
 

 
Dissipative Particle Dynamics at Isoenergetic Conditions 

Using Shardlow-Like Splitting Algorithms 

 
by John K. Brennan and Martin Lísal 

 
 

ARL-TR-6586 September 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Approved for public release; distribution is unlimited.  



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5069 
 

ARL-TR-6586 September 2013 
 
 
 
 

Dissipative Particle Dynamics at Isoenergetic Conditions 
Using Shardlow-Like Splitting Algorithms 

 
John K. Brennan 

Weapons and Materials Research Directorate, ARL 
 

Martin Lísal 
Institute of Chemical Process Fundamentals of the ASCR 

and 
J. E. Purkinje University 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.  



 ii

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

September 2013 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

October 2011–January 2013 
4. TITLE AND SUBTITLE 

Dissipative Particle Dynamics at Isoenergetic Conditions Using Shardlow-Like 
Splitting Algorithms 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

John K. Brennan and Martin Lísal* 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN: RDRL-WML-B 
Aberdeen Proving Ground, MD 21005-5069 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TR-6586 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR’S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
*E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Prague, Czech 
*Republic and Department of Physics, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czech Republic 

14. ABSTRACT 

A numerical integration scheme based upon the Shardlow-splitting algorithm (SSA) is presented for the Dissipative Particle 
Dynamics method at constant energy (DPD-E). The application of the SSA is particularly critical for the DPD-E variant 
because it allows more temporally practical simulations to be carried out. The DPD-E variant using the SSA is verified using 
both a standard DPD fluid model and a coarse-grain solid model. For both models, the DPD-E variant is further verified by 
instantaneously heating a slab of particles in the simulation cell and subsequently monitoring the evolution of the corresponding 
thermodynamic variables as the system approaches an equilibrated state while maintaining constant-energy conditions. The 
Fokker-Planck equation and derivation of the fluctuation-dissipation theorem are included. 

15. SUBJECT TERMS 

dissipative particle dynamics, mesoscale, simulation, Shardlow-splitting algorithm, constant-energy 

16. SECURITY CLASSIFICATION OF:  
17. LIMITATION 
OF ABSTRACT 

 
UU 

18. NUMBER 
OF PAGES 

 
38 

19a. NAME OF RESPONSIBLE PERSON 

John K. Brennan 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

410-306-0678 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 iii

Contents 

List of Figures iv 

List of Tables iv 

Acknowledgments v 

1.  Introduction 1 

2.  Formulations of DPD at Fixed Total Energy Using Shardlow-Like Splitting  
Numerical Discretization 2 

2.1  General Formulation of DPD ..........................................................................................2 

2.2  Constant-Energy DPD .....................................................................................................3 

2.2.1  Numerical Discretization .....................................................................................4 

3.  Computational Details 9 

4.  Results 10 

4.1  Test Case 1: Equivalence of DPD Variants...................................................................10 

4.1.1  DPD Fluid ..........................................................................................................10 

4.1.2  Coarse-Grain Solid ............................................................................................13 

4.2  Test Case 2: Heating Response in DPD-E Simulations ................................................14 

4.2.1  DPD Fluid ..........................................................................................................14 

4.2.2  Coarse-Grain Solid ............................................................................................15 

4.3  Conservation of Total System Energy ...........................................................................18 

5.  Conclusion 19 

6.  References 21 

Appendix A. Fokker-Planck Equation and Fluctuation-Dissipation Theorem 23 

Appendix B. Simulation Model Details 27 

List of Symbols, Abbreviations, and Acronyms 29 

Distribution List 30 
 



 iv

List of Figures 

Figure 1. Time evolution of the kinetic temperature Tkin, internal temperature Tint, and virial 
pressure Pvir for a DPD-E simulation of the pure DPD fluid at 3 , where a slab of 
particles in the simulation box was instantaneously heated by Theat = 10 at t = 0. Inset of 
figure displays early time behavior of Tkin, Tint , and Pvir. ........................................................15 

Figure 2. (a) Time evolution of the kinetic temperature Tkin, internal temperature Tint, and 
virial pressure Pvir, along with (b) a few representative simulation snapshots for a DPD-E 
simulation of the coarse-grain solid at 8260  kg/m3, where a slab of particles in the 
simulation box was instantaneously heated by  Theat = 3000 K at t = 0. ..................................16 

Figure 3. The relative drift in E  as a function of the integration time step t  for DPD-E 
simulations with the SSA-VV. .................................................................................................19 

 

 

List of Tables 

Table 1. The configurational energy per particle u , the kinetic temperature kinT , the 
internal temperature intT , the virial pressure virP , and the self-diffusion coefficient D  
determined from test case 1 simulations of the pure DPD fluid. .  denotes an ensemble 
average, where numbers in parentheses are uncertainties calculated from block averages. ....12 

Table 2. The configurational energy per particle u , the kinetic temperature kinT , the 
internal temperature intT , the virial pressure virP , and the self-diffusion coefficient D  
determined from test case 1 simulations of the equimolar binary DPD fluid. .  denotes 
an ensemble average, where numbers in parentheses are uncertainties calculated from 
block averages. .........................................................................................................................12 

Table 3. The molar configurational energy u , the kinetic temperature kinT , the internal 
temperature intT , and the virial pressure virP  determined from test case 1 simulations 
of the coarse-grain solid model of nickel. .  denotes an ensemble average, where 
numbers in parentheses are uncertainties calculated from block averages. .............................13 

 

 



 v

Acknowledgments 

Martin Lísal acknowledges that this research was sponsored by the U.S. Army Research 
Laboratory (ARL) and was accomplished under cooperative agreement number  
W911NF-10-2-0039. The views and conclusions contained in this document are those of the 
authors and should not be interpreted as representing the official policies, either expressed or 
implied, of ARL or the U.S. government. The U.S. government is authorized to reproduce and 
distribute reprints for government purposes notwithstanding any copyright notation herein. 
John K. Brennan acknowledges support in part by the Office of Naval Research and the 
Department of Defense High Performance Computing Modernization Program Software 
Application Institute for Multiscale Reactive Modeling of Insensitive Munitions. 



 vi

INTENTIONALLY LEFT BLANK. 



 1

1. Introduction 

An important extension of the original constant-temperature dissipative particle dynamics (DPD) 
method (1, 2) that imposes constant energy (DPD-E) conditions was developed by Bonet Avalos 
and Mackie (3) and later independently by Español (4). The DPD-E method includes an 
additional equation-of-motion that provides a dynamic depiction of the internal state of a coarse-
grain particle. Consequently, particles are allowed to exchange both momentum and heat, thus 
satisfying total energy and momentum conservation. 

Numerical integration of the equations of motion (EOMs) is a key consideration when applying 
the DPD method because the stochastic component requires special attention. Efficient and 
accurate integration schemes are required to maintain reasonable time step sizes, thus allowing 
for the simulation of mesoscale events. Moreover, the advent of conservative forces extending 
beyond purely repulsive models that contain attractive character further supports the need for 
effective integration schemes. However, the integration is a nontrivial task due to the pairwise 
coupling of particles through the random and dissipative forces (5). For example, the most 
widely used modified velocity-Verlet algorithm (6) works reasonably well for the constant-
temperature DPD method, but for the DPD-E method it requires time-step values that are several 
orders of magnitude smaller than for constant-temperature DPD (7, 8).  

Furthermore, self-consistent solutions are often necessary because the dissipative forces and the 
relative velocities of the particles are interdependent, where the considerable computational cost 
associated with this task has motivated the development of various integration schemes. Recent 
independent studies by Nikunen et al. (5) and Chaudhri and Lukes (9) assessed the quality and 
performance of several applicable integration schemes for constant-temperature DPD, where the 
Shardlow-splitting algorithm (SSA) (10) was identified as the best-performing approach. In 
recent work by our group (11, 12), a comprehensive description of numerical integration 
schemes based upon the SSA was presented for both the isothermal and isothermal, isobaric 
DPD methods. The original SSA formulated for systems of equal-mass particles was extended to 
systems of unequal-mass particles. Both a velocity-Verlet scheme and an implicit scheme were 
formulated for the integration of the fluctuation-dissipation contribution, where the velocity-
Verlet scheme consistently performed better. 

The SSA decomposes the EOM into differential equations that correspond to the deterministic 
dynamics and elementary stochastic differential equations that correspond to the stochastic 
dynamics. In the original SSA formulation, both types of differential equations are integrated via 
the velocity-Verlet algorithm (10), where the stochastic dynamics are additionally solved in an 
implicit manner that conserves linear momentum. Previously, the SSA had only been applied to 
the isothermal (10, 11) and isothermal, isobaric (12) DPD methods. 
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In this work, we formulate the SSA for the DPD-E method, where we verify the DPD-E variant 
using both the standard DPD fluid (pure and binary mixtures) (6) and a coarse-grain solid model 
(13). For both models, we further verify the DPD-E variant by instantaneously heating a slab of 
particles in the simulation cell. We monitor the evolution of the temperature and pressure as the 
system approaches an equilibrated state while maintaining constant energy. For completeness, 
the derivations of the Fokker-Planck equation (FPE) and the fluctuation-dissipation theorem 
(FDT) are included in appendix A. 

 

2. Formulations of DPD at Fixed Total Energy Using Shardlow-Like 
Splitting Numerical Discretization 

2.1 General Formulation of DPD 

DPD particles are defined by a mass im , position ir , and momentum ip . The particles interact 

with each other via a pairwise force ijF  that is written as the sum of a conservative force C
ijF , 

dissipative force D
ijF , and random force R

ijF : 

 R
ij

D
ij

C
ijij FFFF  . (1) 

C
ijF  is given as the negative derivative of a coarse-grain potential, CG

iju , expressed as 

 
ij

ij

ij

CG
ijC

ij rr

u r
F

d

d
 , (2) 

where jiij rrr   is the separation vector between particle i  and particle j , and ijijr r . The 

remaining two forces, D
ijF  and R

ijF , can be interpreted as a means to compensate for the degrees 

of freedom neglected by coarse graining. The conservative force is not specified by the DPD 
formulation and can be chosen to include any forces that are appropriate for a given application, 
including multibody interactions (e.g., [13–15]). D

ijF  and R
ijF  are defined as 

  
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ij rr
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
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
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   (3) 
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  
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ij

R
ij r
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F  , (4) 
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where between  particle i  and j , ij  and ij  are the friction coefficient and noise amplitude , 

respectively, 
j

j

i

i
ij mm

pp
v   and ijW  are independent Wiener processes such that jiij WW  . The 

weight functions  rD  and  rR  vanish for crr  , where cr  is the cutoff radius. 

Note that C
ijF is completely independent of D

ijF  and R
ijF , while D

ijF  and R
ijF  are not independent 

but rather are coupled through a fluctuation-dissipation relation. This coupling arises from the 
requirement that in the thermodynamic limit, the system samples the corresponding probability 
distribution. The necessary conditions can be derived using an FPE; these conditions are 
presented in appendix A for the DPD-E variant. 

2.2 Constant-Energy DPD 

The constant-energy DPD approach was developed by Bonet Avalos and Mackie (3), and shortly 
thereafter also by Español (4). To conserve energy in a DPD simulation, an additional variable is 
introduced that characterizes the internal state of the particles. An internal energy iu  (restricted 

to 0iu  always) is associated with each DPD particle, which accounts for the energy absorbed 

or released by the atomic internal degrees of freedom that have been coarse-grained into the 
DPD particle. The total energy of the system is conserved since the kinetic energy lost/gained by 
the dissipative and random interactions is absorbed/released by this particle internal energy. 
Taken along with iu  is an associated mesoscopic entropy  ii uss  , which is a monotonously 

increasing function of iu , so that the internal temperature i  is defined as 0
1






i

i

i u

s


 (16). A 

mesoparticle equation of state relating i  and iu  is therefore required. It is convenient to write 

the variation of iud  as the sum of two contributions that correspond to the mechanical work done 

on the system mech
iud  and the heat conduction between particles cond

iud , i.e., as 
cond
i

mech
ii uuu ddd  . The dynamics of the system is then governed by the following equations-

of-motion (EOMs): 

 

q
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jiij
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where  rDq  and  rRq  are weight functions vanishing for crr  , ij  and ij  are the 

mesoscopic thermal conductivity and the noise amplitude between particle i  and particle j , 

respectively, and qq

jiij
WW dd   are the increments of the Wiener processes associated with 

thermal conduction. Equation 5 is a generalization of the modified DPD-E approach (16) for 
particles with unequal masses (17). In the last expression of equation 5, the first term on the 
right-hand side, which specifies the dissipative heat conduction, can alternatively be expressed in 
terms of the difference of particle temperatures (18). 

Bonet Avalos and Mackie (3) demonstrated that thermodynamic consistency requires the 
following fluctuation-dissipation relations to be satisfied: 

 
    

    2
B

2

2

B
2

2

2

rr

k

rr

k

RqDq

ijij

RD

ijijij

















, (6) 

where the relevant temperature is 











ji
ij 

11

2

11 , and  rDq  and  rRq  can be chosen 

similar to  rD  and  rR , respectively (11). (Bonet Avalos and Mackie [3] did not prove that 

the DPD-E EOMs sample the microcanonical ensemble, rather they proved that the relations in 
equation 6 are required for the EOMs to sample the canonical ensemble, where these relations are 
independent of T .)  An outline of the derivation of these FDTs along with the FPE is given in 
appendix A. By design, these EOMs conserve total momentum P  and the total energy 


i

iuKUE . Note that the random-force noise amplitude ij  depends on the particle 

internal temperatures and not on the system temperature T  as it does in the constant-temperature 

DPD method. (The system temperature in a DPD-E simulation is defined as  


i i

ii

mNk
T

pp

B3

1
.) 

2.2.1 Numerical Discretization 

As part of the founding work, Mackie et al. (16) developed an explicit integration algorithm for 
the DPD-E approach. However, because of round-off error resulting from the loss of mechanical 
energy during integration of the work done by the dissipative and random forces, the algorithm 
requires a rather small t  to satisfactorily conserve the total energy. This situation can be 
improved by extending the splitting strategy developed by Stoltz (17) to equation 5. Stoltz 
introduced a set of EOMs that closely resembles DPD-E except (1) they neglect thermal 
conduction, and (2) they do not project the dissipative and random forces along the separation 
vectors between the particles. 
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In the following paragraphs, we present an extension of Stoltz’s splitting algorithm to DPD-E. 
As done previously (11, 12), we start by decomposing the EOMs given in equation 5 into 
deterministic differential equations and elementary stochastic differential equations (SDEs) 
based upon the conservative and fluctuation-dissipation contributions, respectively. The 
conservative terms are identical to the constant-temperature DPD formulation, 

 t
mi

i
i dd

p
r   (7a) 

and 

  Ni ,...,1    

 



ij

C
iji tdd Fp , (7b) 

while the fluctuation-dissipation terms can be expressed as 

 
i-ji-j
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ij

ijR
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t
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dd

ddd
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, (8a) 

jimech
i
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j

j
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uu

mm
u jjii
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,
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22
d

2

1
d

pppp

     





  jieachfor , (8b) 

and 

jicond
i

jicond
j

q
ij

Rq
ij

Dq

ji
ij

jicond
i

uu

Wtu




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,
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11

d 



, (8c) 

where the superscript ji   indicates that the variation of momenta is considered for a pair of 

interacting particles i  and j  only, and jiij WW dd   are the increments of the Wiener processes. 

Equation 8b directly follows from the introduction of the mechanical contribution to the internal 
energies (3, 4), where Mackie et al. (16) showed that the total energy of a pair of interacting 
particles i  and j  is conserved when  

  R
ij

D
ij

j

i-j

i

i-jjimech
j

jimech
i

mmt

u

t

u ji FF
pp
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d
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. (9a) 
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Using equation 8a along with the definitions of D
ijF  and R

ijF  (equations 3 and 4, respectively), we 

can rewrite equation 9a as 
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Equation 9b together with 
t

u

t

u
jimech

j
jimech

i

d

d

d

d
,, 

  then leads to equation 8b. As done previously 

(11, 12), the stochastic flow map t  can be approximated from the first-order splitting algorithm 

given by 

 C
t

diss
NNt

diss
NNt

diss
jit

diss
t

diss
tt     ,1;,2;,;3,1;2,1; ...... , (10) 

where   denotes a composition of operators. For each diss
jit ,;  term at fixed internal temperatures 

( i  and j ), momenta are updated through the Shardlow-splitting algorithm-velocity Verlet 

(SSA-VV) approach based upon the constant-temperature DPD formulation previously given (11). 
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where the superscript ji   has been omitted for notational simplicity, and jiij    is a Gaussian 

random number with zero mean and unit variance that is chosen independently for each pair of 

interacting particles, and 
ji

ij mm

11
 . 

The conductive contribution to the internal energies is updated using a Euler algorithm. For the 
SSA-VV, this results in the following expressions: 
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(12a)

 

In equation 12a, q
ji

q
ij    is a Gaussian random number with zero mean and unit variance, 

chosen independently for each pair of interacting particles. Next, the mechanical contribution to 
the internal energies is updated using 
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In equations 12a and 12b, the superscript ji   is again omitted for notational simplicity. The 

total system energy is exactly conserved via equation 12b. Finally, C
t  can be approximated by 

the velocity-Verlet algorithm previously given (11). 
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The following outline summarizes a practical implementation of the SSA-VV for the DPD-E 
variant. 

1. Stochastic Integration for all ji   pairs of particles 
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3. Computational Details 

The SSA-VV for the DPD-E variant was tested using both the standard DPD fluid (6) and a 
coarse-grain solid model (13), where complete details of the conservative forces for these models 
are given in appendix B. Both a pure component case and an equimolar binary mixture were 
tested for the DPD fluid model. System sizes for the DPD fluids and coarse-grain solid were, 
respectively, 10125N  and 13500. For these simulations, the following reduced units were 
used: cr  and 0r  are the unit of length for the DPD fluid and coarse-grain solid, respectively; the 

mass of a DPD particle is the unit of mass; and the unit of energy is iniTkB , where iniT  is the 

initial system temperature. Using these reduced units, we set the maximum repulsion between 
particles i  and j  as 25ija  for the pure DPD fluid, and as 25ija  and 28 for the like and 

unlike ji   interactions, respectively, for the binary DPD fluid. Further, for all cases, we set the 
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noise amplitude 3ij . Next, we assume that the internal degrees of freedom are purely 

harmonic and express the coarse-grain particle equation of state as iiVi Cu , , with heat capacity 

60// BB,  kCkC ViV  and 48 for the pure DPD fluid and coarse-grain solid, respectively. Note 

that these values correspond to coarse-graining approximately 20 atoms and 16 atoms into a 
DPD particle, respectively (19). For the binary DPD fluid, we set 12 10mm   and 1,2, 10 VV CC  , 

where 60/ B1, kCV . Finally, following Ripoll et al. (20), the mesoscopic thermal conductivity 

ij  is chosen as 

  2
B

2

0 4 ji
V

ij k

C   , (14) 

where 0  is the parameter controlling the thermal conductivity of the DPD particles, which are 

chosen as 4
0 1080.2   for the pure DPD fluid and 4

0 1052.1   for the coarse-grain solid. 

For the binary fluid, we set 4
11,0 1080.2  , 6

22,0 1080.2  , and 22,011,012,0   . When 

1 ji  , these particular values of 0  and VC  give 1ij . 

 

4. Results 

This section is organized as follows. The validity of the SSA integration algorithm for the DPD-
E variant is verified by considering equilibrium and nonequilibrium scenarios, where results are 
given in subsections 4.1 and 4.2, respectively. Finally, we briefly review the energy drift 
associated with finite integration methods and propose a simple strategy to minimize these drifts 
in DPD-E simulations. 

4.1 Test Case 1: Equivalence of DPD Variants 

As a first test of the SSA-VV formulation for the DPD-E variant, we verify that it converges to 
the same equilibrium properties when at the same thermodynamic conditions as a constant-
temperature DPD simulation. 

4.1.1 DPD Fluid 

The benchmark systems for both the pure and binary DPD fluid cases are taken from a constant-
temperature DPD simulation performed at 3  and 1T , and run for 3000runt  and 

03.0t . The following quantities were evaluated and are listed in tables 1 (pure fluid) and 2 
(equimolar binary fluid): virial pressure virP , configurational energy per particle u , kinetic 

temperature kinT , and self-diffusion coefficients D  using the Einstein relation (21). 
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To validate the constant-energy SSA-VV formulation, DPD-E simulations were performed at 
conditions taken from the constant-temperature DPD simulation, i.e., 33753  LV  ( L is the 
box length). The final configuration of the constant-temperature DPD simulation is used to 
determine the imposed values of E , thus it is also used as the starting configuration for the 
DPD-E simulation. For both the pure and equimolar binary fluid cases, the values of iu  were 

initialized by setting iniiVi TCu , , where 1TTini , and were carried out for 3000runt  and 

01.0t . Analogous to microcanonical MD simulations, the use of a smaller t , with respect 
to constant-temperature DPD simulations, is required for proper conservation of E . Using 

01.0t , we observed a relative drift in E  no greater than 4101  . (For the DPD fluid 
simulations, reported relative drifts refer to an average of relative drifts over time periods of 
1000.) 

Comparing the DPD-E results with the constant-temperature DPD results in tables 1 and 2, we 
find excellent overall agreement. For the DPD-E simulations, the internal temperature, 

1

1
int

11





N

i iN
T


was also evaluated, where the values of kinT  and intT  agree within 

statistical uncertainties. (Since i  is defined as a ratio of is  and iu , intT  is estimated through a 

harmonic average rather than an arithmetic average [16, 17].) For the pure DPD fluid, these 
values are approximately 1.5% lower than 1iniT ; however, this discrepancy is due to the 

fundamental differences between the constant-temperature DPD and DPD-E methods. 
Effectively, the two systems are different since the imposed temperature for the constant-
temperature DPD system should be equivalent to kinT , while in the DPD-E system the total 

energy initially given to the system is dynamically partitioned among the kinetic and internal 
energies, yielding a variation in the equilibrium temperature with respect to iniT  (16). This 

difference is of  vCkO /B  as compared with unity, while an additional contribution of the same 

order arises from the “extra degree-of-freedom” due to the fluctuations in iu , since the relevant 

macroscopic temperature is related to 
1

1











i
. Hence, for a pure DPD fluid up to first order in 

vCk /B ,   983.0/1 Bint  vinikin CkTTT  (16), in agreement with the simulated values of 

003.0985.0  . For the equimolar binary fluid, the simulated values are also in agreement with 
the estimate 994.0int  TTkin . The estimated value is closer to 1iniT  because of the larger 

value of 2,VC  that reduces the  vB Ck / contribution. Also note that because of these lower values 

of kinT  and intT , the values of virP  in tables 1 and 2 slightly differ from virP  for constant-

temperature DPD.
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Table 1. The configurational energy per particle u , the kinetic 

temperature kinT , the internal temperature intT , the 

virial pressure virP , and the self-diffusion coefficient D  

determined from test case 1 simulations of the pure DPD 

fluid. .  denotes an ensemble average, where numbers in 

parentheses are uncertainties calculated from block 
averages. 

Variant u  kinT  intT  virP  D  

DPD 
3  

 
4.56(1) 

 
1.005(8) 

 
— 

 
23.65(8) 

 
0.295(13) 

DPD-E 
3  

 
4.54(1) 

 
0.985(8) 

 
0.985(3) 

 
23.61(11) 

 
0.293(6) 

Table 2. The configurational energy per particle u , the kinetic temperature 

kinT , the internal temperature intT , the virial pressure virP , and the 

self-diffusion coefficient D  determined from test case 1 simulations of 

the equimolar binary DPD fluid. .  denotes an ensemble average, where 

numbers in parentheses are uncertainties calculated from block averages. 

Variant u  kinT  intT  virP  1D  2D  

DPD 
3  

 
4.76(1) 

 
1.005(8) 

 
— 

 
24.79(13) 

 
0.177(13) 

 
0.165(13) 

DPD-E 
3  

 
4.75(1) 

 
0.993(8) 

 
0.994(3) 

 
24.77(21) 

 
0.174(9) 

 
0.161(10) 

 
Reproducing equilibrium averages is necessary but not sufficient proof that the integration 
scheme is behaving properly. Hence, as a further demonstration of the quality of the SSA-VV 
and the proper choice of t , for the pure DPD fluid, we calculated probability distributions for 

ip , iu , and V  for constant-temperature DPD with 03.0t  and for DPD-E with 01.0t . We 

compared the probability distribution for ip  with the corresponding Maxwell-Boltzmann 

distribution (21), while the probability distributions for iu  and V  were compared with those 

obtained with a very small 001.0t , which is more than an order of magnitude smaller than 
typical values of t  used and thus is approximated as the “exact” result. For a special case of 
DPD-E in the absence of conservative forces, an analytical form of the probability distribution 
for iu  was derived by Mackie et al. (16) under constant-temperature conditions. Probability 

distributions from constant-temperature DPD and DPD-E (not shown here) are in extremely 
good agreement. 
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4.1.2 Coarse-Grain Solid 

We now perform a validation study analogous to the DPD fluids study for a coarse-grain solid 
model, where we consider a recently developed nickel model that reasonably reproduces several 
measured properties, including the melting temperature (13). For a benchmark system, a 
constant-temperature DPD simulation is performed at 8260  kg/m3 and 1300T  K for 

1runt  ns and 5t  fs, where results are listed in table 3. (Since the coarse-grain solid model 

has been parameterized to an actual material, results are reported in real units as opposed to 
reduced units for the DPD fluid.) At this state point, the atomistic Sutton-Chen (SC) model of 
nickel predicts a pressure of approximately 0 bar (13), while virP  for the coarse-grain solid 

model is larger than 0 bar. 

Analogous to the DPD fluid study, DPD-E simulations were performed at conditions determined 
from the constant-temperature DPD simulation. The value of E  imposed in the DPD-E 
simulation was determined from the final configuration of the constant-temperature DPD 
simulation, which is used as the starting configuration. The value of iu  was initialized by setting 

iniVi TCu  , where 1300TTini  K. The simulation was run for 1runt  ns and 5t fs, where 

a relative drift in E  under 4102   was observed. (For the coarse-grain solid simulations, 
reported relative drifts refer to an average of relative drifts over time periods of 1 ns.) Comparing 
the DPD-E results with the constant-temperature DPD results in table 3, excellent overall 
agreement is found. For DPD-E, the values of kinT  and intT  are equal within statistical 

uncertainties. These values are approximately 2% lower than 1300iniT  K but agree within 

statistical uncertainties when the extra degree of freedom due to the fluctuations in iu  is 

considered, i.e.,   1273/1 Bint  vinikin CkTTT  K (16). Furthermore, because of these 

lower values of kinT  and intT , the value of virP  for DPD-E in table 3 differs accordingly 

from virP  for constant-temperature DPD. 

Table 3. The molar configurational energy u , the kinetic temperature 

kinT , the internal temperature intT , and the virial pressure 

virP  determined from test case 1 simulations of the coarse-grain 

solid model of nickel. .  denotes an ensemble average, where 

numbers in parentheses are uncertainties calculated from block 
averages. 

Variant 
u  

(kJ/mol) 
kinT  

(K) 
intT  

(K) 
virP  

(bar) 
DPD 

8260  kg/m3 
 

–508.44(11) 
 

1300.1(91) 
 

— 
 

5.91(94) 

DPD-E 
8260  kg/m3 

 
–508.71(11) 

 
1274.8(88) 

 
1274.5(5) 

 
–150.49(98) 
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4.2 Test Case 2: Heating Response in DPD-E Simulations 

As a second test case to verify the SSA-VV formulation for the DPD-E variant, a nonequilibrium 
scenario was considered for both the DPD fluids and the coarse-grain solid model. Starting from 
a final configuration of a constant-temperature DPD simulation, we instantaneously heated a slab 
of DPD particles in the middle of the simulation box and studied the system response at constant-
 EV ,  conditions, i.e., by DPD-E simulations. 

4.2.1 DPD Fluid 

Analogous to test case 1, the final configuration from the constant-temperature DPD simulation 
(at 1T  and 3 ) was used as the starting configuration. For this configuration, a L5.0 wide  

slab of particles in the middle of the simulation box was heated by assigning velocities from a 
Maxwell-Boltzmann distribution corresponding to heatT  and by setting heatiVi TCu , . The 

remaining (nonheated) particles were assigned iniiVi TCu , , where 1TTini . As a test of the 

DPD-E variant, a simulation was performed using 10heatT , for 5000runt  and 005.0t  for 

the pure and equimolar binary DPD fluids. Results for the time evolution of kinT , intT  and virP  for 

the pure DPD fluid are displayed in Fig. 1, where a relative drift of 5102   in E  was observed. 
From figure 1, it is evident that kinT  and intT  quickly equalized, after which, kinT , intT  and virP  

increased with t  until the system reached equilibrium at 150t . The inset of figure 1 displays 
the early time behavior of kinT , intT , and virP . Within 10t , kinT  and virP  sharply decreased from 

their initial values, followed by increasing values as the system moved toward an equilibrium 
state. The initial dramatic decreases in kinT  and virP  are associated with the relaxation of the 

interfaces between “cold” and “hot” regions in the simulation box, which were artificially 
created by the instantaneous heating at 0t . We found analogous results for the equimolar 
binary DPD fluid (not shown). 
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Figure 1. Time evolution of the kinetic temperature Tkin, internal temperature Tint, and virial pressure 
Pvir for a DPD-E simulation of the pure DPD fluid at 3 , where a slab of particles in the 
simulation box was instantaneously heated by Theat = 10 at t = 0. Inset of figure displays 
early time behavior of Tkin, Tint , and Pvir. 

4.2.2 Coarse-Grain Solid 

A validation study analogous to the DPD fluid study was carried out for the coarse-grain solid 
model of nickel. The final configuration from the constant-temperature DPD simulation (at 

1300T  K and 8260  kg/m3) was used as the starting configuration. From this starting 

configuration, a L5.0  wide slab of particles in the middle of the simulation box was heated by 
assigning velocities from a Maxwell-Boltzmann distribution corresponding to heatT  and by 

setting heatVi TCu  . The remaining (nonheated) particles were assigned iniVi TCu  , where 

1300TTini  K. As a test of the DPD-E variant, simulations were performed at 8260  

kg/m3, using 3000heatT  K for 1runt  ns and 5t  fs. We observed relative drifts of 4102   

in E . At low and moderate pressures, the coarse-grain solid model melts between 1800 and 1850 
K (13). As a result, at the end of the DPD-E run, the particle configuration corresponds to a 
liquid state. Figure 2 shows the time evolution of kinT , intT , and virP  (together with a few 

representative simulation snapshots) for the DPD-E simulation. Complete melting is evidenced 
by reaching a plateau in the time evolution of virP  for the DPD-E simulation, where complete 

melting occurs at ~0.7 ns. 
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Figure 2. (a) Time evolution of the kinetic temperature Tkin, internal temperature Tint, and virial pressure Pvir, along 
with (b) a few representative simulation snapshots for a DPD-E simulation of the coarse-grain solid at 

8260  kg/m3, where a slab of particles in the simulation box was instantaneously heated by  
Theat = 3000 K at t = 0. 

(a) 
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Figure 2. (a) Time evolution of the kinetic temperature Tkin, internal temperature Tint, and virial pressure Pvir, 
along with (b) a few representative simulation snapshots for a DPD-E simulation of the coarse-grain 
solid at 8260  kg/m3, where a slab of particles in the simulation box was instantaneously heated by 
Theat = 3000 K at t = 0 (continued). 

(b) 
t=O.Ol ns 

Heated Portion of 
Simulation Cell 

!=0.30 ns 

t=O.lO ns 

t=0.70 ns 
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4.3 Conservation of Total System Energy 

In practice, the SSA involves integrating the fluctuation-dissipation contribution and the 
conservative contribution in separate, independent steps. First, by implementing equation 18b 
rather than numerical discretization of equation 5, the integration of the fluctuation-dissipation 
contribution exactly conserves the total energy E  at each time step. Second, analogous to an 
application of the velocity-Verlet algorithm in microcanonical molecular dynamics (MD), the 
integration of the conservative contribution does not conserve E  at each time step. (DPD-E 
reduces to microcanonical MD in the limit of vanishing dissipative and random forces and heat 
transfers.) Rather, the velocity-Verlet algorithm preserves E  only up to terms of order 2t , 
conserving a pseudo-Hamiltonian that differs from the true Hamiltonian by this difference of 
order 2t  (22–25). Although the velocity-Verlet algorithm is area-preserving, it is not exactly 

symplectic. (An algorithm is area-preserving if .dd constpr , where  N

ii 1 rr  and  N

ii 1 pp .) 

The velocity-Verlet algorithm in microcanonical MD thus produces a long-term energy drift. 
Nonetheless, because of its area-preserving property, the velocity-Verlet algorithm is more stable 
at long times than non-area-preserving schemes, since system trajectories in phase space that are 
initially close will remain close during the microcanonical simulation (22). 

For values of t  comparable to those used in constant-temperature DPD simulations, we 
observed a small long-term drift in E  for the DPD-E simulations. For example, for the values of 

t  used for the DPD-E simulations in this work ( 01.0t  for the DPD fluids and 5t  fs for 
the coarse-grain solid), the small relative drift produced in E  was typically of order 410 . When 

t  was decreased by an order of magnitude, the relative drift in E  dropped to order 710 . A 
typical example of the dependence of the relative drift in E  on t  for the DPD fluid is shown in 
figure 3. The values of other properties (not shown here), such as the kinetic and internal 
temperatures, configurational energy, and virial pressure, change with t  by less than 0.5%. 
This behavior is comparable with microcanonical MD simulations when the velocity-Verlet 
algorithm is used to integrate the EOM (21). Since the integration of the fluctuation-dissipation 
contribution exactly conserves the energy (up to machine precision), the drift is caused by the 
velocity-Verlet algorithm during the integration of the deterministic contribution in the DPD-E 
EOM. Similar to microcanonical MD, a long-term drift in E  is thus inevitable in the SSA for 
DPD-E. Notably, a recent application of the standard velocity-Verlet algorithm to DPD-E for the 
DPD fluid model by Abu-Nada (7, 8) required 00002.0t  to 0.00005, i.e., values of t  that 
are several orders of magnitude smaller than for constant-temperature DPD to minimize a drift 
in E . 

To enforce constant energy beyond this small drift, one can apply the following numerical 
procedure. After each time step, the difference between the current E  and the inputted E  is 
calculated. This difference is then divided by the number of particles and equally subtracted from 
each iu . This is a useful strategy provided that the drift in E  has a mechanical origin, which 
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implies that the energy drift scales as TkB . Thus, the extra energy per particle subtracted in this 

procedure is very small compared to the magnitude of iu , which scales as TCv . In this work, the 

variation of the system temperature due to this drift was negligible and the dynamics unaffected. 
This strategy was applied to all test cases for DPD-E, where we observed no variation in the 
results. 
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Figure 3. The relative drift in E  as a function of the integration time step t  for 
DPD-E simulations with the SSA-VV. 

 

5. Conclusion 

We presented a comprehensive description of a numerical integration scheme based upon the 
SSA for the DPD-E approach, where it was readily extendable and found to be a stable and 
accurate integration scheme. The DPD-E variant was verified using both a standard DPD fluid 
model and a coarse-grain solid model, where thermodynamic quantities as well as probability 
distributions were considered. The integration algorithm for the DPD-E variant was further 
verified by considering equilibrium and nonequilibrium simulation scenarios. Finally, we 
discussed the inevitable small, long-term drift in E  associated with finite integration methods, 
where we proposed a simple strategy to minimize the effect of this drift in DPD-E simulations. 
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Implementing the SSA for a given conservative force potential, we found that a smaller time step 
is required for a DPD-E simulation, relative to the time step of a constant-temperature DPD 
simulation. This behavior is consistent with the analogs of MD integration algorithms. Moreover, 
the relative sizes of the time steps of constant-temperature DPD versus DPD-E simulations are 
comparable to the relative sizes of the time steps for canonical versus microcanonical MD 
simulations. Finally, and perhaps most importantly, compared to standard DPD integrators (17), 
while the SSA allows for modest increases in the size of the time step for constant-temperature 
DPD simulations, the SSA allows for much larger time steps for DPD-E simulations. Comparing 
with the recent study of Abu-Nada that used the standard velocity-Verlet algorithm for DPD-E 
simulations of the DPD fluid model (18, 19), the SSA proposed in this work allows for time 
steps as much as 103 times larger, which is an essential improvement for practical applications of 
the DPD-E method. So while the computational cost of the SSA is almost twice that of the 
standard velocity-Verlet algorithm, this cost is compensated by allowing larger time steps. 

 

 



 21

6. References 

1. Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating Microscopic Hydrodynamic 
Phenomena With Dissipative Particle Dynamics. Europhys. Lett. 1992, 19, 155. 

2. Koelman, J. M. V. A.; Hoogerbrugge, P. J. Dynamic Simulation of Hard Sphere Suspensions 
Under Steady Shear. Europhys. Lett. 1993, 21, 363. 

3. Bonet Avalos, J.; Mackie, A. D. Dissipative Particle Dynamics With Energy Conservation. 
Europhys. Lett. 1997, 40, 141. 

4. Español, P. Dissipative Particle Dynamics With Energy Conservation. Europhys. Lett. 1997, 
40, 631. 

5. Nikunen, P.; Karttunen, M.; Vattulainen, I. How Would You Integrate the Equations of 
Motion in Dissipative Particle Dynamics Simulations? Comp. Phys. Comm. 2003, 153, 407. 

6. Groot, R. D.; Warren, P. B. Dissipative Particle Dynamics: Bridging the Gap Between 
Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107, 4423. 

7. Abu-Nada, E. Natural Convection Heat Transfer Simulation Using Energy Conservative 
Dissipative Particle Dynamics. Phys. Rev. E 2010, 81, 056704. 

8. Abu-Nada, E. Application of Dissipative Particle Dynamics to Natural Convection in 
Differentially Heated Enclosures. Molecular Simulation 2011, 37, 135. 

9. Chaudhri, A.; Lukes, J. R. Velocity and Stress Autocorrelation Decay in Isothermal 
Dissipative Particle Dynamics. Phys. Rev. E 2010, 81, 026707. 

10. Shardlow, T. Splitting for Dissipative Particle Dynamics. SIAM J. Sci. Comput. 2003, 24, 
1267. 

11. Brennan, J. K.; Lísal, M. Dissipative Particle Dynamics at Isothermal Conditions Using 
Shardlow-Like Splitting Algorithms; ARL-TR-6582; U.S. Army Research Laboratory: 
Aberdeen Proving Ground, MD, September 2013. 

12. Brennan, J. K.; Lísal, M. Dissipative Particle Dynamics at Isothermal, Isobaric Conditions 
Using Shardlow-Like Splitting Algorithms; ARL-TR-6583; U.S. Army Research Laboratory: 
Aberdeen Proving Ground, MD, September 2013. 

13. Brennan, J. K.; Lísal, M. Proceedings of the 14th International Detonation Symposium, 
Coeur d’Alene, ID, 11–16 April 2010; Office of Naval Research, 2010; pp 1451. 

14. Pagonabarraga, I.; Frenkel, D. Dissipative Particle Dynamics for Interacting Systems. J. 
Chem. Phys. 2001, 115, 5015. 



 22

15. Merabia, S.; Bonet Avalos, J. Dewetting of a Stratified Two-Component Liquid Film on a 
Solid Substrate. J. Phys. Rev. Lett. 2008, 101, 208303. 

16. Mackie, A. D.; Bonet Avalos, J.; Navas, V. Dissipative Particle Dynamics With Energy 
Conservation: Modelling of Heat Flow. Phys. Chem. Chem. Phys. 1999, 1, 2039. 

17. Stoltz, G. A Reduced Model for Shock and Detonation Waves. I. The Inert Case. Europhys. 
Lett. 2006, 76, 849. 

18. Ripoll, M.; Ernst, M. H. Model System for Classical Fluids out of Equilibrium. Phys. Rev. E 
2004, 71, 041104. 

19. McQuarrie, D. A. Statistical Mechanics; University Science Books: Sausalito, CA 2000. 

20. Ripoll, M.; Español, P.; Ernst, M. H. Dissipative Particle Dynamics With Energy 
Conservation: Heat Conduction. Int. J. Mod. Phys. C 1998, 9, 1329. 

21. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 
1987. 

22. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to 
Applications; Academic Press: London, 2002. 

23. Tuckerman, M. E.; Berne, B. J.; Martyna, G. J. Reversible Multiple Time Scale Molecular 
Dynamics. J. Chem. Phys. 1992, 97, 1990. 

24. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration. Structure-Preserving 
Algorithms for Ordinary Differential Equations; Springer Verlag: Berlin, 2006. 

25. Leimkuhler, B.; Reich, S. Simulating Hamiltonian Dynamics; Cambridge University Press: 
Cambridge, UK, 2004. 



 23

Appendix A. Fokker-Planck Equation and Fluctuation-Dissipation Theorem
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Here, we summarize the Fokker-Planck equation (FPE) and outline the derivation of the 
fluctuation-dissipation theorem (FDT) for the dissipative particle dynamics method at constant 
energy (DPD-E) variant considered in the report. The FPE corresponding to the equations of 
motion (EOMs) given by equation 5 of the report is 

 
condDC LLL

t



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, (A-1) 

where the conservative operator CL  is given by 
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The operator representing the effects of the dissipative and random forces is given by 
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while the operator associated with the effects of the mesoscopic heat transfer between particles is 
given by 
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with the condition 02 


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  to ensure that the EOMs contain no spurious drift. 

In equations A-1 through A-4,  tu;,,pr   and  N

iiuu 1  are the particle internal energies; 

ij  and ij  are the mesoscopic thermal conductivity and noise amplitude between particle i  and 

particle j , respectively; Dq  and Rq  are weight functions associated with the mesoscopic heat 

transfer between particles; and 
i

i
i s

u




  is the internal temperature ( is  is the mesoscopic entropy 

of particle i ). 

In contrast to constant-temperature DPD, an implicit heat reservoir is not present in constant-
energy DPD. Furthermore, the FPE (A-1) does not impose external constraints on the system 
(such as the total system energy). Thus, for the purposes of deriving the FDT, it is equivalent to 
consider that the system is either isolated or in thermal contact with a heat reservoir, while the 
resulting FDT relations for either choice should be insensitive to any external constraints. The 
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use of the canonical distribution simplifies this derivation. Therefore, if we consider that the 
system is in contact with a heat reservoir that maintains the system temperature T , then 

 ueqeq  pr ,,   corresponds to the canonical probability density 
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Similarly as before, 0eq
CL  ,1 while the FDT then follows from the requirements that 
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Generally, ij  can be a function of iu  and ju . For such a case, 0eq
condL   requires that 

 jiij uu    because of the constraint on 2
ij  given in equation A-4. As expected, the FDT 

relations, equations A-6 and A-7, do not depend on the heat reservoir temperature and therefore 
do not depend on the ensemble used for the derivation of these relations. 

 

                                                 
1Brennan, J. K.; Lísal, M. Dissipative Particle Dynamics at Isothermal Conditions Using Shardlow-Like Splitting Algorithms; 

ARL-TR-6582; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, September 2013. 
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Appendix B. Simulation Model Details 
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For the models considered in this work, the details of the conservative forces expressed in 
equation 2 of the main text are the following. CG

iju  for the pure and binary Dissipative Particle 

Dynamics (DPD) fluid models is given by 

  ij
D

cij
CG
ij rrau  , (B-1) 

where ija  is the maximum repulsion between particle i  and particle j . 

For the coarse-grain solid model, which has a face-centered-cubic (f.c.c.) lattice structure, 
particles interact through a shifted-force Sutton-Chen embedded potential (SC) embedded 
potential given as: 
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  and 0r  are the energy and length parameters, respectively, n  and m  are positive integers 

( mn   to satisfy elastic stability of the crystal), and c  is a dimensionless parameter. Although 
effectively this is a many-body potential, the force on each particle can be written as a sum of 
pairwise contributions. The coarse-grain solid model used here approximates nickel, where one 
DPD particle was chosen to represent four f.c.c. unit cells, i.e., 16 nickel (Ni) atoms. SC potential 
parameters were determined by fitting to various 0-K properties and the melting temperature at 
zero pressure,1 where the following values were found: 225/ B k K, 8698.80 r  Å, 

4314.39c , 6m , and 9n . Further details for determining SC parameters based upon such 
a procedure can be found elsewhere.2,3 

                                                 
1WebElements. http://www.webelements.com/ (accessed 16 August 2013). 
2Brennan, J. K.; Lísal, M. Proceedings of the 14th International Detonation Symposium, Coeur d’Alene, ID, 11–16 April 

2010. 
3Sutton, A. P.; Chen, J. Long-Range Finnis Sinclair Potentials. J. Philos. Mag. Lett. 1990, 61, 139. 
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List of Symbols, Abbreviations, and Acronyms 

DPD  constant-temperature Dissipative Particle Dynamics  

DPD-E  constant-energy Dissipative Particle Dynamics  

EOMs  equations of motion  

f.c.c.  face-centered-cubic  

FDT  fluctuation-dissipation theorem  

FPE  Fokker-Planck equation  

MD  molecular dynamics 

SC  Sutton-Chen embedded potential  

SDEs  stochastic differential equations  

SSA  Shardlow-splitting algorithm 

SSA-VV Shardlow-splitting algorithm-velocity Verlet  
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