresholds ),( 21 jj   as a function 

of the contamination amount (h) and to tie the numerical value of the thresholds to the system’s 
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characteristic noise. In addition, with our stochastic model we can study the effect of stochastic 
fluctuations in various parameters (h, f, R0) on the detection performance, as well as studying the 
interaction between the external system parameters (T, PRF, FOV) and the detection 
performance.  

We view the utility of our stochastic model for rough surface contamination in two types 
of scenarios with regard to the evaluation and the design of a detection system. In the first 
scenario we evaluate the performance of a given sensor in a detection scenario where the 
contamination parameters are unknown. Thus, in this scenario the external constraints (5) are 
given (i.e., a sensor with FOV, and PRF) and the contamination variable (h, f, R0) in (2) are 
variables. Please note that in (5) the detection is only based on the total number of measurements 

NJ   (where each of the N measurements contain p spectral bands) and that N can be achieved 
by measuring the jth AOR with an imaging system that collects N pixels, or a sensor with a single 
pixel that collect N measurements. Thus, if the FOV of a system and the range to the suspected 
car is such that for a given j (e.g., j=1 is the front door and the sensor is at a distance r from the 

car) is such that the illuminated footprint 2rFOV  on the car is equals to the door’s area, then N 
can be achieved by sequential measurements. On the other hand, if the FOV is such that there are 
N pixels within the door’s area, then with an imaging system “one” measurement can provide the 
N samples in (2, 5). We remind the reader that the fill factor is a function of the sensor’s FOV as 
well as a function of the contamination cross-sectional foot-print and the contamination level. 
With our model we can estimate the sensor detection probability as a function of the 
contamination level.  The sensor intrinsic external constraints (FOV, PRF) together with the 
constraints about the detection scenario (T, A, J) are assumed to be given. With our model we 

can estimate the detection probability ),,,,,|,,( 0detect JATPRFFOVCFARRfhP as a function of 

the contamination thickness (h), the fill factor (f) and the rough surface reflectivity (R0), for a 
given false alarm (CFAR) and the external constraints (FOV, PRF, T, A, J). The second scenario 
for the utility of the model is to answer the following question: “What should be the best sensor 
parameters (FOV, T, PRF, A) for given a contamination scenario with (h, f, R0)?” For this utility 

scenario we can compute the detection probability ),,|,,,,( 0detect RfhJATPRFFOVP . Setting a 

value for CFAR depends on operational considerations. For example, if the scenario is of a car-
stop checkpoint where a car is inspected with a sensor and when an initial detection is declared, 
the car is diverted for a further (more thorough) check. If the team at secondary checkpoint can 
handle a load capacity of checking one car out of 20  (5%), then the CFAR for the initial 
checkpoint (14-19) can be set to CFAR=0.05. The larger the CFAR is, the higher the detection 
probability is, and thus the probability of missing the presence of a contaminated car is reduced 
(which is the primary goal of the checkpoint).   

There are three key parameters that most effect the overall detection:  the number of 
measurements (N), the prior probability P(H1) of viewing a contaminated area, and the pseudo 
SNR parameter   (given in (12))  which is related to the strength of the H1 scores (i.e., 

 increases with increased target signal and is inversely proportional to the variance of the rough 
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surface 0 ). The lower P(H1) is, the larger N should be in order to enhance the likelihood of 

intercepting the contamination present in A with some of the laser shots. The larger is, the 

higher the detection probability is. We explore the interaction between the different variables in 
section 8.  

 
 8. Results 
 
We explore the parameter space (h, f, R0, N, J, P(H1)) with regard to probability of detection, 
presented in section 8.1, and also present a case studies giving the system detection performance 
for detecting specific contaminated cars (section 8.2).  In all our simulations a zero-mean 
additive Gaussian noise with standard deviation of 0.005 was added to the simulated 
measurements in (2). The objective system false alarm was set in all simulations to be 

CFAR=0.05.  The geometry for the simulations assumes backscattering angle i  in (1), and 

Ksystem=1 in (2). We note that most of the fluctuations in the simulated measurements are due to 
the stochastic nature of the RVs. Additive noise is usually easy to handled in detection 
algorithms because it is white (spectrally isotopic). The challange in detection algorithm is how 
to handle “structured” noise in the form of clutter, which is given in our work by the pdf of R0. 
Our contamination is a potassium chlorate material (specific density of 2.34 g/cm3). In all 
simulations ng  in (1) is set to zero for simplicity, the contamination is potassium chlorate, and 

the extinction coefficient   was taken from the KBr pellet measurements in reference 1. Note 
that the RV f (fill factor) is conditioned to the H1 event, i.e., it is the fraction of contaminated 
area within the illuminated spot (we assume that the FOV matches the laser’s beam divergence) 
when contamination is actually present.  The prior probability for H1 event is (roughly) the 
portion of the measured area that is contaminated, where the measured area includes subareas 
that are not contaminated. The parameter space is > 3 and thus it is not possible to 
simultaneously display the intricate interaction between the variables (for this we need a “7D 
plot”—6  independent parameters plus a probability of detection as a dependent variable). We 
remind the reader that with the external constraints in (5), one can relate physical parameters of 
the sensor (FOV, PRF, and distance to the surface), and acquisition parameters (total area, A, to 
sample and time, T, to acquire the measurements) with the detection parameters (N and J). For 
example, given N=100 and J=4, e.g., for two doors (j=1, 2), hood and trunk (j=3, 4); or j=1, 2 for 
painted/unpainted vertical surfaces, and j=3, 4 for painted/unpainted horizontal) and a sensor 
with 1mr linear field of view (solid angle FOV is 10-6 sr) at a distance of 20 m (i.e., 2 cm 
illuminated spot) and PRF of 10Hz, implies that total time for measuring the contaminated car is 

PRFNJsT /40  , and the total car’s area that is measured 

is JFOVrNcmA  221600  (i.e., a small 10cm by 10cm area for each of the 4 J’s).  
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8.1 Exploring the parameter space  
We explore the parameter space (R0, h, f) as is used in our 2nd order statistics (mean and 

variance in equations 9-12) and its effect on detection. We compute (13-19) the double 

thresholds, the overall global (system) detection )c(detection arP . We present a few 3D plots to show 

the complex interaction between the key parameters that govern the detection scenario: 
)),(,,( 1tem)detect(sys NHPP  . We constrain the desired overall (global) system CFAR to 

be 05.0)c(alarm-false arP . To explore the parameter space we selected different combinations of 

mean values for f and h, E(f) and E(h), respectively, and arbitrarily set the variances as follows: 
the standard deviation of h is 10% of its mean value; the standard deviation (std) of  f is the 
minimum value between E(f)/5 and [1-E(f)]/5 (where the value 5 is 5-standard deviations) to 
ensure that for normally distributed f, the constraint 10  f  is met. Our choice for standard 

deviation of f enforces a low standard deviation near the endpoints (f=0 and f=1) and a high 
standard deviation in the middle (f=0.5).  Our choice for std can be interpreted as follows: a low 
std near f=0 may occur for a sensor with large FOV viewing sparse contamination with a small 
cross-sectional area; a small std at f=1 may occur for a sensor with a small FOV and 
contamination with large cross-sectional area; and for f~0.5 the sensor FOV matches the size of 
the contamination footprint and how the FOV and contamination overlap (intersect) can produce 
both large and small values of f, hence a large std. The mean of R0 is taken from for lab 

measurements1 of rough aluminum where 28
0 1096.6 cma  , cmb 4

0 1098.6   , 25.00 c  

and the corresponding standard deviations were arbitrarily set at )101,101,101( 3527   cmcm  

as we do not have enough lab data to estimate standard deviations. Upon availability of data we 

can update the standard deviation values. The Fresnel coefficient 0  is for pure aluminum 

(whose reflectivity across the LWIR is ~0.99).  Due to the large aluminum reference the effect of 
surface reflection from the target was small and allowed us to set  ttt cba  in (1). The 19 

(p) wavenumbers in our simulations correspond to available CO2 laser wavelengths (9-11μm), 
given in cm-1 as 934.93,  942.42,  949.49,  956.21,  969.18,  974.66,  975.9,  978.47,  982.13,  
986.58,  1031.5,  1039.4,  1046.9,  1052.2,  1057.3,  1070.4,  1074.7,  1078.6 1083.4.  
 In Fig. 1a we show the interaction between )),(,,( 1tem)detect(sys NHPP   for a given 

CFAR=0.05 and for one region (J=1) of aluminum rough surface. For each combination of E(f) 
and E(h) the pseudo-SNR parameter   was computed, and a series of system detection 

probabilities were computed for different values of N and P(H1).  The figure shows that the 
overall system detection probability increases as P(H1), N, and   increase. In Fig. 1b we show 

the relationship between   and the means of the fill factor f and the contamination thickness h 

(may be converted to surface contamination density via )(234)/( 2 hEcmgG   where h is in 

microns). The figure shows the monotonic increase of    with h and f.   

We can also use the stochastic model to set sensor requirements for a contamination 
scenario. In Figs. 2a and 2b we show an expanded portion of Fig 1.  Note that Fig. 2a, for 
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example, can be used to determine what values for parameters N, P(H1), and γ are required to 
achieve a particular system-level probability of detection.  For example, assuming a desired 
Pdetect(system) ≥ 0.8, any point lying on or above the red contour surface will satisfy the desired 
condition (given the pdf choices used to create the figure).  The mapping is not unique (many 
sets of values for N, P(H1) and γ will satisfy the condition) and therefore it is difficult to invert 
Eqs. (13-19) to solve for N, P(H1) and γ given Pdetect(system).  However, desired information about 
N, P(H1), and γ given Pdetect(system) can be read off of plots such as Fig. 2a.  The parameters N, 
P(H1), and γ all relate to sensor requirements (external constraints in Eq. (5))—N relates to the 
time to detect and FOV of the sensor,  P(H1) depends on the FOV and the nature of the 
contamination, and γ depends both on the nature of the contamination (thickness h, fill factor f, 
surface density G)  and the sensitivity of the sensor (laser power, noise level, etc.). 

 
Fig.  1a System detection probability for one area of regard (J=1) of rough aluminum as a function of number of 

measurements (N), prior probability P(H1), and the pseudo SNR parameter  .   Contour surfaces show where 

Pdetect(system) = constant.  Three contour surfaces are shown at Pdetect(system) values of 0.2 (blue), 0.5 (green/yellow), and 
0.8 (red). 
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Fig. 1b Pseudo-SNR parameter   as a function of the mean fill factor, E(f), and the mean contamination thickness, 

E(h), where the surface contamination density is hcmgG  234)/( 2  where h is in microns). 

 



 

21 

 

 
Fig. 2a An expanded view of Fig. 1a to show the behavior for  <4. 
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Fig. 2b An expanded view of Fig. 1b to show details of pseudo SNR parameter   as a function of fill factor and 

contamination thickness. Combinations of E(h) and E(f) resulting in  >4 are shown as dark red pixels,  <4 are 

mapped to other colors as shown. 

 
In Fig. 3 we show the improved detection when 3 rough aluminum AOR (J=3) are used 

for detection (19) instead of only one AOR.  The improved detection can be observed by 
comparing Fig 3 with Fig. 2a where it is evident that the contours for high detection probability 
(brown and red colors) in Fig. 3 spread to the direction of lower  values of N, P(H1),  and   .   
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Fig. 3 Same as Fig. 1a but J=3 areas of regard are used for detection in (19). 

 
We explore the effect of a different rough surface material, painted aluminum, which 

may be more realistic for a car. We set 27
0 1047.3 cma  , cmb 4

0 1078.4   , 07.10 c  

(derived from lab measurements1) and the corresponding standard deviations are the same as 

those previously selected for rough aluminum )101,101,101( 3527   cmcm . Due to the low 

reflectivity of the painted aluminum ( 07.0~0  across the 19 laser wavelengths), the potassium 

chlorate rough-surface parameters (see equation 1) were used and set to 271020.3 cmat
 , 

cmbt
31007.2   , 58.2tc  (derived from a lab measurements1).  Corresponding standard 

deviations were set arbitrarily to )105,105,105( 3529   cmcm , as we do not have enough lab 

data to estimate standard deviations.  
We observed that the painted aluminum surface produced less signal (M in equation 1) 

and that the pseudo SNR parameter  was about factor 3 reduced from the rough aluminum 

surface (in Fig. 1b). Thus, the system detection probability will be reduced given the same E(h) 
and E(f) values. One may use Figs 1a (or 2a) to obtain a value of interest for   that produce the 

desired system detection probability, and find in Fig. 1b (or 2b) the values for E(h) and E(f) that 
corresponds to a value of 3 . These values of E(h) and E(f) are the one that corresponds to 

contaminated painted aluminum surface.  
 

8.2. A case study: the detection of a contaminated car  
 We explore the detection scenario with two case studies (simulation 1 in Figs. 4-6, and 
simulation 2 in Figs 6-7) for a contaminated car at a distance of 20m to be detected in 10s where 
two areas of regard (J=2) are sampled: the first AOR is rough aluminum, and the 2nd AOR is a 
painted rough aluminum (the same parameters for a0, b0, c0 presented in Section 8.1 were used 
here). The pdf  for h is a ramp (consistent with our expectation that a high target transmission is 

more likely than a low transmission) and thus, 
2

minmax

max

)(
2)(

hh

hh
hPh 


  for mh 75.0max   and 
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mh 01.0min   (Section 3.2). For this distribution mhE 25.0)(  .  For the pdf for f we present 

two case studies. First case is computed (Appendix A) from cross-sectional area (footprint or 

spill distribution), a , measured by MIT-LL (large majority of the footprints are small for which 

the key parameter P(H1) is large—about 0.4—see  pdf of fill factor and P(H1) in Fig A1). For 
case 2 we simulate the contamination footprint (Fig. A2) such that large footprint are more likely 

in a for which the key parameter P(H1) is small (0.07). In our scenario the laser linear FOV 

(and beam divergence) is 1mr (i.e., a 2cm spot size on the car) and the laser is configured in the 
traditional backscatter lidar configuration.  The system constant 

2
detector )(

)(
rr

t
LK

source

atm
isourcesystem 

   is set to be one in (2). The laser system operates at 10 Hz and 

acquires N=50 spectral measurements for each of the AORs (each of the N measurements 
contains 19 wavelengths in the LWIR range). The total acquisition time for J=2 is 

PRFNJsT /10   as required.   
In Fig. 4 we show results for case 1 for the effect of the second binary threshold 

j2 (given in equation 18) for the two local detectors (j=1 and j=2) on the local detection 

probability jP ,detect  and also on the system-level detection probability Pdetect(system) (see (19)).  The 

pseudo-SNR parameter γ equals 2.7 and 1.2 for j=1 and j=2, respectively, meaning that it is an 
easier detection problem to detect potassium chlorate signals on rough aluminum rather than 
painted aluminum.  As a result, the j=1 region shows better performance than j=2 (maximum 
value of 926.02,detect jP  whereas 1,detect jP exceeds this value for 821  ).  The system-level 

performance shows a larger probability of detection at the same value of j2 , or alternatively for 

the same probability of detection a larger threshold may be used.  We desire the largest possible 
threshold that still produces high probability of detection because high threshold improves the 
rejection of exceptionally large clutter (unexpected clutter that is not predicted by the model).  

In Fig. 5 we show the overall system detection probability tem)detect(sysP in (19) for case 1 as 

a function of all possible combination of thresholds j2 (given in 18).  The asymmetry in Fig. 5 

is interesting.  It shows that it is more important to optimize 21 : given an optimal value of 21 , it 

is less important (Pdetect(system) is less sensitive) to the value of 22 .  This makes sense since j=1 is 

a better region (higher performance) than j=2.   
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Fig. 4  Detection probability of local detectors jP ,detect in (19) for simulation 1 (footprint contamination Fig. A1) as 

a function of the 2nd binary threshold j2 . j=1 is AOR for rough aluminum, and  j=2 is AOR for painted aluminum 

surface.  P(H1)=0.4. The system detection probability, under the condition that 2221   , is also shown in black.  

2,detect jP  reaches a maximum of 0.926 at 222  .  Red dot shows the largest 21  such that 1,detect jP  exceeds a 

detection probability of 0.999 (occurs at 321  ).  Black dot shows the location where the system detection 

probability exceeds 0.999 (occurs at 52221  ).  Combining the two regions allows larger j2  thresholds to 

achieve the same detection probability and will result in more robust performance. 

 
 

 
Fig. 5 Overall system detection probability tem)detect(sysP in (19) for case 1, as a function of all possible 

combinations of 2nd thresholds j2 in (18).  P(H1)=0.4. 21  is 2nd threshold for j=1 (rough aluminum) and 22 is 2nd 

threshold for j=2 (painted aluminum). Black line occurring along the diagonal (where 2221   ) is the same black 

line appearing in Fig. 6; red and green lines appearing at N22  and N21 , respectively, are the same as in 

Fig. 4 (at Nj 2  the detector will never alarm and thus information from the jth region is discarded).  Maximum 

of tem)detect(sysP  occurs at 121  , 222  at a value of 0.9999996.     

 



 

25 

In Figs 6-7 we present the detection for case 2 (Fig. A2, with low P(H1)=0.07).  The 
combination of thresholds (j=1 and j=2) is advantageous to produce a higher overall system 
detection probability compared to the individual regions.  Fig. 6 in comparison to Fig. 4 shows 
the importance of the P(H1) parameter, where in spite of  the large pseudo-SNR  parameter γ 
(equals 16.9 and 7.1 for j=1 and j=2, respectively) that is much larger than the γ’s in Fig. 4, the 
overall system performance is worse than in Fig. 4 because P(H1) was reduced from 0.4 in Fig. 4 
to 0.07 in Fig. 6. The reduction in P(H1) means that the contamination is more sparse and target 
material is less frequently encountered by the sensor. The parameter P(H1) plays a crucial role in 
system performance (i.e., detection probability) as is demonstrated in Figs. 1-3. The large effect 
of P(H1) can also be seen in the performance of the two individual local detectors (j=1 for rough 
aluminum and j=2 for painted aluminum). In Fig. 4 a difference of 1.5 units in γ (2.7 − 1.2) 
between the two local detectors (red and green lines), results in large difference in detection 
probability (for the same threshold), while a difference of 9.8 units in γ (16.9 − 7.1) in Fig. 6 
makes very little difference in detection probability (the red and green lines are almost identical).  

Note that in the second simulation the best performance is clearly given by 12221  , 

i.e., the presence of a single non-zero value sji for Ni ,...,2,1  and a given j is enough to declare 

that the jth region is contaminated.  This does not mean that the remaining N − 1 zero-valued 
scores were “wasted” and that one could have set N = 1 and achieved the same performance.  
Because of the low probability of P(H1), a large N is required in order to increase the likelihood 
that the contamination is viewed in at least one of the N measurements.  
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Fig. 6 Same as Fig 4 but for contamination footprint (case 2) of Fig. A2.  P(H1)=0.07. Individual detection 

probability jP ,detect  attain a maximum of 0.934 and 0.919 for j=1 and j=2 respectively at 12 j .  Maximum 

detection probability for the system is 0.995 at 12 j . 
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Fig. 7 Same as Fig. 5 but for contamination footprint (case 2) of Fig. A2. P(H1)=0.07. 
 
9. Summary 
 
We developed a framework to evaluate the performance of a system whose objective is the 
detection of a contaminated car. Our approach is a “system approach” where external constraints 
(5), such as time to detect, area to scan, distance to the car are input parameters. Our algorithm 
employs a data fusion approach known as a distributed binary integration system (also known as 
a double-threshold detector, or m-out-of-n detector) in order to combine the individual detection 
results from multiple scans over several potentially contaminated areas. Our system consists of J 
areas of regard (e.g., hood, doors, etc) that are scanned with an active laser source (p 
wavelengths). Our detection algorithm utilizes the matched filter concept (which is optimal for 
additive Gaussian noise; in our detection scenario the clutter noise is not additive) together with 
Neyman-Pearson methodology of CFAR operation mode. We view our system as a “distributed 
binary integration system”, a methodology that is used in radar literature. Each of the J areas is 
viewed as a “local detector” and the system fuse the local detectors output (fusing rules can be 
logical AND, OR, or majority rule; we chose the OR logic in this report in order not to miss a 
detection) into a “global” detector (i.e., “the system”) that produces a declaration “target is 
detected”. We operate each of the detectors with the “binary integration, double threshold” radar 
methodology, a methodology that is robust to strong clutter fluctuations. From each of J areas we 
obtain N spectral measurements (each measurement contains p spectral bands). For a given 
constraint of false alarm (CFAR mode of operation) we produce the desired operational 
thresholds for each of the J local detectors. Our solution is not optimal with respect to overall 
detection (or missed detection) but it is much simpler for implementation than the optimal 
solution given by Han et al.10 where he minimizes the probability of a missed detection for a 
given CFAR. In our detection scenario the car is viewed as a rough surface that is partly 
contaminated with a given amount of contamination. In our detection model all the scenario 
parameters (contamination thickness h, fill factor f, and the car’s reflectivity R0) are random 
variables with probability functions. 
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 We think that building a detection system will require the “snapshot advantage 
architecture” that enables the acquisition on pNJ   measurements within a time T (traditional 

pushbroom/whiskbroom types of acquisitions are much less efficient and produce lower signal-
to-noise ratios). The framework that we developed in this report will be the basis for developing 
a system approach for a Raman detection system and for a passive infrared system where the 
incidence on the contaminated car is the ambient thermal radiation. A system design involves a 
tradeoff between many parameters (data acquisition parameters and scenario parameters). The 
stochastic model for contaminated rough surface with external system parameters is a useful 
model for designing and prediction the performance of a detection system. Given a requirement 
of CFAR operation we are able with our model to compute detection thresholds ),( 21 jj   as a 

function of the contamination amount (h, G). In addition, with the model we can study the effect 
of stochastic fluctuations in various parameters (h, f, R0) on the detection performance, as well as 
studying the interaction between the external system acquisition parameters (T, PRF, FOV) and 
the detection performance.  

With our stochastic model we can explore the probability of detection for a given sensor 
(e.g., specific FOV, PRF) under variable contamination scenario (e.g., h, f), 

)|ioncontaminat(detect sensorP , and the probability of detection for a given contamination scenario 

for a sensor with variable properties (e.g., FOV, PRF, T). We can also use the stochastic model 
to set sensor requirements for a contamination scenario. For example, Fig. 2a can be used to 
determine what values for parameters N, P(H1), and γ are required to achieve a particular system-
level probability of detection, say, Pdetect(system) ≥ 0.8.  The parameters N, P(H1), and γ all relate to 
sensor requirements (external constraints in Eq. (5)) — N relates to the time to detect and FOV of 
the sensor, P(H1) depends on the FOV and the nature of the contamination, and γ depends both 
on the nature of the contamination (thickness h, fill factor f, surface density G ) and the 
sensitivity of the sensor (laser power, noise level, etc.). 

In the report we showed an example of exploring the parameter space (h, f, R0, N, J, 
P(H1) with regard to probability of detection, and we also explored the pdf space for the different 
variables and recommended what pdfs to use for each variable for physical simulations.  The 
most important parameters that affect the overall detection probability are the number of 
measurements (N), the prior probability of P(H1) of the contaminated areas, and the pseudo-SNR 
parameter   which is related to the strength of the H1 scores. The lower P(H1) is, the larger N 

should be in order to enhance the likelihood of intercepting the contamination present in A with 
some of the laser shots. The larger is, the higher the detection probability is. With our 

probability model we can explore the parameter space and study the tradeoffs between 
parameters that affect the overall system detection. We presented 3D plots (section 8) that 
demonstrate the interaction between parameters and an example for the detection of a 
contaminated car with a CO2 tunable laser (19 wavelengths) system.  In our examples a clutter 
distribution for R0 was assumed.  Our choice may not accurately represent the variability of the 
clutter observed in practice. Thus, a key recommendation is to better characterize both the clutter 
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and target variability (for example, through empirical measurements) so that our performance 
estimates may be updated.  

This report is the foundation (framework) on which we will develop a stochastic 
detection model for passive infrared remote sensing system and for active Raman detection 
system. In the next report we plan to do the following: 

 For Raman detection ),( iR  in (1) will be modified to comply with the physics 

of Raman scattering. 

 For passive remote sensing (2) will be replaced by Eq. (11) of [1].  

 We will complete our theory for the probability of a fill factor based on the 
random distribution of centers in a hyper volume, and the geometry of 
intersection between the FOV shape (rectangular, circle, and ellipse for tilted 
surfaces) and the contamination footprint-shape.   

 We will explore the effect on overall system performance (19) by using a target 

direction    instead of 01    in (11).  

 We will optimize our solution for maximizing system performance by allowing 
each of the local detectors in (15) to have separate probability of false alarm.  

 We will explore the quality of using 2nd order statistics (mean and variance) in 
(12) with histogram computed from sampling the RVs. 

 We will explore the probability space of the RVs (i.e., the parameters that control 
the shape of the pdfs in section 3) and its effect on system detection probability.  

 
Appendix A. Fill factor probability 
 
We estimate the fill factor of the contaminated by a brute force approach where we simulate the 

random contamination on the surface as produced by a given size distribution )(aa of the 

contamination events. Within each spot the material thickness (h in equation 1) is not necessarily 
uniform, but the mean surface density of the material is given by G=2.34×E(h), where 2.34 g/cm3 
is the intrinsic density for potassium chlorate E(h) is the average height of the contamination 
(i.e., G is the average contamination surface computed over all of the “spots” in Figs. A1 and 
A2). The sparsity of the contamination “spots” in Figs. A1 and A2 is given by the parameter 
P(H1) in (18) is a key parameter that affect system performance (see section 8). Accurate 
computation of P(H1) is affected by the size of the sensor’s FOV, because sparsity is “measured” 
with regard to FOV (details, below). Figs. A1and A2 are used in section 8.2 as case studies for 
contaminated areas of a car. The general idea behind the simulations is that we assume that the 
locations of the target particles (their centers) are uniformly distributed on the surface7. Then, we 
randomly placed a square field of view with area AFOV (m2) on the simulated contaminated 
surface and count the area At (m

2) for the target (contamination) within the field of view. The 
ratio At /AFOV is the fill factor.  
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Details of the simulation are as follows. Let a denote the cross-sectional area of a single 
contamination event (i.e., a fingerprint, a single particle, a thin film, or a spill of many particles).  
We make the following assumptions: a surface of with total area, A, is potentially contaminated 
with multiple contamination events. The contaminated area of all target events is At, meaning 
that the prior probability of contamination is At/A; the likelihood that any infinitesimal portion of 
the total area is covered by contamination is uniform; the likelihood that a single contamination 

event is of a certain cross-sectional area is given by pdf )(aPa  (computed from )(aa  in section 

3.3), contamination events are assumed to be circular. Areas from multiple contamination events 
may not overlap (reasonable for sparse contamination).  

Under these conditions, a simulated surface is populated in a multi-step process.  The 
simulated surface is a digital image where each pixel in the image is of area Apixel .The digital 
image is initialized with each pixel taking a value of zero.  At the end of the generating process, 
the digital image will contain a value of the area within each pixel that is covered by 
contamination. The simulation steps are as follows: 

1. Determine average number of contamination events needed to achieve At:  Nt = E(a)/At 
where E(a) denotes the average contamination event area (expected value). 

2. Sample Nt contamination target events from pdf )(aPa  to obtain ai, i=1,2,…,Nt.  For 

convenience, sort the contamination events in order of descending area.  
3. Place the ith contamination event by choosing a pixel at random which will serve as the 

center of the contamination event, excluding pixels that would cause overlap between 
contamination events.  For the first contamination event, no pixels are excluded.  Note 
that contamination events smaller than a single pixel may be placed into an already 
contaminated pixel if the area of contamination in that pixel is 1− ai/Apixel or less, though 
this will happen with a reduced probability. 

4. If ai > ¼ πApixel the contamination event must span multiple pixels (the fraction π/4 
accounts for the difference in linear dimension between a circular contamination and a 
square pixel), and the event is placed in the image using a Euclidean distance transform: 
all pixels within a distance of ri units will be assigned an area of Apixel, where ri is the 
corresponding radius in pixels of the contamination event if it were circular. Note that 
this step is an approximation, since edge pixels around the contamination would more 
accurately be represented with values less than Apixel.   

5. If ai ≤ ¼ πApixel the contamination event can be contained entirely within a single pixel, 
and a value of ai/Apixel is added to the current value of the pixel. This additive adjustment 
is the increase the contaminated area within the pixel due to the additional contamination.  
Note that this step ignores the fact that a contamination event may not necessarily occur 
in the exact center of a pixel and could still span over multiple pixels.  

6. Once all contamination events are placed in the image, the sensor FOV is translated 
across the image computing the total contaminated area within the FOV at each FOV 
location; the fill factor f as seen by a sensor is obtained by dividing by AFOV.   
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A histogram of f gives an estimate of )( fPf as seen by a sensor; i.e., it gives the probabilities 

for the sensor to observe a specific value of  f.  In addition the simulation can give P(H1) 
given by the ratio of number of FOVs that are not empty (i.e., FOVs that contain any target 
material) to the number of FOVs (A/AFOV) that are contained in the area A. For a “small” 
FOV (e.g., an FOV that is smaller than the size of the contamination “spots” in Figs A1 and 
A2), P(H1) is simply given by the fraction of the area occupied by the target material, At /A. 
Hence, P(H1) can be viewed as a global (macro) property of the contaminated surface, and G 
is the local (micro) property of the contamination surface density of the contamination events 
(“spots”).    
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 Fig. A1. Simulation 1 (case 1): (left) value of f for each pixel on the simulated surface. The sensor FOV (blue 
box, 1/10th the linear dimension of the image) moves over the contaminated surface.  (right) The fill factor as seen 
by the FOV for the contaminated surface. The likelihood for the sensor FOV to encounter contamination is 
P(H1)=0.4.  
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Fig. A2  Simulation 2 (case 2): same as Fig. A1 except that individual contamination events are larger in cross-
sectional area; it takes fewer events for the same total area of contamination.  The likelihood for the sensor FOV to 
encounter contamination is P(H1)=0.072. 
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Figure A3. Fill factor probability for simulations in Fig A1 and A2. 
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